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Article 
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Simple Summary: This study presents a user-friendly model for assessing the value of dairy bulls 

in artificial insemination (AI) companies. The model, a Markov Chain model, considers important 

factors for replacement decisions, such as a bull's age, expected semen production, and predicted 

genetic merit. Data from a leading AI company was used to apply this model, which calculates a 

bull's net present value based on various costs and revenues. The model also calculates the value of 

a bull compared to a potential young replacement. Findings showed that nearly half of the bulls 

were recommended for replacement due to a negative value comparison. The value of a bull was 

primarily influenced by market distribution and pricing, as well as the interaction of semen 

production with genetic merit. 

Abstract: Deciding when to replace dairy bulls presents a complex challenge for artificial 

insemination (AI) companies. These decisions encompass multiple factors, including a bull's age, 

predicted semen production, and estimated genetic merit. This study's purpose was to provide a 

practical, objective tool to assist in these decisions. We utilized a Markov Chain model to calculate 

the economic valuation of dairy bulls, incorporating key factors such as housing costs, collection 

and marketing expenses, and the bull's probable tenure in the herd. Data from a leading AI company 

were used to establish baseline values. The model further compared a bull's net present value to 

that of a potential young replacement, establishing a relative valuation (BullVal$). The range of 

BullVal$ observed spanned from -$316,748 to $497,710. Interestingly, the model recommended 

culling for 49% of the bulls based on negative BullVal$. It was found that a bull's net present value 

was primarily influenced by market allocation and pricing, coupled with the interaction of semen 

production and genetic merit. This study offers a robust, data-driven model to guide bull 

replacement decisions in AI companies. Key determinants of a bull's valuation included market 

dynamics, semen production rates, and genetic merit. 

Keywords: Markov Chain; herd simulation; bull valuation 

 

1. Introduction 

Dairy genetics companies seek to provide top genetics from elite bulls to accelerate genetic 

progress and enhance farm profitability of their customers. Most companies have well-established 

protocols for acquiring and raising young bulls and collecting, processing, and selling their semen. 

However, the decision of when to replace a bull with a new selection candidate can be subjective and 

may be influenced by many factors and their interactions.  

Currently, replacement decisions typically involve many individuals, with competing interests, 

within a given artificial insemination (AI) company, including sire analysts (who acquire the bulls), 

veterinarians, inventory managers, sales and marketing staff, and barn managers. These individuals 
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must use data regarding genetic potential, semen production, health, temperament, and other factors 

to decide whether a given bull is likely to: 1) achieve “premium” status in the marketplace and 

generate millions of dollars in revenue and tens of thousands of offspring; 2) reach (or remain in) 

“cash cow” status and contribute a modest revenue stream for the foreseeable future, or 3) lag behind 

its herd mates in revenue-generating potential due to poor semen production and/or a genetic profile 

that is no longer competitive or marketable.  Each bull must be evaluated relative to its existing herd 

mates at the AI company, as well as potential replacement bulls that may be younger and have higher 

genetic merit (i.e., opportunity cost), while simultaneously considering the fixed and variable costs 

associated with keeping the bull or acquiring a replacement.   

While objective methods to combine semen production, genetic potential, age, and other factors 

for valuation of dairy bulls in an AI company context are lacking, such methodologies and decision-

support tools are well-established for dairy cows [1-3]. These methods combine data regarding age, 

parity, milk production, pregnancy status, genetic potential, and the inventories of lactating cows 

and replacement heifers to formulate an estimate of the future income that will be generated by an 

individual cow, relative to her current and potential herd mates, such that the farmer can decide 

when to replace a specific cow in an objective and optimal manner (e.g., CowVal$). To our 

knowledge, this framework has not been extended to the monetization or ranking of dairy bulls based 

on income-generating potential for an AI company. Focus has been entirely on ranking bulls based 

on their potential to generate profit for the dairy farmer by producing offspring of greater or lesser 

genetic potential for individual traits or an overall profit index (e.g., [4, 5]. 

The most common index used for ranking dairy cattle today is lifetime net merit (NM$), which 

considers the predicted genetic merit of cows, bulls, heifers, and calves for production, type, health, 

longevity, fertility, and calving traits relative to an average animal of the same breed [6]. However, 

the NM$ index does not consider the semen production characteristics of a bull, only the traits he will 

transmit to his female offspring. As such, NM$ can be considered as an optimal tool by which dairy 

farmers can rank bulls when purchasing semen, but expected semen production for a specific bull at 

a given time varies widely [7], and NM$ is not sufficient for making replacement decisions regarding 

individual bulls based on their likely contributions to the future net profit of an AI company. 

Another, possibly most important, defining factor of a bull’s profitability for an AI company is 

his market appeal. Globally, even within a country, farmers’ needs for genetics and types of bulls 

differ [8].  

Therefore, the objectives of this study are: 1) provide a user-friendly Markov Chain (MC) model 

of economic valuation for dairy bulls, focusing on the most important factors contributing to 

replacement decisions, and 2) describe the features and outcomes of this model when applied to data 

from a leading AI company. 

2. Materials and Methods 

The replacement problem of a bull was solved by MC as the difference between net present value 

(NPV) of a bull (NPV bull) and its replacement (NPV replacement), hence: 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵$ = 𝑁𝑁𝑁𝑁𝐵𝐵 𝑏𝑏𝐵𝐵𝐵𝐵𝐵𝐵 − 𝑁𝑁𝑁𝑁𝐵𝐵 𝑟𝑟𝑟𝑟𝑟𝑟𝐵𝐵𝐵𝐵𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟. 
This simple algorithm is the aggregation of a MC model, in which a user can define parameters 

of a bull and compare with those of a potential replacement, with considerations of age, total sperm 

production (TSp), and genetic merit. 

2.1. Markov chain bull model 

A dairy bull herd was represented by a 4-month age bin MC model as a matrix. Four months 

was chosen to model three rounds of replacement decisions per year, based on the current frequency 

of Council on Dairy Cattle Breeding (CDCB; Bowie, MD) genetic evaluations of US dairy cattle. One 

state defines potential bull ages: AGE (19 bins of 4-month duration, spanning the period from 10 to 

85 months of age). 

In a MC simulation, each bull is decomposed through time in all possible states dictated by the 

transition probabilities, which are then referred to as resulting fractions or proportions of a bull in 

each iteration. The proportions of a bull represented over time (BULLAGE) were simulated through 
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MC following Cabrera (2012) [1]. A vector of transition probabilities represented the probabilities of 

a bull leaving the herd (CULL) while in a given age bin. The proportion of a given bull explains the 

probability that a bull in AGE bin i will remain in the herd until the AGE bin i+1. Then, the proportion 

of a bull remaining in the herd until the next age bin are calculated as: 

(BULLAGE+1) = (BULLAGE)(1-CULLAGE); 

and a replacement bull enters the herd as AGE=1, (BULL1) as: 

(BULL1)= ∑ 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐴𝐴𝐴𝐴𝐴𝐴(𝐶𝐶𝐵𝐵𝐵𝐵𝐵𝐵𝐴𝐴𝐴𝐴𝐴𝐴)191  

which assures that herd size remains constant. 

A bull’s (or replacement’s) probabilistic life was represented from the time the bull entered the 

analysis (Age Start) until a point in the future when the bull and its potential replacements had 

reached the MC condition of steady state [1, 9 - 10]. The MC condition of steady state is realized when 

the proportions of animals in each state no longer change with an increase in time (iteration), 

regardless of the current state of the bull or its replacement in the first iteration [11]. 

The model was solved through recursive iterations until the probability distribution of a bull 

across all states of model reached steady state. In each iteration, aggregated discounted net returns 

of all probabilities of the bull were estimated for the given 4-month time period. Steady state was 

reached after 310 iterations, and the model parameter was set to 330 iterations to ensure bull and 

replacement were consistent. 

To create the MC, assumptions were made to establish a base herd of bulls. Bulls were assumed 

to enter production at 10 months of age. Once they entered collection status, bulls were collected eight 

times per month until culled. In practice, bulls removed from collection rarely return; exceptions 

include injury, illness, or bulls that have not yet reached puberty. In the model, any remaining bulls 

were culled at age 85 months (7 years 1 month). TSp for a given bull in a 4-month period was treated 

as a deviation from the mean sperm production for bulls of that age. In a production setting, many 

factors may impact predicted and actual TSp, including collection frequency, barn personnel, 

temperament, environmental conditions, semen quality, and processing regimen.  

2.2. Economic module 

The NPV of a bull or its replacement was the aggregated 4-month discounted (∂) net value over 
330 iterations (330 4-month, i) that resulted in NPV bull (value of keeping the bull) or NPV 

replacement (value of replacing the bull). Economic factors used in this calculation were the incomes 

and revenues incurred in the maintenance, production, and culling of a bull: 1) income from straw 

units produced (Si) according to the bulls’ age, predicted TSp deviation, genetic merit, and market; 

2) maintenance cost (Mc), including housing, veterinary care, labor, and feed; 3) costs associated with 

involuntary culling (Cc), including cost of replacement and depreciation, and 4) income generated 

from involuntary culling a bull (Ci) and salvage value. Therefore,  𝑁𝑁𝑁𝑁𝐵𝐵 𝑏𝑏𝐵𝐵𝐵𝐵𝐵𝐵 𝑜𝑜𝑟𝑟 𝑁𝑁𝑁𝑁𝐵𝐵 𝑟𝑟𝑟𝑟𝑟𝑟𝐵𝐵𝐵𝐵𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =  ∑ �𝜕𝜕 ∑ (𝑆𝑆𝑆𝑆 − 𝑀𝑀𝑟𝑟 − 𝐶𝐶𝑟𝑟 + 𝐶𝐶𝑆𝑆)𝑎𝑎𝑎𝑎𝑎𝑎(𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎) 𝐴𝐴𝐴𝐴𝐴𝐴+1𝐴𝐴𝐴𝐴𝐴𝐴=𝑎𝑎𝑎𝑎𝑎𝑎 �330𝑖𝑖=1 ; 

where i marked the 4-month time iteration of aggregated NPV calculations, up to 330 iterations. Age 

defined the bull being analyzed and ranged from 1 to 19. A replacement bull started at AGE = 1, 

assuming a bull was replaced with a new young sire entering production. A list of minimum variables 

required to calculate bull value and base values for bull replacement, herd, and economic variables 

is provided in Table 1. 
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Table 1. Variables required to calculate bull value using the MC model, and base values used in model 

illustration. 

Variable Base Value 

Bull variable evaluated  

  Current age bin Bull-specific (1 to 19) 

Replacement bull variable  

  Age bin 1 

  Net Merit bin 9 

  TSp deviation 0 

  Arrival age (month) 6 

Herd variable  

  Bulls in herd 396 

Economic variable  

  Maintenance cost ($/bull/month) 900 

  Depreciation cost ($) 54,000 

  Depreciation term (month) 36 

  Cost of replacement ($) 10,000 

  Salvage value ($) 850 

  Packing rate (TSp/straw unit) 15,000,000 

  Interest rate (%/year) 6.00 

  Market price See Supplemental Figure A1 for distribution and Supplemental 

Table A1 for price (Appendix A) 

2.2.1. Bull variables. 

AGE. Age bin defined age of bull at the starting point (iteration =1) in the MC model. As 

explained previously, AGE contained 19 four-month bins, from 10 to 85 months of age. 

Age Class. To obtain price per unit in the income equation (explained below), age bins were 

grouped into 3 classes: young (1-4 AGE), in-waiting (5-12 AGE), and proven (12-19 AGE). In-waiting 

signified a bull that is older than genomic (young) bulls that entered the AI stud recently and younger 

than proven (old) bulls that already have offspring with performance data. This was done to reduce 

dimensionality, allow more samples within each grouping, and achieve a more stable price.  

Arrival Age. Age in months at which a bull arrived at the AI stud. Used to calculate depreciation 

value within culling cost variable of NPV (depreciation calculation is defined in herd variables 

section). A bull could arrive at the AI stud at 1 to 15 months of age and might not enter the production 

herd immediately. Costs associated with rearing bulls prior to production were assumed to be 

constant across all bulls and are not considered within the NPV calculation. 

Expected TSp percent deviation from mean. The NPV bull could be calculated assuming a bull’s 

average TSp production. A bull’s expected production capability, Pdev, was the percent deviation 

from mean TSp, and was multiplied by the aggregated income generated (Inc) based on average TSp 

production.   

Net Merit decile bin. The genetic contribution of a bull was considered using the decile of NM$ 

for the bull, compared with the herd’s distribution of NM$ values. This value was used to find the 

price per unit, which was a function of age, market, and genetic merit, in the income calculation. 

2.2.2. Economic variables 

Aggregated discount. The aggregated discount was defined as: 𝜕𝜕 =
1

(1+𝑖𝑖𝑖𝑖𝑖𝑖)𝑖𝑖+1 where int was the 

interest rate.  
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Income from straws produced. Income generated by unit sales was defined as: 𝑆𝑆𝑆𝑆 = (1 + 𝑁𝑁𝑃𝑃𝑟𝑟𝑃𝑃) ∗ ∑ �𝐼𝐼𝑟𝑟𝑟𝑟𝑚𝑚𝑚𝑚𝑖𝑖,𝑁𝑁𝑁𝑁,𝑎𝑎𝑎𝑎𝑎𝑎�6𝑁𝑁𝑀𝑀𝑀𝑀=𝑚𝑚𝑚𝑚𝑖𝑖  where Pdev: Bull’s sperm production deviation from 

herd mean, based on the average TSp deviation of a bull for the three most recent trimesters; MKT: 

Product market (1-6, explained below); Inc: money generated from the sale of product destined to 

different markets, based on age, TSp production, and NM bin.  

Market pricing and distribution of semen units. Bulls (and units) were valued differently 

depending on where the semen was sold. The income equation had the capability to calculate Inc 

based on the amount of product distributed to each market group (market share).  

TSp per straw unit (packing rate). Average number of cells packaged into a unit. The value 

divided TSp expected per bull into units, which was then multiplied by price per unit to get income 

from straw units produced. 

Income generated from unit sales. Money generated from the sale of product destined to 

different markets, based on age, TSp production, and genetic merit was the product of price per unit 

(PU), market share percentage (MS), and number of units produced (U): 𝐼𝐼𝑟𝑟𝑟𝑟𝑚𝑚𝑚𝑚𝑖𝑖,𝑁𝑁𝑁𝑁 = �𝑁𝑁𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎 𝑐𝑐𝑐𝑐𝑎𝑎𝑐𝑐𝑐𝑐,𝑁𝑁𝑁𝑁� ∗ �𝑀𝑀𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎,𝑁𝑁𝑁𝑁� ∗ �𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎�. 

Maintenance cost. The maintenance cost variable incorporated prices for housing, maintenance, 

and veterinary costs for a bull.  

Culling cost. Cost of culling a bull 𝐶𝐶𝑟𝑟 =  𝐶𝐶𝐶𝐶 + 𝐶𝐶𝐵𝐵𝐵𝐵𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎 ∗ 𝐷𝐷𝑟𝑟𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎 ,𝑤𝑤ℎ𝑟𝑟𝑟𝑟𝑟𝑟  CR: cost of 

replacement, which was the purchase price of a new bull; Depr: depreciation cost, which was an 

aggregated price based on depreciation term and value.  

Depreciation. Value assigned to a bull for insurance purposes, based on age of bull, arrival age, 

and term length.  

Depreciation cost within the NPV was calculated as Depr = Depreciation Value - (Depreciation 

Value/(Depreciation term – ArrivalAge)*(age-ArrivalAge)), where Depreciation Value is the original 

value assessed for a bull, Depreciation term is the length of depreciation realization, and age is the 

age that is currently being evaluated within the aggregated NPV. 

Depreciation term. The length for depreciation realization, based on age (month). Depreciation 

was the remaining cost that must be paid if a bull was culled prior to the depreciation term. 

Culling income. Income generated from culling the bull, which was simply the product of 

salvage value (SV, constant across all ages) and proportion of culled animals:  𝐶𝐶𝑆𝑆 = 𝑆𝑆𝐵𝐵 ∗ 𝐶𝐶𝐵𝐵𝐵𝐵𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎 .  

Culling percentage. Involuntary culling percentage (CULL) per age bin. It was assumed that all 

bulls were culled at the end of AGE 19. 

2.3. Case study 

Model performance was demonstrated using production data, sales records, health events, and 

bull demographics of Holstein bulls at two collection facilities of a commercial AI company (ABS 

Global Inc., DeForest, WI). Bulls in production from April through November 2020 were used in this 

illustration (reflective of two trimesters). The MC model for each bull was calculated using age of the 

bull in April 2020. Genetic predictions for NM$ from the December 2020 CDCB genetic evaluation 

were used to classify each bull into a decile, and its arrival age was used to calculate depreciation. 

Each bull’s valuation was relative to a replacement animal of AGE = 1, Arrival age = 6, and NM = 9. 

It was assumed that a replacement bull would be a young bull at the beginning of its productive life, 

with the average arrival age, and NM just below that of the most elite bulls used to create the next 

generation (i.e., NM = 9).  

Involuntary Culling Percentage. Involuntary culling percentages, used as transition 

probabilities, were derived from health records of bull deaths, recommended culling decisions, or 

actual culls (Table 2). 
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Table 2. Average Total Sperm (TSp) production and involuntary culling proportions across the 4-

month age bins generated using production records from 2018 to 2020. It is assumed all animals are 

culled after AGE 19. 

Age (month) AGE (4 month) TSpBin Ave (Billion Cells) 
Involuntary Culling 

Proportion (%) 

10 to 13 1 99.6 0.0067 

14 to 17 2 229.3 0.0040 

18 to 21 3 296.0 0.0014 

22 to 25 4 342.9 0.0041 

26 to 29 5 366.3 0.0030 

30 to 33 6 386.7 0.0063 

34 to 37 7 403.8 0.0104 

38 to 41 8 399.8 0.0162 

42 to 45 9 415.2 0.0100 

46 to 49 10 398.1 0.0148 

50 to 53 11 406.5 0.0088 

54 to 57 12 422.8 0.0215 

58 to 61 13 450.6 0.0202 

62 to 65 14 489.2 0.0094 

66 to 69 15 485.6 0.0250 

70 to 73 16 486.0 0.0200 

74 to 77 17 469.2 0.0571 

78 to 81 18 433.7 0.0789 

82 to 85 19 259.4 1.0000 

Expected TSp percent deviation from mean (Pdev; %). This was derived using company 

collection records from 2018 to 2020, aggregated to an average TSp per age bin, such that each month 

a bull was collected 8 times (Table 2). For the decision support tool, the user could enter the deviation 

from this mean. In the herd case study, a bull’s TSp deviation was calculated by averaging deviations 

from the last 3 (at most) collection months. 

Market share and pricing. Twenty-nine countries that received more than 200,000 semen units 

according to 2018 to 2020 sales records were split into 6 market classes. To identify trends in types of 

products used in each country, PTAs of bulls sold in each country were averaged. The countries were 

then ranked for each PTA value, providing an estimate of importance that trait has on overall 

selection by country. Similar countries were grouped together manually. Market A contained 6 

countries, in which fertility traits had high importance and milk composition traits had low 

importance. Market B contained 3 countries, in which milk production traits were of high importance 

and fertility and type traits had low importance. Market B also contained the domestic market. 

Market C contained 5 countries, in which milk yield and type composites were of moderately high 

importance. Market D contained 3 countries with high importance for type composites. Market E 

contained 6 countries, in which PTA Milk, Productive Life, SCS, and Net Merit were of high 

importance. Lastly, Market F contained 6 countries that did not fit into above groupings and lacked 

a discernable pattern in traits of high importance. Once grouped, average price per group was 

calculated per age bin. A smoothing function was applied to each market to limit the influence of 

outliers (see below). Market share was calculated as the percentage of total units per age group 

directed to each market. Supplemental Figure A1 contains box plots of market percentages across age 

bins. Supplemental Table A1 contains prices by NM bin, market, and age class. 
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Unit price smoothing function. Price per unit of semen was estimated based on age class 

(young, in-waiting and proven), market class, and NM$ decile (Supplemental Table A1). Age class 

was used to decrease dimensionality of ages, while capturing price differences between young, in-

waiting, and proven bulls. Sales data obtained from the company did not include the actual price 

received for each unit of each bull in a specific country. Rather, a blended price was available for all 

bulls sold to the country in that transaction, which reflected the average price per unit across all bulls 

in the order; this tended to dilute variation in prices per unit of different bulls, especially when high-

value and low-value bulls were grouped in the same order. Sales records from 2018 to 2020 were 

filtered to remove outliers. Bulls were classified into age class, market, and NM$ bin groupings at the 

time of sale. Empirical Bayes was used to smooth the price estimates (Martin, 2018). The empirical 

Bayes method provides a balance between group estimates and the population mean, such that 

population mean carries more weight for groups with limited information. In this case, prices within 

age class and NM decile were blended with population means for prices in a given market, as shown 

below:  𝛽𝛽𝑖𝑖 =
𝜏𝜏2𝜏𝜏2+𝜀𝜀𝑖𝑖2;  

where 

Βi = interpolation factor 𝜏𝜏2= population variance 𝜀𝜀𝑖𝑖2 = standard error in the price of group i, which is σ2i/ni 𝑠𝑠ℎ𝑟𝑟𝐵𝐵𝑟𝑟𝑟𝑟 𝑟𝑟𝑟𝑟𝑆𝑆𝑟𝑟𝑟𝑟 =  𝛽𝛽𝑖𝑖𝑥̅𝑥𝑖𝑖 + (1 − 𝛽𝛽𝑖𝑖)𝜇𝜇; 

µ = population mean 𝑥̅𝑥𝑖𝑖 = average price per group i 

Maintenance cost. The AI company used in this case study assigns an estimate of $30/bull/day 

for covering all physical maintenance costs, such as feeding, housing, and veterinary costs. This value 

was adjusted to fit 4-month age bin and remains the same across all bulls in the herd. 

Depreciation value and term length. The company insured bulls for $54,000 for 36 months 

(depreciation term). 

3. Results and discussion 

3.1. Performance of the model and results of base scenario at steady state 

The base scenario was derived from the case study, subsequently all results pertain to the case 

study. Across 330 iterations, steady state was reached around the 310th iteration, based on BULLAGE=1. 

The SD between the 310th and 330th iterations for AGE =1 was 0.137%, showing that there was minimal 

variability in the proportions between iterations. The replacement bull (AGE = 1, NM Bin = 9, Arrival 

Age = 6) had a discounted NPV of $250,951. This was broken down into maintenance cost of $63,600, 

culling cost of $7,264, income from culling of $532, and income from semen sales of $321,283. 

Adjusting any input values of a replacement bull would change his NPV and the BullVal$ of the herd, 

but it would not change the overall ranking of bulls within the herd. 

Market prices (Supplemental Table A1) were established using an empirical Bayes smoothing 

function. Contrary to intuitive thinking, the NM Bin 10 reflected average market price. We speculate 

that this may be due to pairing of elite bulls with lower-demand bulls as “blend” packages, where 

fewer units from elite bulls are sold with greater numbers of units from inexpensive bulls that are 

more readily available; this would reduce the valuation of genetically elite bulls in our case study 

analysis. We chose to use semen prices derived in this manner for the case study, despite the 

aforementioned limitations in data clarity, but future users may have access to more precise pricing 

data at the individual bull level for specific markets. 

3.2. Case study 

A total of 396 Holstein bulls collected from April to November 2020 made up the herd. Table 3 

shows the distribution of bulls in each NM bin, with an average of 7.9. With the knowledge that the 
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deciles were established using bulls collected from 2018 to 2020, the company’s herd had a higher 

NM than previous trimesters or years, a trend that was expected. The genetic trend can be observed 

in Supplemental Figure A2, a plot of the herd bulls’ raw NM$ with their ages in April 2020. As age 

decreased, NM$ increased, showing that younger bulls had higher NM, except those that were 

chosen for specialty markets, like high genetic merit for type conformation.  

Table 3. Lifetime Net Merit (NM$), number of bulls, mean TSp deviation % (and standard deviation; 

SD), and mean bull valuation (BullVal$) and SD NM decile bin for the modeled herd. 

NM decile 

bin 

NM$ 

range 

Number of 

bulls 

TSp mean 

deviation % (SD) 

Mean BullVal$ 

(SD) 

1 
-151 to 

152 
8 4.2 (31.7) 

-257,759 

(21,280) 

2 
205 to 

286 
3 -29.9 (26.9) 

-235,546 

(38,630) 

3 
298 to 

351 
4 -3.5 (33.7) 

-40,291 

(120,230) 

4 
361 to 

418 
9 5.0 (32.5) 7,151 (103,780) 

5 
423 to 

474 
15 -0.3 (26.8) 

210,924 

(142,140) 

6 
479 to 

559 
40 1.7 (29.3) 

16,8307 

(147,720) 

7 
560 to 

636 
55 -3.0 (21.0) 30,979 (83,700) 

8 
637 to 

692 
76 -6.9 (22.4) 64,302 (93,650) 

9 
693 to 

756 
87 4.8 (28.8) 3,953 (94,440) 

10 
757 to 

950 
99 3.6 (41.6) 

-151,324 (-

71,390) 

Total  396 0.3 (30.9) -2,565 (148,450) 

The average arrival age was 6 month, and average age bin of these bulls at the start of the MC 

was 5, ranging from 81 in AGE= 1 and 2 in AGE = 15 at i=1 (Figure 1). The herd distribution by age at 

steady state ranged from 16 bulls in AGE=19 to 23 bulls in AGE=1. The drastic difference in herd 

distribution between i= 1 and i=310 demonstrates decisions that cannot be captured due to data 

limitations. 
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Figure 1. Distribution of herd demonstration bulls across the AGE bins in which they start the MC 

model in (i=0, open circles) and at steady state (i=310, closed squares). 

The percentage of product sold to each market by age is portrayed in supplemental Figure A1. 

Market B dominated the market share in young bulls, whereas other markets increased their share as 

bulls aged. International sales relied more heavily on older, proven bulls. The herd’s BullVal$ ranged 

from -$316,748 to $497,710. Deviations from mean TSp ranged from -94% to 139% (Figure 2).  

 

 

Figure 2. Boxplot of herd bulls’ total sperm (TSp) deviation from mean (%) and their bull valuation 

(BullVal$). 
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For TSp deviation bins with more than one observation, wide ranges of BullVal$ were realized. 

As expected, with an increase in TSp, the overall trend of BullVal$ increased. Bulls with high BullVal$ 

did not have the highest TSp, but most tended to be above the mean.  

A previous study showed that TSp forecasts up to 4 months into the future were reliable [12]. It 

would be feasible for a company to incorporate TSp forecasts as opposed to deviations from mean 

TSp, but this would not drastically change the BullVal$ ranking.  

To explore the relationship between NM$ and BullVal$, Figure 3 plots NM bin with BullVal$. 

The expected relationship between BullVal$ increasing with NM bin was not observed across all bins.  

 

Figure 3. Boxplot of herd’s bull valuations across different net merit (NM) decile bins. 

In the first 5 NM bins, there was an increase in value, with the lowest BullVal$ in lowest NM 

bins. However, there was a decrease in average BullVal$ from NM bin 6 to 10. A possible explanation 

for this decrease is that higher NM bins have younger bulls, with Age Start mean of 2.26 for NM bin 

10; very little production data was available for these bulls, so a TSp deviation might not be an 

accurate portrait of the bull’s lifetime potential. For NM bin 10, TSp deviation was 3.55±41.58% and 

NM bins 7 and 8 had TSp deviations below mean (Table 3). Young bulls beginning the production 

process have varying performance, as they are new to the collection process and have yet to reach 

maturity. Other possible reasons why the average BullVal$ was lower than expected for higher NM$ 

bulls are reservations of elite bulls for contract matings, or package deals where high value bulls’ 

units are sold in limited quantities with large quantities of lower NM$ bulls’ units. The first example 

highlights rare cases which elite bulls’ semen may not be immediately available for sale, or if a sale 

is allowed, a contract is bound to the offspring, which would skew the price of units. The latter, more 

probable, reason would lead to skewed blended prices within sales records, driving down the 

apparent market price for elite bulls. The sales data provided assigned a blended price across the 

whole order, so the high-valued units were recorded at a lower price, heavily influenced by the mass 

lower-priced units. To establish market prices, empirical Bayes smoothing function was used in 

attempt to smooth outliers and blended prices. With so few records of elite bull unit sales, the 

smoothing function set the market prices to average, which decreased elite bulls’ values. If actual 

bull-level sales data was attainable, one would expect a bull of higher NM$ to have a higher BullVal$, 

as long as his TSp was above average. TSp and NM$ contribute to BullVal$, but there are also other 
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intangible factors, such as market distribution and pricing, that contribute to a bull’s potential net 

revenue.  

BullVal$ would be a beneficial tool in culling decisions as well as determining early on if a bull 

would be worth adding to the herd (if his predicted TSp and NM$ would jointly be beneficial in a 

profitable market). Figure 4 shows the number of bulls per each $50,000 BullVal$ bin added, 

involuntarily culled, and voluntarily culled between the August and December 2020 trimesters. 

Logistically, we would like to see bulls added to the herd with positive BullVal$ bins and conversely, 

culled bulls with negative BullVal$; however, this did not hold true with the case study herd. Out of 

the 20 new bulls added to the collection herd, all bulls had negative BullVal$. Out of 41 voluntary-

culled bulls, 17 (41%) bulls had a BullVal$ below $0.  

 

Figure 4. Histogram of bulls added (light grey circle), involuntarily culled (medium grey square), and 

voluntarily culled (dark grey diamond) from April 2020 through November 2020 in herd 

demonstration with their assigned bull valuations (BullVal$). 

This model and case study had limitations and challenges. First, the sales data available for this 

study were average sales prices for orders, which could contain multiple bulls, all averaging to the 

same price. This does not accurately portray the actual sales price of a bull semen. Moreover, a 

company may sacrifice on sales price to foster a budding relationship with a new market, 

undervaluing bulls and losing present revenue for (hopeful) future gain. Additional business 

relationships, contracts, and government regulations, among other constraints are not considered in 

this study, but would play significant roles in pricing and market distribution. Lastly, the adoption 

of an objective tool can be a challenge when competing interests exist. It would be beneficial for the 

tool to be modified or updated to reflect market changes and bull herd demographics.  

The authors suggest that this tool would be most beneficial in culling decisions when tied into 

the product allocation and collection scheduling process. Bulls with negative BullVal$ should be 

culled before high BullVal$ bulls (barring any health issues), to make way for more profitable 

replacements. An example of how this may fit into a collection scheduling process is in a situation 

where collection spots are limited, we would prioritize higher BullVal$ bulls for those spots. A similar 
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case can be made with product allocation: assigning higher BullVal$ bulls to markets would 

capitalize on the potential net revenue. Again, this model would need to be updated routinely (2-3 

times/year) to reflect the current bull population and market characteristics.  

4. Conclusions 

The present study demonstrated that a Markov chain model can be used to provide economic 

valuation of dairy bulls, while focusing on the most important factors contributing to replacement 

decisions, such as age, predicted semen production, and predicted genetic merit.  The Markov chain 

model allows for user-defined input based on current replacement policy and bull demographics. 

This model provides a new metric of ranking and valuing bulls based on their actual contribution to 

revenue of the company. A negative bull value indicates that the chosen bull is less profitable than 

the predicted discounted lifetime profit of a new young sire of average production capabilities, 

suggesting the bull should be culled. A case study demonstrated the tool’s feasibility of valuing and 

ranking a herd and highlighted pitfalls with data availability. The range of BullVal$ encountered 

were -$316,748 to $497,710, with 49% of bulls recommended for culling based on negative BullVal. A 

bull’s NPV was influenced primarily by market allocation and pricing, as well as the interaction of 

sperm production with genetic merit. This decision support tool is contained within an Excel 

workbook, allowing individual bull valuation and whole-herd assessment. 
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Appendix A 

Table A1. Prices assigned to each market based on age class and NM Bin using empirical Bayes 

smoothing function. 

  Market Price (USD/dose) 

Age Class NM Bin A B C D E F 

Young 1 8.96 7.10 14.65 7.10 7.10 9.81 

In-waiting  7.39 7.08 8.94 15.29 6.87 8.48 

Proven  4.18 6.04 7.07 5.54 5.00 5.74 

Young 2 8.84 7.10 14.81 7.10 7.10 9.43 

In-waiting  7.45 7.30 8.02 12.74 3.52 6.52 

Proven  3.81 6.52 5.35 5.94 3.82 6.69 

Young 3 7.60 5.00 9.10 7.10 7.10 9.39 

In-waiting  9.08 4.47 6.71 8.92 4.93 5.12 
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Proven  6.89 5.66 6.33 15.67 2.31 5.25 

Young 4 7.89 4.15 11.52 7.10 9.52 7.24 

In-waiting  5.90 6.21 6.67 9.97 2.40 6.81 

Proven  9.03 6.24 7.84 7.10 3.38 3.48 

Young 5 7.09 4.50 9.19 7.10 5.68 9.59 

In-waiting  9.24 5.03 5.56 7.10 3.21 5.03 

Proven  7.10 8.46 5.98 7.10 9.06 3.73 

Young 6 9.19 6.37 10.51 7.10 8.49 9.62 

In-waiting  9.06 9.04 7.74 10.31 7.37 6.66 

Proven  4.67 7.19 3.10 7.10 7.10 4.44 

Young 7 8.99 6.72 5.14 9.34 8.83 7.74 

In-waiting  8.31 7.16 5.99 7.10 7.10 6.48 

Proven  7.10 7.10 3.59 7.10 7.10 4.30 

Young 8 8.43 5.91 7.97 8.23 14.01 7.87 

In-waiting  8.71 7.50 2.82 9.30 7.10 3.71 

Proven  7.10 7.10 7.62 7.10 7.10 3.41 

Young 9 9.53 5.16 8.02 8.15 7.10 9.41 

In-waiting  9.38 7.00 4.96 7.10 7.10 6.56 

Proven  7.10 7.10 7.10 7.10 7.10 7.10 

Young 10 8.55 5.64 12.37 9.47 7.10 8.43 

In-waiting  8.26 7.00 8.21 10.30 7.10 8.70 

Proven  7.10 7.10 7.10 7.10 7.10 7.10 

 

Figure A1. Percentage of product sold to each market A through F across 4-month age bins. 
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Figure A2. Raw NM$ values of case study bulls by age bin they were in April 2020. 
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