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Abstract: Damage assessment is one of the most crucial issues for bridge engineers, especially for existing steel 

bridges. Among several methodologies, the vibration measurement test is a typical approach in which the 

natural frequency variation of the structure is monitored to detect the existence of damage. However, locating 

and quantifying the damage is still a big challenge. In this regard, the artificial intelligence (AI)-based approach 

seems a potential way to accomplish those obstacles. This study deploys a comprehensive campaign to 

determine all dynamic parameters of a pre-damage steel truss bridge structure. Based on the results of mode 

shape, natural frequency, and damping ratio, a finite element model (FEM) is created and keeps updating. The 

artificial intelligence network’s input data will be analyzed and evaluation from damage cases. The trained 

artificial neural network model will be curated and evaluated to confirm the approach’s feasibility. During the 

actual operational stage of the steel truss bridge, this damage assessment system is showing good performance 

in terms of monitoring the structural behavior of the bridge under some unexpected accidents. 

Keywords: ANN; FEM; damage assessment; structural health monitoring; steel truss bridge 

 

1. Introduction 

Regular monitoring and assessment of the bridge’s structural behavior are essen-tial for the early 

detection of construction defects. It enables the maintenance and re-pair of the system at an early 

stage, ensuring the safety and reliability of the structure at a minimal cost. Decades ago, visual 

inspection was the most common method used to detect structural damage. However, visual 

inspection solutions are often quite labo-rious and time-consuming, which consumes high costs for 

workers and assessors with low efficiency. Especially when structural dismantling (cutting, taking 

samples, among others) is required to access the area test. These effects change the physical properties 

and can reduce the structure’s bearing capacity. Visual inspection techniques also only help identify 

damage visible on the structure’s surface. For large and complex struc-tures such as cable-stayed 

bridges, and suspension bridges, the visual inspection method is challenging to use therefore no 

longer suitable. 

In the past, when sensor technology was not yet developed, structural health monitoring was 

often performed based on geodetic engineering and machinery [1–4]. Structural health monitoring is 

based on the characteristics of geometrical factors such as settlement, deformation, and displacement. 

In this regard, it is needed to create a coordinate system according to the country’s coordinate grid. 

On the other hand, these coordinate systems should meet the technical requirements specified by the 

national standards. Then, the observations are made at the predetermined locations and com-pared 

with the first measurement. The results are processed and evaluated by experts according to national 

specifications. However, this approach still remains many dis-advantages: the cost of creating a 

coordinate system, and the cost for the experts is ex-pensive. These results also do not detect inside 
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damage in the structure, and only when large movements occur, there will be warnings to repair the 

bridges [5,6]. 

Most structural health monitoring solutions are based on assessing the structure’s response to 

external stimuli. SHM methods are divided into 2 main groups: assessment of static response (stress 

or strain) and dynamic response (frequency, mode shape or damping). Several researchers have used 

and implemented static data in their studies for damage detection [7–11]. However, this approach 

only determines the existence of damage on the entire structure and finds some parts and locations 

of damage. This means static response measurements are often simpler but less sensitive than 

dynamic ones [12]. Accordingly, it is more effective to use dynamic responses to detect abrupt and 

gradual changes, such as degradation detection. Dynamic measurement of re-sponses requires 

control of environmental and operational impacts to achieve accurate data. In the previous research, 

dynamic-based methods were based on frequency measurements. It is mainly due to the higher 

accuracy of frequency-measuring in-struments compared to geometrical or mode-measuring 

instruments. With the ad-vancement of instrumentation, vibration-based methods were also 

considered. In this regard, damage assessment is proposed by using natural frequency [13] or 

parameters of vibration characteristics [14]. 

The potential of vibration-based methods to apply to a real-life bridge is attracted and paid 

significant attention by many researchers [15–19]. Numerous variables, like the weather, the wind, 

the amount of traffic, and data quality (signal-to-noise ratio), have an impact on this method 

approach. The use of natural frequency, mode shape, mode shape curvature, and dynamically 

measured flexibility led to the identification of several different vibration-based approaches. Those 

methods appeared during the late 1970s by examining the significance of statistics for vibration-based 

methods applied on fourty highway bridges in New Mexico [20,21]. Since then, various parts of 

vibration-based techniques have been researched using experimental data collected from existing 

bridges [22]. Vibra-tion-based methods aim to combine and integrate experimental vibration data, 

for example, acceleration, velocity or displacement, with vibration models for damage as-sessment 

and develop damage prediction models. These models range from pure pooled parametric models 

to complex finite element models [23]. 

Monitoring the change of frequency only stops at determining the occurrence of damage [24,25]. 

Several similar applications are introduced as follows: a method of analyzing natural frequencies of 

beam structures with some random cracks based on the transfer matrix method and rotational spring 

model of cracks [26]; using a vector of the first natural frequencies as the multivariable input damage 

determination on two real works [27]; using the natural frequency of the texture to determine the 

exist-ence of damage [28–35]. However, those approaches require preliminary tests to de-termine the 

natural frequency of the structure before failure occurs. For aged structure, without data, it is very 

difficult to do. Besides, few researchers have applied natural frequency to complex structures such 

as spatial frame bridges. Furthermore, another disadvantage of this method is that natural frequency 

information is impractical be-cause some combinations of failure phenomena, such as cracks at 

different locations, can produce similar changes in natural frequency. 

Along with the development of information technology nowadays, artificial intelligence and 

machine learning attempt to bring computers a little closer to the brain’s capacity by highly simplified 
imitation of some components of information processing in the brain. The neural network studies the 

human brain’s capabilities and imitates them in hardware, software, or other devices. Once trained, 

the neural network can identify similarities in fresh input patterns and predict the output pattern as 

a result. The learning process and the testing process are the two fundamental functions of a neural 

network. Learning is the process of gaining knowledge from already-existing information. This 

procedure has three steps: computing the output, comparing it to the intended target, adjusting the 

weight, and repeating the procedure for the metrics sample data set. A target function or a function 

error expresses the quality of the learning process. 

In recent years, there has been a rise in interest in using AI and machine learning in SHM [36]. 

In several research, methods for detecting damage in beams and bridges have been combined with 

machine learning and vibration-based damage detection techniques [37,38]. In this regard, several 
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algorithms have also been introduced as follows: the particle swarm optimization (PSO) algorithm 

combines with using modal data to determine the damage in the structures, including two beam 

structures and two truss structures [39]; Genetic Algorithm (GA) by applying residual force methods 

based on the theory of specific vibration analysis to identify failures in elastic struc-tures [40]; 

combining a strain energy-based index with PSO to determine the location and extent of various 

failures [41]; applying Ant colony optimization (AC) to deter-mine the damage location of the 2-story 

frame and 3-story steel frame structures cor-rected on measurements [42]; GA algorithm and 

information synthesis technique to determine the location and extent of damage at many locations in 

the structure [43]; GA algorithm to detect damage in frames and cantilever beams using an objective 

function including natural frequency, mode shapes, and both [44]; GA and dynamic characteristics 

of the structure [45]. Those applications demonstrated the potential of combining artificial 

intelligence and vibration-based methods in SHM but mostly per-formed on small, simple structures. 

This study presents and tests a comprehensive so-lution on an actual steel truss bridge. To determine 

and quantify the damage from the steel truss bridge, efforts are made to combine artificial neural 

network and vibration measurement results. Hopefully, this solution can help engineers to save time, 

re-sources, time and cost. 

2. Theoretical Approach 

2.1. Using Dynamic Features to Detect Damage 

Considering a finite structure of degrees of freedom, the structure’s partial vibration differential 

equation has the form: 

( ) ( ) 0u t u t+ =M K
 

(1) 

In there: M – structure’s mass matrix 

K - structure’s stiffness matrix 

The equations of oscillation of the masses have the form: 

( ) ( )sin
i i i

u t A t = +
 

(2) 

( ) ( )2 sin
i i i

u t A t  = − +  (3) 

Substitute the equations and components into equation (1): 

( )
1 1 11 12 1 1

2 2 21 22 2 22

1 2

...

...
0

... ... ... ... ... ... ...

...

n

n

n n n n nn n

m A k k k A

m A k k k A

m A k k k A



       
       
       − + =
       
       
         

(4) 

Or 

11 12 1 1

21 22 2 2 22

1 2

... 1

...
0

... ... ... ... ... ...

...

n

n

n n nn n n

k k k m

k k k m

k k k m






      
      
      − =
      
      
        

(5) 

Simplify to obtain the equation to determine the specific type of vibration: 
2 0
j j

 − =  K M
 (6) 

Natural frequency (f=/2π) and natural vibration mode shape (i) determined through equation 

(5) or (6) is a very important feature of the structure. The dynamic characteristic is unique with a 

particular structure. With equations (1-6), modal properties of structure (frequencies and mode 

shapes, damping ratio, among other) at intact and damaged state is extracted. Using these properties 

makes it easy to recognize the presence of existing damage in the structure. However, locating and 

quantifying damage is a challenge, special is large structural.  
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2.2. Artificial Neural Network 

Artificial Neural Network (ANN) is inspired and developed based on the human nervous 

system. The ability of ANN to gain knowledge from experience and enhance performance is one of 

its hallmarks characteristics. Recognition, control systems, classification, pattern recognition and 

image processing are a few examples of ANN applications. The input, hidden, and output layers are 

the three primary parts of an ANN. At each layer, neurons form nodes, which act as data kernels. 

The neurons are connected to each other through the associations created by the training parameter 

(weight and bias). The processing element is connected to synapses according to neuron’s number in 
the previous processing layer, at each node (neuron). 

The signalling between neurons in layers is depicted in Figure 1. After receiving input samples, 

the input layer sends the signal to the hidden layer. The input and output layers are connected by a 

certain number of neurons in the hidden layer. The connections between each neuron in the earlier 

layers and the subsequent layers depend on the training parameters (weight and bias). Summation 

and activation functions serve as the foundation for signal transmission. 

 

Figure 1. Architecture for artificial neural networks. 

The summation function is calculated from the input layer to the hidden layer as the bias, weight 

ratios, and output signals of the preceding layers (Equation 7). 
1 2

1 2 1 22

1 2

,
1 1 1

1 1 2 2
,

w w ; (1: ); (1: )
n n

i i i ii
i i

f i n i n=  + = =   (7) 

In there:
1 2

1w
i i is weight coefficients,

2

1w
i  is bias coefficients; 

1i
f  indicates input data of the 1i

neuron; 1n and 2n are the number of neuron in the input layer and the hidden layer; 
2

1
i  denotes 

the input of the 2i  neuron of the hidden layer. 

The activation function is used to restrict the output’s value range in the next step. The activation 

function may be linearly or nonlinearly monotonically increasing. There are many types of activation 

functions that have been studied: Threshold function, Rectilied linear Unit function (ReLU), Sigmoid 

function, Hyperbolic tangent function, Softmax function. In this research, a sigmoid activation 

function is used to address nonlinear issues (Equation (8)). 
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The processing and transmission for the hidden and output layers are handled in the same way 

as for the input and hidden layers. Equation 8,9 illustrates this process: 
2 3

2 3 2 33

2 3

,
2 2 2

3 3
,

w w ; (1: )
n n

i i i ii
i i

O i n=  + =   (9) 

 

3

2
i  represents 3i ’s input neuron; 3n is the output layer’s neuron. 
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Then the difference between the predicted result and the real output is calculated: 
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data. The goal of the network is to minimize the difference between the prediction and real output 

(w) . The training parameters are transferred to apply the reverse process based on the Gradient 

descent techniques (GD): 
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New training parameters connecting classes are obtained according to the equations: 
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The equations from (7–25) are used to train the neural network iteratively. When the goal or the 

maximum number of loops is attained, the iteration comes to an end. 

In this study, a comprehensive campaign of experimental measurements of the dynamic 

characteristics was carried out. Natural frequency and mode shape are two dynamic properties of a 

structure that are identified. The results from the measurement experiment used to update the 

numerical model. This model will have the least deviation from reality. With the updated model, the 

damage scenarios are calculated and given as data to train the ANN. 

3. Case Study 

3.1. Chuongduong Bridge Introduction 

Chuong Duong Bridge (Figure 2) is one of the first large bridges in Hanoi, Vietnam. The bridge 

was built in the period 1983 to 1985. Chuong Duong bridge connected Hoan Kiem district with Long 

Bien district with a total length of 1230m (from the abutment on the Hoan Kiem side to the abutment 

on the Long Bien side). The main bridge is a steel truss bridge, including 11 spans with the diagram: 

88m +92m+ 89.94m+ 89.28m 7+ 84.88m. In which, 3 spans in the Hoan Kiem district are continuous 

structures (88m + 92m + 89.94m), other spans are simple steel trusses.  

The entire width of the bridge is 20.06m (Figure 3). The bridge carries a four-lane bridge: two 

lanes in the middle for cars and buses, others for motorcycles. The bridge is designed with a load of 

H-30 on the main lane and H-6 on both sides of the cantilever. In the first days of being put into 

operation, this bridge had 7000-8000 traffic turns per day. But now, the number of vehicles crossing 

the bridge has increased dramatically, reaching tens of thousands of vehicles per day. 

  

Figure 2. Chuong Duong bridge. 

The main truss rods have an H-shaped cross section, the height depends on the position (see 

Table 2 for the details). At the truss nodes, a 32mm thick panel is used to connect the truss ends 
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Figure 3. Detailed cross section of Chuong Duong bridge. 

3.2. On-Site Measurement Campaign before Damage 

a. Description of experiment 

In the framework of this study, a comprehensive survey and measurement campaign was 

carried out on span 08 of Chuong Duong bridge. The campaign includes geometric surveys and 

vibration measurements of the entire span 08. After finishing the geometric survey, conduct vibration 

measurement under random stimuli (wind, current, surrounding loads, vehicles crossing the bridge, 

among others). Eight highly sensitive sensors, ranging in sensitivity from 1054 to 1083mV/m/s2 were 

used. With a sampling frequency of 1651 Hz, each setup’s average acquisition time was 30 minutes. 

Due to a shortage of sensors and in order to determine the global vibration modes of the bridge. To 

achieve the vibration modes of the entire span, a measuring grid of 34 points covering all truss nodes 

was established. However, due to the limited number of sensors, the measuring grid is divided into 

8 setups (Figure 4). The reference point at node 103 is selected to link the data from the sensors. Other 

moving points are located at truss nodes on the bridge. The measurement procedure is controlled by 

a laptop, which also gathers and saves dynamic responses. 

  

Figure 4. Placement of measurement points on span 8 of Chuong Duong bridge (blue: reference point, 

red: moving points) and sensor installation position at truss node. 

In space, the Cartesian coordinate system is used to determine the direction of each measuring 

point. The x-axis is in the longitudinal direction, the y-axis is in the bridge’s transverse direction, and 
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the z-axis is vertical with a positive upward direction. Two sensors with x and y axes were mounted 

at each bearing. The sensors were positioned on the y-axis, z-axis, or both y and z-axis at other points. 

b. Data processing and feature extraction 

The MACEC toolbox [46] was used to analyze all of the measurement data. First, the data needs 

to be pre-processed. A measuring grid is created on the MACEC system. The measuring points are 

assigned and numbered, corresponding to the actual measuring points. Assign input parameters 

such as sensor label, sensitivity, data and measure to each measuring point. The measured signal data 

is often skewed and does not coincide with the balance axis; the remove-offset function removes these 

components from the measurement data. The obtained dynamic signal was taken from the time 

domain and represented in the frequency domain using the Fast Fourier Transform (FFT) (Figure 5).  

 
(a) 

 
(b) 

Figure 5. Dynamic response sensor in time/frequency domain. 

Based on input data and data obtained from pre-processing (noise removal, data classification 

into corresponding nodes), a model with complete data for measurement points is formed. System 

identification is accomplished using the covariance-based stochastic subspace identification (SSI-

COV) technique. Based on knowledge from numerous similar constructs, the following criteria were 

selected to concretize and characterize the modality: frequency stabilization (1%), damping ratio 

stabilization (5%), and mode shape stabilization (1%). The stabilization diagrams (Figure 6) are 
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constructed. The choice of stable poles (in red dash-line) were based on their obvious appearance in 

8 setups. 

 

Figure 6. Stabilization diagram in an interval from 1 - 8.5 Hz. 

After data processing, seven identified modes shape is identified from the campaigns. Figure 7 

displays mode shapes from 8 setups: 

 

 

 

 

 

 

(a) (b) 
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(c) (d) 

 

 

 

 

 

 

(e) (f) 

 

 

 
(g) 

Figure 7. Modes shape of Chuong Duong bridge in the campains: (a) Mode 1: f = 1.79 [Hz] (1st vertical 

bending); (b) Mode 2: f = 2.25 [Hz] (1st lateral + torsion); (c) Mode 3: f = 3.57 [Hz] (2nd torsion); (d) 

Mode 4: f = 4.30 [Hz] (2nd vertical bending); (e) Mode 5: f = 4.60 [Hz] (lateral movement); (f) Mode 6: 

f = 5.03 [Hz] (2nd lateral bending); (g) Mode 7: f = 8.09 [Hz] (3rd vertical bending). 

From the different setups, 7 modes could be identified. Their natural frequencies and damping 

ratios can be found in the Table 1. 

  

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 1 June 2023                   doi:10.20944/preprints202306.0025.v1

https://doi.org/10.20944/preprints202306.0025.v1


 11 

 

Table 1. Frequency values of the 7 identified modes. 

No Frequencies [Hz] Damping ratios  [%] 
Modal phase 

collinearity 
Mode type 

1 1.79 1.50 0.999 First vertical bending 

2 2.25 1.06 0.998 First lateral + torsion  

3 3.57 0.77 0.999 Second torsion 

4 4.30 1.21 0.999 Second vertical bending 

5 4.60 0.40 0.996 lateral movement 

6 5.03 1.50 0.998 Second lateral bending 

7 8.09 1.06 0.997 Third vertical bending 

The standard deviation of the natural frequency is calculated to assess the defined modes’ 
effectiveness. Because the values of std.f are low, each setting’s system recognition quality is high. 

Modal phase alignment (MPC) measures the mode shape’s departure from actual values, MPC=1 

corresponds to the pure real mode. Every MPC value is higher than 0.998. A structure with light 

and/or proportional damping physics modes is likely to be realistic, so the elevated MPC result 

typically indicates a mode that has been precisely defined. 

3.3. FEM Creation and Updating 

a Initial FE model 

A FE model of Chuongduong bridge is built while taking into account the bridge’s structure 

(Figure 8). Top chords, bottom chords, cantilevers, gate frames, and verticals, all of which were 

modeled using three-dimensional beam elements, make up the principal structural components. 

Other components such as wind bracing, stiffening frame, and longitudinal linkage are modeled with 

truss elements. The global X-axis of the bridge is in its longitudinal direction, the Z-axis is vertical, 

and the Y-axis is transverse (to the direction of the river flow). The built model consists of 619 

elements, which includes 461 beam elements and 158 truss elements. Six degrees of freedom (DOF) 

are available for each element node, and these DOFs correspond to translational and rotational 

displacements in the X, Y, and Z axes. 

 

Figure 8. FEM of span 08 – Chuong Duong bridge 

The input parameters of the material (Young’s modulus, specific gravity) as well as of the section 
(area, moment of inertia) are referenced from the as-built records. Specifically: Young’s modulus of 

steel (beams, truss rods, cantilever) Es = 200 Mpa; the density of steel s = 7850kg/m3. For non-

structural elements such as bridge deck, balustrades, lighting systems, and plumbing are included in 

the model as additional mass. Typical cross-sections of some truss members are shown in Table 2. 
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Table 2. Cross-sectional of truss members. 

No Truss members Area (mm2) 
Moment of inertia Iy 

(mm4) 

Moment of inertia Iz 

(mm4) 

1 Bridge gate frame 4.27 104 2.9109 1.15109 

2 Top lateral bracing 4.75104 3.31109 1.75109 

3 Bottom lateral bracing 4.75104 3.31109 1.75109 

4 Struts 1.83104 1.03109 5.29107 

5 Diagonal chords 4.17104 2.82109 1.04109 

6 Vertical chords 1.83104 1.03109 5.29107 

7 Top chords 1.83104 1.03109 5.29107 

8 Bottom chords 1.83104 1.03109 5.29107 

Boundary Conditions: The Dirichlet boundary conditions of the numerical model are created to 

accurately reflect the boundary conditions of the actual structure. The span of 8 bridges in Chuong 

Duong includes 2 types of bearings (Figure 8). Based on the survey results, the displacement 

constraints of the model are made corresponding to the actual displacement capacity of the bearing. 

  

(a) (b) 

Figure 8. Two types of bearing are used in the span of 8 Chuong Duong Bridge: a. type 1; b. type 2. 

Utilizing the Block-Lancios method, The FE model’s dynamic analysis is carried out. Figure 10 

and Table 3 displays some mode forms’ mode shapes and natural frequencies.  

  
(a) (b) 

  
(c) (d) 
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(e) (f) 

 
(g) 

Figure 10. Seven first mode shapes from simulation: (a) Mode 1: f = 1.83 [Hz] (1st vertical bending); 

(b) Mode 2: f = 2.34 [Hz] (1st lateral + torsion); (c) Mode 3: f = 3.45 [Hz] (2nd torsion); (d) Mode 4: f = 

4.06 [Hz] (2nd vertical bending); (e) Mode 5: f = 4.52 [Hz] (lateral movement); (f) Mode 6: f = 5.16 [Hz] 

(2nd lateral bending); (g) Mode 7: f = 8.39 [Hz] (3rd vertical bending). 

The Modal Assurance Criterion (MAC), a statistical indicator, is particularly sensitive to 

significant discrepancies in the mode shapes and is comparatively insensitive to smaller differences 

[47]. This results in a reliable statistical indication and consistency between the mode shapes. This 

study uses the MAC value to evaluate and update the finite element model. The formula 26 is used 

to calculate the MAC value: 
2
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(26) 

Where n is number of modes shape considered, MAC is modal assurance criterion, k, 𝜑̃𝑘 is 

modes shape FEM and experimental, 𝜔𝑘 ; 𝜔̃𝑘 is frequencies FEM and experimental; T represents 

transposed matrix. 

Table 3. Natural frequency and mode shapes of numerical model. 

Mode 
f-simulation 

(Hz) 

f-measurement 

(Hz) 
Error*(%) MAC Type 

1 1.83 1.79 2.23 0.87 1st vertical bending 

2 2.34 2.25 4 0.85 1st lateral + torsion  

3 3.45 3.57 3.36 0.86 2nd torsion 

4 4.06 4.30 5.58 0.69 2nd vertical bending 

5 4.52 4.60 1.74 0.83 lateral movement 

6 5.16 5.03 2.58 0.72 2nd lateral bending 

7 8.39 8.09 3.71 0.69 3rd vertical bending 

(*) Error = |fsimulation – fmeasurement| × 100/fmeasurement. 

The MAC values are determined through formula (26) between the FE model results and the 

actual measurements. The first 3 MAC values greater than 0.85 show good agreement between each 

pair of mode shapes. However, other MAC values do not reach this minimum value. The correlation 

between the calculated and measured mode shape vectors are not guaranteed. The frequency values 

are also significantly different. This is a common situation for initial FE models, most of which have 

not been able to extract modes with high accuracy. Meanwhile, depending on the calculation 

requirements of the structure, some structures need high accuracy to structure health monitoring, 

diagnose damage, and make major predictions accuracy for maintenance. There are many uncertain 

parameters such as material properties, stiffness parameters. For this reason, it is recommended to 

perform a model update procedure to reduce errors. 

b. Update model parameters through particle swarm optimization (PSO) algorithm 
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The particle swarm optimization (PSO) algorithm was established and developed on the ideas 

of swarm intelligence to find solutions for optimization problems in a particular search space [48,49]. 

To understand the PSO algorithm better, observe a simple example of a flock of birds foraging. The 

foraging space is now the entire three-dimensional space. At the beginning of the search, the whole 

flock flies in a certain direction, it can be very random. However, after a while of searching, some 

individuals in the herd began to find a place to contain food. Depending on the amount of food just 

searched, the individual sends a signal to other individuals searching in the vicinity. This signal 

propagates throughout the population. Based on the information received, each individual will 

adjust its flight direction and speed in the direction of where there is the most food. Such 

communication is often viewed as a phenotype of herd intelligence. This mechanism helps the whole 

flock of birds to find out where there is the most food in the extremely large search space. 

In swarm optimization, each particle searches a space by itself, remembering the best value, and 

informing other individuals. Other instances will receive the information and decide to continue the 

search or report its location so that other instances continue to act. So that, values in search space will 

be done quickly and accurately. There are two parameters that are particularly important, the location 

of an instance and the search velocity. These two parameters are expressed through the formulas for 

updating the position and updating the velocity of the instance: 

( 1) ( ) ( 1)i i i
x t x t v t+ = + +  (27) 

1 1 2 2 bes( 1) w ( ( ) ( )) ( ( ))i i i i i

t
v t v C r p t x t C r G x t+ = + − + −  (28) 

Where xi is the position of instance i at different times (t and t+1); vi is the speed of individual i; 

w is the parameter of inertial weight; C1 and C2 represent the population’s cognitive coefficient; r1 

and r2 are random numbers in the range [0,1]; pi(t) is the best position of each individual; Gbest is the 

best location of the entire population. Each individual is characterized by its velocity vector and its 

position in space. 

To evaluate the similarity between the FE model and practical structure, an objective function is 

built based on the natural frequency and the mode shape of the structure: 
2 2 2

2 2
1 1 1 1

( ) ( )
[1 ( , )] [1- ]

( )( )

Tn n n n

k k k k k
k k T T

k k k kk k k k k k

Fitness MAC
     
     = = = =

−
= − + = +   

 

(29) 

In the case of Chuong Duong bridge, determining material parameters requires many 

experiments. At the same time, the masses of non-structural parts are also difficult to determine 

accurately. Some uncertain parameters are selected to update the numerical model. Based on 

experience 

Table 4. shows the range of variation for the uncertain parameters. 

No Uncertain parameters Initial value Upper bound Lower bound 

1 
Young’s modulus 

- Steel Es (GPa) 

 

200 

 

210 

 

190 

2 
Weight density 

- Steel ρs (kg/m3) 

 

7850 

 

8000 

 

7800 

3 
Masses of non-structural  

- mb (kg/m) 

 

3000 

 

3000 

 

5000 

The updated uncertainty parameters and FE model after using the PSO are presented in Table 

5. 

Table 5. Updated parameters. 

No Uncertain parameters Initial value Updated value 

1 
Young’s modulus 

- Steel Es (GPa) 

 

200 

 

205.54 

2 
Weight density 

- Steel ρs (kg/m3) 

 

7850 

 

7956.5 

3 
Masses of non-structural  

- mb (kg/m) 

 

3000 

 

3600 
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The results after updating show that updating the model lowers the discrepancy between the 

calculated and measured natural frequencies, and the MAC value reaches a good level. 

Table 6. Summary of natural frequency and mode shapes of the plate structure after updated. 

Mode 
f-simulation 

(Hz) 

f-measurement 

(Hz) 
Error*(%) MAC Type 

1 1.79 1.79 0.00 0.99 1st vertical bending 

2 2.24 2.25 0.44 0.95 1st lateral + torsion  

3 3.58 3.57 0.28 0.96 2nd torsion 

4 4.33 4.30 0.69 0.94 2nd vertical bending 

5 4.61 4.60 0.21 0.94 lateral movement 

6 5.05 5.03 0.39 0.94 2nd lateral bending 

7 8.15 8.09 0.74 0.94 3rd vertical bending 

(*) Error = |fsimulation – fmeasurement| × 100/fmeasurement. 

The MAC values of the FE model before and after the update are shown in Figure 9. After being 

updated, the accuracy of the model has increased a lot. These MAC values show good agreement 

between the FE and the actual models.  

(a) (b) 

Figure 9. MAC values: (a) before model updating; (b) after updating. 

Figure 10 shows that before updating the model, the calculation results and natural frequency 

measurement results have high errors, after updating the model, the error of the natural frequency 

between calculation and measurement decreases significantly, the model is highly accurate and 

reliable.  

The calculation results show that, after about 30 iterations performed by PSO, the model 

parameters begin to converge and give good results, minimizing the process of testing parameters in 

the modeling. After updating, the numerical model is accurate and almost the same as the actual 

object. This model is employed for creating data to train the ANN. 
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Figure 10. Frequency differences before and after updating. 

3.4. Generate Data and Train the ANN Model 

a. Single damages 

Three layers make up the ANN’s architecture in this work: an input layer, a hidden layer, and 

an output layer. The first seven modes’ frequencies are used as input data with various damage 

situations, and the output data comprises damage locations and levels (Figure 11).  

 

Figure 11. Architecture of ANN used in the research. 

The updated model’s modal analysis creates input and output data for the ANN. The elements’ 
stiffness is decreased to create scenarios of structural damage. With a 1% interval, the elements’ 
stiffness decreases from 0% to 50%. Damages are only truly dangerous and sensitive enough when 

they occur on major structural components. Therefore, only the main truss rods are considered in this 

case. The equation determines the quantity of input data needed to train the network: 

e s
N n n=   (30) 

Where: ne – total of elements is considered, ns - the number of damage scenarios occurring for a 

single element. Consider 84 main elements of the truss. The input data will consist of 4200 samples 

The ANN is configured to the settings for training the network after the data generation. The 

results of the network training process are significantly influenced by the number of neurons in the 

hidden layer. If the ANN has too few hidden layers, the ANN is too simple and difficult to deal with 

the problems to be solved. In contrast, ANN has too many hidden layers, the network is too 
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complicated. Computer resources consume a lot, easily leading to overfitting. The loop is used to 

choose the ideal number of hidden layers. Within the range of 1 to 50, the number of hidden layers 

that will be selected by the loop. Additionally, the impact of noise is evaluated in all situations with 

a level of 2% for natural frequencies. The Levenberg-Marquardt backpropagation algorithm is used 

by the ANN to train the network. For damage identification, data split in the training procedure by 

70%-15%-15% is used. There are a maximum of 1000 epochs. In the case of epochs greater than 1000 

but still not reaching the best value, it is necessary to implement network optimization solutions. 

After training, the following figures demonstrate how the ANN model performed: 

All training cases with regression values more than 0.99 are displayed in Figure 12. The training, 

evaluation, and test datasets are located along the target line (45degree line). This demonstrates that 

the real value and predicted value are almost similar. The regression values (R) in linear regression 

models always range from 0 to 1. The estimated and desired outcomes are the same if R is near to the 

upper bound (1). Figure 13 shows the histogram of the calculated and intended output errors. There 

is extremely little variance between the target and the output. Figure 14 shows the training 

performance in the datasets. The best validation performance value of 3.0179 is achieved at epoch 

190. Epoch number does not exceed 1000, network optimization is not necessary. The graph also 

shows that the values in the data sets are quite convergent, no overfitting phenomenon occurs. From 

the performance graph of R-values, MSE (Tolerance), error histogram, the model has clearly been 

successfully trained, which can be used to apply to the contruction 

  

  

Figure 12. Regression values of ANN in case single damage. 
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Figure 13. Error histogram of ANN in case single damage. 

 

Figure 14. Tolerance of network in case single damage. 

b. 2 damaged elements 

Damages are simultaneously generated by two random elements. For each element, a damage 

level is assigned from 0% to 50% with a 1% interval. In this study, the failures at the elements are 

assumed to be the same. The amount of data is calculated according to the formula: 

!

2! ( 2)!
e

s

e

n
N n

n
= 

 −
 (31) 

The total amount of data generated is: 174300 samples 

Figure 15 shows that 𝑅 – values of the network using ANN is 0.986. The training, validation, 

and test datasets follow the regression line. 
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Figure 15. Regression values of ANN in case 2 damages elements. 

According to Figures 16 and 19, there are small deviations from the zero error line between 

computed and desired values. Results obtained show that a good agreement between predicted and 

actual outputs. 

 

Figure 16. Error histogram of ANN in case 2 damages elements. 

 

Figure 17. Tolerance of network of ANN in case 2 damages elements. 
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3.5. The Service of the Trained ANN Model in Actual 

a. Single damage 

Normally, to detect and locate the damage of the bridge structure, a comprehensive survey 

investigation will be carried out. After the survey, experts will make a computational model and 

evaluate. This work requires a lot of human resources and costs a lot of money. Only consider 

measuring the vibration of the entire span structure, the implementation of the setups measurements 

as described above also requires a lot of work. Instead, using an artificial neural network offers a 

huge advantage. 

Using a trained network applied to the actual span structure of Chuong Duong bridge. During 

the service, there was an accident on Chuong Duong bridge that affected the bridge structure (Figure 

18). 

  
(a) (b) 

Figure 18. (a) Collision and damage at a truss rod; (b) Experiment to determine the natural frequency 

of the bridge. 

A simple experiment was conducted since only the structure’s natural frequency needs to be 

ascertained. A single vibration measurement point in 3 directions is located on Chuong Duong bridge 

(Figure 18). With only 1 measuring point, the natural frequency of Chuong Duong bridge has been 

identified. Although it is not possible to identify the mode shapes of the bridge, with the trained 

ANN it is possible to locate and quantify the damage. 

The results of the nature frequencies of the first 7 mode shapes determined through the 

experiment are [1.229; 2.4167; 4.1954; 4.2623; 4.5925; 6.2147; 7.7865]. This result is used as input to 

feed the trained network. Results after putting data into the network return [25; 6]. This means that 

25% damage is detected at element 6 (truss number 6). It is easy to see that the result of locating 

damage at element 6 is correct. According to the report of the UCT company who performed the 

calculation of damage assessment, damage level of truss rod is 30%. Results using ANN are relatively 

accurate. This is a case of damage that is easy to identify and recognize in practice. However, for cases 

where the damage location is difficult to detect (for example, the damaged location is located in too 

high, difficult to reach locations, in the middle of the river), the ANN will show its advantages. 

b. 2 damaged elements 

In this case, a hypothetical failure is generated on the updated finite element model. Two 

elements 10 and 15 are assumed to be 40% damaged. Put the data into the trained ANN model, the 

network detects and returns the result 39% and occurs at element 10 and 15. Although not 100% 

accurate, the trained network detected the location and was relatively close to the simulation results. 

4. Conclusions 

This study approaches artificial intelligence-based structural health monitoring. Through testing 

and practical application in a steel truss bridge, it achieves potential performance in terms of 

structural monitoring. Along with the detailed explanation in this paper, some main conclusions can 

be derived: 
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• Before applying the ANN algorithm, an accurate (or relatively accurate) data source is required. 

This can be performed by creating a finite element model for extracting input data. However, if 

it is applied to actual works, it is necessary to have measures to update the model. In this study, 

particle swarm optimization (PSO) is used. Therefore, FEM can turn closer to the real behavior 

of the structures. 

• Creating and organizing data from a finite element model is very important if want to get good 

results when training ANNs. With a large number of samples, training the network takes time, 

but the effect after training can make up for this. 

• With the use of a trained ANN, failures can be detected and quantified. The proposed 

application results in a well-establishment with the actual test from an under-operating bridge. 

• Compared with other methods, this approach has various advantages: saving human resources, 

being able to identify damage in hard-to-detect locations, and reducing the number of measuring 

points in the case of vibration tests. 

• In the case study of this research, with a single failure, the ANN was able to identify and quantify 

the damage relatively accurately. For damage occurring on 2 elements, since there is no actual 

data, the network usage after training is done on the model. The results are quite satisfactory. 

The case where the data of 2 simultaneous damages seems to be more accurately predicted by 

the network. This can be explained because actual experimental data will more or less have 

noise, and at the same time affected by many factors. Meanwhile, the data used to confirm the 

case of 2 damages at the same time is taken directly from the model 
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