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Abstract: A brown seaweed consumed worldwide, Fucus vesiculosus, has been used to prevent atherosclerosis
and hypercholesterolemia, among other uses, however, the mechanisms of action that lead to these effects are
not yet fully understood. An F. vesiculosus aqueous extract, prepared as a soup was characterized as rich in
several bioactive compounds, mainly phlorotannin and peptides. This work aims to study the in vitro effect
of this extract on the expression of different proteins involved in the synthesis and transport of cholesterol in
HepG2 cells, though a proteomic analysis, western blot and qRT-PCR. The results demonstrated that, in liver
cells, the extract decreases the expression of 4 proteins involved in cholesterol biosynthesis process and also
decrease the expression of two important transporters proteins of cholesterol, NPC1L1 and ABCGS, as well
as decrease the NPC1L1 mRNA levels. Our study demonstrates some mechanisms of action of bioactive com-
pounds from F. vesiculosus that may explain its previously reported hypocholesterolemic effect.

Keywords: Fucus vesiculosus, cholesterol synthesis, cholesterol excretion, Ezetimibe, NPCIL1,
ABCG5

1. Introduction

The principal cause of global mortality is cardiovascular diseases (CVDs), specifically
ischemic heart disease (IHD) and stroke [1]. The prevalence of CVDs is linked to un-
healthy dietary habits with high consumption of salt, refined carbohydrates and fats,
such as cholesterol [2,3]. High levels of cholesterol in blood and tissues are one of the
major risks for lethal myocardial infarction and stroke due to the formation of arterial
plaques [4]. It is estimated that between 1990 and 2017 the global number of deaths in-
creased by approximately 910,000 due to high levels of non-HDL cholesterol which con-
sequently led to IHD and stroke [5].

Previous studies report that the treatment of high cholesterol levels leads to signifi-
cant health benefits [1]. The plasma cholesterol levels can be regulated through different
mechanisms, such as the de novo cholesterol synthesis, synthesis of bile acids, excretion of
cholesterol to bile and intestinal cholesterol absorption [2].
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Cholesterol synthesis in liver is a complex, multi-step process involving different en-
zymes. There are two main possible pathways for cholesterol synthesis the Bloch and
the Kandutsch-Russell pathway [6,7]. They share the first steps from acetyl-coA to lanos-
terol synthesis, after this step, they branch out, although having a few enzymes in com-
mon [6,7].

Reverse cholesterol transport (RCT) is an important a pathway that transports cho-
lesterol from non-hepatic tissues to the liver for secretion in bile (White et al., 2010). Alt-
hough the transport of cholesterol to phospholipids acceptors occurs spontaneously in all
cells this is an inefficient process by itself [8]. In RCT three important proteins that play a
key role in cholesterol transport are known namely, ATP binding cassette transporter
(ABC) Al, ABCG1 and scavenger receptor BI (SR-BI) (Jessup et al., 2006; Song et al., 2012).
Cholesterol can also be reabsorbed to the liver by Niemann-Pick C1-Like 1 (NPC1L1) pro-
tein, an essential protein that regulates plasma cholesterol levels [2]. In the liver, NPC1L1
has the ability to transport free cholesterol from the canalicular bile back to hepatocytes,
thus presenting an opposite mechanism to the ABCG5 / ABCGS8 transporter which in turn
regulates biliary cholesterol secretion [9]. This protein is also critical to regulating intesti-
nal cholesterol absorption [2]. The NPCIL1 protein is a molecular target of one of the
most used drugs in treating hypercholesterolemia, ezetimibe [10]. This drug acts by block-
ing the internalization of NPC1L1 and consequently decreasing cholesterol uptake [11],
leading both to inhibition of intestinal absorption of dietary cholesterol and biliary cho-
lesterol absorption [12].

Another way to regulate blood cholesterol levels is through healthy dietary habits,
with the consumption of foods low in saturated fat and nutrients from natural sources,
and even complement with the use of natural food supplements. [13].

In recent years, algae have received attention as a food product due to their beneficial
effects, namely brown algae, which are rich in several bioactive compounds as phlorotan-
nins [14]. Fucus vesiculosus is a brown algae consumed in different parts of the world and
has traditionally been used for several reported beneficial effects, among which: preven-
tion of mineral deficit, weight loss, arthrosis, arthritis, atherosclerosis, viscous blood and
hypercholesterolemia, and as an adjuvant for menopause [15-18]. Particularly regarding
the reduction of cholesterol levels, in vivo and in vitro studies with extracts rich in phloro-
tannins have reported as decreasing the levels of LDL, triglycerides and total cholesterol
[19-21]. However, the mechanisms of action of brown algae biomolecules that lead to cho-
lesterol-lowering effects remain unclear. Our group have already reported an in vitro
study with the aqueous extract of F. vesiculosus, prepared in the form of soup and char-
acterized as rich in phlorotannins and peptides, reported its beneficial effect in vitro in
inhibiting the intestinal absorption of cholesterol, as well as in inhibiting its synthesis [22].
Other published study demonstrated that the extract under study in vitro led to the in-
crease of several lipid compounds in HepG2 cells, including fatty acid amides, which are
described as inhibitors of the ACAT enzyme and consequently inhibitors of cholesterol
absorption and plasma cholesterol levels [23].

The objective of the present work is to evaluate the effect of the aqueous extract of F.
vesiculosus, prepared as soup and previously characterized as rich in phlorotannins and
peptides [22], on the liver proteins involved in the cholesterol biosynthetic process,
through proteomic analysis. It is also intended to study the specific effect of F. vesiculosus
extract on important cholesterol transporter proteins NPC1L1 and ABCGS5, with molecu-
lar assays as qRT-PCR and Western Blot

2. Materials and Methods

2.1. Chemicals
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All chemicals were of analytical grade. Water, methanol (MeOH), formic acid and
acetonitrile LC-MS grade Optima were purchased from Fisher Scientific (Hampton, USA).
Ethanol 96% was bought from Carlo Erba (Peypin, France). Dulbecco's modified Eagle
medium (DEMEM), Trypsin, Glutamine, Phosphate-Buffered Saline (PBS), fetal bovine
serum (FBS) and Tween 20 were obtained from Lonza® (Verviers, Belgium). Glacial acetic
acid and Tris(hydroxymethyl)aminomethane were obtained from Merck Milipore® (Mas-
sachusetts, EUA).

Glycine, Bovine Serum Albumin (BSA), Igepal® CA-630, Iodoacetamide, Urea, Am-
monium bicarbonate and Glucose were purchased from Sigma-Aldrich (Barcelona,
Spain). Pierce™ DTT (Dithiothreitol), Pierce™ Trypsin Protease MS Grade, mini Protein
Gel NuPAGE™ 4 to 12% Bis-Tris, Bolt® MOPS Transfer Buffer (20X), Bolt® MOPS SDS
Running Buffer (20X), PageRuler™ Prestained Protein Ladder and 4X Bolt™ LDS Sample
Buffer were obtained from Thermo Fisher Scientific (Waltham, USA), Coomassie Brilliant
Blue R-250 was purchased from BIORAD® (Hercules, USA). NZYBlue Protein Marker, 5x
SDS-PAGE Sample Loading Buffer, NZY Total RNA Isolation kit, NZY First-Strand cDNA
Synthesis Kit and NZYSpeedy qPCR Green Master Mix ROX plus were purchased from
Nzytech® (Lumiar, Portugal). AmershamTM ProtranTM Premium 0.45 pm Nitrocellulose
Blotting Membrane, AmershamTM ECLTM Prime Western Blotting Detection Reagents,
AmershamTM ECLTM Prime Blocking Agent and Amersham ECL™ anti-rabbit IgG,
horseradish peroxidase-linked whole antibody (from donkey) were obtained from VWR
International (Radnor, USA). ABCG5 and NPCIL1 antibodies were purchased from
Novus Biologicals. NPC1L1 and GAPDH primers were purchased from Alfagene (Lisbon,
Portugal).

2.2. Algae extract preparation and identification of compounds

Whole dried brown seaweed F. vesiculosus Linnaeus from the North Atlantic Ocean
was purchased fromCeleiro diet., Lisbon, Portugal (imported by Américo Duarte Paixao
Lda, Lot number 03ALG2731901). The aqueous extraction and the purification by Solid
Phase Extraction (SPE) of F. vesiculosus were performed as described in [22]. The identifi-
cation of the extract compounds was performed though Liquid Chromatography by High
Resolution Mass Spectrometry (LC-HRMS/MS) using an Elute OLE UHPLC system inter-
faced with a quadrupole time-of-flight (QqToF) Impact II mass spectrometer equipped
with an electrospray source (ESI) (Bruker DaltoniK GmbH, Bremen, German), the results
were previously presented in (André et al., 2020).

2.3. Cell culturing

Caco-2 cells (ECACC 86010202), a human colorectal adenocarcinoma epithelial cell
line and HepG2 (ECACC 85011430), a human hepatocellular liver carcinoma cell line,
were cultured in DMEM supplemented with 10% and 20% FBS, respectively, and 2 mM
L-glutamine at 37 °C in an atmosphere with 5% CO.. The culture cells were kept in sub-
confluence with trypsinization every 72h.

2.4. Membrane protein extraction and SDS-PAGE electrophoresis

HepG2 cells seeded in T75 flasks were under contact with the F. vesiculosus extract at
0.25 mg/mL (ICs0) [23]] and culture medium without FBS (control) during 24h. After incu-
bation time, the cells were washed twice with PBS, scraped with water and transferred to
a pre-weight eppendorf tube. The cells were then lyophilized in a Heto PowerDry 3000
apparatus (Thermo Fisher Scientific, Waltham, USA). Approximately 3 mg of cells of con-
trol and cells exposed to extract were used to obtain the fractions of membrane proteins
using the Mem-PER Plus Membrane Protein Extraction Kit (Thermo Scientific™)
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following the manufacturer’s indications. The different samples of both protein fractions
were separated under reducing conditions in NuPAGE 4 to 12% gradient gels (Invitro-
gen™, Carlsbad, USA) using a Mini Gel Tank (Invitrogen™, Carlsbad, USA) according
to the manufacturer’s instructions. The gels were stained with 40% of Coomassie R-250
blue, 50% of methanol and 10% of glacial acetic acid during 1h and distaining with a so-
lution of 7.5 % glacial acetic acid, 10 % ethanol and 82.5 % distilled water overnight. Gels
were photographed using ImageQuant LAS 50 (GE Healthcare Life Sciences®, Illinois,
USA) and the images were analysed using Image]J software.

2.5. In-gel protein digestion, Nano-LC-ESI-MS/MS and DataAnalysis

In-gel protein digestion was performed as described in [24]. The nLC-MS/MS analy-
sis of the resulting peptide digests was performed as described in [25], using an Ultimate
3000 nLC apparatus coupled to a UHR-QqTOF IMPACT HD apparatus (Bruker Daltonics,
Bremen, German) with a CaptiveSpray ion source (Bruker Daltonics, Bremen, German).
Raw LC-MS/MS data were processed in MaxQuant (V.1.6.10.43) for automated protein
identification. MS raw files were analyzed by MaxQuant software, version 1.6.10.43 [26],
and peptide lists were searched against the human Uniprot FASTA database. A contami-
nant database generated by the Andromeda search engine [27] was configured with cys-
teine carbamidomethylation as a fixed modification and N-terminal acetylation and me-
thionine oxidation as variable modifications. We set the false discovery rate (FDR) to 0.01
for protein and peptide levels with a minimum length of seven amino acids for peptides,
and the FDR was determined by searching a reverse database. Enzyme specificity was set
as C terminal to arginine and lysine as expected using trypsin. A maximum of two missed
cleavages were allowed. Data processing was performed using Perseus (version 1.6.2.3)
with default settings [28].

All proteins and peptides matching the reversed database were filtered out. Subcel-
lular localization and gene ontology analysis were performed using STRING online re-
sources at https://string-db.org/, and ClueGo plug-in in Cytoscape (V3.9.0), respectively
[29].

2.6. Western blot analysis

HepG2 cells were seeded in T25 culture flasks and after confluence were exposed to
DMEM medium without FBS containing 0.25 mg/mL of F. vesiculosus aqueous extract pu-
rified by SPE (F. vesiculosus extract). After 24h, the cells were scraped and collected with
water and lyophilized. The cells were dissolved in lysis buffer (Igepal 4%, DTT 1%, Urea
6 M), at a concentration of 0.025 mg of cell/ mL, followed by sonication, for 5 min, and
centrifugation for 10 min at 10 000 rpm. The cells precipitated were used for western blot
following the protocol described in [30]. The assays were performed in triplicate and the
results are presented in terms of mean and standard deviation.

2.7. Real time quantitative PCR

HepG2 cells were seeded in T75 culture flasks and after confluence were exposed to
DEMEM medium without FBS, to 0.25 mg/mL of F. Vesiculosus aqueous extract and to 100
UM of ezetimibe. 24 h post exposition, RNA was harvested from cells using NZY First-
Strand cDNA Synthesis Kit. Each experiment of RNA extraction was carried out with du-
plicate samples. cDNA was synthesized from 1 ug of RNA using NZY First-Strand cDNA
Synthesis Kit following the manufacturer’s protocol. The qRT-PCR was performed in trip-
licates using NZYSpeedy qPCR Green Master Mix (2x), ROX plus. The primers sequence
used to amplify GAPDH and NPCIL1 genes were described in [31]. Reactions were
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performed in the Applied Biosystems 7500 Real-Time PCR System (Thermo Fisher Scien-
tific, Waltham, USA), and the real-time PCR program consisted of 40 cycles (95 °C for 15
s and 62 °C for 30 s) after initial 10 min incubation at 95 °C. The expression of NPC1L1
was determined relative to GAPDH and data are presented as mean values with standard
deviations.

2.8. Statistical analysis

The data were expressed as mean + standard deviation using the Microsoft® Excel
2016 software. Statistical analysis was performed using one-way analysis of variance
(ANOVA) using software developed by Microsoft® with p-value < 0.05 considered as sig-
nificant.

3. Results and discussion

3.1. Effect of F. vesiculosus on hepatic proteins

Different studies on the hypocholesterolemic effect of different brown seaweeds have
been carried out, but the molecular mechanism of the bioactive compounds in brown sea-
weeds that lead to a decrease in total cholesterol levels is still not fully understood. The
effect of F. vesiculosus extract on hepatic proteins was evaluated through SDS-PAGE elec-
trophoresis of membrane proteins from HepG2 cells exposed to a non-cytotoxic concen-
tration of F. vesiculosus extract [23] (Figure 1).

The extract caused several changes in the relative intensity of different proteins (Fig-
ure 1A-B), namely, 65 % of the bands analysed using the Image] program show significant
changes (ANOVA test with p-value > 0.05) in their intensity in the presence of the extract
compared to the control (Figure 1B).

A B
kDA M Cont  Ext

kDa  Cont  Ext

141
121
110
101

Figure 1 — Effect of F. vesiculosus aqueous extract on soluble membrane proteins of HepG2. A - Gel ob-
tained from SDS-PAGE of the soluble membrane protein fraction of HepG2 cells under the effect of: (Cont), cell
culture media and (Ext), 0.25 mg/mL of F. vesiculosus extract; (M), marker proteins. B - Heat map generated
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from SDS-PAGE gel analyse with Image ] software reflecting the protein band intensity of soluble membrane
protein fraction of HepG2 cells exposed to (Cont) cell culture media and (Ext) F. vesiculosus extract. Cells sam-
ples are arranged in columns, protein band intensity, and estimated molecular weight in rows. Dark blue shades
correspond to a high-intensity protein band; light blue shades correspond to a low-intensity protein band.

3.1.1. Proteomic analysis

A proteomic analysis was performed to identify some proteins from HepG2 cells pre-
sent in the previous electrophoretic gel presented. For the proteomic assay, gel bands from
distinct zones of the gel with different molecular weights (highlighted in red in Figure 1B)
and different intensities were removed from both control and cell under the effect of the
extract. A total of 809 protein groups were identified, from which 671 were detected in the
control experiments and 695 in the extract. 68.9% (557) of the protein groups were detected
in both control and test cells, whereas 114 proteins were exclusively present in the control
cells, and 138 were exclusively present in cells exposed to the extract (Figure 2).

Control

Extract

Figure 2 — Venn diagram showing the differentially expressed proteins from comparative proteomic anal-
ysis of HepG2 cells control and cells exposed to 0.25 mg/mL of F. vesiculosus (http://bioinformat-
ics.psb.ugent.be/webtools/Venny/).

Proteins expressed only in the control and those expressed only in cells exposed to
the extract were analysed in different databases depending on the different objectives in-
tended with the analysis of the results. The analysis of gene ontology (GO) terms biologi-
cal process (BP) and molecular function (MP) were analysed using ClueGO Cyto-
scape App. The networks in Figure 3A show the GO terms more significantly enriched for
control cells (red) and cells exposed to the extract (blue), followed by the statistics graphs
representing the percentage of gene by term for the control cells (Figure 3B) and for the
cells exposed to extract (Figure 3C). Analysing Figure 3, it is possible to observe that the
proteins from both groups participate in several biological processes with different mo-
lecular functions; however, in this study, we intended to highlight the proteins from the
cholesterol biosynthetic process due to the previous reported hypocholesterolemic effect
of F. vesiculosus aqueous extract under study [22,23].
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Figure 3- (A) - Networking of ClueGO analysis of significant enrichment GO biological process and Mo-
lecular function (Term P-value corrected with Bonferroni step down, p< 0.05), where are represented the term
enrichment of proteins from HepG2 control cells (red),proteins from HepG2 cells exposed to F. vesiculosus
(blue), and terms from both clusters (grey). (B) - Bar chart representing the percentage of gene by term of GO
Biological process and GO molecular function from HepG2 control cells and HepG2 exposed to F. vesiculosus

©.

The KEGG and Reactome pathways in which the proteins under study participate
were also analysed using ClueGO Cytoscape App (Figure 4).
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Figure 4 — (A) - Networking of ClueGO significant enrichment pathways analysis from KEEG and Reac-
tome (Term P-value corrected with Bonferroni step down, p<0.05), where are represented the terms enrichment
of proteins from HepG2 control cells (red), HepG2 cells exposed to F. vesiculosus (blue) and terms from both
clusters (grey). (B) - Bar chart representing the percentage of gene by term of each enriched pathway from HepG2
control cells (B) and HepG2 exposed to F. vesiculosus (C).

The protein Lanosterol 14-alpha demethylase (CYP51A1), enzyme 3-hydroxysterol
24-reductase (DHCR24), 3-Hydroxy-3-Methylglutaryl-CoA Synthase 1 (HMGCS1), and
Hydroxysteroid 17-Beta Dehydrogenase 7 (HSD17B7) involved in the cholesterol biosyn-
thesis pathway (Figure 5) were detected in the control cells, whereas they were not de-
tected in the cells after 24h contact with the F. vesiculosus extract.
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Figure 5 — Cholesterol synthesis pathway. The pathway proteins that proteomic analysis revealed to be
present just in HepG2 control cells and not in HepG2 cells exposed to the extract are highlighted in red.

DHCR24 catalyses the final step of the Bloch pathway of cholesterol synthesis and
also catalyses the first step of Kandutsch — Russell pathway [7], as shown in Figure 5.
Previous studies with HepG2 cells demonstrated that the inhibition of DHCR24 leads to
decreased cholesterol production [37]. HSD17B7 is another enzyme common to both path-
ways of cholesterol synthesis in different steps (Figure 5), and a previous study demon-
strated that the lack of this enzyme inhibits the de novo cholesterol biosynthesis [38].
CYP51A1 is known as a critical cholesterologenic enzyme essential for regulating choles-
terol biosynthesis [39]. In previous studies, inhibition of CYP51A1 has shown to lead to
significant reductions in serum levels of total cholesterol and serum low-density proteins
[39]. Furthermore, inhibition of CYP51A1 leads to accumulation of lanosterol which, in
turn, induces the degradation and ubiquitination of HMG CoA reductase enzyme
(HMGR), the rate-limiting step in cholesterol synthesis [39,40]. In a previous study, F. ve-
siculosus extract also shows a significant capacity to in vitro inhibit the HMGR with an half
inhibitory concentration (ICso) of 4.16 pug/mL [22]. The other protein from the cholesterol
biosynthesis pathway, HMGCS], catalyses the condensation of acetyl-CoA with acetoace-
tyl-CoA to form HMG-CoA (Figure 5) (https://www.uniprot.org/uniprot/Q01581), and its
inhibition consequently leads to inhibition of cholesterol synthesis [41].

As mentioned, these four proteins were only detected in control cells, which means
that the presence of the extract is leading to a decrease in the expression of these proteins,
leading in turn to the inhibition of cholesterol synthesis. The description of these
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molecular mechanisms of action of the extract on proteins involved in the synthesis of
cholesterol is novel, which is in line with the hypocholesterolemic effect already reported
[17].

3.2. Effect of Fucus vesiculosus on cholesterol transporters

3.2.1. F. vesiculosus aqueous extract decrease hepatic expression of NPC1L1 and
ABCG5

A western blotting and qRT-PCR techniques were performed to study the specific
effect of F. vesiculosus extract on the hepatic expression of two important cholesterol trans-
porter proteins, NPC1L1 and ABCGS5.

This extract was previous characterized through LC-HRMS/MS analysis and the re-
sults demonstrated that phlorotannin derivatives and small peptides represented 94% of
the intensities detected. As the extract under study is rich in phenolic compounds [22],
namely phlorotannins, the western blot technique was performed using the same weight
of cells per sample [30]. The standard protocol for this technique is based on standardizing
samples based on protein amount however, previous studies [30,32] have reported that
different phenolic compounds affect cellular protein content, making it impossible to use
the total protein content and internal control proteins to do the standardizing of samples.

Figure 6A shows that, in HepG2 cells, the extract led to a decrease of NPC1L1 expres-
sion by 12.76 + 0.47 %. The qRT-PCR demonstrated that the extract also led to NPC1L1
mRNA inhibition, being the relative expression of NPCIL1 in the presence of the extract
of 0.70 £ 0.06 % in relation to control, which means an inhibition of approximately 30 %

(Figure 6).
A NPC1L1 ABCG5 B
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Figure 6 — (A) Western blot results representing the effect of F. vesiculosus aqueous extract (0.25 mg/mL)
on the protein expression of NPC1L1 and ABCG5 in HepG2 cells using the same weight of cells (0.025 mg of
cell/ mL of lysis buffer), (B) relative NPCIL1 mRNA expression in HepG2 under the effect of F. vesiculosus
aqueous extract (0.25 mg/mL) and ezetimibe (100 pM) determined by qRT-PCR (normalised to GAPDH). Differ-
ent superscript letters (a—b) correspond to values of relative expression for each gene that can be considered
statistically different (p < 0.05).

Previous studies have reported that overexpression of NPC1L1 in the liver causes an
inhibitory effect on biliary cholesterol secretion, once re-absorbs cholesterol from bile
leading to high levels of liver cholesterol and thus the risk of developing atherosclerosis
and other CVD [2,33]. Consequently, the overexpression of hepatic NPC1L1 may aggra-
vate diet-induced atherosclerosis [2]. The F. vesiculosus extract effect on the inhibition of
NPC1L1 mRNA and protein expression could, therefore, be beneficial by increasing bili-
ary excretion of cholesterol and, consequently, contribute to decrease the risk of athero-
sclerosis.

One of the drugs most used for the therapy of hypercholesterolemia is ezetimibe,
which acts to block NPC1L1 internalization and consequently decrease cholesterol uptake
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[11]. Previous studies also reported that ezetimibe treatment does not affects protein or
mRNA expression of NPC1L1 [34]. Considering that, the extract was seen to inhibit the
expression of both NPC1L1 mRNA and protein, the study here reported could be a start-
ing point for the search for new therapeutic strategy showing a different mechanism of
action than ezetimibe.

F. vesiculosus aqueous extract also decreased the hepatic expression of ABCG5 by
18.40 £ 3.53 % (Figure 6A) relatively to the control cells. In the liver, the ABCG5 and the
ABCGS transporter form a complex (ABCG5/ABCGS) that mediates the cholesterol secre-
tion to bile [33]. Based on this knowledge, one would expect that the extract would in-
duce hepatic expression of ABCG5 to promote hepatic excretion of cholesterol in the bile,
but this was not observed. Our hypothesis is that, as the extract leads to the inhibition of
cholesterol synthesis, as demonstrated in the previous results presented in section 3.2 and
as observed in a previous in vitro study [22], there is less need to eliminate cholesterol
from liver into the bile, leading, consequently, to a lower expression of the ABCGS5 protein.
The observed inhibition of NPC1L1 expression also leads to lower cholesterol levels in the
liver which also leads to a lesser need to eliminate cholesterol from this organ into the bile.
The effect of statins, another group of drugs often prescribed to lower cholesterol levels
in the expression of the ABCG5/ABCGS transporter is still an area under study. Statins
primarily acts by inhibiting HMGR leading to cholesterol synthesis inhibition. Studies in
vivo demonstrated that some statins increase the expression of ABCG5 leading to in-
creased biliary excretion of cholesterol [35,36]. By contrast, other studies reported that
atorvastatin and pravastatin decrease the expression of ABCGS at the intestinal and he-
patic level [34,35].

Further in vivo studies and with primary cells are needed to clarify the effect of F.
vesiculosus extract on biliary cholesterol excretion and on blood and liver cholesterol levels
and to better understand its inhibitory effect towards ABCG5 protein expression.

5. Conclusions

This study describes some mechanisms of action of Fucus vesiculosus, rich in phloro-
tannins and peptides on different liver proteins, proving its previously described hypo-
cholesterolemic effect. The proteomic study demonstrated the inhibitory effect of this ex-
tract on the expression of four different proteins involved in cholesterol biosynthetic pro-
cess, resulting in the inhibition of its synthesis. With Western blot and qRT-PCR tech-
niques was observed that this extract has the capacity to decrease the protein expression
as well as the mRNA expression of an important cholesterol transporter protein, namely
NPC1L1 which results in decrease of biliary excretion of cholesterol as consequently re-
duce the atherosclerosis risk. Due to inhibitory effect of this extract on cholesterol synthe-
sis and on the expression of the cholesterol transporter NPC1L1, a decrease in the expres-
sion of the ABCGS5 transporter was also observed in the cells exposed to the extract, since
there is less cholesterol to be removed from the liver.
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