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Abstract: Urban spatial perception critically influences human behavior and emotional reactions, 

emphasizing the necessity of aligning urban spaces with human needs for enhanced urban living. 

However, functionality-based categorization of urban architecture is prone to biases, stemming 

from disparities between objective mapping and subjective perception. These biases can result in 

urban planning and designs that fail to cater adequately to the needs and preferences of city resi-

dents, negatively impacting their quality of life and the city's overall functionality. In this study, we 

apply machine learning to elucidate these biases within urban spatial perception research, utilizing 

a three-step methodology: objective mapping, subjective perception analysis, and perception devi-

ation assessment. Our findings reveal that machine learning can expose hidden patterns within this 

research field, bearing substantial implications for urban planning and design. Of particular note, 

the study revealed significant discrepancies in the distribution centroids between commercial build-

ings and residential or public buildings. This result illuminates the spatial organization characteris-

tics of urban architectural functions, serving as a valuable reference for urban planning and devel-

opment. Moreover, it uncovers the advantages and disadvantages of different data sources and 

techniques in interpreting urban spatial perception, paving the way for a more comprehensive un-

derstanding of the subject. These findings underscore the importance of integrating both objective 

mapping and subjective perspectives in urban architectural functionality classification. 

Keywords: Urban spatial perception; building function classification; objective mapping; subjective 

perception; machine learning; point of interest (POI); street view images  

 

1. Introduction 

Urban spatial perception, an intricate interplay between individuals and their urban 

environment, significantly shapes human behavior and emotional reactions within the 

spheres of architecture and urban design. This psychological process, rooted in the per-

ception of forms, structures, colors, and aesthetics, underscores the importance of aligning 

urban spaces with the human biological structure and satisfying human needs, thereby 

enhancing the quality of urban life [1]. Within the research of spatial perception, the phe-

nomenon of 'bias' is commonplace, referring to a discrepancy between the output of a 

certain process and its anticipated outcome  [2]. When classifying urban architecture 

based on functionality, the statistical results derived from objective data may differ from 

those based on people's subjective perceptions, illustrating an instance of bias between 

observed and true values within the process of urban perception. Bias carries considerable 

research significance, enabling us to delve deeper into data and phenomena, and to un-

cover the patterns and characteristics concealed therein. For instance, the semantic differ-

ences in the soundscapes of open urban spaces can be explored by understanding the var-

iations in sound perception among different demographics [3]. F. Zhang et al. decipher 
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the discrepancy between perceived safety and actual crime rates in urban areas. F. Zhang 

found that high-traffic daytime neighborhoods appear safer than they are, while the re-

verse is true for nighttime areas, highlighting the need for balanced urban management 

strategies. Both of these studies scrutinized the rules underlying urban phenomena from 

the perspective of perceptual bias [4]. This research builds on the objective mapping and 

subjective perceptual biases of architectural classification to explore the phenomena and 

characteristics of urban architectural classification in depth. The value of deviation study 

lies in its power to reveal insightful disparities between anticipated and actual outcomes. 

Particularly in urban science, scrutinizing deviations can deepen our understanding of 

urban perception and behavior, thus guiding urban planning decisions. Applying this to 

architectural function distribution can highlight discrepancies between intended and ac-

tual use, offering valuable insights for more effective, responsive urban planning, thereby 

enhancing urban functionality and livability. 

Objective mapping with statistical methodologies typically employs public datasets 

of the city. For instance, multi-source data, such as Geographic Information System (GIS) 

data and Points of Interest (POI), can be utilized facilitating the classification and spatial 

distribution analysis of urban architecture [5]. Such data are usually classified and ana-

lyzed based on geographical location, architectural types, and other indices related to ur-

ban functionality. In addition, subjective perception refers to the awareness of urban ar-

chitecture, environment, and functionality shaped by individual experiences, knowledge, 

emotions, values, and other factors as people perceive and evaluate urban spaces. This 

perception arises from actual experiences, observations, and feelings, as demonstrated in 

subjective evaluation of thermal comfort in urban open spaces [6]. Within the realm of 

subjective perception studies, a machine learning model was constructed to assist in map-

ping the perception distribution of humans towards new urban regions throughout the 

city [7]. Moreover, street images encapsulate the overall landscape of urban regions, and 

this novel source of image data has advantages not only in the fine observation of the 

physical environment but also in social perception [8]. 

By summarizing the aforementioned studies, it becomes evident that POI data can 

accurately carry out objective mapping for architectural classification, while analysis 

based on street view images can reflect people's subjective perception of architectural clas-

sification. Hence, this research probes into the roles and corresponding influencing factors 

of objective mapping and subjective perception of urban architectural functionality in ur-

ban perception by comparing the objective mapping architectural classification method 

based on POI data with the subjective classification method based on street view images.  

Despite an abundance of research on the classification and spatial distribution of ur-

ban architectural functionality, considerable challenges persist. Current studies primarily 

focus on methods stemming from a single data source. However, within the domain of 

urban perception, a singular data source often falls short in fully unveiling the bias be-

tween observed and true values, as well as the diverse characteristics and patterns within 

the process of urban perception. Multi-source data aids in deeply investigating the mean-

ings and patterns underlying phenomena. For instance, multi-source data can be em-

ployed to examine the correlation between human perception and architectural environ-

ment indices and socio-economic data, encompassing visual elements, facility attributes, 

and socio-economic indices [9]. Sampling and spatial analysis methods can be utilized on 

social media data to probe into the missing elements of social media within smart cities 

[10], [11]. Furthermore, F. Zhang et al. used information from scenes and objects within 

social media photos to identify similarities between urban street views and cities. These 

studies collectively demonstrate that the use of multi-source data, along with novel per-

spectives and methodologies, allows for a more comprehensive dissection of urban char-

acteristics and patterns. 

This study acknowledges potential disparities in urban architectural functionality 

classification and spatial distribution when employing objective mapping versus subjec-

tive perception methodologies. Objective mapping, the 'true values' in urban perception, 

mirrors the actual circumstances of architectural structures or spaces. In contrast, 
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subjective perception, the corresponding 'observed values', embodies the individual sen-

timent evoked by these structures or spaces. A comprehensive exploration of the devia-

tion between these 'true' and 'observed' values in urban perception can uncover sources 

of bias and refine measurement techniques, thereby affirming the efficacy of extant urban 

planning and design models. Concurrently, the elucidation of underlying patterns and 

characteristics can spotlight novel issues and challenges, supplying more comprehensive 

data to optimize decision-making and strategy formation. 

This research endeavors to probe into the disparities and the causative factors be-

tween the actual and observed values of objective mapping and subjective perception in 

the classification of urban architectural functionality. This approach facilitates a more 

comprehensive understanding of urban spatial perception. Moreover, the study seeks to 

explore the commonalities and differences between these two methodologies across di-

verse spatial scales, while thoroughly dissecting the underlying factors instigating these 

variances. To fulfil this objective, we will employ the objective mapping method based on 

POI data and the subjective perception method reliant on street-view images to analyze 

the functional classification and spatial distribution of urban buildings. This research aims 

to contribute to providing a more comprehensive theoretical foundation and practical 

guidance in fields such as architectural design, urban planning, and spatial analysis.  

The core methodologies of this study encompass: (1) Functionally classifying urban 

architecture via the application of frequency density ratio and inverse distance-weighted 

frequency density methods to POI data. (2) Leveraging a Deep Convolutional Neural Net-

work (DCNN) model to carry out functional classification of urban architecture using 

street-view imagery. (3) Employing spatial clustering analysis and grid-structure spatial 

pattern similarity analysis to discern discrepancies between objective mapping and sub-

jective perception methodologies regarding urban architectural functionality categoriza-

tion and spatial distribution. (4) Probing potential factors contributing to the variances 

between objective mapping and subjective perception, thereby enriching our understand-

ing of urban perception. 

The structure of this paper is as follows: Section One, the introduction, delineates the 

research context, relevance, and objectives, and outlines the central methodologies. Sec-

tion Two offers a literature review, investigating the roles of subjective perception and 

objective mapping in urban perception, alongside the deployment of machine learning in 

urban image recognition studies. Section Three delves into the research methodology, 

covering the study area, urban architectural functionality classification based on POI data, 

functional categorization of buildings via visual perception employing street-view im-

ages, and the analysis of disparities between objective mapping and subjective perception 

of architectural functionality at the urban scale. Section Four unveils the experimental re-

sults, including building categorization outcomes based on POI data and street-view im-

ages, and the variances between objective mapping and subjective perception of architec-

tural functionality. Section Five, the discussion, examines the experimental findings and 

the relevance of the discrepancies between objective mapping and subjective perception. 

Section Six encapsulates the study's conclusions. 

2. Related works 

2.1 Overview of subjective perception in urban cognition 

Subjective perception is an integral part of urban cognition, encompassing an indi-

vidual's subjective understanding, experiences, and sensations of the urban environment. 

The users of urban landscapes largely experience them through visual sensations [12]. 

Spatial subjective perception, based on objective environmental perception, forms an 

essential part of urban image-related research. This subjective perception can be investi-

gated through questionnaires, revealing urban residents' behaviors and intentions, 

thereby providing more accurate evidence for urban planning and decision-making [13]. 

In the age of big data, numerous urban data sources, represented by street view images, 

are documenting the evolution of people's lifestyles in various ways. With the rapid 
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development of image processing technology, street view images have emerged as a new 

data source for urban research [14]. 

This research provides a theoretical and methodological foundation for exploring ur-

ban images, revealing the interaction between subjective perception and objective envi-

ronment. A meticulous field survey was conducted, utilizing Baidu Street View (BSV) im-

agery of the Macau Peninsula, to assess key features of street spaces, such as openness, 

greenery, interface coverage, and road area ratio. The study further explored the correla-

tion of these physical aspects with the physical and social well-being of the senior popu-

lation [15]. Research was undertaken to evaluate urban walkability through the lens of 

cognitive mapping, deepening understanding of spatial cognition in pedestrian environ-

ments [16]. An advanced deep learning framework was leveraged, together with an ex-

tensive collection of panoramas from Baidu Street View, to visualize and quantify three 

paramount indices of street-level scene perception: Greenery, Sky, and Building Land-

scape Indices, abbreviated as GVI, SVI, and BVI, respectively. [17]. 

However, existing subjective perception research has overlooked the focus on street 

view architecture. The elements in the street view, such as buildings, streets, parks, etc., 

have a significant impact on people's cognition [7]. Even though architecture is a critical 

component of the urban environment, current research on the subjective visual perception 

of architectural classification is relatively scarce. Therefore, this study, building upon pre-

vious research, delves into the subjective visual perception of space to explore the meth-

odology of subjective architectural classification. 

2.2 Overview of objective mapping in urban cognition 

Objective mapping refers to the process of providing an objective description and 

analysis of the urban environment, based on statistical methods, offering significant ref-

erence for urban planning and design. Objective mapping can encompass a multitude of 

facets, such as the data resource statistical approach by [18]. Investigations into the city-

population-industry (UPI) system were conducted, where the coupling coordination de-

gree was employed to assess the level of urbanization in city-industry integration, offering 

a novel perspective on urban development and planning. [19]. 

In the field of transportation statistics, a comprehensive experiential dataset, consist-

ing of billions of vehicle observations derived from static traffic detectors, was utilized to 

identify critical points. These observations were then juxtaposed with the OpenStreetMap 

network, elucidating the interplay between network topology and the emergence of these 

critical points. This approach has broadened the understanding of transport dynamics 

and network influences [20]. Geospatial data can be utilized to describe the usage of urban 

parks, analyzing three categories and nine variables affecting park utilization, identifying 

their relationship with park utilization through geospatial data [21]. 

Nonetheless, in research pertaining to objective urban mapping, there is a noticeable 

deficiency in the application of POI data. POI encompasses various geographic infor-

mation elements within a city, such as locations, facilities, attractions, among others. The 

lack of objective statistics regarding POI suggests a shortfall in the comprehensive repre-

sentation of these urban elements. Further, POI data serve as a pivotal source of infor-

mation for analyzing urban issues. For example, during poverty assessments, spatial au-

tocorrelation of poverty displayed significant positivity, which was more pronounced at 

the town level than at the county level. Among the chosen factors, the cost distance of POI 

was identified as the most significant determinant for poverty assessment [22]. 

2.3 Application of machine learning in urban perception 

With the ongoing advancements in computer technology and data processing tech-

niques, machine learning technologies are being employed across a myriad of domains, 

from healthcare and intelligent power grids to vehicular communications [23]. Machine 

learning is extensively applied in urban planning studies, with algorithms like Random 

Forest (RF), Convolutional Neural Networks (CNN), deep learning methodologies, and 

Support Vector Machines (SVM) proving ideal for classification and pattern analysis of 

geo-observed data. Generative Adversarial Networks (GAN) have been utilized for sim-

ulating urban patterns [24]. Contributions from deep learning (DL) and machine learning 
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(ML) methods to the evolution of models in various aspects of prediction, planning, and 

uncertainty analysis in smart cities and urban development have been notable [25], 

providing support for urban planning and decision-making. 

Soheil Fathi have employed machine learning for predicting a building's energy per-

formance. Beyond physics-based energy modeling, machine learning techniques can offer 

faster and more accurate estimates based on historical energy consumption data of build-

ings [26]. Goldhammer et al. have proposed a machine learning-based motion model to 

classify current motion states and predict future trajectories of vulnerable road users [27]. 

Constantine E. Kontokosta have introduced a novel analytical method that combines ma-

chine learning with small-area estimation techniques to predict weekly and daily waste 

generation at the building scale [28]. 

With the continuous breakthroughs in artificial intelligence technology, research into 

urban planning evaluation based on street view images has become feasible. This provides 

a more precise, efficient, and economical data source and research approach for urban 

planning and management. For instance, in studies of the Urban Landscape Index, tradi-

tional methods of measuring urban greening involve limitations on the coverage of vari-

ous forms of greening and cannot reflect actual exposure to pedestrians. Google Street 

View (GSV) and deep learning can be utilized to calculate the Green View Index (GVI) 

through semantic segmentation, referencing greenery from a pedestrian's visual perspec-

tive [29]. 

3. Methodology 

The workflow of the study comprises three primary steps (Figure 1). Objective map-

ping, Subjective perception, and Perception deviation. Firstly, the distribution of building 

functions at a city-scale is determined by employing the POI mapping technique in con-

junction with the Frequency Ratio method and Inverse Distance Weighting. Different 

types of buildings are identified and classified based on their functions using the available 

POI data. Secondly, subjective perception is conducted by evaluating the building func-

tions. Street view images are utilized as a tool for subjective assessment, and domain ex-

perts subjectively classify the buildings based on these images. Additionally, pre-trained 

models are employed to enhance the perception of building functions within the urban 

context. The final step involves calculating the perception deviation, which quantifies the 

disparity between objective mapping and subjective perception. Spatial clustering analy-

sis is employed to identify differences in the distribution of building functions between 

the objective and subjective datasets. Furthermore, the spatial pattern similarity of the grid 

structure is assessed to determine the degree of agreement between the results obtained 

from objective mapping and subjective perception. 
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Figure 1. Research framework for the present study. 

3.1. Study area 

Figure 2 designates the central urban district of Shanghai as the research locus, en-

compassing an area of approximately 126.4 square kilometers. As China's economic nexus 

and a prominent global metropolis, Shanghai has experienced a rapid urbanization trajec-

tory. However, in the course of urban progression, perceptual discrepancies concerning 

the urban environment and the irrationality of architectural function distribution have 

emerged as salient issues. Therefore, intertwining the studies of urban perceptual bias and 

architectural functionality distribution bears profound significance for the sustainable 

evolution of Shanghai's central urban district. By comprehending the perceptual needs of 

the residents in depth, we can optimize the distribution of architectural functions, enhance 

the quality of the urban environment, and engineer a more habitable and sustainable ur-

ban space. 

 

Figure 2. Overview of the study area for the present study: (a) location of Shanghai, (b) location of 

Shanghai's central urban district, (c) the road network in Shanghai's central urban district. 

3.2. Functional classification of urban buildings based on POI data 

3.2.1 POI data acquisition and pre-processing 

This study predominantly classifies architectural types based on POI data. Despite 

the wealth of spatial information contained within POI data, inconsistencies in data qual-

ity and positional shifts pose significant issues. Therefore, prior to initiating the architec-

tural classification experiment, it is imperative to process the obtained POI data. Initial 

steps involve the selection of POI data from Shanghai, vectorizing it on an online map, 

and extracting the necessary POI data within the research ambit. 

Post data validation, data cleansing is undertaken; the 12-category POI Excel files are 

converted into vector data, and low public recognition POI data such as newsstands and 

public toilets in the original data are eliminated. The processed POI data are then reclas-

sified according to the type and function of buildings. In compliance with the "China Na-

tional Standard - Current Land Use Classification (GB/T 21010-2017)", all building func-

tions are bifurcated into commercial, public, and residential categories (as shown in Fig-

ure 3). Given that the classification of the architectural type extends to the Area of Interest 

(AOI) of the building, it is also necessary to acquire the building area data required within 

the research scope. Finally, the geographical coordinate system of all files is converted 

into a projected coordinate system, and the spatial coordinates of the collected data are 

uniformly converted into the WGS-84 coordinate system for subsequent overall spatial-

structural analysis. 
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Figure 3. Building function and building categories 

3.2.2 Frequency ratio method 

Primarily, frequency methodology is employed for computation. The fundamental principle of the 

frequency method is the calculation of the quantity of disparate POI data on the architectural facade, 

classifying architectural functions based on frequency density and the proportion of architectural 

facade POI types within a spatial scope. 

𝐹𝑖 =
𝑛𝑖

𝑁𝑖
(ⅈ = 1,2,3,⋯ , 𝑛)                                    (1) 

𝐶𝑖 =
𝐹𝑖

𝛴ⅈ=1
𝑛 𝐹𝑖

(ⅈ = 1,2,3,⋯ , 𝑛)                                   (2) 

In these equations, ⅈ denotes the architectural type, 𝑛 signifies the count of archi-

tectural types, and 𝑛𝑖 represents the quantity of the ith POI type within the architecture. 

Furthermore, 𝑁𝑖 signifies the total count of the ith POI category within the POI data, 𝐹𝑖 

represents the frequency density considering the number ⅈ POI type, and 𝐶𝑖  signifies 

the proportion of the frequency density of the ith POI category to the frequency density 

of all types of POI data within the architectural object area. 

Calculations for three categories of POIs are performed via the frequency density ra-

tio method, yielding the quantity of three categories of POIs on each architectural facade 

file. Observations of the computational outcomes of the frequency density ratio method 

reveal that a substantial number of architectural facade files have not attained statistical 

results of POI data. This is primarily due to the absence of POI point data on the architec-

tural facade file. The strength of the frequency density ratio method lies in its ability to 

account for the quantity of POIs within each building facade. However, its weakness is its 

relatively high demand for the quality of POI point data. The POI point data obtained are 

often hard to ensure quality, primarily manifested as spatial position offsets, data losses, 

and the like. For facade files with POI point values, computations can be made via the 

frequency density ratio method. However, for facades where the quantity is not accounted 

for, supplementary computations must be made via the kernel density method, or the 

frequency density method weighted by the inverse distance method. 

3.2.3 Inverse distance weighting 
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Due to inherent qualitative biases in POI data, certain architectural facade files fail to 

obtain POI values. These gaps necessitate employing the inverse distance weighted fre-

quency density method to supplement architectural surface area, as conventional fre-

quency density coefficient computation methods prove insufficient for architectural ty-

pology studies. The frequency density method weighted by inverse distance incorporates 

a Gaussian function that offers rapid decay for a given distance factor, thereby considera-

bly mitigating the influence of distant POI data on outcomes. Initially, architectural facade 

data that can be calculated using the frequency density factor method are discarded in 

favor of employing the inverse distance weighted frequency density method for compu-

tation. 

The key distinction between the inverse distance weighted frequency density method 

and the frequency density ratio method lies in the treatment of unaccounted architectural 

facade data. For these data, the surrounding POI data is leveraged to infer type classifica-

tion. For architectural areas devoid of POI data, POIs within a surrounding 100-meter 

buffer are tallied, and the POI's weight is restricted. Hence, areas nearer to the architec-

tural facade possess greater weight. 

𝑓(𝑥) = 𝑎ⅇ
−
(𝑥−𝑏)2

2𝑐2                                  (3) 

In comparison to the commonly used inverse form of the inverse function, the Gauss-

ian function presents a smoother curve and is more applicable to the given POI data char-

acterized by high uncertainty. The one-dimensional form of the Gaussian function is a 

bell-shaped curve, where 𝑎 represents the peak value, 𝑏 indicates the value of the inde-

pendent variable at the peak (𝑥 = 𝑏 also serves as the bell's axis of symmetry), and 𝑐 

signifies the standard deviation, depicting the bell's breadth. The true meaning of the in-

dependent variable 𝑥 is the distance from the POI to the geometric center of the building 

polygon. As the POI is nearer to the architectural facade, the weight approaches 1, and as 

the POI is farther from the architectural surface, the weight decreases, infinitesimally ap-

proaching 0 but never reaching a negative value, as Figure 4 shown. Therefore, we assign 

𝑎 = 1 and 𝑏 = 0. 

For built-up areas devoid of POI within their scope, this study calculates the POI 

categories within a 100-meter built-up buffer zone and evaluates the type classifications 

of the built-up areas. 

 

Figure 4. Inverse distance weighting 

3.3. Functional classification of buildings based on visual perception of street view images 

3.3.1 Street view image acquisition and pre-processing 
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In this study, we extract images from street view platforms, procuring a broad cov-

erage of city street photographs. Initially, urban road networks, equipped with geograph-

ical coordinate information, are selected and obtained from OpenStreetMap (OSM). Fol-

lowing this, we simplify the road network into linear forms with an average distance of 

25 meters between adjacent points, based on the urban street design method proposed by 

J. Gehl [30]. Subsequently, we acquired sampling points with geographical coordinate in-

formation, exhibited within the spatial distribution. It is noteworthy that not all sampling 

points within street view services possess corresponding street view images. Ultimately, 

to procure building façades, we download two images perpendicular to the road from 

street view services for each sampling point (respectively on the left and right, with a 

viewpoint of 90 degrees, a horizontal angle of 0 degrees, and image size of 760 × 480 pix-

els), as illustrated in Figure 5. We have obtained a total of 102,046 street view images of 

the central urban streets of Shanghai. 

 

Figure 5. Street view images acquisition at the sampling point. 

This study employs a methodology that segments building facades from street view 

images, enhancing the accuracy of facade color recognition and building function classi-

fication. In recent years, high-precision semantic segmentation models based on convolu-

tional neural networks, such as U-Net [31], PSPNet [32], and DeepLabv3 [33], and , have 

been extensively developed. We employ the DeepLabv3 to segment building facades from 

street view images, owing to its high accuracy and ease of implementation. DeepLabv3 

achieved an IoU accuracy of 93.5% for buildings on the Cityscapes test set. Figure 6 

demonstrates the building segmentation results of street view images by the trained 

DeepLabv3. However, in some street view images, the proportion of buildings is rela-

tively low, and these images are unable to reflect the color features of the buildings. To 

enhance experimental accuracy, we need to exclude images with a small proportion of 

buildings, as the computer cannot identify the features of the buildings through these im-

ages. By inputting street view images into a pre-trained semantic segmentation model, we 

can measure the area ratio of building facades. After calculating the proportion of build-

ings in each sampled image, we exclude images with a building proportion below 15%, 

as shown in Figure 3c. 
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Figure 6. Street view image segmentation through Deeplabv3. (a) Commercial buildings, (b) public 

buildings, (c) a low building proportion. 

3.3.2 Building semantic segmentation and image classification 

Figure 7 Four types of building functions are included. The first line is single-label 

class, from left to right: residence, commerce, public, and other facilities. The second line 

is the multi-label class, from left to right: residence and commerce, commerce and public, 

residence and public, no data. 

 

Figure 7. Four types of building functions are included. The first line is single-label class, from left 

to right: residence, commerce, public, and other facilities. The second line is the multi-label class, 

from left to right: residence and commerce, commerce and public, residence and public, no data. 

Considering urban architecture from the perspective of street facades, the built envi-

ronment primarily exhibits four types of architectural functions, namely residential (R), 

commercial services (C), public services (P), and other facilities (O), as shown in Figure 7. 

For the purpose of effective classification of these architectural types, we employed deep 

learning techniques to automatically recognize architectural functions in the street-view 

images of our study area. In previous research, a single-label approach was commonly 

utilized to classify architectural categories, where each photograph corresponded to one 

label. However, the single-label method was incapable of accurately segregating street-

view images reflecting multiple architectural functions, resulting in imprecise experi-

mental outcomes. To circumvent this limitation, we adopted a multi-label image classifi-

cation approach to identify multiple architectural categories within street-view images. 

To train the multi-label architecture classifier, we initially established a correspond-

ing street-view benchmark dataset using semantically segmented architectural images. 
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This dataset encompassed 6000 images from four basic categories: residential, commercial 

services, public services, and other facilities. Within these training images, approximately 

4000 images were single-label, and 2000 images were multi-label. We partitioned these 

street-view images into a training set (80%), a testing set (10%) and a validation set (10%). 

Importantly, all test images differed from those employed during training. Subsequently, 

we trained the state-of-the-art deep learning model, EfficientNetV2 [34]. To enhance the 

learning rate, we performed 100 epochs of training on these models, with a learning rate 

decay of 0.1 every 25 epochs. Each training batch consisted of 64 images. All other numer-

ical values were set to default. The experiment was implemented using Pytorch and exe-

cuted on an NVIDIA GeForce RTX 3090 24 GB GPU. 

3.4 The deviation between objective mapping and subjective perception of building functions at 

city scale 

3.4.1 Spatial distribution variance analysis based on K-means clustering 

This research aims to conduct cluster analysis on pixels in an image that correspond 

with a target color, with a subsequent visualization of the results. Initially, to locate pixels 

in an image matching a given target color, we swiftly identified all pixel coordinates con-

gruent with the target color utilizing the NumPy library [35]. Following this, the Mini-

BatchKMeans algorithm, part of the scikit-learn library [36], was employed to perform a 

cluster analysis on the target color pixels. MiniBatchKMeans, a variant of the K-means 

algorithm, employs a subset of data samples (referred to as a mini-batch) during each 

iteration process, thereby accelerating computations. This algorithm endeavors to find op-

timal cluster centers, thereby minimizing the subsequent objective function: 

J(C) = Σ(Σ‖xᵢ - μⱼ‖²), where xᵢ ∈ Cⱼ                       (4) 

In this context, J(C) signifies the clustering error, Cⱼ represents the jth cluster, xᵢ de-

notes a data point, and μⱼ is the center of Cⱼ. By minimizing J (C), we can achieve more 

compact and representative clusters. 

Finally, we utilize the seaborn library [37] to generate a scatter plot to visualize the 

clustering outcomes. For each cluster, a dashed circular frame is drawn, the radius of 

which equals the distance from the center to the farthest point within the cluster. Addi-

tionally, the center point of each cluster is also illustrated. The calculation of distance em-

ploys the Euclidean distance formula: 

ⅆ(𝑥, 𝑦) = √𝛴(𝑥𝑖 − 𝑦𝑖)
2                              (5) 

Through the implementation of these methods, we can match and conduct cluster 

analysis of architectural functions in both subjective perceptions and objective statistics. 

3.4.2 Analysis of the similarity of the spatial pattern of the grid structure 

In this study, we proposed a methodology predicated on the spatial overlap metric, 

Jaccard Similarity [38], for the analysis and visualization of differences between two city-

scale spatial distribution RGB images. Below, we elaborate on the detailed steps employed 

in implementing this approach: 

Initially, we adjusted the two input RGB images to an appropriate size to facilitate 

their subdivision into a specified quantity of grids. Each image was segmented into 

100x100 grids. To accomplish this, we first split the images along the vertical axis (axis=0), 

subsequently concatenating the divided image blocks and further partitioning them along 

the horizontal axis (axis=1). 

For each pair of corresponding grids, we calculated their Jaccard similarity. The spe-

cific steps are as follows: firstly, calculate the unique colors within each grid and their 

occurrence frequencies. Secondly, identify the colors appearing in both grids. For each 

common color, calculate its minimum occurrence in each grid. Add these minimum 

counts to ascertain the size of the intersection. Thirdly, compute the total color occurrences 

in both grids and subtract the size of the intersection to determine the size of the union. 

Compute the Jaccard Similarity according to the formula: 
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𝐽(𝐴, 𝐵) = |𝐴 ∩ 𝐵| ∕ |𝐴 ∪ 𝐵|                              (6) 

Where A and B denote the two sets, |𝐴 ∩ 𝐵|indicates the size of the intersection of 

sets A and B, and |𝐴 ∪ 𝐵| represents the size of the union of sets A and B. The Jaccard 

Similarity serves as an index of the similarity between two sets, with values ranging be-

tween 0 and 1. The closer the similarity value is to 1, the more similar the two sets; con-

versely, the closer the similarity value is to 0, the greater the disparity between the two. 

Store the computed Jaccard Similarities in a matrix, the row and column numbers of which 

coincide with the number of grids. Finally, visualize the Jaccard Similarity matrix as a 

heatmap using the heatmap function of the Seaborn library. 

Through these steps, we can generate a heatmap illustrating the similarities between 

the two-input city-scale spatial distribution RGB images. This method enables us to com-

pare and analyze the similarities and differences in urban spatial structures in a quantita-

tive manner. 

4. Experiments and results 

4.1 POI-based building classification results 

Implementing the aforementioned Frequency Density Ratio and Inverse Distance 

Weighted Frequency Density methods, we categorized the structures within the epicenter 

of Shanghai, thereby culminating in an urban architectural classification map predicated 

on AOI data (Figure 8). 

 

Figure 8. Urban building classification map based on AOI data. 

To facilitate an ensuing comparison with subjective visual perception, we incorpo-

rated reference to established standards pertaining to architectural façade observation. 

Ordinarily, individuals can discern the overall form and intricate features of a building at 

close range (approximately 25 meters). Conversely, at a greater distance (approximately 

250 meters), one's focus primarily gravitates toward the building's prominence and spatial 

relations within the urban milieu. Recognizing that individuals may scrutinize architec-

ture from varied distances during actual observation, we opted for a median distance of 

50 meters (with a field of view extending 25 meters on either side) as an appropriate meas-

uring standard. This distance sufficiently accounts for both the overall shape and partial 

intricate characteristics of a building while reflecting its spatial relations within the urban 

environment. Accordingly, a 50-meter buffer analysis was conducted on the buildings, 

and a spatial distribution visualization of the architectural classification results based on 

POI data was performed (Figure 9). 
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Commercial buildings within the range are typically situated in areas with optimal 

transportation access, often at the heart of district clusters. The majority of residential 

structures exhibit group distribution within the range, which is consistent with the aggre-

gated distribution characteristics of living spaces in most Chinese cities, taking the form 

of residential communities. Apart from large public service institutions such as hospitals 

and schools concentrated in clusters, public buildings in the central research area of 

Shanghai are rather dispersed, primarily constituting administrative offices and cultural 

and sports facilities, often situated within standalone structures. These cover extensive 

land areas and are plentiful in number. 

 

Figure 9. Results of building classification based on POI data. 

4.2 Building classification results based on street view images 

4.2.1 Classification accuracy of deep learning models 

Figure 10 illustrates the normalized confusion matrices of the seven architectural 

function classifications, evaluated via our testing data with the trained EfficientNetV2 

model. The F1 score (F1), a robust criterion for gauging classification accuracy, is a har-

monic mean that encapsulates both precision (p) and recall (r). It is formulated as: 

F1 score = 2 * (p * r) / (p + r).                             (7) 

The determined F-score value for the trained EfficientNetV2 model registers at 0.82. 
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Figure 10. illustrates the normalized confusion matrices of the seven architectural function classifi-

cations. 

4.2.2 Building function classification results and spatial distribution 

The research area under scrutiny encompasses 102,046 inferred street view images. 

Figure 11 exhibits the distribution of building functionalities within these street view im-

ages of the investigated area.  

From a subjective human perspective, the primary functionalities of buildings in 

Shanghai's core region are predominantly residential and commercial. These two func-

tions occupy significant positions within the visual landscape. Residential buildings likely 

represent the dominant function, reflecting the high population density and urban resi-

dential zones in the core area. Commercial structures, such as shopping centers and retail 

stores, are also prevalent, reflecting the vibrant economic activity and commercial hubs 

within the city.  

Contrasting with the previous figure, it is noteworthy that office buildings may be 

mistakenly identified as commercial buildings. This misperception could arise due to var-

ious factors such as architectural design, signage, and visual saliency, all of which influ-

ence the perceived distribution of different functionalities within the urban environment. 
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Figure 11. Results of visual perception of urban building function classification of streetscape pic-

tures at street scale. 

4.3 The result of deviation between objective statistics and subjective perception of building 

functions 

The comparison between the centroids of different building functionality color 

blocks in two diagrams illustrates the spatial distribution differences between objective 

statistics and subjective perception. We computed the disparities in the distribution of 

architectural functionalities between spatial clustering analysis of subjective perception 

and objective statistics, as shown in Figure 12. Particular attention was devoted to the 

centroid differences in the distribution of residential, commercial, and public buildings. 

 

Figure 12. Differences in building function distribution based on spatial clustering analysis. 

The results reveal the greatest centroid difference in the distribution of commercial 

buildings, suggesting substantial variability in the spatial dispersion of commercial func-

tionality within the core area of Shanghai. Further analysis indicates that this centroid 

difference in the distribution of commercial buildings could be closely associated with 

factors such as urban planning, land utilization, and market demand. This divergence 

may reflect the agglomeration tendencies of commercial activities and alterations in urban 

development. 

In addition, the centroid differences in the distribution of residential and public 

buildings are relatively minimal, implying a stable spatial distribution of these two 
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functions within the core area. The exploration of these discrepancies facilitates a deeper 

understanding of the spatial organization characteristics of urban architectural function-

alities, providing a reference for urban planning and development. Further research could 

delve into underlying causes and influencing factors, including the economic dynamics 

of commercial activities, changes in citizens' needs, and the orientation of government 

planning, to promote more rational and sustainable urban development. 

4.3.2 Results of spatial pattern similarity analysis of grid structure 

The subjective perception results and objective mapping results of building function-

alities were retrieved, and their grid-based spatial pattern similarities were visualized on 

a novel image. Grid areas with higher similarity are depicted in blue, while those with 

lower similarity are illustrated in red. The results of spatial pattern similarity analysis of 

grid structure are shown in Figure 13. 

In terms of overall similarity, subjective perception and objective statistics demon-

strate a certain degree of resemblance in their spatial distribution on an urban scale. For 

instance, areas proximate to the Huangpu River generally exhibit higher similarity. Re-

garding local differences, despite an overarching similarity between the two maps, signif-

icant disparities persist in certain local areas. 

Through the analysis of grid-based spatial pattern similarity, we can glean a deeper 

understanding of the characteristics of these two spatial perception distributions and the 

differences between them. This assists urban planners and relevant stakeholders in better 

comprehending the development patterns of the city, thereby enabling the formulation of 

top-down planning strategies and intervention measures. 

 

Figure 13. Grid structure spatial pattern similarity. 

5. Discussion 

5.1 The significance of perceptual deviations for urban science 

The significance of perceptual deviations in urban science lies in its challenge to per-

ceive human activities and the socio-economic environment of cities using traditional 

computer vision features. Conventional image analysis techniques and automated algo-

rithms often struggle to accurately capture the subjectivity of perception, multicultural 
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backgrounds, and the intricate layout of urban functions. This limitation necessitates the 

development of superior computational tools and methods capable of holistically learning 

and interpreting the visual content of urban environments. 

By understanding perceptual deviations, researchers can aspire to more precise and 

quantitative measurements of architectural functional layout and socio-economic condi-

tions. The extraction of high-level representations from street view imagery is pivotal in 

this pursuit. These representations provide insights into the functional distribution of ur-

ban architecture. By analyzing visual data and considering perceptual deviations, re-

searchers can identify indicators that capture people's perceptions of the functional distri-

bution of architecture, such as commercial vibrancy and residential experience. This in-

formation is paramount for the optimization of transportation planning and infrastructure 

development. Understanding perceptual deviations propels the integration of urban sci-

ence with data science, opening up new possibilities for innovative solutions in evidence-

based decision-making, efficient resource allocation, and sustainable urban development. 

5.2 Potential applications of perceptual deviations on improving urban planning and 

development 

The assessment of perceptual deviations in urban environments has the potential to 

foster more livable cities that embody the unique characteristics of their communities, at-

tracting new investments and stimulating economic growth. These deviations provide 

crucial insights into individuals' interactions with and perceptions of their environment, 

informing urban planning decisions. For instance, should there be a perceived sense of 

insecurity in a particular urban area, regardless of low crime statistics, urban planners 

may address this perception through actions like increased lighting or heightened police 

surveillance. Similarly, if residents feel a lack of green spaces within their vicinity, urban 

planners could prioritize the development of parks and green expanses. By integrating 

these perceptual deviations, urban planning and development can align more closely with 

the needs and desires of residents, thus fostering more sustainable and livable urban en-

vironments. 

Further integrating advanced computational tools and methodologies to extract 

high-level data from street-level imagery can help illuminate mobility patterns within cit-

ies and provide detailed socio-economic data for diverse urban regions. This information 

serves as an invaluable resource for urban planners and social scientists involved in urban 

observation, research, and design. Notably, it can assist in identifying high pedestrian 

traffic areas or potential locales suitable for specific business establishments, such as gro-

cery outlets. A deeper understanding of the relationship between the physical environ-

ment and human activities can inform decisions on land use, transportation, and infra-

structure development. The ability to offer comprehensive and precise information about 

the urban landscape anchors the potential applications of perceptual deviations in en-

hancing urban planning and development. 

The potential applications of perceptual deviations in urban planning are extensive. 

Detailed analyses of these deviations can reveal regions where architectural design may 

be misaligned with the needs and preferences of local communities. This valuable insight 

can guide urban planning decisions towards more effectively meeting residents' needs 

and expectations, contributing to the development of more sustainable and livable cities. 

For instance, if a park sees little utilization due to safety concerns or a lack of amenities, 

planners can leverage this information to enact improvements, making the space more 

appealing. Moreover, understanding perceptual deviations can foster more effective com-

munication between planners, designers, and community members, providing a nuanced 

understanding of how different groups perceive the same space. This can facilitate a more 

collaborative decision-making process, better reflecting the needs and expectations of all 

stakeholders. 

5.3 Potential limitations and future research 
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The present study's limitations merit additional examination and warrant elevated 

attention in future investigative endeavors. First, it is imperative to address the constraints 

tied to the quality and volume of the underlying data. The faithful categorization of build-

ing functionalities utilizing POI data and street-view imagery is highly dependent on the 

trustworthiness of these data sources. A lack of comprehensive data coverage can jeop-

ardize the accuracy of classification results. Furthermore, the applicability of these meth-

odologies across diverse cities or regions may necessitate considerable adjustments due 

to variations in architectural styles, patterns of urban development, and spatial configu-

rations. 

Secondly, deploying deep learning models in this research introduces difficulties 

concerning interpretability and resource demands. The models in use are intrinsically 

non-transparent and devoid of interpretability, rendering the elucidation of their deci-

sion-making processes laborious and obstructing the validation and refinement of results. 

Additionally, the training of these models requires substantial computational resources 

and expertise, rendering their application across all scenarios impractical. Moreover, the 

objective and subjective measurements of urban attributes might oversimplify the com-

plex and multi-faceted nature of urban settings. For instance, quantifying building func-

tionalities solely based on POI data and street-view images overlooks temporal elements 

such as the evolution of building functionalities over time or the dynamic character of 

urban activities. 

Lastly, while the spatial pattern similarity analysis and spatial distribution difference 

analysis employed in this study provide significant insights into disparities between ob-

jective and subjective perceptions of urban spaces, these methods could potentially ne-

glect other influential factors, including socio-economic considerations, cultural contexts, 

and individual experiences. Further, the validation of results heavily hinges on field vali-

dation, which could introduce biases due to logistical hurdles and possibly inadequate 

sample sizes in the validation data. The mathematical formulas utilized to quantify differ-

ences in spatial distribution and grid structure spatial pattern similarity might not suffi-

ciently capture the nuances of urban spatial patterns, suggesting a need for more ad-

vanced statistical or geospatial techniques. 

6. Conclusions 

In summary, this study illuminates the impact of the discrepancy between objective 

mapping and subjective perception on the functional classification of urban architecture. 

By employing machine learning methodologies to unravel latent patterns and salient fea-

tures within urban spatial perception studies, we have effectively addressed this challenge 

and achieved a more comprehensive understanding of urban design and planning. The 

implications of these discoveries reside in their capacity to guide the formulation of more 

effective and sustainable urban strategies. In particular, by integrating both objective 

mapping and subjective perception, we can secure a more profound grasp of the needs 

and preferences of heterogeneous communities within an urban context, thereby promot-

ing the development of more inclusive and livable urban plans. Collectively, this research 

underscores the crucial role of interdisciplinary investigation in confronting complex is-

sues related to urban spatial perception and design. 
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