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Simple Summary: Monitoring vitals sign such as the respiratory rate, heart rate, or temperature is 

of high importance to medial and biological research. Using camera-based methods we monitored 

the respiratory rate of unconstrained laboratory rats by analyzing the visible breathing movement 

in the thorax. We hope is further step to enabling non-invasive monitoring of rodent is the experi-

mental environment without using implanted sensors, reducing stress and pain of an otherwise 

unneeded operation.  

Abstract: Animal research has always been crucial for various medical and scientific breakthroughs,  

providing information on disease mechanisms, genetic predisposition to diseases, and pharmaco-

logical treatment. However, the use of animals in medical research is a source of great controversy 

and ongoing debate in modern science. To ensure a high level of bioethics, new guidelines have 

been adopted to replace animal testing wherever possible, reduce the number of animals per exper-

iment, and refine procedures to minimize stress and pain. Supporting these guidelines, this article 

proposes a novel approach for unobtrusive, continuous, and automated monitoring of the respira-

tory rate of laboratory rats. It uses the cyclical expansion and contraction of the rats’ thorax/ab-

dominal region to determine this physiological parameter. In contrast to previous work, the focus 

is on unconstrained animals, which requires the algorithms to be especially robust to motion arti-

facts. To test the feasibility of the proposed approach, video material of multiple rats was recorded 

and evaluated. High agreement was obtained between RGB-imaging and the reference method (res-

piratory rate derived from electrocardiography), which was reflected in a relative error of 5.46%. 

The current work shows that camera-based technologies are promising and relevant alternatives for 

monitoring the respiratory rate of unconstrained rats, contributing to the development of new al-

ternatives for continuous and objective assessment of animal welfare and hereby guiding the way 

to modern and bioethical research. 

Keywords: respiration; automatic monitoring; rodent; rat; animal welfare; refinement; 3R; labora-

tory animals; camera-based monitoring; breathing 

 

1. Introduction 

Animal research has played a major role in many scientific breakthroughs for centu-

ries, even though it has been a source of various ethical debates [1]. This caused governing 

bodies to implement laws and other regulatory means to safeguard animals in experi-

mental settings. The European Union (EU) requires member states by its Directive 

2010/63/EU [2] to apply the 3R principal proposed by Russell et al. [3] in 1959. These prin-

cipals refer to Reduction, Refinement and Replacement, as a mean to minimize the use of 

animals in scientific studies while maximizing animal welfare. The term reduction refers 
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to reducing the number of animals used in a study while still providing the scientific sig-

nificance needed. Refinement refers to minimizing the pain, suffering, or distress intro-

duced by animal trials. This can be achieved by using less invasive methods or improving 

the living conditions in terms of housing and care. Replacement refers to finding alterna-

tives to animal testing which are similar or more effective, thus making the animal trial 

needless. Feasible alternatives could be using cell cultures, simulations, or human studies.  

However, reality shows that not all experiments with living animals can be replaced. 

In 2019, the EU reported that 10.61 million animals were still used in animal trials [4], 

showing the great need for further refinement methods. Of these, 72% were used for re-

search, 17% to satisfy regulatory requirements and another 6% for routine production. 

Most of the animals were used to enhance the understanding of the nervous system or 

finding treatments for diseases like cancer. Until today, researches have not been able to 

find adequate replacements for these kinds of animal testing, which makes the refinement 

and improvement of these experiments crucial.  

Due to their high anatomical, physiological, and genetic similarity to humans while 

being small and easy to maintain, mice and other rodents are most used in research [5] 

and represent about half of all trial animals [4]. Cardiovascular, pharmacological, and tox-

icological research requires vital parameters such as heart rate (HR) or respiratory rate 

(RR) to assess a given theory. Currently, implanted radio transponder are the only meth-

ods to monitor these for unrestrained mice or rats [6]. Despite its ability to generate highly 

precise data, there are several significant drawbacks associated with this methodology. 

First, it requires an initial implantation surgery, which is invasive and time-consuming. 

Recovery time for animals to regain their normal circadian rhythms can take up to five to 

seven days, according to Braga and Burmeister [7]. Second, the implanted device may 

cause distress and discomfort, especially in small species. Braga and Burmeister also noted 

that the implanted device could have adverse physiological effects, such as increased vol-

ume in abdominal viscera, which can potentially compromise the movement of the dia-

phragm and alter breathing patterns in terms of depth and rhythm. Therefore, there is a 

great need for contactless and unobtrusive monitoring of techniques, which permit on the 

one hand to monitor continuously the laboratory animals and on the other hand to obtain 

objective parameters for welfare assessment. 

Over the years, numerous researchers have explored monitoring RR remotely. 

Kunczik et al. [8] showed in 2019 that monitoring of mice and rats can be achieved using 

an RGB-camera while undergoing anesthesia. In this approach, RR is measured by track-

ing the movement of the abdominal areas, while HR is measured using a DistancePPG as 

proposed by Kumar et al. [9]. Another approach was presented by Takahashi et al. [10], 

using camera recordings of mice from below a see-through acrylic glass, monitoring and 

tracking hairless areas. Both approaches lack the possibility of long-term monitoring as 

we would like to see due to the animals being restrained or  in a specialized cage with no 

possibility of litter or enrichment materials like nesting pads. 

The current paper presents a novel approach for respiratory rate monitoring  in ro-

dents from by using visual imaging from above. In contrast to other publications that use 

videos of anaesthetized animals to estimate this vital parameter, our focus here is to 

demonstrate the capability of the presented algorithm in extracting this from moving an-

imals. 

2. Materials and Methods 

The proposed algorithm is multi-step approach for monitoring respiration in RGB-

video of unconstrained rats, as illustrated in figure 1. This paragraph provides a brief 

overview of all steps, which will be described in detail in the following sections. During 

the first step segmentation masks of images are computed from video recordings using a 

deep-learning algorithm to detect the respiration- associated movement. In the second 

step  preprocessing of the segmented regions is done. In the third step, the signal is ex-

tracted. Last, the actual computation of the respiratory rate is done. As a reference, 
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respiration signals were extracted from electrocardiography (ECG) data and used to com-

pare the camera-based signal.  

 

Figure 1. Key stages involved in extracting the RR from RGB-videos of rats: Video preprocessing 

(segmentation, preprocessing), signal extraction, and RR calculation. 

2.1. Segmentation 

For assessing the heart rate, first a target RoI must be defined. In contrast to previous 

works, which mostly monitored anesthetized animals using on the upper abdomen as the 

region for signal extraction [8], our goal was to monitor unconstrained animals. This 

means that the RoI must be detected and tracked over time. Thus, the RoI was set to cover 

the entire chest and abdomen and was bounded by the connecting line between both up-

per and lower legs, which can be recorded by cameras when they are mounted above the 

cage.  

In 2019, Wu et al. [12] published the detectron2 framework for image segmentation 

and object detection, which was customized for segmenting the RoI in rats in this work. 

Such supervised deep learning approaches need annotated image data before the training 

process of the neural network can be started. Therefore, images from our study (described 

in detail in section 3) were selected, such that 50 images were automatically extracted from 

each of the 39 recorded videos, beginning with images with little to no movement and 

then randomly sampling until the required number (50) was reached. These images were 

annotated using LabelMe, a project created by the MIT Computer Science and Artificial 

Intelligence Laboratory (Cambridge, MA, United States), which provides an annotation 

tool to build image databases for computer vision research. An example of an annotation 

can be seen in figure 2, which was applied in RGB images. Along with the detectron2 

framework, Wu et al. [12] also published pretrained models on various datasets. To begin 

training our network, the Mask-RCNN-R50-FPN architecture was chosen, which was pre-

trained on the CoCo-Dataset [12] (referenced as model-ID: 137849600).  Mask-R-CNN-

R50-FPN references a deep learning model for instance segmentation. As a backbone a 

ResNet-50 is used, consisting of 50 convolutional-layers, to extract features from the input 

image. These features are then used in a Feature Pyramid Network (FPN) to build multi-

scale feature pyramid for improved object detection and segmentation. 
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Figure 2. Annotated rat images: The red area corresponds to the desired RoI (thorax and abdomen), 

which should be automatically identified and segmented. 

To adapt Mask-R-CNN R50 FPN to the current data, minor changes were made to its 

architecture. Appendix A provides a complete set of changed parameters of the model 

architecture. The feature extraction layers of the network were frozen, and the number of 

RoI-heads was set to 128 to enable a batch size of 8 during training. Training was per-

formed using a GeForce RTX 2080 Super (NVIDIA Corporation, Santa Clara, California, 

USA). To evaluate the neural network properly, the dataset was divided into three parts 

(training, validation, test), with each part containing data from a single rat. For each rat, a 

network was trained on the 650 annotated images per rat, validated on  a second rat, and 

tested on a third rat. This is done to ensure that the neural network had not been exposed 

to any images of the animals included in the test data and thus prevent any bias to the 

evaluation caused by any animal specific visible features. During training, several aug-

mentations were applied (see Appendix B for a complete set of augmentations). Applying 

the segmentation network to each frame of the video, results in two different outputs: a 

binary mask and a certainty score between 0 and 1. Detections which are exceeding a score 

0.99 were defined as valid segmentations.  

2.2. Preprocessing and Signal Extraction 

For RR assessment from the segmented images several steps of preprocessing were 

performed. Based upon the binary masks, from the segmentation step, the centers of mass 

were computed, and each image was cropped to the extent of the bounding box of the 

segmentation mask, after nullifying every pixel outside the segmented area. Subsequent 

to obtaining all masked images of a  given video, the images were shifted so that the 

centers of mass are overlapping for each frame in a video. The preliminary respiration 

signal R was obtained by computing the area of the segmentation in each image. To extract 

the signal, R was denoised using a linear denoising algorithm according to Nowara et al. 

[13], which was originally developed for denoising remote photoplethysmography sig-

nals, but should be also applicable for respiration signals, due to a similar temporal pro-

file. 

The noise signals include the linear detrended center-of-mass coordinates over time 

for both X-and Y-coordinates, as well as their first derivatives. The algorithm uses the 

disturbed signal R projected onto the noise subspace Q to compute the denoised signal Z 

with 𝒁 = 𝑹 −
𝑸𝑸𝑻

𝑸𝑻𝑸
𝑹.  Furthermore, the resulting signal was preprocessed with a second-

order Butterworth bandpass filter with a lower and upper cutoff frequency of 1 Hz (60 

breaths/min) and 3.3 Hz (200 breaths/min), respectively, and clipped wherever the gradi-

ent exceeded 1.5. The clipped values were then filled by interpolating the two neighboring 

values of the respiration signal. 
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2.3. RR-Computation 

Once the filtered respiration signal has been acquired, a peak detection is done to 

determine both in- and exhale-cycles which can later be used to compute the RR.  An 

algorithm developed for electrical impedance tomography (EIT) by Khodadad et al. [14] 

was adapted for this purpose. First, the signal was detrended by subtracting the mean of 

a best-fit line and zero crossings in the signal were found. Second, a separate search for 

extreme points at both rising and falling zero crossings was performed. Third, an outlier-

detection algorithm was applied to identify valid peaks based on their distance from 

neighboring peaks. Once the peaks have been computed, the instantaneous RR (fRR) can 

be calculated as the inverse of the distance between two consecutive peaks, using the 

equation: fRR = 60/dpeak, where dpeak corresponds to the number of sampling points 

divided by the sampling rate and the respiration signal fRR is  given in breaths per mi-

nute (breaths/min). Figure 3 illustrates the algorithm, showing two signals an ECG-de-

rived-respiration signal at the top and the corresponding computed RR at the bottom.  

 

 

 

Figure 3. Example of ECG-derived-respiration signal and rate extracted from a rat’s ECG; (a) EDR-

signal: The blue line corresponds EDR-signal, on which red dots represent the maxima and the yel-

low dots the minima of the breathing signal. (b) EDR-rate is the corresponding instantaneous res-

piratory rate, with its mean value denoted as a dashed line. 

2.4. ECG analysis and ECG-derived-respiration 

The results were validated using ECG as the ground truth, since the radio tran-

sponder employed in the animal trial allowed for the extraction of this parameter. ECG-

derived-respiration (EDR) describes the process of extracting the respiration signal from 

a given ECG-signal. However, to obtain the EDR-signal of interest, processing of the raw 

ECG signal was required.  

Several methods were proposed for peak detection in an ECG-signal, such as Pan et 

al. [15], Vuong et al. [16], Kalidas et al. [17], Koka et al. [18], and Makowski et al. [19]. Most 

of these methods focus on detecting the QRS complexes of a given ECG as it is the most 

prominent feature. The peak detection method used was proposed by Makowski et al. [19] 

uses the gradients' steepness to detect QRS complexes, followed by searching the local 

maxima within the detected region to find the R-peak.  Customization was required to 

enable the computation of the HR of rats, as their ECGs have a morphology that is vastly 

(a) 

 

 

 

 

 

(b) 
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different from that of humans. . The schematic ECG of a normal human is shown in figure 

4, along with the recorded ECG of a rat. 

 

Figure 4. Heartbeat in ECG-signals; (a) Schematic diagram of an ECG of a human. (b) Showcase of 

individual heart beats of rats captured by ECG in the experiment. 

The customization involved filtering the signal with a Butterworth low pass filter 

with a cutoff at 4 Hz and discarding possible artifacts resulting from a 50 Hz powerline 

frequency. To apply the peak detection method to rats, the kernel size for smoothing and 

averaging was reduced by a factor of two and four (smoothwindow=0.05s; avgwin-

dow=0.1875s), respectively. Additionally, the minimum delay between two different 

peaks was set to 0.1s. The threshold for discarding a QRS complex because it is too short 

was set to 0.1s. An exemplary detection of the resulting R-Peaks can be seen in figure 5. 

 

Figure 5. ECG-Signal of a rat, including the utilized peak detection as denoted by the yellow 

markers. 

Many methods have been proposed to extract the EDR from an ECG-signal. Sarkar 

et al. [20], Charlton et al. [21],  and van Gent et al. [22] used simple filtering to reconstruct 

the respiratory signal while Kontaxis et al. [23] computed the respiratory signal from the 

difference between the maximum and the minimum slopes in the QRS complex. Langley 

et al. [24], in turn, computed the EDR signal by applying Principal Component Analysis 

of the global amplitude variation of the QRS complex. To receive the respiratory signal 

from our data, the approach from van Gent et al. [22] was used, as it was most robust 

especially when used on noisy signals. An EDR-signal computed with this method can be 

seen in figure 6 along with its respiratory rate. Figure 7, in turn, shows the spectrum of a 

processed ECG-spectrum, clearly showing the respiratory rate and the first harmonic. 

QRS 

Comple
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(b) 
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Figure 6. ECG-derived respiration from rats. Top: ECG-derived respiratory waveform after apply-

ing the approach proposed by van Gent et al. [22]. Bottom: Respiratory rate of the animal computed 

according to Khodadad et al. [23]. 

 

Figure 7. Frequency spectrum of a rat’s respiratory signal. The highest peak is visible around 100 

breaths/min corresponds to the respiratory rate of the animal. Also noticeable is the first harmonic 

around approximately 200 breaths/min. 

3. Experimental Protocol 

The data used in this work is part of a larger study that adhered to the 3R principle 

(replacement, refinement, and reduction) to ensure ethical treatment of animals. The 

study followed the approved experimental protocol of the governmental animal care and 

use institution "Regierung von Oberbayern” (Germany, ROB-55.2-2532.Vet_02-16-105) 

and was conducted in compliance with the German Animal Welfare Law. All animals 

received humane care in accordance with the principles outlined in the "Guide for the 

Care and Use of Laboratory Animals" (8th edition, NIH Publication, 2011, USA).  

Three male Sprague Dawley rats (360–375 g; 9–11 weeks; Envigo, Horst, The Nether-

lands) were included in this study. They were subjected to an operation in which ECG- 

and EEG-transponder (DSI-HDX02, Data Sciences International, Inc., New Brighton, MN, 

USA)  were implanted. A detailed description about the surgical procedure was already 

published in 2019 by Seiffert et al. [25]. Prior and following the operation, the rats were 

placed into an open glass cage measuring approximately 0.30m x 0.30m and recorded us-

ing two cameras (Cam1 and Cam2). The cameras were mounted above the cage on a tri-

pod at about 1.5 m above the bottom of the cage. The distance was selected so that both 

cameras could acquire the complete bottom of the cage. The experimental setup is de-

picted in Figure 8. 

(a) 

(b) 
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Figure 8. Recording setup. (a) Schematic view with both RGB and thermal camera, which are re-

cording the rat from above. (b) Picture of the recording setup. Both cameras were mounted using a 

tripod 1.5m above the monitoring cage. 

Cam1 is a long-wave infrared thermal camera (Infratec VarioCAM HD head 820, In-

fraTec GmbH, Dresden, Germany) with a resolution of 640 x 480 pixels, a thermal resolu-

tion of up to 20 mK, a frame rate of 60 FPS, and a dynamic range of 16 bit. Cam2 is an 

RGB-camera (Allied Vision Mako G-223C, Allied Vision Technologies GmbH, Stadtrova, 

Germany) with a resolution of 1368 x 640 pixels and a framerate of 60 FPS. 

 

Figure 9. Experiment schedule: The blue bars correspond to the five measurement days. The black 

bars indicate the times at which recordings were made. 

The experiment was conducted over five consecutive days, as shown in the experiment 

schedule displayed in figure 9. At each measurement time (MT), two 5-minute videos 

were recorded with a parallel ECG recording: 

• Day 1:  One video recording was done for establishing a baseline and let the rats 

acclimate to the environment. For this recording no ECG was recorded. 

• Day 2: Surgery day where the EEG- and ECG-transponder were implanted. Two re-

cordings with all three rats were carried out: the first directly after the surgical pro-

cedure and the second approximately two hours later. 

• Days 3 to 5 followed a similar schedule, with recordings starting at 9 am, 11 am, 1 

pm, and 3 pm. On day 5 only the two first video acquisitions were made. 

For every recording, the ECG-transponder had to be activated using a magnetic switch. 

Shortly afterwards, the camera recordings were started simultaneously for both cameras. 

After 5 minutes of recording time, the cameras switched off automatically, followed by 

activating the magnetic switch again to turn off the transponder. This allowed the record-

ing of  13 videos for each rat, with 5 minutes each, totaling to 39 videos (in total 195 

minutes of video recordings). All videos were captured in raw format, without any com-

pression. 

After the experiment, the animals were euthanized with intraperitoneal sodium pen-

tobarbital injection (600 mg/kg Narcoren®, Merial GmbH, Hallbergmoos, Germany).  

(a)                        (b) 
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4. Results 

4.1. Reference Respiratory Rate 

Figure 10 shows the RR derived from the ECG for each measurement time point, as 

well as a box plot diagram showing the variation of the ECG-derived RR for each animal. 

Looking at the results, it can be observed that the RR ranges from 79.08 breaths/min to 

98.87 breaths/min. On average 92.09 breaths/min were recorded with a standard deviation 

of 4.23 breaths/min. A detailed list of respiratory rates for all measurement time points is 

reported in table 1. 

 

Figure 10. EDR-results – (a) Illustration of the temporal aspect of the RR by grouping measurements 

for the boxplot by measurement time. (b) Boxplot of all measurements split by the different animals. 

Table 1. RR from camera-based respiration compared to the EDR. For each Day and time of meas-

urement the table shows the EDR-rate, the camera-based RR (RRcam), as average over the whole 

measurement. Additionally, the resulting relative error and the absolute error are listed. The last 

row lists the average of all recorded values. 

Day MT Rat-ID 
Mean EDR 

[breaths/min] 

Mean RRcam  

[breaths/min] 
 

Rel. Error  

[%] 

Abs. Error  

[breaths/min] 

 

Day 2 MT3 R1 96.28 99.56  3.41 3.28 

  R2 79.08 98.63  24.72 19.55 

  R3 91.34 103.23  13.02 11.89 

 MT4 R1 94.05 80.29  14.63 13.76 

  R2 85.55 97.73  14.24 12.18 

  R3 94.97 96.83  1.96 1.86 

Day 3 MT1 R1 94.61 92.88  1.83 1.73 

  R2 90.69 82.72  8.79 7.97 

  R3 89.70 91.45  1.95 1.75 

 MT2 R1 96.28 91.64  4.82 4.64 

  R2 93.45 90.37  3.30 3.08 

  R3 89.27 87.77  1.68 1.5 

 MT3 R1 98.73 99,01  0.28 0.28 

  R2 96.32 103.9  7.87 7.58 

  R3 90.27 91.15  0.97 0.88 

 MT4 R1 98.87 89.18  9.80 9.69 

  R2 92.41 88.86  3.84 3.55 

  R3 90.60 95.97  5.93 5.37 

Day 4 MT1 R1 97.40 90.03  7.57 7.37 

  R2 89.8 87.75  2.33 2.09 

  R3 90.34 98.22  8.72 7.88 

 MT2 R1 92.79 92.75  0.04 0.04 

(b)                                      (b) 
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  R2 92.74 91.49  1.35 1.25 

  R3 90.55 92.68  2.35 2.13 

 MT3 R1 97.29 97.04  0.26 0.25 

  R2 84.8 93.48  10.24 8.68 

  R3 91.48 97.03  6.07 5.55 

 MT4 R1 89.24 88.32  1.03 0.92 

  R2 89.74 87.41  2.60 2.33 

  R3 87.79 93.49  6.49 5.7 

Day 5 MT1 R1 98.03 93.67  4.45 4.36 

  R2 93.69 86.25  7.94 7.44 

  R3 93.89 98.2  4.59 4.31 

 MT2 R1 93.86 91.41  2.61 2.45 

  R2 85.3 86.09  0.93 0.79 

  R3 93.95 89.95  4.26 4 

 Ø  92.09 92.67  5.47 4.94 

4.2. Segmentation 

The neural networks were trained on the images of one rat each, over the time of 

100,000 iterations. Thus, leaving the images of the other two rats for validation and testing. 

Throughout the training process, the weights of the neural network were saved periodi-

cally every 10,000 steps and validated on the validation set, as is shown in figure 11. The 

figure is split into three parts, showing the validation losses, intersection over union (IoU) 

for the detected bounding boxes and IoU of the segmentation masks for each of the three 

trained networks over time.  At the end of the training process the network-weights with 

the smallest validation loss were selected for the evaluation on the test set.  

 

Figure 11. Validation loss (a) and Intersection-over-Union (b,c) for the trained networks. Blue: Net-

work trained on R1, validated on R2, tested on R3. Green: Network trained on R2, validated on R1, 

tested on R2. Pink: Network trained on R3, validated on R1, tested on R2. 

Intersection over union is defined as the area of overlap divided by the area of union 

IoU = Aintersection/Aunion. Overall, the segmentation on the test data resulted in  an 

average IoU of 87.75% ± 5.04% for the segmentation masks and IoU of 82.52% ± 6.69% for 

the bounding boxes. Even though the networks were trained on different animals only 

small differences can be seen in the IoU scores. Table 2 shows the detailed results for the 

two IoUs, along with the subjective certainty score computed by the network, for all three 

rats, along with the average. 

Table 2. IoU-Segmentation-Algorithm: The table shows the results for all three trained networks, 

Rat-ID denotes the rat on which the evaluation is performed. N describes the number of images 

which were annotated for the corresponding rat and used for testing. IoU is the percentage of the 

intersection of both annotated and detected RoI. Once computed with the rectangle (IoU-Box) 

around the RoI and once with the pixelwise-mask of the segmented area (IoU-Mask). Certainty-

Score is the computed certainty that a rat was found in the segmented area. 

(a)                    (b)                     (c)             
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Rat-ID N IoU-Box [%] IoU-Mask [%] Certainty-Score [%] 

R1 637 82.27 ± 7.73 86.86 ± 6.18 99.84 ± 0.40 

R2 654 82.85 ± 6.01 88.28 ± 4.61 99.90 ± 0.26 

R3 659 82.42 ± 6.37 88.09 ± 4.39 99.80 ± 1.69 

Ø 650 82.52 ± 6.69 87.75 ± 5.04 99.85 ± 0.79 

4.3. Respiratory Rate 

In the left part of figure 12 the EDR (blue) can be seen together with the RR computed 

from RGB-videos (orange) for each measurement time point. In turn, the right part is 

showing the variation of the EDR and camera-based RR for each animal. In addition, table 

1 shows the RR for each video that was analyzed and average RR of the reference. As can 

be observed in the table, the relative error averaged 5.47% while the absolute error was 

4.95 breaths/min. 

 

Figure 12. EDR-Ref vs. camera-based RR: (a) RR over time for each MT and its variation as a boxplot. 

EDR-rate is shown in blue, while the orange curve is the camera-based RR. (b) Boxplot of all results 

grouped by animal and modularity. R1-EDR is the EDR-rate of R1 and R1-CAM is the camera-based 

RR for R1. 

5. Discussion 

The aim of this research paper is to assess the feasibility, and accuracy of monitoring 

RR in unrestrained, awake laboratory rats using visible imaging. This is of particular in-

terest considering that previous approaches have only been performed with sedated ani-

mals, which does not correspond to reality for most respiratory monitoring situations. 

The results confirm the successful performance of the segmentation and tracking al-

gorithm, it accurately identified the thorax and abdominal area as the RoI and effectively 

tracked them, achieving an IoU of the segmentation mask on average of 87.74%. Unfortu-

nately, due to the absence of enrichments in the open glass cage, image occlusion testing 

could not be carried out. However, based on the inherent nature of the algorithm, we have 

strong confidence in its ability to perform effectively even when the animal is occluded 

and reappears in the image. The respiratory waveforms were extracted by leveraging the 

cyclical changes in the size of the area of the RoI caused by the expansion and contraction 

of the thorax during the respiratory cycle. Despite the presence of challenging conditions, 

such as motion artifacts caused by the animal's movement in the cage, the RR could still 

be extracted with a high degree of accuracy from the videos, with the absolute error aver-

aging 4.95 breaths/min. Still, the error could be further minimized by reducing the overall 

coverage. In this work,  all available video sequences were used for RR estimation and 

evaluation. Therefore, the animal movement lead to movement artifacts and thus to 

higher errors between reference and RR computed from visual imaging. Additionally, 

ECG-derived RR rate is not the best ground truth as it is very prone to motion artifacts. 

Varon et al. [26] also reported that EDR is quite prone to errors by noisy ECG signals. This 

(a)                                       (b) 
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is caused by faulty peak detection propagating into the respiration signal. Nonetheless, 

alternative gold standard methods, such as respiratory belt transducers, require the ani-

mal to be restrained during the RR measurements. 

There are other studies in the literature that aimed to extract the respiratory wave-

form/RR from rats noninvasively. Wang et al. [27], Guan et al. [28] used humidity sensors 

to evaluate the RR of rodents, but both methods require the animal to be restrained. These 

studies primarily focus on describing the sensors themselves and the extracted respiratory 

waveform but lack comprehensive investigations and comparisons with a refer-

ence/ground truth. Esquivelzeta Rabell et al. [29] and Kurnikova et al. [30] used camera-

based methods to monitor respiration, namely thermal and visual imaging. In these stud-

ies, the focus was not on the RR itself, but rather on the waveform of the respiratory curve 

extracted from the temperature variation around the nostrils to analyze exploratory sniff-

ing. As a result, the parameter RR was not calculated further. The algorithms used re-

quired a close-up view of the animal's nostrils with minimal motion involved. In 2019, 

Kunczik et al.[8] extracted RR from six anesthetized laboratory rats. The results have 

demonstrated excellent algorithm performance, with a mean root-mean-square error of 

0.32 breaths/min. It is worth highlighting that the animals were under anesthesia during 

the study, and thus the influence of motion artifacts on the algorithm performance was 

not tested. In a study by Anishchenko et al. [31], RR of laboratory rats during sleep was 

remotely measured using a radar, webcam, and thermal camera. Yet, no reference for val-

idation purposes was acquired, which makes a direct comparison with the present ap-

proach unfeasible. 

While the tests in this study were conducted on rats, the algorithm developed can 

potentially be applied to other rodents such as mice and hamsters. Even though, retrain-

ing of the tracking algorithm would be necessary, along with minor adjustments, such as 

modifying the parameters of the temporal filter to adapt to the expected RR range of the 

specific animal species. 

In relation to the presented study there are some limitations that should be discussed 

as they may have influenced the results. First, the similar colors of animals and back-

ground (both white) might have impaired the algorithm and most probably decreased the 

overall accuracy, as the contrast between both is very low. Moreover, when considering 

the approach for denoising the respiration signal, it solely focuses on the general relative 

movements and does not consider movements such as scratching or sniffing during the 

denoising process, which could potentially affect the accuracy of the results. Inaccuracies 

of the tracking might have also contributed to more noise in the respiration signal and 

thus a smaller signal-to-noise ratio. To further enhance the results, a dynamic assessment 

of the exposure time setting for the camera depending on the illumination of the RoI could 

be beneficial. This assessment would involve adjusting the exposure time based on the 

RoI rather than the overall lighting environment. By tailoring the exposure time to the 

specific RoI, more accurate and precise measurements could be obtained, leading to im-

proved outcomes. Another possibility to improve the results, and thus the overall accu-

racy, would be to decrease the coverage of the algorithm, i.e., by considering only those 

videos sequences in the extraction where no movement is present. However, this would 

implicate that continuous monitoring would no longer be possible. . In this context, the 

question arises whether continuous monitoring is really indispensable in laboratory re-

search or whether fewer measurements, for example one measurement per hour, would 

be sufficient. Obtaining a short video sequence (e.g., 10-20 seconds) of motionless animals 

could potentially be adequate for this purpose. This could potentially minimize the mon-

itoring burden while still providing sufficient data for analysis, depending on the specific 

research objectives and requirements. Further investigation and validation would be nec-

essary to determine the optimal frequency and duration of measurements for the specific 

research context. Another potential limitation is that the current segmentation algorithm 

is not real-time capable, but this could be improved with a different architecture. If 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 31 May 2023                   doi:10.20944/preprints202305.2250.v1

https://doi.org/10.20944/preprints202305.2250.v1


 13 of 15 
 

continuous monitoring is not necessary, then the algorithm does not necessarily need to 

be real-time capable. 

Overall, the proposed algorithm can evaluate RR of unconstrained rodents properly. 

Further studies will focus, on the application of the developed methods in a home cage 

scenario, to assess the feasibility of continuous long-term monitoring and the robustness 

over a wider range of respiratory rates. 

6. Conclusions 

Until today it was not possible to replace animal research entirely in medical and 

biological science. Therefore, the need for further refinement of the experiments is signif-

icant. Vitals signs like the respiratory rate are mostly monitored by using ECG-implants. 

Until now camera-based methods only allow monitoring the respiratory rate in anesthe-

tized, thus a new method was proposed for unconstrained and moving animals. The res-

piratory rate is analyzed by looking cyclical expansion and contraction of the rats’ 

thorax/abdominal region. Compared to the EDR a relative error of 5.47% could be 

achieved, while the IoU of the segmentation mask of the thorax region averaged to 87.74%. 

Improvements and further experiments are still needed to evaluate the performance 

of the algorithm when animals are occluded, furthermore a higher range of respiratory 

rates is needed to evaluate the robustness of this approach. This could enable a fully au-

tomatic camera-based monitoring of rodents, reducing the need of implanted transmitters 

and thereby surgeries in animal experiments. 
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Appendix A 

Network Parameters. Table of parameters changed from default parameters in Detectron2 RGB-

model 

Parameter Value Description 

INPUT.MIN SIZE TRAIN (480,512,544,576,608,640) Size of short edge for re-

scale 

INPUT.MIN SIZE TEST (480) Size of short edge for Re-

scale 

SOLVER.IMS PER BATCH 8 Batch size 

SOLVER.BASE LR 0.0001 Learning rate 

SOLVER.MAX ITER 100,000 Number of training itera-

tions  
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Appendix B 

Image Augmentations. Table of applied image augmentations in Detectron2 
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