
Article

Reconstructing the Global Stress of Marine Structures
Based on Artificial Intelligence

Tao Zhang 1, Jiajun Hu 1, Erkan Oterkus 2, Selda Oterkus 2, Xueliang Wang 1, Zhentao Jiang 1,
Qua Zhu 1, Guocai Chen 1

1 China Ship Scientific Research Center, Wuxi, China
2 PeriDynamics Research Centre, University of Strathclyde, Glasgow, UK
* Correspondence:

Abstract: This paper proposes an AI-based approach to overcome the limitations of the SHM system
in measuring global stress with limited sensors. Feature elements are selected based on correlation
analysis among finite elements and used as stress-measured points. An ANN is used to establish
the solution relationship between the feature and correlation elements. The proposed method is
applied to the connector structure of an offshore platform, and an optimal ANN is established to
optimize accuracy by considering factors like the number of sensors, neural network framework,
and convergence criteria. The accuracy of the ANN is verified through a real-scale model test,
demonstrating 93.6% accuracy. This technology represents a significant advancement, enhancing
the practicality of the structural health monitoring (SHM) system from “point monitoring” to “field
monitoring”.
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1. Introduction

To ensure the safety of marine equipment during operation, Structural Health Monitoring (SHM)
technology has been developed. This technology utilizes various sensors to collect parameters related
to structural mechanics. By using pre-designed algorithms, it evaluates the structure’s condition,
reliability, and durability, and triggers early alerts when the structural condition is severely abnormal.
This helps to provide a basis and guidance for structural maintenance and support management
decisions[1]. However, in engineering applications, the SHM system can only provide primary safety
warnings since the limited number of sensors cannot cover all areas where structural failure may occur.

Therefore, researchers have conducted extensive research to explore methods for reconstructing
the global stress of structures using a few discrete stress sensors. This is done with the aim of obtaining
more mechanical response details under operational conditions. In 1995, Haugse et al. proposed
the modal method[2], which uses the modal coordinates of the structure as weighting values for the
overall structural modes. This method allows obtaining the transformation matrix from the stress
to the displacement field. By utilizing discrete stress sensors placed at specific points, the structural
deformation can be reconstructed. The key concept is to view structural deformation as a linear
combination of various modal orders. The accuracy of the reconstruction is significantly influenced
by the accuracy of modal analysis, and this method is typically used for damage identification in
structures that have been damaged. In 2007, Ko et al. introduced the Ko displacement theory[3–5],
which is based on the classical Bernoulli-Euler beam theory. This theory assumes that the bending
deformation of each small section of the beam is solely caused by the bending moment, and it
establishes the relationship between the bending moment and strain. By integrating the measured
axial strain twice, the deformation of the beam structure can be determined. This method is applicable
to the reconstruction of unidirectional structural deformation.

In 2003 and 2005, Tessler and Spangler proposed the inverse Finite Element Method (iFEM) [6–9].
This method divides the structure into one-dimensional, two-dimensional, and three-dimensional
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elements, conducts discrete solutions by placing stress sensors at specific locations, and then assembles
them into an overall matrix to obtain the global stress field through restructuring [6–9]. Oterkus et al.
[10] utilized the iFEM method to calculate the global stress and bending of a parallel center body of
an overturned bulk carrier using the iQS4 element [11], which demonstrated the practicality of the
iFEM technology for bulk carriers. In addition, numerous researchers have explored the deformation
reconstruction of beams, frames, plates, and shells using the iFEM method [12].

Despite the potential benefits of the iFEM method, such as its ability to reconstruct the stress
and strain fields of various structures, the high reconstruction cost for the strain field of complex
curved surface structures is a challenging issue. In recent years, alternative approaches have been
proposed to overcome this issue [13–17]. For example, Lu et al [18] analyzed the steel structure of a
gymnasium and established a mapping relationship between measured and estimated points through
structural correlation analysis, providing an alternative approach for stress field reconstruction. In
2021, Zhang et al. [19] developed a two-dimensional stress distribution algorithm along a pipeline
based on stress monitoring data of oil and gas pipelines, utilizing a BP neural network and particle
swarm optimization algorithm. The algorithm accuracy was validated through examples, and it
required no manual boundary establishment with less sensor quantity and fast solution speed. Cooper
[20] introduced a hybrid approach combining Artificial Neural Network (ANN) and FE modelling for
predicting static loads on a wing rib and a well-trained ANN can be used as an inverse problem solver
for estimating loads on structures.

To address the challenge of obtaining the global stress of marine structures with limited stress
sensors, this paper proposes an ANN approach for reconstructing the global stress of marine structures,
focusing on the theoretical basis for measuring point selection and ANN architecture. Simulation
calculation data and real-scale model test data verify the feasibility and accuracy of this method,
enabling real-time visualization of the stress distribution status of complex structures and significantly
enhancing the practicality of SHM equipment.

2. Correlation Analysis Among FE of Marine Structure

2.1. Correlation Between the Finite Elements

Based on the Finite Element theory, marine structures can be discretized into a certain number of
finite elements. In the case of one- and two-dimensional structures, the stress changes of finite elements
exhibit a degree of similarity or regularity on a global scale when external loads change. However, for
spatial structures, the stress variation of finite elements presents a complex distribution. Furthermore,
the global regularity of the finite elements decreases with the increasing complexity of the structure.

To describe the stress distribution of complex spatial marine structures, the structure can be
divided into several subsets based on correlation analysis, wherein finite elements with similar or
regular responses to external loads are sorted into the same subset. Representative finite elements are
then selected from these subsets, which are called “feature elements”.

Based on Artificial Neural Networks, a relationship between the feature elements and the stress
values of finite elements that show a significant correlation with them can be established. Consequently,
the global stress data of the structure can be obtained by placing stress sensors on the feature elements.

2.2. Correlation Analysis Method

Consider a structure as a set of overall elements (S), and divide S into m finite elements (ei). For n
load steps, the whole elements stress response matrix X can be written as.
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In Equation (1), the structural response of the finite element with the index i for n load steps is
denoted as xi(n).

xi = [xi(1) xi(2) . . . xi(n)] (2)

In Equation (2), where i = 1, 2, . . . , m, the similarity as the response of any two finite elements,
ei and ej, for the same load steps in a spatial structure, covariance Cov(xi, xj) can be used as a
representation.

Cov(xi, xj) = E(xixj)− E(xi)E(xj) (3)

In Equation (3), E(xi) and E(xj) represent the expected values of the two real random variables xi
and xj, respectively. Due to the variables having different dimensions, their covariance can exhibit
significant numerical differences. To address this, a dimensionless correlation analysis method such as
the Pearson correlation coefficient, as shown in Equation (4), is introduced:
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cov
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(4)
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In Equations (4) to (7), σi is the variance of the response value of the finite element with index i for
n load steps, σj is the variance of the response value of the finite element with index j for n load steps,
x̄i is the mean response value of the finite element with index i for n load steps, and x̄j is the mean
response value of the finite element with index j for n load steps. The correlation matrix P between
any two finite elements xi and xj is given as follows.

P =
[
Pij
]

m×m =


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(8)

The correlation coefficient, p, has a range of values from -1 to 1, as demonstrated in Figure 1.
When p = 1, xi and xj are perfectly positively correlated, whereas when p = −1, xi and xj are perfectly
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negatively correlated. The strength of the correlation increases with the absolute value of p, and
weakens as p approaches 0.

Figure 1. Schematic diagram of correlation coefficients and correlation degrees.

Typically, a value of pij > 0.95 indicates a significant correlation between xi and xj. If finite
elements within a spatial structure exhibit a significant correlation in load feedback, they can be
grouped together, resulting in the partitioning of the overall structure S into k subsets T.

S = {T1 T2 . . . Ti . . . Tk} (9)

In the given Equation (9), i ranges from 1 to k. Representative finite elements, vi, are selected from
each subset Ti to form a set of feature elements.

V = v1, v2, . . . , vi, .., vk (10)

A relationship between the set of feature elements V and the stress values S of finite elements that
exhibit significant correlation with V can be established using neural networks. By installing stress
sensors on the feature elements, global stress data of the structure can be obtained.

3. Neural Networks Architecture Method

3.1. Principles of Neural Networks

Artificial neural networks are AI algorithms that fit complex real-world patterns by training a
large number of hidden parameters (hidden layers) to achieve mapping from input variables to output
variables. The diagram of a single network structure is shown in Figure 2. In this paper, the stress
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values of the feature elements set V are used as the input layer of the neural network, and the stress
values of all finite elements of the overall structure S are used as the output layer. A supervised
learning network is established with reliable input and output data as the training sample set. The
neural network learning system adjusts system parameters based on the difference (error signal)
between known output and actual output, ultimately establishing a matching relationship network
between the characteristic points and the overall structural stress field.

Figure 2. Simple neural network to obtain global stress.

3.2. Initial ANN for Global Stress

As it is not possible to obtain spatial structural global stress data through direct measurements,
finite element simulation data is selected as the training sample to establish an initial global stress
neural network (referred to as the “initial network” below), following the process shown in Figure 3.
The sample data is divided into three non-overlapping parts: the training set, the validation set, and
the test set.

The training set is used to train the network to enable it to obtain the overall stress field. From
the training set, the response values of all finite elements are set as the output (referred to as “target
data”). Using forward propagation, the data of the characteristic elements is set as the input, and
a multi-layered weighted sum matrix is established to calculate the output forecast data. When
the difference between the predicted data and the target data does not meet the error requirements,
the system parameters are adjusted using the backpropagation algorithm, ultimately establishing a
solution network between the characteristic elements and the overall elements.

The validation set is used to determine the current network’s ability to obtain the global stress,
evaluate the convergence of the network during the training process, and serve as a basis for
determining whether to end network training.

The test set is used to evaluate the performance of the trained network in tasks to obtain stress
and quantitatively measure the network’s dispersion in predicting global stress.
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Figure 3. Technical path of building initial network.

3.3. Fine-tuning of Initial Network

The initial global stress ANN was established using simulation output data, and it requires
fine-tuning before it can be deployed to physical structures. The reasons are as follows: (1) there
are slight differences between the material properties, boundary conditions, mesh partitioning, load
simulation, and other information used in simulation calculations and the real physical world; (2) the
actual measurement point location and orientation may have geometric errors compared to the ideal
placement state.

The Figure 4 illustrates the process of fine-tuning the initial network. To fine-tune the initial
network for deployment to physical structures, measurement points are randomly selected from areas
of high stress. The actual sensor data is compared to the predicted values of the initial network, and a
fine-tuning matrix is added outside the output layer of the network through supervised learning. This
process creates the final artificial intelligence network (referred to as the "final network") that can be
deployed to physical structures.
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Figure 4. Fine-tuning process of the initial network.

The process of fine-tuning the initial network is similar to the process of establishing the initial
network, as both require a dataset for error comparison. The goal is to minimize the loss function
through optimization algorithms and improve the ANN. The key difference is that the dataset for
validation can be easily obtained from simulation output data at low cost during the establishment
process, allowing for a larger number of elements to be used for validation. However, during the
fine-tuning process, a much smaller number of elements are used for validation, which can potentially
lead to the network being trapped in local optimization instead of achieving global optimization.

4. Reconstructing Global Stress for Connector Structure

4.1. Mechanical Analysis on the Connector Structure

The ocean platform utilized for scientific research comprises two semi-submersible platforms,
wherein the primary platform is connected to the auxiliary platform through a pin joint, as depicted
in Figure 5. During extreme sea conditions, the pin and connector are exposed to substantial shear
forces [21–24], mandating real-time evaluation of the structure’s safety. This research endeavors to
appraise the safety of the connector structure by deploying stress sensors on the connector structure’s
surface, facilitating instantaneous determination of the stress distribution map. This map highlights
high-stress regions and their corresponding magnitudes. The connector structure can be classified into
single-ear and double-ear structures, as delineated in Figure 6. In this investigation, the single-ear
connector is selected as the research subject. It is a complex three-dimensional curved surface structure,
encompassing three layers of bulkheads, where the middle bulkhead is punctured with lightening
holes, as depicted in Figure 7.

Figure 5. Connector structure of the offshore platform.
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Figure 6. Single ear and double ear connector structure.

Figure 7. Inner bulkhead of connector structure.

4.2. Data samples

The shear force of the pin joint can be applied to the connector structure at 360 degrees. Therefore,
3600 elastic phase calculation cases are conducted, including 100 load steps for 36 load directions (each
10 degrees apart). All the finite element stress data for all load cases are used as sample data, and
they are randomly divided into training sets (2400 cases), validation sets (600 cases), and test sets (600
cases).

4.3. Selecting Feature Elements by Correlation Analysis

The overall finite elements are subjected to a correlation analysis using the Pearson correlation
coefficient and the steps are illustrated in Figure 8.

(i) Eliminate the finite elements that cannot accommodate sensors from the overall structure.
Then, sort the remaining finite elements (record the quantity as n in descending order based on their
absolute stress values). The greater the absolute stress value, the more sensitive the finite element is
to external loads. Placing sensors at these positions is advantageous for detecting minor changes in
external loads and structural responses.

(ii) The finite element with the highest absolute stress value in D is chosen as the feature element v1.
Subsequently, the correlation coefficient pij between vi and other elements ej is sequentially calculated,
where j = {2, ..., n}, and j represents the repetition times. Based on Equations (4) to (8), the correlation
matrix P of the finite element is obtained. If pij > 0.95, ej is added to the set V.

(iii) The elements in S that are duplicated in V are removed to obtain the remaining set of elements
D.

(iv) Repeat steps (ii) and (iii) until the number of remaining elements in set D reaches 0, then the
selection process is completed. Thus, 50 feature elements are identified from 30,858 finite elements, as
illustrated in Figure 9. The connector structure can be divided into 50 subsets accordingly.
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Figure 8. Selection process of the feature Finite Elements.

Figure 9. Identifier of the selected 50 feature finite elements.

4.4. Optimization of the Number of Stress Sensors

The 50 feature elements were sorted in descending order according to their stress amplitude,
and the number of correlated elements for each feature element was counted, as shown in Figure 10.
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The results showed that the number of finite elements which have a correlation with the 50 feature
elements was 220,905, exceeding the total number of entire elements, which was 30,858. This indicates
that there are multiple intersections among the 50 subsets, and fewer feature units can be used to
obtain the full-field stress distribution.

Figure 10. The count of correlated elements of each feature element (Load sensitivity from strong to
weak).

Subsequently, a neural network was trained for global stress by selecting 5, 10, 15, 20, 25, 30, 40,
and 50 feature elements in descending order of their stress amplitude as input variables. The influence
of different numbers of feature elements on the accuracy of global stress solutions was analyzed, and
the results are shown in Figure 11. It was observed that as the number of feature elements gradually
increased, the calculation accuracy also improved, and the algorithm accuracy was found to be stable
when the number of selected feature elements was 20. This indicates that most of the finite elements in
the connector structure are strongly correlated with the first 20 feature elements, and the global stress
of the connector can be accurately obtained using these 20 feature elements.

Figure 11. Influence of the number of feature elements on the solution accuracy.
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4.5. Optimization of neural networks

Different neural network architectures exhibit varying computational performance and accuracy
in obtaining global stress. To conduct the experiments, four commonly used neural network
architectures, namely BP, CNN, RNN, and DNN, were selected. The experiments were based on the
same input elements, validation dataset, and convergence conditions. BP was used as the optimized
standard network, CNN used the conv2d convolution layer provided by Pytorch, RNN had a sequence
size of 3, and DNN used 10 layers of neurons. Table 1 shows the comparison of the algorithmic accuracy
of different networks by the minimum and maximum accuracy achieved using the test dataset.

Table 1. Comparison of solution accuracy of different neural networks.

BP CNN RNN DNN

Minimum accuracy 90.40% 85.30% 90.60% 88.90%
Maximum accuracy 94.70% 88.80% 93.40% 94.80%

Table 1 shows that the CNN network has the lowest accuracy, while the BP and RNN networks
have slightly lower predicting accuracy than the DNN network. However, the DNN and RNN
networks require excessive computational power, as shown in Figures 12 and 13. On the other hand,
the BP network has relatively stable accuracy. Considering both solution accuracy and computational
speed, the BP network outperforms the others.

Figure 12. Solution process of the BP neural network.
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Figure 13. Solution process of the DNN neural network.

4.6. Convergence of Neural Network

When predicting a large number of output variables with only a small number of input variables,
overfitting can occur during the training process of neural networks. Overfitting can cause a decrease
in the prediction accuracy of the neural network. Figure 14 shows the curve of training a global stress
neural network using BP neural network without setting convergence judgement. The horizontal axis
represents the training rounds, and the vertical axis represents the accuracy. The blue curve represents
the accuracy verified by the validation set every 200 rounds of training, while the red curve represents
the accuracy evaluated by the test set every 200 rounds of training.

It can be observed that: (1) As the number of training rounds increases, the prediction accuracy of
the network first rises, then becomes flat, and finally drops sharply, indicating the phenomenon of
overfitting. Therefore, it is necessary to design a convergence rule. (2) The consistent performance
trends of the validation set and the test set in terms of accuracy demonstrate that the validation set can
effectively provide an approximate evaluation of the network’s performance. Therefore, the following
convergence rules should be set when training the neural network for obtaining global stress of the
connector structure: when the accuracy of the network verified by the validation set decreases by more
than 5%, the network should stop training and the previously trained network should be used as the
final network (the initial global stress ANN for Connector Structure).
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Figure 14. Overfitting curve during the training process of neural networks.

4.7. Uncertainty Analysis of the Initial ANN Based on Simulation

An uncertainty analysis was conducted on the initial ANN for global stress of connectors based on
600 test datasets. Figures 15 and 16 display the relative error distribution of the remaining 30,838 finite
elements stress values that were obtained using 20 feature elements’ stress values as inputs, under
the working condition of 420 tons of shear force and a direction of 60° (The shear force is considered
zero when it’s vertical, and a counter clockwise direction is considered positive). The abscissa denotes
the magnitude of strain, and the ordinate represents the relative error. The results show that in the
S1 direction, 95% of the finite elements stress values were predicted with an error range of [-8.01%,
8.01%]. Similarly, in the S2 direction, 95% of the finite element stress values were predicted with an
error range of [-8.22%, 8.22%] [25].

Figure 15. Solution uncertainty for global stress in S1 direction.
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Figure 16. Solution uncertainty for global stress in S2 direction.

5. Verify Accuracy by Physical Structure Test

5.1. Physical Test Object

To verify the accuracy of the ANN in obtaining the global stress of the single-ear connector
structure, physical structural tests were conducted using a 1:1 model. The main parameters of the
single-ear connector model are presented in Table 2.

Table 2. Main parameters of the connector model

Principal dimension Length 3.95 m

Principal dimension Width 1.70 m

Principal dimension Height 3.20 m

Material Double-ear connector (the fixture) 42CrMo Steel (yield strength 450 MPa)

Material Single-ear connector ZG230-450H Steel (yield strength 240 MPa)

5.2. Arrangement of the Stress Sensors

A total of 29 three-dimensional stress measurement points were set up for the test, as shown
in Table 3, using static strain gauges and three-dimensional strain sensors, as shown in Figure 17.
Among these, 20 measurement points located at feature elements provided input data for the ANN.
In addition, 6 measurement points were strategically placed in the high-stress areas of the outer and
intermediate bulkheads to fine-tune the ANN. Finally, 3 measurement points were placed in arbitrary
positions within the high-stress area to assess the accuracy of the network. The locations of all stress
sensors are shown in Figure 18. D1, D2, D3, and D4 are four reference points located at the edge of the
connector, which are used to locate the element coordinates.
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Figure 17. Static stress testing equipment

Table 3. Information of all stress sensors.

Sensor No. Element NO. Phase Bulkhead located in Reference Point Relative coordinates

1 26234 Training Outside D2 (89.84,416.83)
2 25799 Training Outside D1 (467.49,-441.92)
3 26528 Training Outside D2 (-417.30,387.32)
4 26498 Training Outside D3 (-31.06,221.78)
5 26009 Training Outside D3 (-203.11,-327.83)
6 25834 Training Outside D4 (179.59,-22.26)
7 26084 Training Outside D4 (-251.62,-312.10)
8 25507 Training Outside D4 (-654.56,-983.12)
9 26465 Training Outside D3 (-352.14,734.94)
10 26631 Training Outside D3 (-40.61,425.31)
11 27158 Training Inside D1 (143.40,-431.74)
12 27645 Training Inside D1 (474.93,911.95)
13 27943 Training Inside D1 (783.21,-116.72)
14 27844 Training Inside D1 (924.08,-23.91)
15 27572 Training Inside D3 (-199.49,229.65)
16 27662 Training Inside D2 (30.09,530.90)
17 27765 Training Inside D2 (295.11,126.20)
18 27988 Training Inside D1 (957.63,-42.27)
19 27738 Training Inside D1 (354.69,181.96)
20 27754 Training Inside D1 (-36.55,317.18)
21 26254 Fine-tuning Outside D1 (175.36,33.17)
22 25753 Fine-tuning Outside D1 (255.65,-173.21)
23 26299 Fine-tuning Outside D1 (145.95,226.70)
24 28090 Fine-tuning Inside D1 (649.69,78.04)
25 27672 Fine-tuning Inside D1 (51.76,85.79)
26 27490 Fine-tuning Inside D3 (-170.9,34.2)
27 27280 Verified Inside D4 (33.2,-120.4)
28 27083 Verified Inside D3 (64.01,-412.54)
29 27600 Verified Inside D2 (33,115.75)
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Figure 18. The locations of all stress sensors.

5.3. Process of the Test

A fixture was utilized to simulate the adjacent double-ear connector, while a hydraulic cylinder
was used to apply simulated shear forces. Precise control of the shear force was achieved using a
force sensor, with the inclined angle simulated by fixing a bottom block to the cylinder, as shown
in Figures 19 and 20. The test was conducted within the elastic ranges, and the loading scheme is
presented in table 4. The loads during the fine-tuning phase did not overlap with those during the
accuracy verified phase.

Table 4. Detailed loading conditions.

Phase Force (kN) Cycle times

Fine-tuning 1000,1100,1200,1300,...,2000,1900,...,1000 3
Accuracy verified 2000,2100,2200,2300,2400,2500 1
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Figure 19. The framework of the test.

Figure 20. Several loading conditions during the test.

5.4. Test results

(i) Figure 21 illustrates the process of fine-tuning a neural network at a loading angle of 10
degrees. The horizontal axis represents the experimental time steps, and the vertical axis represents
the measured stress values. The neural network predicts the stress data for three randomly selected
validation elements, after 249 rounds of fine-tuning, the neural network can accurately predict the
stress value.

(ii) Based on the fine-tuned neural network, a real-time global stress solver for connector structures
was developed and embedded into the Structural Health Monitoring system software, as shown in
Figure 22. It shows the stress field contour map obtained by the software under a vertical shear force of
1634 kN. The software can recognize the load direction as vertically upward, and the maximum stress
is located under the pinhole of the connector. Both sides and the upper side of the pinhole are also
high-stress areas. The farther away from the pinhole, the lower the stress amplitude of the structure.

(iii) Curve 1 is the comparison curve between the measured stress values and the stress values
solved by the neural network under the above working condition. The blue curve represents the
measured data, and the green curve represents the data predicted by the neural network. The overall
solution accuracy is as high as 93.6% by comparison.
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Figure 21. Fine-tuning process of the ANNs under the loading angle of 10° (The horizontal axis
represents time with the unit of second; the vertical axis represents the stress with the unit of MPa).

Figure 22. The stress field contour map obtained by ANNs under a vertical shear force of 1634 kN.

6. Conclusion

In summary, this paper proposes an innovative method based on artificial intelligence for real-time
solution of stress fields of marine structures using a small number of stress sensors. The method
divides the spatial structure into subsets of finite elements with significant correlations between each
other, and selects feature elements from each subset as stress measuring points. Then, a neural network
is used to establish the relationship between the feature elements and the corresponding subset to
reconstruct the global stress of the structure.

Additionally, a neural network optimization network (initial network) is established based on
finite element simulation data to assess the safety of the connector structure of a marine platform.
The network uses 20 feature elements as input variables and can predict the remaining 30,858 finite
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element data. The uncertainty analysis shows that the strain solution error of 95% of the finite elements
is within 9%.

To fine-tune the initial network and verify the accuracy of the ANN, a physical 1:1 structural
network test of the connector is conducted. The results show that the ANN has an accuracy of 93.6%
when compared to the validation points. The proposed method demonstrates feasibility and high
predictive accuracy and can upgrade the traditional SHM system from “point" monitoring to “field"
monitoring.
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