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Abstract: The increasing prevalence of depression worldwide requires more effectiveness in ther-

apy approaches and a molecular understanding of antidepressants mode of action. We carried out 

untargeted metabolomics of the prefrontal cortex of rats exposed to chronic social isolation (CSIS), 

a rat model of depression, and/or fluoxetine treatment using liquid chromatography-high resolution 

mass spectrometry. The behavioral phenotype was assessed by the forced swim test. To analyze 

metabolomics data, univariate and multivariate analysis and biomarker capacity assessment using 

the classical receiver operating characteristic (ROC) curve were used. Support vector machine-linear 

kernel (SVM-LK), as a machine-learning algorithm was performed for binary classification. Upreg-

ulated myo-inositol following CSIS may represent a potential marker of depressive phenotype. Ef-

fective fluoxetine treatment reversed depressive-like behavior and increased sedoheptulose 7-phos-

phate, hypotaurine, and acetyl-L-carnitine contents, which were identified as potential markers. We 

identified 4 or 10 marker candidates with ROC curve greater than 0.9 for CSIS or fluoxetine effec-

tiveness designation. SVM-LK has given accuracy of 61.50%, or 93.30%, and 7 or 25 predictive me-

tabolites for CSIS vs. control and fluoxetine-treated CSIS vs. CSIS classification. Overall, metabolic 

fingerprints combined with ROC curve and SVM-LK may represent a new approach to identifying 

potential markers or predicting metabolites for group designation or classification. 

Keywords: depressive-like behavior; prefrontal cortex; fluoxetine; metabolomics; ROC curve; 

support vector machine-linear kernel 

 

1. Introduction 

The leading cause of disability and one of the main sources of global burden of dis-

ease worldwide in adults is major depressive disorder (MDD), known as depression, a 

common mental disease with a complex neurobiological basis. Different hypotheses are 

used to understand the pathogenesis of depression, including changes in the synthesis 
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and metabolism of monoamine neurotransmitters, mainly serotonin (5-hydroxytrypta-

mine, or 5-HT), disturbances in their receptor function, or changes in signal transduction 

pathways at the post-receptor level [1–3]. To investigate the molecular mechanism under-

lying depression and evaluate the efficacy of antidepressants, we used a well-validated 

animal model for chronic psychosocial stress, chronic social isolation (CSIS). The depres-

sive-like behavior induced by CSIS in rats is accepted to resemble the effects of perceived 

isolation in humans that may contribute to the development of depression [4–6]. The pre-

frontal cortex (PFC) is one area of the brain that experiences structural and functional 

changes in depression [7–10]. Its dysfunction has been associated with cognitive impair-

ment, including decision-making and working memory, as a common symptom of de-

pression [11]. A previous study has shown that CSIS in adult male Wistar rats affects hy-

pothalamic-pituitary-adrenal axis activity and impairs the negative feedback of glucocor-

ticoids on the axis [12], as found in depressive patients [13,14]. Recently, a proteomic study 

in the PFC of CSIS rats has shown that depression-like behavior is associated with com-

promised mitochondrial membrane integrity; CSIS affected mitochondrial transport and 

energy processes as well as synaptic neurotransmission and oxidative stress [15].  

Depression is frequently treated with selective serotonin reuptake inhibitors, such as 

fluoxetine (Flx), which improve serotonergic neurotransmission by inhibiting its reuptake 

transporter [16]. This drug reversed depressive-like behavior in the rat CSIS model of de-

pression [15,17]. Effective Flx treatment of CSIS rats altered mitochondrial bioenergetics, 

vesicle-mediated transport, and synaptic signaling in the PFC [15,18]. Additionally, Flx 

stimulates neurogenesis and neural plasticity in various brain regions [19–21]. Although 

Flx has been proven to be effective in depressive patients, the response rate is low (60-70% 

of patients), and the mechanisms of action have not been defined yet. Moreover, identifi-

cation of metabolic biomarkers and the establishment of a strategy for their screening and 

application are needed. Therefore, new approaches are required for a more detailed ex-

amination of the pathobiology of depression and the mode of antidepressant action, as 

well as the identification of biomarker candidates for depression pharmacotherapy. 

It has been shown that mental and behavioral changes have been associated with 

metabolic alterations [22]. Metabolomics is a study for identifying metabolite changes in 

cellular processes and presents characteristic small molecule fingerprints related to the 

pathophysiology of depression in both clinical research [23,24] and animal experiments 

[25–27], as well as following antidepressant treatments [28,29]. Indeed, metabolic changes 

in the PFC of rats that showed depressive-like behavior following chronic unpredictable 

mild stress were found in amino acid metabolism, energy metabolism, lipid metabolism, 

oxidative stress, and the synthesis of neurotransmitters [30]. Hence, we investigated the 

application of liquid chromatography-high resolution mass spectrometry (LC-HRMS)-

based untargeted metabolomics in CSIS (6-week) rats, and CSIS rats with chronic Flx treat-

ment (lasting three weeks of 6-week CSIS), and controls. To analyze metabolomic data, 

univariate (t-test) and multivariate partial least square-discriminant analysis (PLS-DA) 

were performed. Classical receiver operating characteristic (ROC) curve analysis was 

used to assess the molecular marker performances of each metabolite for a binary out-

come. For deeper data analysis, support vector machine with linear kernel (SVM-LK), as 

machine-learning classification model, was applied to identify a subset of predictive me-

tabolites that have the potential to enable more accurate diagnosis of depressive pheno-

type or effective antidepressant treatment [31,32]. Correlation between metabolites and 

immobility time in the forced swim test (FST) was investigated to test whether the level 

of metabolites could reflect behavior despair in the CSIS model. To date, no studies have 

examined the PFC metabolic fingerprints of adult male CSIS rats in combination with Flx 

treatment. In addition, this is the first study where obtained metabolic fingerprints were 

used for identification of marker candidates for designation of depressive-like behavior 

following CSIS and effective Flx treatment in CSIS rats, and most contributing predictive 

metabolites for binary group classification (CSIS vs. Control and CSIS+Flx vs. CSIS). 
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2. Results 

2.1. Behavioral testing  

The FST results are presented in Figure 1. For immobility time, a significant main 

effect of CSIS (F1.23 = 13.07, p ˂ 0.01) and effects of time (F2.46 = 15.10, p ˂ 0.001), CSIS × time 

(F2.46= 4.34, p ˂ 0.05), Flx × time (F2.46 = 8.43, p < 0.001) were found. A significant increase in 

immobility time in CSIS+Flx and CSIS at the 3-week test compared to baseline (***p < 0.001) 

was revealed. At the 6-week test, only the CSIS group differed from baseline (***p < 0.001).  

For swimming behavior, a significant main effect of CSIS (F1.23 = 18.42, p ˂ 0.001) and 

effects of time (F2.46 = 7.56, p ˂ 0.01), CSIS × time (F2.46= 4.53, p ˂ 0.05), Flx × time (F2.46 = 9.88, 

p < 0.001) were observed. A significant decrease in swimming time in CSIS+Flx and CSIS 

at the 3-week test compared to baseline (*p < 0.05) was found. Only the CSIS remained 

significantly decreased from baseline at the 6-week test (***p < 0.001). No significant main 

effects of CSIS or Flx treatment on climbing behavior were observed. Reduced climbing 

of Control+Flx and CSIS rats at the end of the 6th week compared to the baseline (*p < 0.05) 

was found. 

 

Figure 1. Behavioral results in control, fluoxetine-treated controls (Control + Flx), chronic social iso-

lation (CSIS) and fluoxetine-treated CSIS (CSIS + Flx) rats in the forced swim test (FST) at baseline 

and at the end of the 3rd and 6th week. Differences between different groups compared to controls 

(baseline) were considered statistically significant at ***p < 0.001, **p < 0.01, *p < 0.05. Immobility – 

CSIS or CSIS + Flx (3 weeks) vs. CSIS (baseline) as well as CSIS + Vehicle (6 weeks) vs. CSIS (baseline) 

***p < 0.001; Swimming – CSIS or CSIS + Flx (3 weeks) vs. CSIS (baseline) *p < 0.05 and CSIS (6 week) 

vs. CSIS (baseline) ***p < 0.001; Climbing – Control+Flx and CSIS (6 weeks) vs. Control+Flx and CSIS 

(baseline) *p < 0.05. Significant differences between groups obtained via three-way repeated 

measures ANOVA, followed by Duncan’s posthoc test. Data are expressed as the mean ± standard 

deviation (± SDEV), n=6-8 rats per each group. 

2.2. PFC metabolic fingerprints following CSIS and/or effective Flx treatment and controls 
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In LC-HRMS analysis a total of 117 metabolites on each sample were identified (Sup-

plementary Table 1). The list of statistically significant metabolite changes is presented in 

Table 1. 

Table 1. List of differential metabolites following Flx treatment in control, CSIS and effective Flx 

treatment in CSIS groups in the rat prefrontal cortex detected by LC-HRMS and analyzed with the 

t-test, including the false discovery rate (FDR)-adjusted p-values of < 0.05 and fold change (FC) 

thresholds of >1.5. 

   
Control+Flx vs. 

Control 
 CSIS vs. Control  CSIS+Flx vs. CSIS 

 

 

Retentio

n 

Time 

(min) 

Metabolite FC p-value 
p-

adjusted 
FC p-value 

p-

adjusted 
FC p-value 

p-

adjusted 

Metabolic 

pathway 

11.28 N-acetyl-L-arginine 0.27 1.00E-05 
1.20 

E-03 
      

Amino acid 

metabolism 

5.57 Xanthine 0.61 1.95E-03 
3.80 

E-02 
      

Purine 

metabolism 

9.50 
N1-methyl 

nicotinamide 
0.65 7.26E-04 2.12E-02       

Energy 

metabolism 

14.25 
Sedoheptulose 7-

phosphate 
2.24 1.09E-04 2.56E-02    2.4 6.89E-04 2.02E-02 

Energy metabo-

lism 

4.16 
2-hydroxy 

glutaric acid 
2.28 6.84E-04 2.12E-02       

Energy 

metabolism 

4.62 

 

Indoxylsulfate 

 

2.57 

 
2.49 E-03 4.16 E-02       

Organic acids 

and derivatives 

10.09 
Stachydrine (proline 

betain) 
5.08 3.10E-05 1.80E-03       

Amino acid 

metabolism  

11.98 Myo-Inositol    1.56 2.69 E-04 3.15 E-02 
 

 

 

 

 

 

Inositol 

phosphate 

metabolism 

7.10 

 

Hexanoyl 

carnitine  
      0.45 2.60 E-04 2.02 E-02 Lipid metabolism  

7.98 Xantosine        0.62 
6.83 

E-04 

2.02 

E-02 

Purine 

metabolism  

5.32 Riboflavin        0.64 
9.14 

E-04 

2.14 

E-02 

Riboflavin 

metabolism 

11.65 

 
Hypotaurine       

1.62 

 

1.16 

E-03 

2.25 

E-02 
Lipid metabolism 

8.75 
Acetyl-L- 

carnitine 
      3.31 

5.24 

E-04 

2.02 

E-02 

 

Lipid metabolism 

2.3. Multivariate data analysis 

PLS-DA was performed to determine the discrimination between groups based on 

the metabolomics dataset. Dimensionality reduction resulted in the organisation of 

samples based on two components. The key parameters, R2 and Q2, in pair-wise groups 

were higher than 0.5 (Table 2), indicating that models were robust and had good fitness 

and prediction. The Control+Flx vs. Control group was clearly distinguished in the PLS-

DA plot (Figure 2a). The PLS-DA score plot (Figure 2b) showed that the CSIS group had 

distinctive metabolic profiles from the control group, and a clear separation was also ob-

served between the CSIS+Flx vs. CSIS group (Figure 2c).  
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Figure 2. PLS-DA score plots show separations based on specific metabolic profiles of Control + Flx 

vs. Control (a), CSIS vs. Control (b), and CSIS + Flx vs. CSIS (c). Each dot represents the function of 

the metabolic profile of an individual sample. 

Table 2. PLS-DA classifier performances. 

Group comparison 
No of compo-

nent 
R2a Q2b Accuracy 

Control + Flx vs. Control 5 0.99953 0.92444 1 

CSIS vs. Control 5 0.99587 0.29245 0.84615 

CSIS + Flx vs. CSIS 5 0.99636 0.86544 1 

a Measure of goodness of fit of the model; 
b Measure of predictive ability of the model. 

2.4. Marker candidates identification 

ROC curve based on the area under curve (AUC) values revealed metabolites with 

the best marker preferences in the rat PFC of depressive-like behavior and effectively Flx-

treated rats (Table 3). 

Table 3. List of PFC metabolite with the best marker preferences for depressive-like behavior and 

effectively Flx-treated rats. 

Metabolites  
CSIS vs. 

Control 

 AUC p-value Fold Change 

Myo-Inositol 1.000 2.69E-04 1.56 

Methylnicotinamide 0.95238 2.40E-03 0.75 

cAMP 0.92857 1.13E-02 1.66 

NAD 0.90476 2.03E-02 1.76 

Metabolites  
CSIS+Flx 

vs. CSIS 

 AUC p-value Fold Change 

Sedoheptulose-7-phosphate 1 
6.89E-04 

 
2.40 

Hypotaurine 0.98214 1.16E-03 1.62 

Riboflavin 0.98214 1.29E-03 0.64 

Acetyl-L-carnitine 0.96429 5.24E-04 3.31 

Hexanoylcarnitine 0.96429 2.60E-04 0.45 

Xanthosine 0.94643 6.83E-04 0.62 
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Aconitate 0.92857 4.69E-03 0.71 

Cytosine 0.91071 2.98E-03 1.39 

5-Methylcytosine 0.91071 5.77E-03 0.76 

Myo-Inositol 0.91071 3.57E-0.3 0.76 

 

According to ROC analysis, myo-inositol with AUC = 1 had the best molecular can-

didate preferences for CSIS group designation (Figs.3a). Sedoheptulose-7-phosphate (1), 

hypotaurine (0.98214) and acetyl-L-carnitine (0.96429) had the greatest AUC (in parenthe-

sis) values of classical ROC analysis and were the most significant marker candidates fol-

lowing effective Flx treatment in CSIS rats (Figs.3.b-d).  

 

Figure 3. PFC molecular marker candidates in depressive-like behavior following CSIS (a) and ef-

fectively Flx-treated animals (b-d) based on a classical ROC curve with AUC values. ROC curves 

are presented with 95% confidence interval and AUC values. Box-and-whisker plots display indi-

vidual variable distributions within each group. Red dots (ROC curves) and red lines (box-and-

whisker plots) represent the optimal cut-off value between the groups. 

2.5. SVM classification 

The SVM-LK classifier showed the optimal classification performances between CSIS 

and controls with seven contributing PFC variables. The best-balanced accuracy for clas-

sification was achieved for the panel of 25 metabolites in effectively Flx-treated rats. The 

SVM-LK classifier with the most contributing metabolites are presented in Table 4.  

Table 4. SVM-LK- based binary classification performance for pair-wise comparisons of the PFC 

metabolite samples. 
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CSIS vs. Control  
CSIS+Flx vs. CSIS  

Accuracy 61.50% Accuracy 93.30% 

Sensitivity 66.70% Sensitivity 85.70% 

Specificity 57.10% Specificity 100.0% 

Balanced Accuracy  61.90%  Balanced Accuracy  92.90%  
 

Predictive metabolites 

 

Predictive metabolites 

Name  FC Name     FC 

Tyrosine 0.91 PLK 0.82 

Methylnicotinamide 0.75 Phenylalanine 0.91 

Hypoxantine 0.78 Decanoylcarnitine 0.93 

Asparagine 1.16 Histidine 0.90 

Succinate 1.26 Pantothenic acid 0.97 

Valine 0.84 Tyrosine 0.85 

Serine 1.15 Inosine monophosphate 0.78 
  Alanine 0.95 
  Phosphatidylcholine 1.04 
  Glycerophosphocholine 0.71 
  Fumarate 0.87 
  Thymine 0.92 
  Carnitine 0.88 
  Cytidinemonophosphate 1.12 
  Creatine 1.04 
  Cystathionine 0.75 
  Adenosinediphosphoribose 0.81 
  N-Acetylaspartylglutamicacid 0.73 
  C6sugaralcohol 0.71 
  Succinate 1.10 
  Indoxylsulfate 1.65 
  Cytidinediphosphocholine 1.19 
  Guanosinemonophosphate 1.19 
  Dihydroxyacetone phosphate 1.24 
  Xantine 0.77 

2.6. Correlation of behavioral phenotype with the metabolomic data 

A Pearson correlation analysis was conducted between all metabolites and immobil-

ity time at 6th weeks in FST. The results are shown in Table 5. 

Table 5. Statistically significant Pearson correlation (0.4 < r < - 0.4), p < 0.05, between the PFC me-

tabolites and immobility time in the FST. 

Metabolites r p 

Sedoheptulose-7-phosphate -0.5698 0.0037 

Indoxylsulfate -0.4942 0.0141 

Cytosine -0.4642 0.0224 

C6H13O9P -0.4622 0.0230 

Urocanic acid -0.4517 0.0270 

Saccharopine 0.4093 0.0471 

Adenosinediphosphoribose 0.4121 0.0454 

Acetylcholine 0.4362 0.0331 

Adenine 0.4585 0.0243 

Guanosine 0.4667 0.0215 

Acetylarginine 0.4669 0.0215 

NAD 0.5001 0.0128 

Riboflavin 0.5359 0.0070 

cAMP 0.5521 0.0052 
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Myo-Inositol 0.5932 0.0023 

 

A positive correlation of myo-inositol with immobility time in the FST between CSIS 

and control groups, and negative correlation of sedoheptulose-7-phosphate with 

immobility time in the FST between CSIS+Flx vs. CSIS, were revealed. These findings 

showed that altered metabolome could reflect depression-like behavior in CSIS rats. 

3. Discussion 

The obtained metabolic fingerprints revealed metabolites that were significantly al-

tered in depressive-like behavior following CSIS and effective Flx treatment. We also pro-

posed marker candidates and a panel of predictive metabolites for contributing the most 

to group designation or binary classification, respectively. 

Following CSIS stress, rats showed depressive-like behavior, assessed by increased 

immobility time in FST, as a measure of behavior despair. This result is consistent with 

previous studies of CSIS-induced depression-like behavior assessed by sucrose preference 

and open field tests [15,33,34]. Chronic Flx treatment (15 mg/kg/day) significantly reduced 

the immobility behavior of CSIS rats, implying that Flx reversed depressive-like symp-

toms in stressed rats, indicating an antidepressant effect. 

A possibly affected pathway related to depressive-like behavior might be the 

phosphoinositide pathway, with myo-inositol (MI) being significantly altered between 

CSIS and control. It is a component of phosphatidylinositol and membrane phospholipids 

that participates as a second messenger [35]. In the brain, MI is synthesized de novo from 

D-glucose-6-phosphate by endothelial cells located at the blood-brain barrier or through 

interconversion between inositol derivatives. It can be transferred across the blood-brain 

barrier from the diet or synthesized in other organs [36,37]. As it is more prevalent in 

astrocytes, a major glial cell type, than in neurons [38], elevation of MI level in our study 

might reflect glial activation, indicating changes in astroglia cell metabolism, which have 

the ability to release pro-inflammatory cytokines and free radicals, causing functional 

brain impairment [39–42]. In keeping with previous studies, CSIS resulted in the impair-

ment of rat PFC function by pro-inflammatory mediators such as interleukin-1 beta and 

tumor necrosis factor alpha or compromised glutathione antioxidant defense [15,43]. The 

revealed significant positive correlation between increased immobility behavior and MI 

level (r = 0.5932), is compatible with the idea that MI is at least in part involved in depres-

sive-like behavior of CSIS rats. Additionally, increased level of MI might change second 

messenger systems, that could lead to alterations in inositol trisphosphate signaling and 

its role in intracellular calcium mobilization [44], which can trigger apoptosis [45,46], al-

ready confirmed in the PFC of CSIS rats [7,47].  

Although differential MI content has been reported depending on the model species 

and brain regions [48–51] or age [52–54], MI has been suggested as a metabolic marker for 

depression [55]. In line with this, classical ROC analysis in our study, identified MI as the 

best candidate to discriminate CSIS from controls. In terms of showing predictive metab-

olites for CSIS classification from controls, SVM-LK revealed a panel of 7 metabolites, of 

which four were amino acids such as tyrosine, asparagine, valine, and serine that may 

contribute to or reflect depression-like behavior. The strongest decrease was found in va-

line level (FC 0.84). Given that valine is associated with cognitive performance [56], a de-

crease in its content is likely connected to changes in cognitive function as a hallmark of 

depression. Conversely, the highest increase was revealed in succinate level (FC 1.26), a 

substrate of the TCA cycle, which may indicate stimulation of the TCA cycle to increase 

energy demand to aid cells in coping with stress, contributing the most to group designa-

tion. 

Effective Flx treatment in CSIS rats caused more obvious metabolic perturbations in 

the PFC, whereby 6 metabolites were found different by univariate analysis. One of the 

most prominent changes was significant elevation of acetyl-L-carnitine (ALC). which also 

had one of the best molecular candidate preference for Flx efficacy group designation 
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(AUC 0.964). This metabolite has been demonstrated to exert antidepressant effects by 

improving mitochondrial energy, the regulation of neurotransmission, and neural plas-

ticity [57]. Thus, it facilitates transport of activated long-chain fatty acids into the mito-

chondria to undergo subsequent β-oxidation, where generated acetyl-CoA increases mi-

tochondrial energy production by entering the TCA cycle, combining with oxaloacetate 

to form citrate, or can be incorporated into glutamate, glutamine, and GABA [57,58]. The 

capability of ALC treatment to decrease oxidative stress has also been reported [59]. Given 

that mitochondrial oxidative stress was found in the PFC of CSIS rats [15], we may sup-

pose that an increase in ALC levels aimed to restore normal mitochondrial function and 

rats’ behavioral normalization. Preclinical and clinical data indicate that ALC is more rap-

idly effective than Flx and promotes structural plasticity in the limbic brain region [60–

62]. Furthermore, ALC and Flx have been shown to result in equivalent antidepressant 

efficacy, which was observed after 3d post-administration lasting two weeks after ALC 

[63,64]. Additional studies using CSIS paradigms would provide more insight into the 

possible therapeutic effectiveness of ALC in protecting the brain. 

The content of sedoheptulose 7-phosphate, an intermediate in the pentose phosphate 

pathway, was increased following effective Flx treatment in CSIS as well as control rats. 

Its increased levels may be linked to the production of ribose 5-phosphate, which is 

needed for nucleotide synthesis, or NADPH, which provides electrons to antioxidants 

combating harmful oxygen molecules [65]. In addition, elevated contents of stachydrine 

and 2-hydroxyglutaric acid, which are implicated in the metabolism of amino acids and 

energy production, respectively, were found in Flx-treated controls. Although Flx did not 

alter the behavior phenotype in control rats, altered metabolites may suggest adaptive 

cellular responses to chronic Flx treatment. Additionally, hypotaurine, as the metabolic 

precursor of taurine, whose content was increased in effectively Flx-treated rats, may also 

act as an antioxidant by scavenging highly reactive hydroxyl radicals [66]. Based on the 

AUC of classical ROC analysis, sedoheptulose 7-phosphate (1), hypotaurine (0.982), and 

ALC (0.964) were suggested as marker candidates for differentiating effective Flx treat-

ment behavioral outcomes. SVM-LK achieved a higher performance in predicting effec-

tive Flx treatment in CSIS rats compared to CSIS than predicting CSIS compared to con-

trol. The best accuracy of classification was attained for the panel of 25 metabolites, in-

cluding decanoylcarnitine and L-carnitine, as mitochondrial metabolites. Although pre-

dictive metabolites were not significantly changed by univariate analysis, the pattern of 

recognition of a particular class is influenced by absolute values of the most significant, or 

predictive, variables as well as the existence of complex interactions between these varia-

bles [67]. All together. this approach would require a substantially larger number of bio-

logical replicates and training set size for a more accurate distinction between the exam-

ined groups. 

Additionally, we found decline in the contents of xanthosine, riboflavin, and hexa-

noylcarnitine following effective Flx treatment in CSIS rats (Table 1). Given that xan-

thosine may be a result of higher oxidative stress caused by purine catabolism [68], we 

can assume that Flx may be associated with a reduction of oxidative stress and conse-

quently a decline in xanthosine level. The same tendency was observed for riboflavin, also 

known as the B2 vitamin, that neurons and astrocytes obtain from the blood through the 

blood brain barrier. According to the literature data, Flx reduced the metabolism of ribo-

flavin because of its involvement as an important cofactor in tryptophan metabolism and 

a crucial methyl donor in the conversion of homocysteine [69]. Given that we did not de-

tect changes in the tryptophan or cysteine amino acid metabolic pathways in our study, a 

reduced riboflavin level may arise from its decreased uptake from the bloodstream. More-

over, a decrease in hexanoylcarnitine levels was detected, and also revealed as one of the 

proposed marker candidates by the classical ROC/AUC value (0.964) to discriminate ef-

fective Flx treatment in CSIS rats. This metabolite promotes the transport of medium-

chain fatty acids into the mitochondria. Moreover, it may be concluded that alterations of 
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aforementioned metabolites reversed the behavioral alterations following CSIS and were 

involved in the effective Flx treatment in CSIS rats.  

4. Material and methods 

4.1. Animals 

We used adult male Wistar rats (2.5 months of age, 300–350 g weight) bred in the 

Animal Facility of "VINČA" Institute of Nuclear Sciences, National Institute of the Repub-

lic of Serbia, University of Belgrade. Rats were kept under standard conditions in groups 

of up to four per cage with a 12-hour light/dark cycle, a humidity level of 55±10%, a tem-

perature of 20±2°C, and free access to food (commercial rat pellets) and water ad libitum. 

All experimental procedures were approved by the Ethical Committee for the Use of La-

boratory Animals of the "VINČA" Institute of Nuclear Sciences, National Institute of the 

Republic of Serbia, University of Belgrade, which follows the guidelines of the EU-regis-

tered Serbian Laboratory Animal Science Association (SLASA). The study protocol was 

approved by the Ministry of Agriculture, Forestry, and Water Management-Veterinary 

Directorate, ethics committee, license number 323-07-02256/2019-05. Rats were monitored 

daily. 

4.2. Fluoxetine-hydrochloride administration 

Flunisan tablets (containing 20 mg of fluoxetine-hydrochloride, Hemofarm Vršac, 

Serbia) were crushed, dissolved in distilled, sterile water with the aid of ultrasound, and 

filtered through Whatman No. 42 filter paper. Ultra-Performance Liquid Chromatog-

raphy analysis was used to determine the concentration of Flx solution [70]. We recorded 

a total loss of 25% in drug concentration throughout the preparation method, which was 

accounted for during drug administration (15 mg/kg/day) [34]. Solution of Flx was ad-

ministered according to rat weight measured once a week. Flx serum concentrations were 

similar to those reported in the serum of patients effectively treated with Prozac [34,71].  

4.3. Experimental design 

The experimental design is graphically represented in Figure 4. A CSIS model was 

employed as previously described [15]. At the onset of the experiment (week 0), rats (n = 

50) were randomly assigned into two groups: control (n = 20, housed in groups of up to 

four) and CSIS (n = 30, housed individually, with no tactile or visual contact). For the first 

3 weeks, rats were not exposed to any additional experimental procedures. During the 

second 3-week period, half of each group of rats was treated daily with intraperitoneal 

(i.p.) Flx solution (15 mg/kg/day) (Control+Flx and CSIS+Flx); the remaining rats were ad-

ministered daily i.p. injections of physiological solution (Control+Vehicle and CSIS+Vehi-

cle). Assessment of depressive-like behavior and effectiveness of Flx treatment in rats 

were performed according to the results of immobility time in the FST. The test was done 

before the start of the experiment (week 0-baseline) and at the end of the 3rd and 6th weeks. 

Given that depression in humans induced by social factors is associated with a higher risk 

of mortality in males [72] and that changes in the proteome depend on the estrous cycle 

[73], the experiments were done only in male rats. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 1 June 2023                   doi:10.20944/preprints202306.0096.v1

https://doi.org/10.20944/preprints202306.0096.v1


 11 of 16 
 

 

 

Figure 4. Experimental design of the study. CSIS - Chronic Social Isolation; Flx – fluoxetine; FST - 

forced swim test; PFC- prefrontal cortex. 

4.4. Forced swim test 

The FST was performed to evaluate the depressive-like behavior of rats undergoing 

the CSIS procedure and the antidepressant-like effect of Flx, as previously described [15]. 

Rats were individually placed into plexiglas cylinders (height 45 cm, diameter 28 cm) 

filled with water (24±1°C) up to a height of 33 cm. During the 5-minute-long test, immo-

bility, climbing, and swimming were recorded [74], and results were analyzed by two 

observers blinded to the experimental conditions. Immobility was defined as floating in 

the water without making any effort but making movements to keep one's head above the 

surface. Rats following CSIS that showed immobility increases >20% at the end of the 3rd 

and 6th week of testing compared to baseline, were designated as CSIS. Flx-treated CSIS 

rats that showed a decrease in immobility behavior >20% at the end of the 6th week relative 

to CSIS at the end of the 3rd or 6th week, were designated as responsive to Flx treatment. 

Rats following CSIS which showed no immobility increase compared to baseline (CSIS 

resilient), and CSIS+Flx rats which showed no immobility decline at the end of the 6th week 

(Flx resilient) compared to CSIS rats, were not included in the current study. The final 

number of animals per group was 6–8. 

4.5. Metabolomics analysis by LC-HRMS  

4.5.1. Optimization of sample preparation for LC-HRMS analysis 

Once all the behavioral testing was completed, the rats were anesthetized with a mix-

ture of ketamine/xylazine (120/16 mg/kg) and sacrificed by decapitation. The PFC was 

dissected from the brain on ice, frozen with liquid nitrogen rapidly, and stored at – 80 °C 

until further analysis. 

The frozen PFC samples were pulverized using the Cellcrusher (Cartilage). The tis-

sue was weighed (~10 mg) and metabolic profiling was performed as described previously 

[75] with minor modifications. Briefly, metabolites were extracted using 500 µL of meth-

anol/acetone/acetonitrile/ water (1/1/1/0.75, v/v/v/v), containing 2.5 µM Metabolomics 

Amino Acid Mix Standard (Cambridge Isotope Laboratories, Andover, MA, United 

States). After mixing for 15 min at 4°C at 1000 rpm (ThermoMixer Eppendorf), samples 

were sonicated for 1 min and vortexed for 10 sec. After incubation for 2h at -20°C, samples 

were centrifuged for 10 min at 14,000 rpm at 4°C. The collected supernatants were evap-

orated to dryness in a vacuum concentrator (SpeedVac Concentrator, ThermoFisher). The 

dry extracts were reconstituted in 50 µL of methanol/acetonitrile (1:1) and vortexed for 15 

sec followed by centrifugation at 14,000 rpm for 10 min at 4°C. The supernatants were 

transferred to LC/MS vials, and LC-HRMS analysis was performed. Pooled quality control 

samples (QC) were prepared in the same manner to ensure data quality and linearity. All 

solvents were of LC-MS grade quality and were purchased from Merck (Darmstadt, Ger-

many). 
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4.5.2. Metabolic profiles analyzed by LC-HRMS  

LC-HRMS analysis was performed using a Dionex Ultimate 3000 RS LC-system cou-

pled to an Orbitrap mass spectrometer (QExactive, ThermoFisher Scientific, Bremen, Ger-

many) equipped with a heated-electrospray ionization (HESI-II) probe. Extracted metab-

olites were separated on a SeQuant ZIC-HILIC column (150 × 2.1 mm, 5 μm) using water 

with 5 mM ammonium acetate as eluent A and acetonitrile/eluent A (95:5, v/v) as eluent 

B. The gradient elution was set as follows: isocratic step of 100% B for 3 min, 100% B to 

60% B in 15 min, held for 5 min, returned to initial conditions in 5 min and held for 5 min. 

Flow rate was 0.5 mL/min. Data was acquired based on a Full MS/data-dependent MS2 

(top 10) experiment. Data processing was performed using Compound Discoverer 3.1 

(ThermoFisher, CA, USA). Metabolites were identified based on exact mass, retention 

time, fragmentation spectra and isotopic pattern. We used an in-house library [75] as well 

as the online library mzCloud. The final output data includes the compound name, reten-

tion time (RT), exact mass-to-charge (m/z) ratio, and peak area. 

4.5.3. Metabolite data statistic and analysis 

We used the web-based tool MetaboAnalyst5 (http://www.metaboanalyst.ca/) to per-

form statistical analysis of metabolome data. Briefly, peak areas were normalized by the 

total sum scaling method followed by a log transformation (base10). Metabolites were 

further applied to the univariate analysis for pair-wise group comparisons using a t-test 

and FC. Metabolites with FDR-adjusted p-values of < 0.05 and FC thresholds of >1.5 were 

considered statistically significant [76]. Then, multivariate analysis was performed using 

PLS-DA, which maximizes discrimination between the two groups by incorporating 

known classification information. Estimated values of R2 were used to explain the model 

fitness, and Q2 was described for the predictive accuracy of its class mode.  

4.6. Identification of marker candidates  

For assessing the molecular marker performance for each metabolite as a marker can-

didate, firstly ROC curve analysis AUC evaluation were applied using MetaboAnalyst 5.0 

Biomarker Analysis tool [77]. Metabolites with AUC > 0.9 were discussed in terms of 

marker capacity. The proportion of correctly classified rats with effective Flx treatment is 

measured by sensitivity, or the true-positive rate; the proportion of correctly identified 

control subjects is measured by specificity, or the true-negative rate 

4.7. SVM-LK-based binary classification 

SVM is one of the most prominent supervised machine learning algorithms, which 

shows the best predictive performance (balanced, accuracy, sensitivity, and specificity for 

each pairwise combination of variables, compared to other machine learning approaches 

in diseases and drug treatment [78–81] and also in precision medicine [31]. Accuracy is 

defined as the percentage of correctly classified samples. Therefore, to obtain the best pos-

sible diagnostic model, and to account for possible interactions between the features 

(which are ignored by the ROC/AUC analysis), we selected the input features for the SVM 

model using a greedy forward selection method. This method selects feature combina-

tions that maximize the predictive accuracy of the model in the CV1 test data, stopping at 

50% of features. Moreover, a 10 times repeated 3x3 nested cross validation procedure was 

conducted with SVM-LK in order to avoid information leakage between subjects used for 

training and validating the models, and to enhance the generalizability of the models in 

new data by eliminating biased estimation. Further details are given in Supplementary 

material 1. 

4.8. Statistical analysis 

The behavioral data were analyzed with a three-way repeated measure ANOVA, fac-

tor treatment (levels: vehicle and Flx), conditions (levels: control and CSIS) and test as a 
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repeated measure (levels: baseline (weeks 0, 3, and 6) using Statistica 12. Significant dif-

ferences between the groups were examined using Duncan's posthoc test. The number of 

individual measurements was n = 6 – 8. In order to explore whether the intensity of me-

tabolites could reflect despair in the CSIS model, Pearson correlation analysis was used to 

identify the metabolites and immobility time at the 6th week in FST. 

5. Conclusions 

 In summary, the PFC metabolic fingerprints of CSIS rats and/or following effective 

Flx treatment were revealed by LC-HRMS. Increased content of MI following CSIS, 

involved in the phosphoinositide pathway, may indicate depressive-like behavior, which 

was also selected as a marker candidate. Sedoheptulose-7-phosphate, hypotaurine, and 

ALC may be potential marker candidates for the treatment effect of Flx. A panel of 7 or 25 

predictive metabolites, obtained by SVM-LK, could be used for binary group classification 

(CSIS vs. Control and CSIS+Flx vs. CSIS). Moreover, identified rat PFC metabolite marker 

candidates, along with predictive metabolites and possible involved pathways, may 

further elucidate the molecular mechanism of depressive phenotype and a mode of Flx 

action.  
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