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Abstract: In principle, modular or integral character of manufacturing lines depends on topological 

designs of products and determined operation tasks. On the other hand, in specific situations there 

is an articulated need for modular design in smart manufacturing systems, since modular layouts 

are a crucial step towards agile production via smart manufacturing. The aim of this paper is to 

explore how the modular layout relates to manufacturing lead time (MLT) and to operational 

complexity of smart manufacturing systems. For this purpose, topologically different models of 

alternative process layouts were simulated and tested, while MLT values were obtained using 

Tecnomatix Plant Simulation. Obtained positive findings of this research could be useful not only 

in selection of the most suitable process design from the alternative ones, but especially in deepening 

knowledge and better understanding of the concept of optimal network modularity. 
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1. Introduction 

The idea of modularity is widely discussed and analyzed in diverse fields, e.g., in computer 

science, in neurophysiology, in evolutionary biology, in smart manufacturing systems, etc. It is due 

to the fact that modularity creates system information on different levels to support Industry 4.0 or 

smart manufacturing in a sustainable way [1]. In relation to manufacturing systems, modularity is 

considered as an effective approach, e.g., to minimize production costs [2], to increase flexibility of 

smart manufacturing systems [3], and to improve readiness for mass customization [4]. Therefore, 

modularity is seen as a tool that improves the productivity and efficiency of manufacturing processes. 

Especially in recent years, with the increasing importance of mass customization, modularity has 

become a popular topic in product and process development, since implementation of its principles 

[5] helps companies in organizing complex products and processes. In addition, process modularity 

allows to shorten cycle times, e.g., by organizing production as a modular consortium, the concept 

that was established in automotive industry since 1996 [6 - 8]. In this context, this study aims to 

explore the relation between process modularity and manufacturing lead time; and between process 

modularity and process complexity. The main goal of this research is focused on the following two 

research questions (RQs): 

 

RQ 1: To what extent more modular process affects manufacturing lead time?  

RQ 2: How more modular process affects the process complexity? 

 

This article is organized in the following manner. Firstly, the related works are briefly described 

in the second section. Thereafter, the methodological framework describes the steps of the proposed 

approach. Subsequently, the selection of relevant indicators is provided together with demonstration 

of their application on a simple process example. Then, theoretical representative process models and 

realistic case study are introduced and used to explore the relationship between optimal modularity 
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(OM) and MLT; and between OM and operational complexity of manufacturing processes. Finally, 

obtained results are summarized, and answers to the above mentioned research questions are 

provided. 

2. Related Works 

Modular approaches are increasingly being used as an integral part of design methods, as many 

systems, including products and processes, evolve toward increasing modularity [9]. Hölttä-Otto and 

Salonen [10] classify modular design methods into Design Structure Matrix (DSM), Modular Function 

Deployment (MFD), and Function Structure Heuristics (FSH). DSM methods aims to structurally 

describe system elements to cluster them into modules [11]. MFD approach consists of five stages 

that are aptly characterized, e.g., in work of Brunoe et al. [12]. FSH techniques developed by Stone et 

al. [13] include three strategies aimed for identifying modules for product architectures at the 

functional level.  

Modularity a system property can be studied from many diverse perspectives. In contrast to 

specific views on modularity, generic insights attract more attention. One of them is that tweaking 

this system property can be seen as possible way in the course of system evolution as it slows its 

atrophy [14], but this effort shouldn't be endless and ineffectual. The effectiveness of such an effort 

also depends on the appropriateness of the modularity metrics used. There are several possible 

approaches how to evaluate product and process modularity as a relative measure of the degree of 

granularity, i.e. the level of detailization of the system element before or after its decomposition [15]. 

In other words, relative modularity can be defined as 'a measure quantifying the tendency of the 

network to be organized in network modules [16]. Such metrics (see, e.g., [17 - 20]) are used to 

compare this property among multiple designs. Several independent authors pointed out in their 

works [21 - 25] that over-modularization is as undesirable as un-der-modularization. They came to 

this conclusion by assessing advantages and disadvantages of these two contradictory solutions. 

Vanderfeesten et al. [26] stated that low system modularity in general can cause higher number of 

unwanted effects than the same system of high modularity. Moreover, in case of under-

modularization, there are difficulties to maintain the large system elements or modules. On the other 

hand, disadvantage of over-modularization is a large number of linkages that need to be manage. A 

possible solution to overcome this issue is to identify accurate level of system granularity by an exact 

formula for quantifying this measure. According to Efatmaneshnik and Ryan [27], OM can be 

achieved 'through balanced modularization as structural symmetry in the distribution of the sizes of 

modules'. Kashkoush and ElMaraghy [28] proposed the optimal product modularity measure to 

obtain a product structure tree which ensures OM at all hierarchical levels. Talking about optimal 

modularity, it is important to mention well-known optimal network modularity indicator developed 

by Newman and Girvan [29], whose formula is described in section 4 of this paper.    

The process modularity issues are often investigated in the context of process complexity (see, 

e.g., works of [30 –32]). Process modularity is considered as the degree to which a system is composed 

of relatively independent interacting elements encapsulated into modules that can be combined in 

variations to provide different functions [33]. Process complexity can be defined as the degree to 

which a process is complicated to analyze, study or understand [34]. It's apparent that both, process 

modularity and process complexity are important inherent system properties. It is also known that 

process modularity is primarily used to reduce its complexity by decomposing process into modules, 

as they are easier to manage as a whole [35]. The related problems were explored, e.g., in work [36], 

where authors identified a strong negative correlation between complexity and system modularity, 

and it confirms that lower complexity implies higher modularity. Although literature offers many 

complexity measures/indicators focused on product and process complexity (see, e.g., works of [37 - 

41]), they are mostly usable for specific tasks. Bonchev and Buck [42] proposed several effective 

complexity measures which combines the adjacency and distance matrix of the network. Their 

methods are devoted to measure topological complexity and are easily applicable also in 

manufacturing process domain. Authors of the work [43] developed two practically oriented 

complexity indicators to assess assembly supply chain networks. It is also worth to mention a generic 
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static complexity measure that is easily employed in manufacturing systems environment [44]. Input 

variables for this complexity measure need to be extracted from production orders and scheduling 

tasks. Moreover, there are several works which are focused on exploration of positive modularity 

impact on manufacturing lead time, e.g., [45 - 49]. 

3. Methodological Framework 

In order to verify the working assumption that process modularity could positively impact on 

MLT and complexity of assembly process structures, the following methodical phases shown in 

Figure 1 will be applied. 

Selection of the 

indicators to measure 

process modularity

Selection of the 

indicators to measure 

process complexity

Testing of the indicators using theoretical 

models and analysis of the results

Formulation of research 

questions

Conclussions

Section 1

Application of the indicators on real 

process models and analysis of the results

Section 6

Section 7

Section 8

CMI
Qd

  M(G) 

Hs1

Hs2

MFC
PCI  

Sub-section 4.1 Sub-section 4.2
SMI

 

Figure 1. Applied methodological framework. 

4. Potential Indicators to Measure Process Modularity and Process Complexity 

In this section, several indicators to measure process modularity and process complexity are 

described. Subsequently, the most suitable indicators for the mentioned the two system properties 

will be chosen. 

4.1. Description of the Indicators to Measure Process Modularity 

The four process modularity indices were considered for the given purposes. The first of them 

is called Singular Value Modularity Index (SMI). Although this measure was originally intended to 

enumerate the degree of product modularity, it is also applicable to measure process modularity. 

This index enumerates the degree of system modularity by employing singular value decomposition 

on the design structure matrix. For the given purpose the following equation was proposed [50]: 

𝑆𝑀𝐼(Σ𝐷𝑆𝑀) = 1 −
1

𝑁∙𝜎1
∑ 𝜎1(𝜎1 − 𝜎𝑖+1)𝑁−1

𝑖=1 , (1) 

where N represents the number of system components; σi means singular value, where i = 1, 2, …, N-

1. 

The SMI measure can reach values between zero to one, while values closer to zero means a minimum 

degree of modularity, and vice versa. 

The second indicator, the cross-module independence (CMI), calculates the ratio of the sum of 

relations inside all modules to the sum of all relations, and is expressed by the following equation 

[51]: 

𝐶𝑀𝐼 = 1 − ∑
𝑅𝑖𝑛𝑡

𝑇

𝑛
𝑖𝑛𝑡=1 , (2) 

where n stands for the number of modules, while int = 1, 2, … , n; R represents the number of inside 

connections; and T is the number of all linkages in a network.  
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Third one – optimal modularity indicator Qd, proposed by Newman and Girvan [29] can be also 

used to identify optimal process structure from a set of alternative ones. This index is quantified by 

using equation: 

𝑄𝑑 = ∑ (
𝑙𝑠

𝐿
−

𝑤𝑠𝑜𝑢𝑡 ∙ 𝑤𝑠𝑖𝑛

𝐿2 )𝑛
𝑠=1 , (3) 

where n indicates the number of modules, L represents the sum of all edges in a network, ls is the 

sum of internal edges in module s, wsout is the number of output edges in module s, and wsin stands 

for the number of input edges in module s. 

The last considered indicator named as the optimal modularity indicator M(G) is aimed to 

measure the OM of process structures. This indicator is expressed as follows [52]: 

𝑀(𝐺) =
𝑛

∑(𝑁𝑗 · ln 𝑁𝑗)
, (4) 

where n is the number of modules in a network, Nj is the number of couplings extracted from 

columns of related visibility matrix, j = 1,…, K, while K is the number of columns in a related design 

matrix (see an example in Figure 3). 

Principally, all the mention modularity indicators are more or less suitable for exploration of the 

relationships. However, it is possible to identify relevant differences in their sensitivity to recognize 

slight topological nuances when comparing similar process structures. These differences were 

already studied in our previous work [52], where the indicator M(G) was prioritized against the 

concurrent ones. Therefor it will be used for intended purpose in this study.   

4.2. Description of the Indicators to Measure Process Complexity 

The four complexity indicators are assumed below for the purpose to select the most suitable 

one from them.   

Deshmukh et al. [44] developed a formula to measure the complexity of manufacturing systems 

that is expressed as follows: 

nrmH s

2

1
log= , (5) 

where n is the number of parts, m is the number of operations, while r is the number of machines. 

The second indicator is based on the concept of Shannon’s information entropy and it is 

formulated through the following equation [53]: 


= =

−=
M

j

S

i

ijijs ppH
1 1

22 log , (6) 

where M is the number of machines, S stands for the number of possible planned states of the machine 

j can be in, pij is probability that the machine j is in state i. 

The third one, so-called modified flow complexity (MFC) indicator enumerates all tiers, nodes, 

and links weighted with determined α, β, and γ coefficients. This indicator is enumerated using 

formula [54]: 

𝑀𝐹𝐶 = α ∙ T +  β ∙ N + γ ∙ L, (7) 

where α is multi-tier coefficient (α ≥ 0), β reflects network nodes (β ≥ 0), γ is manufacturing network 

links coefficient (γ ≥ 0); N is the number of nodes; L is number of links; and T is the number of tiers. 

The forth indicator is devoted to measure operational complexity of manufacturing systems. 

This indicator is calculated using the following equation [55]: 


===

−=
O

k

P

j

M

i

ppPCI
1

ijk2ijk

11

log , (8) 

where pijk is probability that part j is being proceeded due to operation k by individual machine i 

according to scheduling order, O is the number of operations, P means the number of parts produced 

in manufacturing process, M is the number of all machines in manufacturing process. 
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Based on the recent comparisons of the alternative complexity measures [54], indicator PCI was 

selected for measuring the operational process complexity. 

5. Procedures to Calculate Modularity, Complexity and MLT 

To show application procedures for using the selected indicators (M(G), PCI), and MLT, the 

following two sub-sections provide simple demonstrations, how it works.     

5.1. Procedures for M(G) and PCI 

Firstly, let us have a model of manufacturing process, in which parts P1, P2 and P3 are processed 

by machines M1, M2, M3, M4, M5, M6 and M7, and scheduled as it is depicted in Figure 2. 

M1 M2 M6 M7M3

M4

M5

P1
P1

P1 P1
P1

P1

P2

P2
P2

P2 P2

P3P3

P3

P3 P3

P3

 

Figure 2. A model of manufacturing process producing parts P1, P2 and P3. 

When applying M(G) indicator, at first, it is needed to create visibility matrix of the given process 

model (see in Figure 3) to obtain Nj values. 

 

Figure 3. Visibility matrix of the manufacturing process. 

Then, process modularity is quantified using equation (4) as follows: 

𝑀(𝐺) =
7

2 ·  ln 2 + 3 ·  ln 3 + 5 ·  ln 5 + 4 ·  ln 4 + 5 ·  ln 5 + 8 ·  ln 8 + 8 ·  ln 8  

= 0,118. 

 

The procedure is repeated for all alternative structure models. Then, the model with the highest 

M(G) value represents the optimal manufacturing process structure among concurrent ones from the 

modularity point of view.   

In order to apply of PCI indicator, at first, it is necessary to enumerate partial complexities of the 

machines. Then, their sum represents the overall complexity of the process. Let us demonstrate 

enumeration of partial complexity for machine M1 by applying formula (8). This machine is 

processing two parts (P1 and P3), and therefore the partial complexity of M1 has to be enumerate in 

this way: 

𝑃𝐶𝐼𝑀1 =  𝑝11 log2 𝑝11 + 𝑝13 log2 𝑝13 =
1

5
log2

1

5
+

1

5
log2

1

5
= 0,928 𝑏𝑖𝑡𝑠,  

where, e.g., p11 is probability that part P1 is just being proceeded by machine M1. It needs to be 

noticed that when this part is processed on machines in serial manner, then p11 equals 1/5, because 

number of machines in serial connection equals five.  

The partial complexities can be enumerated in the two ways as shown in Figure 4. Due to this 

fact, it is possible to create graph of complexity distributions, where the resulting cumulated 

P1 P2 P3 M1 M2 M3 M4 M5 M6 M7

P1 1 1 1 1 1

P2 1 1 1 1

P3 1 1 1 1 1

M1 1 1 1 1 1 1

M2 1 1 1 1 1

M3 1 1 1 1

M4 1 1 1

M5 1 1

M6 1

M7

Nj 0 0 0 2 3 5 4 5 8 8
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complexities are the same for both the views. It can be easily proved that PCI value for the given 

process model is 7,04 bits.  
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Example Machines

Part Operations M1 M2 M3 M4 M5 M6 M7

O1 0,2 0,464

O2 0,2 0,464

O3 0,2 0,464

O4 0,1 0,1 0,664

O5 0,2 0,464

MCI(bits) 0,464 0,464 0,464 0,332 0,332 0,464 2,52

Part Operations M1 M2 M3 M4 M5 M6 M7
Parts complexity 

(bits)
O1 0,25 0,5

O2 0,25 0,5

O3 0,25 0,5

O4 0,25 0,5

MCI(bits) 0,5 0,5 0,5 0,5 2

Part Operations M1 M2 M3 M4 M5 M6 M7
Parts complexity 

(bits)

O1 0,2 0,464

O2 0,2 0,464

O3 0,1 0,1 0,664

O4 0,2 0,464

O5 0,2 0,464

MCI(bits) 0,464 0,464 0,332 0,332 0,464 0,464 2,52

0,928 0,964 1,428 0,664 0,664 1,428 0,964 7,04

Probabilities

P1

P2

Overal complexity (bits)

Parts complexity 

(bits)

P3

a) b)  

Figure 4. a) Probabilities (pijk) and related complexity values; b) Partial complexities from the machine 

view and part view, and cumulated complexities of machines and parts production. 

5.2. Procedure to Enumerate MLT 

In order to generate MLT values, simulation software was employed. Manufacturing lead time 

is defined as the total time required to process a product through the plant, and its formal definition 

was given by Groover [56]: 

𝑀𝐿𝑇𝑗 = ∑ (
𝑛𝑜𝑗

𝑖=1
𝑇𝑠𝑢𝑖𝑗+𝑄𝑗 ∗ 𝑇𝑐𝑖𝑗 + 𝑇𝑡𝑖𝑗), (9) 

where j stands for part number or product number; Tsuij is setup time for operation i on part or 

product j; Qj is quantity of part or product j in the batch being processed; Tcij is cycle time for operation 

i on part or product j; Ttij is transport time associated with operation i, where i indicates the operation 

sequence in the processing, i = 1, 2, …, noj.   

Moreover, it is needed to know set-up times, processing cycle times and transport times. The 

allocated setup time is three seconds, and processing cycle time equals one minute for all seven 

machines. Transport times are assigned based on the distance between the machines. Specifically, 

five seconds are assigned between two machines located next to each other (e.g. M1 to M2); and ten 

seconds are set up between machines located not close to each other (e.g. M1 and M3). Obtained total 

MLT for all the parts using simulation software is 6 minutes and 53 seconds (see Figure 5). 

 

Figure 5. Print screen of the selected process model from Tecnomatix Plant Simulation. 
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6. Testing and Analysis of the Indicators through Theoretical Process Models 

For this purpose, process models from work by Latva-Koivisto [57] who explored complexity of 

six Kaimann's process graphs [58] were used for the theoretical experiment. It is assumed that 100 

parts are produced on 22 machines (see Figure 6). In addition, set-up times, processing cycle times 

and transport times were assigned. The allocated set-up time was two seconds, and processing cycle 

time was one minute for all the 22 machines. Transport times were assigned based on the distance 

between the machines. Five seconds between two machines located next to each other (e.g. M2 to 

M3); ten seconds between machines, e.g., M2 and M9; and 15 second between machines that are 

located further away from each other (e.g. M2 and M15). 

M1P

M2 M3 M7 M8
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M4 M5 M6

M10 M11 M12
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M22 P
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M2 M3 M7 M8
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M9 M13 M14
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M2 M3 M7 M8

M9 M13 M14

M15 M19

M4 M5 M6

M10 M11 M12

M16 M17 M18 M20 M21

M22 P

 

Figure 6. Theoretical process models. 

Process modularity and complexity values were enumerated using equations (4) and (8), while 

MLT values were obtained using the simulation tool. The obtained values are summarized in Table 

1. 

Table 1. Obtained results for all the six graphs. 

Indicators Graph 1 Graph 2 Graph 3 Graph 4 Graph 5 Graph 6 

M(G) 0,073 0,063 0,055 0,049 0,046 0,033 

MLT (min) 109,05 109,1167 109,117 111 112 114,5 

PCI (bits) 9,15 9,72 10,13 10,5 11,16 12,5 

 

Following the obtained results, one can see when comparing process modularity and MLT, that 

process modularity of Graph 1 is the highest while its MLT is the shortest. Process modularity of the 

remaining graphs has the same tendency in relation to MLT values. Then, it is possible to state from 

these summarized results, that modularity values are in relation with MLT values - as the modularity 

increases, MLT decreases, and vice versa. When comparing process modularity in relation to 

operational complexity, it can be seen that Graph 1 has the lowest complexity, while its process 

modularity is the highest. The rest of graphs report the same tendency, and it can be said that OM 

positively impacts on operational complexity of manufacturing systems.  

To answer research questions mentioned in the introduction section and to confirm the positive 

impact of process modularity on MLT and process complexity, the two methods are further 

employed to find to what extent the OM effects on MLT, and how modularity influences the process 

complexity of manufacturing systems.  

As first, the Spearman correlation analysis was used to test these relationships. Spearman 

correlation coefficient rated using known scale [59] between OM and manufacturing lead time; and 
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between OM and process complexity equals - 0,91 and – 0,98, respectively. Based on these results, it 

means that there are very strong relationships.  

Then, the sensitivity index ”I” is used to assess sensitivity between the M(G) and MLT values, 

as well as between M(G) and PCI values. For this purpose, the following formula will be applied [60].   

𝐼 =
(𝑦2−𝑦1)/𝑦0

2∙∆𝑥/𝑥0
, (10) 

where y0 is the model output calculated with an initial value x0 of the parameter x; x1 = x0 - ∆x and x2 

= x0 + ∆x with corresponding values y1 and y2.  

Sensitivity values are ranked into four classes, small to negligible sensitivity (0 ≤ |I | ˂ 0,05); 

medium sensitivity (0,05 ≤ |I | ˂ 0,20); high sensitivity (0,20 ≤ |I | ˂ 1); very high sensitivity (|I | ≥ 1). 

By applying formula (10) for all the six process structures, the following values are obtained: I = 

- 7,37 between M(G) and MLT, and I = - 1,55 between M(G) and PCI. Based on the obtained results, it 

can be said that in the both relationships there are very high sensitivities.  

These two relationships will be also tested on the realistic case study in the next section. 

7. Case Study 

The case study is focused on production of the bicycle frames consisting of 11 parts (P) machined 

on the 37 machines (M). Five manufacturing process alternatives are compared, where one of them 

consists of two production lines (PLs), the two of them are created from three production lines, one 

alternative consists of four PLs, and the last one produces the products through six production lines. 

First-in-first-out scheduling algorithm is used for this purpose. 

Sequence of machines and their operational times are shown in the following Table 2. 

Table 2. Sequence of machines for five process design alternatives. 

Part number Sequence of machines with their operational times in seconds 

P1 
L1(30) - L2(30) - TH2(35) - N(6) - W7 (15) - W8(40) - W9(40) - W10(103) - 

M5(30) 109,05 

P2 
L1(30) - L2(30) - TH2(35) - P5(10) - N(6) - W7(15) -  W8(40) - W9(40) - 

W10(103) - M5(30) 

P3 S1(32) - TH1(24) - P2(15) - P3(24) - W4(43) 

P4 S2(8) - P6(20) - W5(64) - M1(9) - W6(78) - W10(103) -M5(30) 

P5 S1(32) - P1(24) - W1(26) - W2(23) - W3(43) - W4(43) - P4(15) 

P6 S1(32) - P1(24) - W1(26) - W2(23) - W3(43) - W4(43) 

P7 S1(32) - C(38) - P1(24) - W1(26) - W2(23) - W3(43) -  W4(43) - P4(15) 

P8 S4(12) - P8(10) - M3(20) - W7(15) - W8(40) - W9(40) -  W10(103) - M5(30) 

P9 S3(12) - M2(20) - P7(10) 

P10 S4(12) - M4(20) - D1(14) - R(12) - D2(14) 

P11 S3(12) - P9(10) - W9(40) - W10(103) - M5(30) 

 

To identify MLT values by simulation tool, set-up times and transport times will be also 

assumed. Set-up time equals 10 seconds for all the machines. Transport times between all the 

machines located next to each other will be the same (5 seconds). The rest of transport times are 

assigned by simulation tool based on the distance between machines (see Table 3). 
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Table 3. Transport times in seconds for all the three process design alternatives. 

From-to-  station Alt. 1 Alt. 2 Alt. 3 Alt. 4 Alt. 5 

W6 - W10 53 41 36 46 41 

P9 – W9 57 46 46 50 41 

D2 – W8 35 23 23 23 4 

M3 – W7 37 25 25 25 21 

N - W7 - - - - 20 

 

7.1. Description of Process Structures 

Process design alternative ”A” (see Figure 7a) consist of 37 machines divided into two PLs. Parts 

P3 – P11 pass through the first production line, while parts P4, P8, P10 and P11 are finalized in the 

second one. Parts P1 and P2 are produced only in the second line. 
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Figure 7. Process design alternatives A and B. 

Process design alternative ”B” (see Figure 7b) contains three PLs. Parts P4, P8, P9, P10 and P11 

pass through the first PL, while parts P4, P8, P10 and P11 are finalized in the second PL. Parts P1 and 

P2 are produced in the second PL and remaining parts are processed in PL #3.  

Process design alternative ”C” (see Figure 8a) is divided also into three PLs. The first production 

line processes parts P8, P9, P10 and P11, but parts P8, P10 and P11 are finalized in the second PL 

together with parts P1 and P2. Parts P3-P7 pass through the last production line #3. 
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Figure 8. Process design alternatives C, D and E. 

Process design alternative ”D” (see Figure 8b) consists of four production lines. Parts P4, P9 and 

P11 are processed in the first one PL, while parts P4 and P11 are finally processed in the second PL 

together with parts P8 and P10, which are finalized in the next line together with P1 and P2. Parts P3, 

P5, P6 and P7 pass through the fourth production line. 

Process design alternative ”E” (see Figure 8c) contains six production lines. Part P4 passes firstly 

through the first line and then, it is finalized in the fifth PL. Parts P9 and P11 are processed in the 

second PL, but P11 is finalized in the fifth PL. Parts 8 and P10 are firstly produced in the third PL, but 

they are finalized also in the fifth PL. Parts P1 and P2 pass firstly through the fourth PL and they are 

finalized in the last PL. Parts P3, P5, P6 and P7 are processed only in the last production line. 

7.2. Analysis of Results 

All the five process structures were assessed using above introduced optimal modularity 

indicator M(G) and operational complexity indicator PCI and also tested through simulation software 

to obtain MLT values. Obtained results for all the alternatives are depicted in Table 4. 

Table 4. Obtained results for all the five process design alternatives. 

Indicators Alt. A Alt. B Alt. C Alt. D Alt. E 

M(G) 0,00079 0,00127 0,00126 0,00165 0,00244 

MLT(min) 13,25 13,07 13,07 13,13 12,98 

PCI(bits) 51,7 46,8 47,8 44,4 44,08 

 

When comparing process modularity values and MLT values, it is possible to state that there is 

the following relationship. If the modularity increases, then MLT decreases, and vice versa. When 

comparing process modularity in relation to operational complexity, it can be seen that Alt. ”E” has 

the lowest complexity, while its process modularity is the highest. The rest of process models are 

subject to the same tendency and it can be said that OM positively impacts on operational complexity 

of manufacturing systems.  
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To confirm or deny the previous statements (from Section 6) to the RQs, the Spearman 

correlation analysis and the sensitivity analysis were applied.  

The Spearman correlation analysis confirmed very strong negative relationships (ρ = - 0,82) 

between M(G) and MLT values, and between M(G) and PCI values as ρ = - 0,87.  

Sensitivity index between M(G) and MLT enumerated using equation (10) equals – 47,17; and 

between M(G) and PCI values is - 6,13. Based on the obtained results, it can be said that there is very 

high sensitivity between these two relationships. 

8. Conclusion 

When exploring specific practical modularity problems, it seems to be useful to stress that the 

first important task is to select appropriate method(s) to assess this system attribute. For the purpose 

of this study, the optimal modularity indicator M(G) has been applied along with the operational 

complexity indicator (PCI) and MLT indicator. The second precondition to deal with this issue is to 

take adequate process models to carry out experiments. We tried to fulfill these two conditions 

consistently. 

As the purpose of this study is linked to the research questions presented in the introduction 

section, we provide the following summarized answers to them, although partially it was done in 

sections 6 and 7: 

- Answer to RQ 1: Considering the achieved results presented in sections six and seven, one can 

state that process structure modularity positively affects the manufacturing lead time in this sense 

that if manufacturing process modularity increases, then MLT decreases, what was proved in both 

the testing cases.  

The answer to the question regarding to what extent modularity can impact MLT, it is 

purposeful to quantify percentage change of MLT caused due to modularity using the both 

simulation experiments. Then, one can easily find that difference of MLT between less and more 

modular manufacturing process is: 4,8 % in case of theoretical process models, 2% in case of real 

process models.   

- Answer to RQ 2: Taking into account the obtained results from the experiments, it can be stated 

that process structure modularity positively affects the complexity of manufacturing processes, so 

that if manufacturing process modularity in-creases, then process complexity decreases. These 

rigorously obtained results prove the statement that the concept of modularity is purpose-built to 

reduce complexity by breaking a system into varying degrees of interdependence [61].     

Finally, potential future research directions could be directed to explore the influence of process 

modularity on smart mass customization assembly systems with the aim to validate presented 

findings with a higher degree of generality. 
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