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Abstract: The ability to handle spatiotemporal information makes contribution for improving the prediction 

performance of machine RUL. However, most existing models for spatiotemporal information processing are 

not only complex in structure but also lack adaptive feature extraction capabilities. Therefore, a lightweight 

operator with adaptive spatiotemporal information extraction ability named Involution GRU (Inv-GRU) is 

proposed for aero-engine RUL prediction. Involution, the adaptive feature extraction operator, is replaced by 

the information connection in the gated recurrent unit for obtaining the adaptively spatiotemporal information 

extraction ability and reducing the parameters. Thus, Inv-GRU can well extract the degradation information 

the of aero-engine. Then for RUL prediction task, the Inv-GRU based deep learning (DL) framework is firstly 

constructed, where features extracted by Inv-GRU and several human-made features are separately processed 

to generate the health indicators (HIs) from multi-raw data of aero-engines. Finally, fully connection layers are 

adopted are adopted to reduce dimension and regress RUL based on the generated HIs. By applying the Inv-

GRU based DL framework to the Commercial Modular Aero Propulsion System Simulation (C-MAPSS) 

datasets, successful predictions of aero-engines RUL have been achieved. Comparative analysis reveals that 

the proposed model exhibits superior overall prediction performance compared to recent public methods. 

Keywords: RUL prediction; spatiotemporal information; aero-engine; deep learning 

1. Introduction

Remaining Useful Life (RUL) prediction, as a significant research domain in Prognostics and 

Health Management (PHM) [1], offers the potential to forecast the future degradation trajectory of 

equipment based on its current condition. Transforming scheduled maintenance into proactive 

operations substantially mitigates the risks of personnel casualties and economic losses resulting 

from mechanical failures. 

With the increasing complexity and sophistication of equipment, conventional PHM methods 

by dynamic models, expert knowledge, and manual feature extraction have become increasingly 

limited. Nowadays, fueled by rapid advancements in technologies such as sensors, the Internet of 

Things, and artificial intelligence, attention has been drawn to the DL-based techniques with 

remarkable performance for RUL prediction [2–4]. Therefore, with the industrial data accumulation, 

conducting DL based RUL prediction research for equipment, which possess powerful feature 

extraction capabilities, has not only emerged as a hot research topic in academia but also holds 

significant practical implications for the industry. 

DL-based methods enable the construction of deep neural network architectures, endowing

them with more powerful feature extraction capabilities compared to shallow machine learning 

algorithms. Consequently, these methods can directly learn and optimize features from raw data 

obtained from complex equipment, and infer the RUL, thereby enhancing the accuracy and 

robustness of RUL estimation. Among various DL techniques, neural networks (NNs) have emerged 
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as state-of-the-art models for addressing RUL prediction problems, attracting significant attention 

from researchers [5–8].  

Recurrent neural networks (RNN) makes the input data and historical data as the finally input 

matrix which is different from other NNs. Based on this unique design, RNN is well-suited for 

processing sequential data and has been successfully applied in RUL prediction [9,10]. However, 

RNN also has its own limitations, such as long recursion time, which indirectly increases the depth 

and training time of the NN, and the issue of vanishing gradients that frequently occurs [11]. Long 

Short-Term Memory (LSTM) is deduced by Hochreiter and Schmidhuber to address above issues in 

1997 [12], which can mitigate the problem of long-term dependencies in RNN and has gained 

widespread application [13,14]. 

By comparing the aircraft engines prediction performance of the vanilla RNN, LSTM, and Gated 

Recurrent Unit (GRU), Yuan et al. [15] concluded that LSTM and GRU outperformed traditional 

RRNs. For solving the degradation problem in deep LSTM models, a residual structure is adopted 

[16]. Zhao et al. [17] conducted an empirical evaluation of an LSTM-based machine tool wear 

detection system. They applied the LSTM model to encode raw measurement data into vectors for 

corresponding tool wear prediction. Wu et al. [18] found that the fusion of multi-sensor inputs can 

enhance the long-term prediction capability of DLSTM. Guo et al. [19] proposed a novel artificial 

feature constructed from temporal and frequency domain features to boost the prediction accuracy 

of LSTM. As a commonly used variant of LSTM, GRU has attracted significant attention due to its 

simplified gating mechanism, which reduces the training burden without compromising the 

regression capability. Zhao et al. [20] presented a GRU model by local features for machine health 

monitoring. Zhou et al. [21] introduced an enhanced memory GRU network that utilizes previous 

state data for predicting bearings RUL. He et al. [22] employed a fault mode-assisted GRU method 

for RUL prediction to guide the initiation predictive maintenance time of machines. Que et al. [23] 

developed a combined method by stacked GRU, attention mechanism, and Bayesian methods for 

predicting the bearings RUL. A deep multiscale feature fusion network based on multi-sensor data 

for predicting the RUL of aircraft engines is proposed by Li et al. [24], with GRU replacing the 

commonly used fully connected layers for regression prediction. Ni et al. [25] used GRU for 

predicting the RUL of bearing systems and adaptively adjusted the optimal hyper-parameters using 

Bayesian optimization algorithm. Zhang et al. [26] proposed a dual-task network structure based on 

bidirectional GRU and multi-gate expert fusion units, which can simultaneously assess the health 

condition of aircraft engines and predict their RUL. Ma et al. [27] introduced a novel deep wavelet 

sequence GRU prediction model for predicting the RUL of rotating machinery, where the proposed 

wavelet sequence GRU generates wavelet sequences at different scales through wavelet layers. 

CNN exhibits powerful spatial feature extraction capabilities and is suitable for classification 

tasks such as fault diagnosis [28]. However, it is rarely adopted alone for RUL prediction. To enhance 

the model’s ability of extracting temporal and spatial information in RUL prediction task, combining 

the CNN with RNN or adopting the convolution operators to replace the operations in RNN is the 

common approach. Some researchers combine theses two classical models serially and parallelism to 

construct the novel models. Wang et al. [31] replaced the conventional fully connections of forward 

and recurrent process of GRU with convolutional operators. Similarly, Ma et al. [32] further replaced 

the fully connection on the state-to-state transitions of LSTM as convolution connection to boost the 

feature extraction ability. For improving the RUL prediction accuracy, Li et al. [33] presented a 

combination method by the ConvLSTM and self-attention mechanism. Cheng et al. [34] introduced a 

new LSTM variant for predicting RUL of aircraft engines by combining autoencoders and RNNs. The 

proposed method made the pooling operation with LSTM’s gating mechanism while retaining the 

convolutional operations, enabling the ability of parallel processing. Dulaimi et al. [35] proposed a 

parallel DL framework based on CNN and LSTM for extracting the temporal and spatial features 

from raw measurements. For solving the inconsistent problem of inputs, Xia et al. [36] proposed a 

CNN-BLSTM method, which has the different time scales processing ability. Xue et al. [37] 

introduced a data-driven approach for predicting the RUL, which incorporates two parallel 
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pathways: one pathway combines multi-scale CNN and BLSTM, while the other pathway only 

utilizes BLSTM. 

Researches based on LSTM variants and convolution operator have achieved significant success 

in RUL prediction, but they still have some gaps. The convolutional kernel exhibits redundancy in 

the channel dimension, and the extraction features lack the ability to adapt flexibly based on the input 

itself [38]. And the ability to capture flexible spatiotemporal features not only saves computational 

resources but also enables the extraction of rich features, thereby improving the accuracy of 

mechanical RUL prediction. Additionally, the computation burden is also an important requirement 

for mechanical RUL prediction. Therefore, it is worth investigating how to enhance the 

spatiotemporal capturing capability of prediction models while minimizing model parameters to 

improve prediction speed.  

Consequently, considering the aforementioned limitations, a lightweight operator with adaptive 

feature capturing capability named involution GRU (InvGRU) is proposed, and a deep learning 

framework is constructed based on this operator for predicting the RUL of aircraft engines. The RUL 

prediction results of C-MAPSS data set [24] demonstrate that the proposed method outperforms 

other publicly available methods in terms of prediction accuracy and computational burden.  

The bellows are the contributions of the article: 

(1). A novel operator by replacing the connection operator in GRU as Involution, called 

INVGRU, is proposed, which has the ability to adaptively capture spatiotemporal information based 

on the input itself. Compared to other models for spatiotemporal information extraction, INVGRU 

has fewer parameters. 

(2). Based on c, a deep learning framework with higher prediction accuracy is constructed. 

Experimental results of aircraft engines RUL prediction demonstrate the outperformance of the 

proposed InvGRU based DL framework. 

The outline of the article is as bellows. Section 1 provides an introduction to the research topic. 

Section 2 presents a concise explanation of the fundamental principles of GRU and involution. In 

Section 3, the novel operator InvGRU, which has the adaptively spatiotemporal information 

extraction ability, is introduced. Then, the proposed methods are thoroughly validated and compared 

through experiments on C-MAPSS data set in Section 4. Finally, Section 5 presents the conclusion. 

2. Theoretical Basis 

2.1. Inverse Convolution 

Due to its spatial invariance and channel specificity, CNN has been widely employed for 

feature extraction. The formula for CNN is as follows: 

 , , , , [ /2], [ /2] , ,
1 ( , )

  
iC

i j k k c u K v K i u j v c

c u v K

+ + + +

= ∈Δ

= Y F X  (1)

 [ [ / 2], ,[ / 2]] [ [ / 2], ,[ / 2]]k K K K KΔ = − × −   (2)

where iH W C× ×
∈X R  and oH W C× ×

∈Y R  are the input tensor and the output tensor, o iC C K K× × ×
∈F R  

denotes the kernel of convolution, oc , ic  and K respectively denote the output channels number, 

input channels number, and kernel size, while H and W represent the spatial dimensions of the 

output and input channels. Although sharing spatial parameters alleviates some computational 

burden, it also introduces certain drawbacks. For instance, the extracted features tend to be relatively 

simplistic, and the convolution kernel lacks flexibility in adapting to input data [38]. Furthermore, 

the convolutional kernel exhibits redundancy in the channel dimension [38]. The recently proposed 

Inverse Convolutional Neural Network (INN) [38] addresses the aforementioned limitations in a 

manner that preserves channel invariance and spatial specificity. For the channel dimension, INN 
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allows for sharing of involution kernels, which makes INN has the ability of providing more flexible 

modeling of the involution kernels in the spatial dimension, thereby exhibiting characteristics 

opposite to those of convolutional neural networks. The mathematical expression of INN is as 

follows: 

 , , , , [ /2], [ /2],[ / ] , ,
( , )

i j k i j u K v K kG C i u j v k

u v K

+ + + +

∈Δ

= ΗY X  (3)

where H W K K G× × × ×
∈H R represents the kernel of involution, G represents all the channels share G 

involution kernels, and noted that G C . Compared to CNN, INN can not utilize fixed weight 

matrices as learnable parameters. Instead, it generates corresponding involution kernels by the input 

features. 

 ( )( ),, 1 0 ,( ) Relu BN
i ji j i jΨ

= Φ =H X W W X  (4)

where 0

c
c

r
×

∈W R and 
( )

1

c
K K G

r
× × ×

∈W R  denote the linear transformation matrix, r is the channel 

reduction rate, BN is the batch normalization, Relu is the Relu activation function, 
,i jΨ

X denotes the 

index set of coordinate(i, j). The principle of INN is shown as Figure 1, which is demonstrated as the 

example when G=1.   

C

W

H

X

21 1 K× × 1K K× ×

K K C× ×

C

W

H

Y

1 1 C× ×

 
Figure 1. Principle of involution (G=1). 

2.2. GRU 

GRU which had fewer parameters compared with LSTM only has the reset gate tr and an 

update gate tz . The structure of GRU is demonstrated in Figure 2. And the output th  of GRU at the 

current time step t  can be represented by the following equation: 

 

( )

( )

( )( )

( )

1

1

1

1

tanh

1

t zx t zh t z

t rx t rh t r

t h t h t t h

t t t t t

σ

σ

−

−

−

−

= + +

= + +

= + +

= − +

z w x w h b
r w x w h b

h u x w r h b

h z h z h



 

 (5)

where w denotes weight matrix of the input data tx and recurrent data 1t−h , b is the bias; 
th  

represents the hidden state;  is the dot product operator; tanh and σ  are the activation functions. 

th  denotes the output data.  

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 1 June 2023                   doi:10.20944/preprints202306.0044.v1

https://doi.org/10.20944/preprints202306.0044.v1


 5 

 

+

X𝑡𝑎𝑛ℎ𝜎
𝒉𝒕 𝟏

𝒉𝒕

𝒙𝒕

𝒓𝒕 𝒛𝒕 𝒉𝒕𝜎X
1-

 

Figure 2. Schematic diagram of GRU. 

3. Proposed Methodology 

3.1. Proposed InvGRU 

Using convolutional operations to learn representations from multi-source raw data has been 

shown to outperform hand-crafted features in machine diagnosis and prognosis [28–30]. Recent 

studies have proposed combining RNN models with CNN representations to capture spatio-

temporal information [35–37]. This approach improves the model’s ability to understand patterns 

and relationships over space and time, leading to better analysis and prediction in various domains. 

A novel operator called Involution GRU (InvGRU) is proposed to address the limitations of the 

convolution operator. InvGRU introduces involution operations in both the input-to-state and state-

to-state transitions, enabling adaptive feature extraction from multi-source raw data while reducing 

model parameters. This approach enhances the model’s ability to capture spatio-temporal 

information effectively. The diagram of InvGRU is shown in Figure 3. 

h1

h1 h2 h3

x3x2x1  
Figure 3. Schematic diagram of InvGRU. 

To enhance the feature processing method for one-dimensional time series data, a one-

dimensional involution algorithm based on one-dimensional vectors as inputs, namely 1D-INN, is 

adopted. The mathematical expression of 1D-INN is presented below: 

 , , [ /2],[ / ] ,i k i u K kG C i u k

u K

+ +

∈Δ

= ΗY X  (6)

 ( )( )1 0( ) Mish BN
ii iΨ

= Φ =H X W W X  (7)
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where H K G× ×
∈H R is the kernel of ID-INN, 

iΨ
X is the index set of coordinate(i,1), 0

c
c

r
×

∈W R and 

( )

1

c
K G

r
× ×

∈W R  are the weight connection matrixes to make linear transformation, Mish is the Mish 

activation function. Other parameters are same as raw INN. We enhance the feature representation 

using INN to incorporate longer temporal convolutions, allowing for the prediction of RUL at a larger 

temporal scale. And in the article, the INN kernel is set as 5 and the size of max-pooling is set as 2, r 

is set as 2. InvGRU, similar to the conventional GRU, comprises update gates, reset gates, and cells. 

The forward process of InvGRU, responsible for computing the output, is defined by the following 

equations: 

Update gates: 

 1
t

z zx t zh t z−
= ∗ + ∗ +A w x w h b  (8)

 ( )t

t zσ=z A  (9)

Reset gates: 

 1
t

r rx t rh t r−
= ∗ + ∗ +A w x w h b  (10)

 ( )t

t rσ=r A  (11)

Cells: 

 ( )1
t

h h t h t t h−
= ∗ + ∗ +A u x w r h b  (12)

 ( )tanh t

t h=h A  (13)

Cell outputs: 

 ( ) 11t t t t t−
= − +h z h z h   (14)

where ∗  is operator of the ID-INN, w and b  terms  are the learnable weights and biases, other 

parameters are same as GRU. 

3.2. The adopted DL Framework  

Based on the proposed InvGRU, a DL framework is adopted to estimate the aero-engines RUL. 

The framework diagram in Figure 4 integrates HIs from both neural networks (NNs) and human-

made features, enabling a comprehensive approach to RUL prediction. First, InvGRU is employed to 

extract features based on multi-raw measurements, including multiple sensors data and engine 

operational condition (OC) information. Then attention weights [39] are calculated by the obtained 

hidden features and are combined with the hidden features, which the merged features are input into 

the following FC layers to generate the HIs from the NN. In the next step, commonly used 

handcrafted features such as the mean and trend coefficient are calculated from the raw data. The 

mean represents the average value of a window, while the trend coefficient corresponds to the slope 

coefficient derived from linear regression on the windowed time-series. For getting the HIs of human-

made features, these handcrafted features are then fed into a new fully connected FC layer. Finally, 

HIs obtained from the neural network and human-made features, are concatenated to form the HI 

set. This concatenated set is inputted into the regression layer, which predicts the RUL. 
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Figure 4. InvGRU-based DL framework. 

During the training, supposed that N represents the samples number, the loss function is mean 

square error (MSE), which is adopted to evaluate the similarity between the predicted RUL  iRul  

and the true RUL iRul of each sample i. The MSE is calculated using Equation (15) as follows: 

 ( ) ( )
2

1

1
2

N

i i

i

L MSE , Rul Rulθ
=

= −  (15)

Making the Adam as optimization method to tune the parameters θ  of the proposed method 

based on the error gradients during the back-propagation processing. Dropout, a technique for 

preventing overfitting, is implemented in the model during training. Table 1 shows the hyper-

parameters of the prosed DL framework based on InvGRU. 

Table 1 the hyper-parameters of the prosed DL framework based on InvGRU 

Sub layer  Hyperparameter value Sub layer Hyperparameter value 

InvGRU  70 Regression (Linear) 1 

FC1 (Relu) 30 Learning rate 0.005 

FC2 (Relu) 30 Dropout1 0.5 

FC3 (Relu) 10 Dropout2 0.3 

4. Experimental Analysis 

4.1. Evaluation Indexes 

The RUL prediction performance of method is quantitatively characterized using Score and Root 

Mean Square Error (RMSE), which are defined by the following formulas: 

 
13 1

10 1
i i i i

i

i i i i

exp( (( Rul Rul ) / )) , Rul Rul
A

exp(( Rul Rul ) / ) , Rul Rul

 − − − <
= 

− − ≥
 (16)

 
1

N

i

i

Score A
=

=  (17)
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 ( )
2

1

1 N

i i

i

RMSE Rul Rul
N =

= −  (18)

These metrics values are inversely proportional to the RUL prediction performance. In other words, 

a lower value indicates better model performance. Score penalizes delayed predictions more heavily 

than RMSE, as shown in Figure 5, making it more aligned with engineering practices. Therefore, Score 

is more reasonable, especially when the RMSE values are close. 

 

Figure 5. The curves of the two evaluation indexes. 

4.2. The Details of C-MAPSS Dataset 

The C-MAPSS dataset, developed by NASA, simulates degradation data for turbofan engines, 

whose structure is shown in Figure 6. The C-MAPSS dataset can be divided into four subsets based 

on different operating conditions and fault modes, as described in Table 2. The 21 simulation outputs 

of C-MAPSS are listed in Table 3. 

 

Figure 6. Diagram of the aircraft engine. 

Each subset of the dataset consists of training data, testing data, and corresponding actual RUL 

values. The training data comprises all engine data from a healthy state to failure, while the testing 

data includes data from engines that were operated prior to failure. In both the training and testing 

datasets, a diverse set of engines with varying initial health states is included. This results in 

variations in the operating cycles of different engines within the same dataset, reflecting the 

heterogeneous nature of the engine population. To demonstrate the effectiveness of the proposed 

method, experiments are conducted on all subsets of the dataset. 

Table 2 The details of dataset C-MAPSS  

Subset  FD001 FD002 FD003 FD004 

Total number of engines  100 260 100 249 

Operating condition  1 6 1 6 
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Type of fault  1 1 2 2 

Maximum cycles 362 378 525 543 

Minimum cycles 128 128 145 128 

Table 3 Sensors of C-MAPSS  

number symbol description unit trend number symbol description unit trend 

1 T2 

Total fan 

inlet 

temperature 

ºR ~ 12 Phi 

Fuel flow 

ratio to 

Ps30 

pps/psi ↓ 

2 T24 

Total exit 

temperature 

of LPC 

ºR ↑ 13 NRf 
Corrected 

fan speed 
rpm ↑ 

3 T30 

HPC Total 

outlet 

temperature 

ºR ↑ 14 NRc 

Modified 

core 

velocity 

rpm ↓ 

4 T50 

Total LPT 

outlet 

temperature 

ºR ↑ 15 BPR 
bypass 

ratio 
-- ↑ 

5 P2 
Fan inlet 

pressure 
psia ~ 16 farB 

Burner gas 

ratio 
-- ~ 

6 P15 

Total 

pressure of 

culvert pipe 

psia ~ 17 htBleed 
Exhaust 

enthalpy 
-- ↑ 

7 P30 

Total outlet 

pressure of 

HPC 

psia ↓ 18 NF_dmd 
Required 

fan speed 
rpm ~ 

8 Nf 
Physical fan 

speed 
rpm ↑ 19 PCNR_dmd 

Modify 

required 

fan speed 

rpm ~ 

9 Nc 

Physical 

core 

velocity 

rpm ↑ 20 W31 

HPT 

coolant 

flow rate 

lbm/s ↓ 

10 Epr 

Engine 

pressure 

ratio 

-- ~ 21 W32 

LPT 

coolant 

flow rate 

lbm/s ↓ 

11 Ps30 

HPC outlet 

static 

pressure 

psia ↑      

4.3. Data Preprocessing 

Firstly, not all sensor measurements are included as inputs in the RUL prediction model. Some 

stable measurements (sensors 1, 5, 6, 10, 16, 18, and 19) are excluded in advance. These sensor 
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measurements contain limited degradation information of the engine and are not suitable for 

predicting the RUL. Additionally, operating condition information effects predictive capability of the 

model. Therefore, the selected 14 sensor measurements and operating condition information serve as 

the final input for the model. Secondly, we segment the data by the technique demonstrated in Figure 

7. Supposed that T, l and m represent the total lifecycle, the window size and the sliding step. And 

the size of i-th input is l×n, in which n represents the dimension number of the final input of the 

proposed model. The RUL at this point is Ts - l - (i-1) × m. By the results of experiments, the sliding 

window size l is set to 30, and the sliding step m is set to 1. Finally, the linear piecewise RUL technique 

is used to construct the RUL labels as follows: 

 max

max max

Rul ,    if  Rul Rul  
Rul

Rul ,    if  Rul Rul   

≤
= 

>
 (19)

where the preset maxRul  is 125.  

Full life lenghth T

Step size m

Window size l
RUL=T-l

RUL=T-l-m

 
Figure 7. Processing of data segmentation. 

4.4. The Analysis and Comparison of RUL Prediction Results  

First, the proposed InvGRU-based DL framework is trained using the training sets from all the 

subsets. Then, adopting the test set of the subsets to test the predictive performance of InvGRU-based 

DL framework. The prediction results are shown in Figures 8–12. In the figures, the x-axis is the tested 

aircraft engine unit number, and the y-axis denotes the RUL cycles. And the predicted RUL and the 

actual RUL are represented by the solid blue line and the dashed green line. 

 

Figure 8. RUL prediction performance on FD001. 
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Figure 9. RUL prediction performance on FD002. 

 

Figure 10. RUL prediction performance on FD003. 

 

Figure 11. RUL prediction performance on FD004. 

From Figures 8 to 12, it can be observed that across all subsets (FD001, FD002, FD003, FD004), 

the proposed model demonstrates a consistent prediction of the RUL that aligns closely with the 

actual RUL for the majority of the tested aircraft engine units. This is evident from the substantial 

overlap between the blue and green data points, indicating the high accuracy of the proposed model 

in predicting RUL. Upon closer examination, Figure 8 shows a closer proximity between the RUL and 

the actual RUL compared to Figs 9-11. This indicates that the proposed model achieves its best 

performance on the FD001 dataset. Additionally, the RUL prediction performance of the proposed 

method is superior on the FD003 dataset compared to the FD002 dataset, while it performs worst on 

the FD004 dataset. Moreover, the RUL prediction effectiveness of the proposed model is higher on 

the FD001 and FD003 datasets compared to the FD002 and FD004 datasets, highlighting its superior 

performance under consistent failure modes (FD001 and FD003) compared to multiple operating 

conditions (FD002 and FD004). This is attributed to the relatively simpler degradation trend of 

engines under a single operating condition, coupled with significant overlap between the training 

and testing sets. Furthermore, the accuracy of RUL prediction results is higher for the FD001 dataset 

than for the FD003 dataset, and higher for the FD002 dataset than for the FD004 dataset. This suggests 

that, under consistent operating conditions, the proposed model exhibits better RUL prediction 

performance for single failure modes (FD001 and FD002) compared to composite failure modes 

(FD003 and FD004). Hence, the proposed model demonstrates higher RUL prediction accuracy for 

single failure modes compared to multiple failure modes. Additionally, the RUL prediction results 

on the FD003 dataset surpass those on the FD002 dataset, indicating that complex failure mode in the 

C-MAPSS dataset has less influence on the RUL prediction of the proposed model compared to the 

operating conditions of the aircraft engine units.  

To further show the InvGRU-based DL framework performance in predicting RUL of individual 

engine units during the overall degradation process. Four test engine units randomly selected from 

all subsets were used to showcase the full-life estimation process shown in Figures 12–15. The blue 

line in the figures represents the predicted RUL (PR) of the engine unit, while the red line represents 

the actual RUL (AR). The green bars represent the absolute error (AE) between PR and AR for each 

cycle. Additionally, the mean of the absolute errors (MAE) between PR and AR across all cycles of 

the engine unit was computed to evaluate the average prediction error. 
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Figure 12. RUL prediction performance of engines of FD001 ((a) engine # 46, (b) engine # 58, (c) engine 

# 66, and (d) engine # 92). 

 
Figure 13. RUL prediction performance of engines of FD002 ((a) engine # 9, (b) engine # 45, (c) engine 

# 150, and (d) engine # 182). 

 

Figure 14. RUL prediction performance of engines of FD003((a) engine # 25, (b) engine # 38, (c) engine 

# 75, and (d) engine # 92). 
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Figure 15. RUL prediction performance of engines of FD004 ((a) engine # 35, (b) engine # 68, (c) engine 

# 100, and (d) engine # 151). 

It can be clear observed from the Figs.12-15 that the predicted RUL of the selected test engine 

units closely aligns with the actual RUL, effectively revealing their degradation trends. Moreover, 

considering the average values of the MAE in Figures 12 to 15, the average MAE on the FD001 dataset 

is 10.7, while the average MAE on the FD002, FD003, and FD004 datasets are 12.1, 15.2, and 11.3, 

respectively. This indicates that the proposed model exhibits significantly better RUL prediction 

performance on the FD001 dataset compared to the FD002, FD003, and FD004 datasets. As the 

number of engine cycles gradually increases, the degradation process begins to manifest and worsen. 

For most engines, the accuracy of predicting the RUL in the later stages of the degradation process 

tends to be higher than in the earlier stages. This is evident in Figures 12c, 13a–c, 14b,d, 15a,c and 16d. 

To demonstrate the lightweight of the proposed methods and illustrate the lower computational 

resource consumption, we compare the parameter count and computational cost of the models. For 

general validation purposes, INN and CNN are employed in a two-dimensional configuration. The 

parameter count of INN is

2 2K GC C

r

+
, while the computational burden of INN can be divided into 

two parts: the involution kernel generation component, which is

2 2K GC C
HW

r

+
× , and the 

multiplication-addition component, which is 
2HW K C× . On the other hand, CNN has a parameter 

count and computational burden of 
2 2K C and

2 2HW K C×  respectively, which is higher than 

that of INN. This indicates that, under the same hyper-parameters, INN has a smaller computational 

load compared to CNN. Simultaneously, GRU has a parameter count of 9 nc× and a computational 

burden of 2 3 2 3 48 ( ) 3 ( ) 3 ( ) 9 ( )n l n l n l n lc i c i c i c i× × + × × + × × + × × , while LSTM has a parameter 

count of 12 nc× and a computational burden of 2 312 ( ) 18 ( ) 54 ( )n l n l n lc i c i c i× × + × × + × × , where 

nc represents the number of hidden neurons and li  represents the input length. Clearly, GRU 

exhibits lower computational costs compared to LSTM. From this observation, it is evident that the 

computational complexity of InvGRU is lower than that of ConvLSTM.  

To evaluate the computational efficiency, we selected the challenging FD004 dataset for 

performance testing. Specifically, we compared the runtime of InvGRU with ConvLSTM on the 

FD004 dataset. Using the same computing device consisting of Nvidia GeForce RTX2060, Intel(R) 

Core(TM) i7-10875H, and 16 GB RAM, InvGRU achieved a remarkable 16% reduction in time per 

epoch, taking only 4 seconds. In the training stage, each epoch required 8 seconds, and a total of 32 

epochs were executed, resulting in a cumulative training time of 256 seconds. In the testing stage, the 

inference time was exceptionally fast, with a calculation time of just 0.07 seconds per sample. 

Therefore, the proposed method is more concise. 

To further highlight the advantages of the InvGRU-based DL framework in predicting RUL, this 

study conducted comparative experiments on RUL prediction capabilities between the proposed 

model and several other models, including statistical-based models [34], shallow machine learning 

models [39], classical deep models [40–42], recently published deep learning models [4,14,34,43]. To 

obtain comprehensive performance results, these models were subjected to 10 parallel experiments 

for RUL prediction on each subset. Subsequently, performance evaluation metrics, namely Score and 

RMSE values, were computed based on the prediction results and presented in Tables 4–6. Tables 4 

displays the evaluation metric values for the compared methods on the FD001 and FD002 datasets, 

and 5 presents the evaluation metric values for the compared methods on the FD003 and FD004 

datasets, and Table 6 represents the mean evaluation metric values for the compared methods across 

all subsets, providing an average performance assessment of the predictive capabilities of the 

compared methods on the C-MAPSS dataset. 

Moreover, from Tables 4–6, it can be observed that the proposed model exhibits favorable 

predictive performance and significant improvement compared to other deep learning models. This 
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clearly demonstrates that the utilization of spatio-temporal information of input makes the feature 

diversification and enhances the model’s RUL predictive capability. The proposed Inv-GRU adopted 

involution operator to replace the information connection in gated recurrent unit, enabling the 

adaptively spatiotemporal information extraction ability and reducing the parameters, and further 

enhancing the prediction performance of aircraft engine RUL. Based on the aforementioned analysis, 

it can be concluded that the proposed model exhibits satisfactory universality and accuracy in 

predicting RUL on the C-MAPSS dataset. Thus, the proposed method can be successful applied in 

the aero-engine RUL prediction tasks. 

Table 4. The RUL prediction comparisons of different methods on subset FD001and FD002. 

Model 
FD001 FD002 

Score RMSE Score RMSE 

Cox’s regression [34] 28616 45.10 N/A N/A 

SVR [39] 1382 20.96 58990 41.99 

RVR [39] 1503 23.86 17423 31.29 

RF [39] 480 17.91 70456 29.59 

CNN [40] 1287 18.45 17423 30.29 

LSTM [42] 338 16.14 4450 24.49 

DBN [41] 418 15.21 9032 27.12 

MONBNE [41] 334 15.04 5590 25.05 

LSTM+attention+ 

handscraft feature [20] 
322 14.53 N/A N/A 

Acyclic Graph Network [43] 229 11.96 2730 20.34 

AEQRNN [34] N/A N/A 3220 19.10 

MCLSTM-based[4] 260 13.21 1354 19.82 

SMDN [14] 240 13.72 1464 16.77 

Proposed 238 12.34 1205 15.59 

Table 5. The RUL prediction comparisons of different methods on subset FD003 and FD004. 

Model 
FD003 FD004 

Score RMSE Score RMSE 

Cox’s regression [34] N/A N/A 1164590 54.29 

SVR [39] 1598 21.04 371140 45.35 

RVR [39] 17423 22.36 26509 34.34 

RF [39] 711 20.27 46568 31.12 

CNN [40] 1431 19.81 7886 29.16 

LSTM [42] 852 16.18 5550 28.17 

DBN [41] 442 14.71 7955 29.88 

MONBNE [41] 422 12.51 6558 28.66 

LSTM+attention+ 

handscraft feature [20] 
N/A N/A 5649 27.08 

Acyclic Graph Network [43] 535 12.46 3370 22.43 

AEQRNN [34] N/A N/A 4597 20.60 

MCLSTM-based[4] 327 13.45 2926 22.10 

SMDN [14] 305 12.70 1591 18.24 

Proposed 292 13.12 1020 13.25 

Table 6 The comparisons of different methods for RUL prediction b based on C-MAPSS dataset 

Model 
Mean performance 

RMSE Score 

Cox’s regression [34] 49.70 596603 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 1 June 2023                   doi:10.20944/preprints202306.0044.v1

https://doi.org/10.20944/preprints202306.0044.v1


 15 

 

SVR [39] 32.335 108277 

RVR [39] 27.96 11716 

RF [39] 24.72 29553 

CNN [40] 24.42 7006 

LSTM [42] 21.25 2797 

DBN [41] 21.73 4461 

MONBNE [41] 20.32 3225 

LSTM+attention+ 

handscraft feature [20] 
20.80 2985 

Acyclic Graph Network [43] 16.80 1716 

AEQRNN [34] 19.85 3908 

MCLSTM-based[4] 17.40 1216 

SMDN [14] 15.36 900 

Proposed 13.58 689 

5. Conclusions 

The conventional models used for processing spatiotemporal information are not only 

structurally complex but also lack the ability to adaptively extract features. To address these 

limitations and enhance the prediction of RUL for aero-engines, a lightweight operator called 

InvGRU is introduced. InvGRU replaces the information connection in the gated recurrent unit with 

an adaptive feature extraction operator known as Involution. This replacement enables InvGRU to 

extract spatiotemporal information adaptively while reducing the number of parameters involved. 

Then a NN is adopted to transform the InvGRU output into the aero-engine health features. These 

health features, along with manually crafted features, are concatenated and used as input to FC layers 

to dimension reduction and the follow RUL estimation. The proposed model is trained using existing 

data, and once trained, it can be utilized to estimate the RUL of aero-engines using new 

measurements. Based on the RUL prediction results of aero-engine, the outperformance of the 

proposed method is proven. And in the future, graph neural network is considered to construct a 

reasonable spatial matrix and boost the usage of structural information to help RUL prediction.   
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