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Abstract: In principle, modular or integral character of manufacturing lines depends on topological
designs of products and determined operation tasks. On the other hand, in specific situations there
is an articulated need for modular design in smart manufacturing systems, since modular layouts
are a crucial step towards agile production via smart manufacturing. The aim of this paper is to
explore how the modular layout relates to manufacturing lead time (MLT) and to operational
complexity of smart manufacturing systems. For this purpose, topologically different models of
alternative process layouts were simulated and tested, while MLT values were obtained using
Tecnomatix Plant Simulation. Obtained positive findings of this research could be useful not only
in selection of the most suitable process design from the alternative ones, but especially in deepening
knowledge and better understanding of the concept of optimal network modularity.
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1. Introduction

The idea of modularity is widely discussed and analyzed in diverse fields, e.g., in computer
science, in neurophysiology, in evolutionary biology, in smart manufacturing systems, etc. It is due
to the fact that modularity creates system information on different levels to support Industry 4.0 or
smart manufacturing in a sustainable way [1]. In relation to manufacturing systems, modularity is
considered as an effective approach, e.g., to minimize production costs [2], to increase flexibility of
smart manufacturing systems [3], and to improve readiness for mass customization [4]. Therefore,
modularity is seen as a tool that improves the productivity and efficiency of manufacturing processes.
Especially in recent years, with the increasing importance of mass customization, modularity has
become a popular topic in product and process development, since implementation of its principles
[5] helps companies in organizing complex products and processes. In addition, process modularity
allows to shorten cycle times, e.g., by organizing production as a modular consortium, the concept
that was established in automotive industry since 1996 [6 - 8]. In this context, this study aims to
explore the relation between process modularity and manufacturing lead time; and between process
modularity and process complexity. The main goal of this research is focused on the following two
research questions (RQs):

RQ 1: To what extent more modular process affects manufacturing lead time?
RQ 2: How more modular process affects the process complexity?

This article is organized in the following manner. Firstly, the related works are briefly described
in the second section. Thereafter, the methodological framework describes the steps of the proposed
approach. Subsequently, the selection of relevant indicators is provided together with demonstration
of their application on a simple process example. Then, theoretical representative process models and
realistic case study are introduced and used to explore the relationship between optimal modularity
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(OM) and MLT; and between OM and operational complexity of manufacturing processes. Finally,
obtained results are summarized, and answers to the above mentioned research questions are
provided.

2. Related Works

Modular approaches are increasingly being used as an integral part of design methods, as many
systems, including products and processes, evolve toward increasing modularity [9]. H61tta-Otto and
Salonen [10] classify modular design methods into Design Structure Matrix (DSM), Modular Function
Deployment (MFD), and Function Structure Heuristics (FSH). DSM methods aims to structurally
describe system elements to cluster them into modules [11]. MFD approach consists of five stages
that are aptly characterized, e.g., in work of Brunoe et al. [12]. FSH techniques developed by Stone et
al. [13] include three strategies aimed for identifying modules for product architectures at the
functional level.

Modularity a system property can be studied from many diverse perspectives. In contrast to
specific views on modularity, generic insights attract more attention. One of them is that tweaking
this system property can be seen as possible way in the course of system evolution as it slows its
atrophy [14], but this effort shouldn't be endless and ineffectual. The effectiveness of such an effort
also depends on the appropriateness of the modularity metrics used. There are several possible
approaches how to evaluate product and process modularity as a relative measure of the degree of
granularity, i.e. the level of detailization of the system element before or after its decomposition [15].
In other words, relative modularity can be defined as 'a measure quantifying the tendency of the
network to be organized in network modules [16]. Such metrics (see, e.g., [17 - 20]) are used to
compare this property among multiple designs. Several independent authors pointed out in their
works [21 - 25] that over-modularization is as undesirable as un-der-modularization. They came to
this conclusion by assessing advantages and disadvantages of these two contradictory solutions.
Vanderfeesten et al. [26] stated that low system modularity in general can cause higher number of
unwanted effects than the same system of high modularity. Moreover, in case of under-
modularization, there are difficulties to maintain the large system elements or modules. On the other
hand, disadvantage of over-modularization is a large number of linkages that need to be manage. A
possible solution to overcome this issue is to identify accurate level of system granularity by an exact
formula for quantifying this measure. According to Efatmaneshnik and Ryan [27], OM can be
achieved 'through balanced modularization as structural symmetry in the distribution of the sizes of
modules'. Kashkoush and ElMaraghy [28] proposed the optimal product modularity measure to
obtain a product structure tree which ensures OM at all hierarchical levels. Talking about optimal
modularity, it is important to mention well-known optimal network modularity indicator developed
by Newman and Girvan [29], whose formula is described in section 4 of this paper.

The process modularity issues are often investigated in the context of process complexity (see,
e.g., works of [30 —-32]). Process modularity is considered as the degree to which a system is composed
of relatively independent interacting elements encapsulated into modules that can be combined in
variations to provide different functions [33]. Process complexity can be defined as the degree to
which a process is complicated to analyze, study or understand [34]. It's apparent that both, process
modularity and process complexity are important inherent system properties. It is also known that
process modularity is primarily used to reduce its complexity by decomposing process into modules,
as they are easier to manage as a whole [35]. The related problems were explored, e.g., in work [36],
where authors identified a strong negative correlation between complexity and system modularity,
and it confirms that lower complexity implies higher modularity. Although literature offers many
complexity measures/indicators focused on product and process complexity (see, e.g., works of [37 -
41]), they are mostly usable for specific tasks. Bonchev and Buck [42] proposed several effective
complexity measures which combines the adjacency and distance matrix of the network. Their
methods are devoted to measure topological complexity and are easily applicable also in
manufacturing process domain. Authors of the work [43] developed two practically oriented
complexity indicators to assess assembly supply chain networks. It is also worth to mention a generic
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static complexity measure that is easily employed in manufacturing systems environment [44]. Input
variables for this complexity measure need to be extracted from production orders and scheduling
tasks. Moreover, there are several works which are focused on exploration of positive modularity
impact on manufacturing lead time, e.g., [45 - 49].

3. Methodological Framework

In order to verify the working assumption that process modularity could positively impact on
MLT and complexity of assembly process structures, the following methodical phases shown in

Figure 1 will be applied.
Section 1
Formulation of research
questions
SMI Sub-section 4.1{ + Sub-section 4.2
CMI Selection of the Selection of the Hs,
Qd indicators to measure indicators to measure < Hs,
v M(G) process modularity process complexity I\SE?\/
I
+ Section 6

Testing of the indicators using theoretical
models and analysis of the results

¢ Section 7
Application of the indicators on real
process models and analysis of the results

/ Conclussions

Figure 1. Applied methodological framework.

Section 8

4. Potential Indicators to Measure Process Modularity and Process Complexity

In this section, several indicators to measure process modularity and process complexity are
described. Subsequently, the most suitable indicators for the mentioned the two system properties
will be chosen.

4.1. Description of the Indicators to Measure Process Modularity

The four process modularity indices were considered for the given purposes. The first of them
is called Singular Value Modularity Index (SMI). Although this measure was originally intended to
enumerate the degree of product modularity, it is also applicable to measure process modularity.
This index enumerates the degree of system modularity by employing singular value decomposition
on the design structure matrix. For the given purpose the following equation was proposed [50]:

1 _
SMIZpsy) =1 — N_—(HZ?I:f 01(01 — Gi41), 1

where N represents the number of system components; oi means singular value, wherei=1, 2, ..., N-
1.
The SMI measure can reach values between zero to one, while values closer to zero means a minimum
degree of modularity, and vice versa.

The second indicator, the cross-module independence (CMI), calculates the ratio of the sum of
relations inside all modules to the sum of all relations, and is expressed by the following equation
[51]:

cMI=1-yn,_ Rint )

int=1 7

where n stands for the number of modules, while int =1, 2, ..., n; R represents the number of inside
connections; and T is the number of all linkages in a network.
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Third one — optimal modularity indicator Qd, proposed by Newman and Girvan [29] can be also
used to identify optimal process structure from a set of alternative ones. This index is quantified by
using equation:

Is  wsOut.ysin
Qd =31, (2 -2, 3)
where 7 indicates the number of modules, L represents the sum of all edges in a network, Is is the
sum of internal edges in module s, ws* is the number of output edges in module s, and ws” stands
for the number of input edges in module s.

The last considered indicator named as the optimal modularity indicator M(G) is aimed to

measure the OM of process structures. This indicator is expressed as follows [52]:

n

MO = sy @

where 1 is the number of modules in a network, Nj is the number of couplings extracted from
columns of related visibility matrix, j=1,..., K, while K is the number of columns in a related design
matrix (see an example in Figure 3).

Principally, all the mention modularity indicators are more or less suitable for exploration of the
relationships. However, it is possible to identify relevant differences in their sensitivity to recognize
slight topological nuances when comparing similar process structures. These differences were
already studied in our previous work [52], where the indicator M(G) was prioritized against the
concurrent ones. Therefor it will be used for intended purpose in this study.

4.2. Description of the Indicators to Measure Process Complexity

The four complexity indicators are assumed below for the purpose to select the most suitable
one from them.

Deshmukh et al. [44] developed a formula to measure the complexity of manufacturing systems
that is expressed as follows:

H,, = logm®nr- (5)

where n is the number of parts, m is the number of operations, while r is the number of machines.
The second indicator is based on the concept of Shannon’s information entropy and it is
formulated through the following equation [53]:

M S
H., :_Zlg Pij -log , Pi; - (6)
i
where M is the number of machines, S stands for the number of possible planned states of the machine
j can be in, pj is probability that the machine j is in state i.
The third one, so-called modified flow complexity (MFC) indicator enumerates all tiers, nodes,
and links weighted with determined a, (3, and y coefficients. This indicator is enumerated using
formula [54]:

MFC=a T+ B-N+y-L, %)

where «a is multi-tier coefficient (« > 0),  reflects network nodes (8 2 0), y is manufacturing network
links coefficient (y = 0); N is the number of nodes; L is number of links; and T is the number of tiers.

The forth indicator is devoted to measure operational complexity of manufacturing systems.
This indicator is calculated using the following equation [55]:

M P O
PCI :—Z Z Zpijk'logz Pij » (8)
i e

where pii is probability that part j is being proceeded due to operation k by individual machine i
according to scheduling order, O is the number of operations, P means the number of parts produced
in manufacturing process, M is the number of all machines in manufacturing process.
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Based on the recent comparisons of the alternative complexity measures [54], indicator PCI was
selected for measuring the operational process complexity.
5. Procedures to Calculate Modularity, Complexity and MLT

To show application procedures for using the selected indicators (M(G), PCI), and MLT, the
following two sub-sections provide simple demonstrations, how it works.
5.1. Procedures for M(G) and PCI

Firstly, let us have a model of manufacturing process, in which parts P1, P2 and P3 are processed
by machines M1, M2, M3, M4, M5, M6 and M7, and scheduled as it is depicted in Figure 2.

)
| b v
gl Fo-{=18
®

Figure 2. A model of manufacturing process producing parts P1, P2 and P3.

When applying M(G) indicator, at first, it is needed to create visibility matrix of the given process
model (see in Figure 3) to obtain Nj values.

P1 P2 P3 M1 M2 M3 M4 M5 M6 M7
P1 1(1(1]1 1
P2 111
P3 1 1
M1 1
M2 1)1
M3 1
(3
M5
M6
M7
N OO 0O 2 3 5 4 5 8 8

-
-

NERRRE

Rplrlr|r|r|~
plrlr|r|r|r]r]=

Figure 3. Visibility matrix of the manufacturing process.

Then, process modularity is quantified using equation (4) as follows:
7
In24+3-In3+5-In5+4-1n4+5-In5+ 8- In8+ 8- In8
= 0,118.
The procedure is repeated for all alternative structure models. Then, the model with the highest
M(G) value represents the optimal manufacturing process structure among concurrent ones from the

M(G) = >

modularity point of view.

In order to apply of PCl indicator, at first, it is necessary to enumerate partial complexities of the
machines. Then, their sum represents the overall complexity of the process. Let us demonstrate
enumeration of partial complexity for machine M1 by applying formula (8). This machine is
processing two parts (P1 and P3), and therefore the partial complexity of M1 has to be enumerate in
this way:

1 1 1 1
PClyy = pi110g; p11 + pi3logz piz = glng gt 51082 T 0,928 bits,
where, e.g., pu is probability that part P1 is just being proceeded by machine M1. It needs to be
noticed that when this part is processed on machines in serial manner, then pu equals 1/5, because
number of machines in serial connection equals five.

The partial complexities can be enumerated in the two ways as shown in Figure 4. Due to this

fact, it is possible to create graph of complexity distributions, where the resulting cumulated
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complexities are the same for both the views. It can be easily proved that PCI value for the given
process model is 7,04 bits.

Example | Machines Probabilities Parts complexity
Part | Operations | M1 | M2 | M3 | M4 | M5 | M6 | M7 (bits)
01 0,2 0,464
02 0,2 0,464
o1 03 02 0,464 l
g: 01 | o4 _ gigi A A N A
7 2 PEI —d
MCl(bits) | 0,464 [ 0,464 |0,464]0,332]0,332{0,464 2,52 7 h 7
. 6,376
part | operations | M1 | M2 | M3 | ma | ms | me | w7 | Parts complexity 76 z 6 3
(bits) 5 512 5 =
01 0,25 0,5 85 2784 E 5,04 5 8
02 0,25 05 % 3 £
P2 03 0,25 05 54 ——————lin 2 . 4 =5
£ Machine view £ Partview €
04 0,25 0,5 S on partial S on partial S
- =3 _ _ _complexities _ _ o complexities 3 =
MCl(bits) 05 | 05 05 | 05 2 £ s 2o £
. © 1 ©
Part | Operations | M1 | M2 | M3 | ma | M5 | me | wy | Parts complexity =2 2 2 &
(bits) o— ———————— 148 3
01 0,2 0,464 1 1
02 0,2 0,464 o L 1,428)0,.964) 0,964 0,92 0,664 066 2 |252] 252
03 03 01 | 01 0,664 M6 M3 M2 M7 M1 M4 M5 P2 p3 p1 0
04 0,2 0,464 Machines Parts
05 0,2 0,464
MCl(bits) | 0,464 0,464 (0,332 0,332| 0,464 [ 0,464 2,52
Overal complexity (bits) | 0,928 | 0,964 | 1,428 | 0,664 | 0,664 | 1,428 0,964 704 —T—
a) b)

Figure 4. a) Probabilities (pik) and related complexity values; b) Partial complexities from the machine
view and part view, and cumulated complexities of machines and parts production.

5.2. Procedure to Enumerate MLT

In order to generate MLT values, simulation software was employed. Manufacturing lead time
is defined as the total time required to process a product through the plant, and its formal definition
was given by Groover [56]:

noj
ML’I} = Zi=i(Tsuij+Qj * Tcij + Tt,_]), (9)

where j stands for part number or product number; Tsu; is setup time for operation i on part or
product j; Qjis quantity of part or product j in the batch being processed; Tcijis cycle time for operation
ion part or product j; Ttjis transport time associated with operation i, where i indicates the operation
sequence in the processing, i=1, 2, ..., noj.

Moreover, it is needed to know set-up times, processing cycle times and transport times. The
allocated setup time is three seconds, and processing cycle time equals one minute for all seven
machines. Transport times are assigned based on the distance between the machines. Specifically,
five seconds are assigned between two machines located next to each other (e.g. M1 to M2); and ten
seconds are set up between machines located not close to each other (e.g. M1 and M3). Obtained total
MLT for all the parts using simulation software is 6 minutes and 53 seconds (see Figure 5).

£ Models.Model & Models.Model.EventController 7 ®
o Mavigate View Tools Help

fveniController Lo Lo T 6:53.0000

Contrals | Settings
— KW= Wl A

Slower Faster

Conveyord =dnveyor?

M1 FlowCaontrolT M3 'F\owCoﬂtroI1—| P1_P2_P3_OUT

. B Real-time = | 3
Conveyor2, L—1 Conveyord
-+ R
M5
Caonveyor |

- e Aoply

Figure 5. Print screen of the selected process model from Tecnomatix Plant Simulation.
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6. Testing and Analysis of the Indicators through Theoretical Process Models

For this purpose, process models from work by Latva-Koivisto [57] who explored complexity of
six Kaimann's process graphs [58] were used for the theoretical experiment. It is assumed that 100
parts are produced on 22 machines (see Figure 6). In addition, set-up times, processing cycle times
and transport times were assigned. The allocated set-up time was two seconds, and processing cycle
time was one minute for all the 22 machines. Transport times were assigned based on the distance
between the machines. Five seconds between two machines located next to each other (e.g. M2 to
M3); ten seconds between machines, e.g.,, M2 and M9; and 15 second between machines that are
located further away from each other (e.g. M2 and M15).

Graph 1 Graph 4

Figure 6. Theoretical process models.

Process modularity and complexity values were enumerated using equations (4) and (8), while
MLT values were obtained using the simulation tool. The obtained values are summarized in Table
1.

Table 1. Obtained results for all the six graphs.

Indicators Graph1 Graph2  Graph3  Graph4  Graph5  Graph6

M(G) 0,073 0,063 0,055 0,049 0,046 0,033
MLT (min) 109,05 109,1167 109,117 111 112 114,5
PCI (bits) 9,15 9,72 10,13 10,5 11,16 12,5

Following the obtained results, one can see when comparing process modularity and MLT, that
process modularity of Graph 1 is the highest while its MLT is the shortest. Process modularity of the
remaining graphs has the same tendency in relation to MLT values. Then, it is possible to state from
these summarized results, that modularity values are in relation with MLT values - as the modularity
increases, MLT decreases, and vice versa. When comparing process modularity in relation to
operational complexity, it can be seen that Graph 1 has the lowest complexity, while its process
modularity is the highest. The rest of graphs report the same tendency, and it can be said that OM
positively impacts on operational complexity of manufacturing systems.

To answer research questions mentioned in the introduction section and to confirm the positive
impact of process modularity on MLT and process complexity, the two methods are further
employed to find to what extent the OM effects on MLT, and how modularity influences the process
complexity of manufacturing systems.

As first, the Spearman correlation analysis was used to test these relationships. Spearman
correlation coefficient rated using known scale [59] between OM and manufacturing lead time; and
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between OM and process complexity equals - 0,91 and — 0,98, respectively. Based on these results, it
means that there are very strong relationships.

Then, the sensitivity index ”I” is used to assess sensitivity between the M(G) and MLT values,
as well as between M(G) and PCI values. For this purpose, the following formula will be applied [60].

| = (yz—y1)/yol (10)

2-Ax/xq

where yo is the model output calculated with an initial value xo of the parameter x; x1=x0 - Ax and x2
= x0 + Ax with corresponding values y: and 1.

Sensitivity values are ranked into four classes, small to negligible sensitivity (0 < II | < 0,05);
medium sensitivity (0,05 < |I | <0,20); high sensitivity (0,20 < |1 | <1); very high sensitivity (11 | >1).

By applying formula (10) for all the six process structures, the following values are obtained: [ =
- 7,37 between M(G) and MLT, and I = - 1,55 between M(G) and PCI. Based on the obtained results, it
can be said that in the both relationships there are very high sensitivities.

These two relationships will be also tested on the realistic case study in the next section.

7. Case Study

The case study is focused on production of the bicycle frames consisting of 11 parts (P) machined
on the 37 machines (M). Five manufacturing process alternatives are compared, where one of them
consists of two production lines (PLs), the two of them are created from three production lines, one
alternative consists of four PLs, and the last one produces the products through six production lines.
First-in-first-out scheduling algorithm is used for this purpose.

Sequence of machines and their operational times are shown in the following Table 2.

Table 2. Sequence of machines for five process design alternatives.

Part number Sequence of machines with their operational times in seconds
L1(30) - L2(30) - TH2(35) - N(6) - W7 (15) - W8(40) - W9(40) - W10(103) -

Pl M5(30) 109,05

o L1(30) - L2(30) - TH2(35) - P5(10) - N(6) - W7(15) - WS8(40) - W9(40) -
W10(103) - M5(30)

P3 S1(32) - TH1(24) - P2(15) - P3(24) - W4(43)

P4 $2(8) - P6(20) - W5(64) - M1(9) - W6(78) - W10(103) -M5(30)

P5 S1(32) - P1(24) - W1(26) - W2(23) - W3(43) - W4(43) - P4(15)

P6 S1(32) - P1(24) - W1(26) - W2(23) - W3(43) - W4(43)

P7 S1(32) - C(38) - P1(24) - W1(26) - W2(23) - W3(43) - W4(43) - P4(15)

P8 S4(12) - P8(10) - M3(20) - W7(15) - W8(40) - W9(40) - W10(103) - M5(30)

P9 S3(12) - M2(20) - P7(10)

P10 S4(12) - M4(20) - D1(14) - R(12) - D2(14)
P11 S3(12) - P9(10) - W9(40) - W10(103) - M5(30)

To identify MLT values by simulation tool, set-up times and transport times will be also
assumed. Set-up time equals 10 seconds for all the machines. Transport times between all the
machines located next to each other will be the same (5 seconds). The rest of transport times are
assigned by simulation tool based on the distance between machines (see Table 3).

d0i:10.20944/preprints202305.2233.v1
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Table 3. Transport times in seconds for all the three process design alternatives.

From-to- station Alt. 1 Alt. 2 Alt. 3 Alt. 4 Alt. 5
W6 - W10 53 41 36 46 41
P9 -W9 57 46 46 50 41
D2 - W8 35 23 23 23 4
M3 - W7 37 25 25 25 21
N - W7 - - - - 20

7.1. Description of Process Structures

Process design alternative ”A” (see Figure 7a) consist of 37 machines divided into two PLs. Parts
P3 — P11 pass through the first production line, while parts P4, P8, P10 and P11 are finalized in the
second one. Parts P1 and P2 are produced only in the second line.

Production

Production
line #1

Production
line #2

Production
line #2

Production
line #3

Machine — » Intra-cell flows

® Pat ______ » Inter-cell flows z - o

a) b)

Figure 7. Process design alternatives A and B.

Process design alternative “B” (see Figure 7b) contains three PLs. Parts P4, P§, P9, P10 and P11
pass through the first PL, while parts P4, P8, P10 and P11 are finalized in the second PL. Parts P1 and
P2 are produced in the second PL and remaining parts are processed in PL #3.

Process design alternative ”"C” (see Figure 8a) is divided also into three PLs. The first production
line processes parts P8, P9, P10 and P11, but parts P8, P10 and P11 are finalized in the second PL
together with parts P1 and P2. Parts P3-P7 pass through the last production line #3.
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Machine —  Intra-cell flows
® Pat » Inter-cell flows

a)

Figure 8. Process design alternatives C, D and E.

Process design alternative “D” (see Figure 8b) consists of four production lines. Parts P4, P9 and
P11 are processed in the first one PL, while parts P4 and P11 are finally processed in the second PL
together with parts P8 and P10, which are finalized in the next line together with P1 and P2. Parts P3,
P5, P6 and P7 pass through the fourth production line.

Process design alternative "E” (see Figure 8c) contains six production lines. Part P4 passes firstly
through the first line and then, it is finalized in the fifth PL. Parts P9 and P11 are processed in the
second PL, but P11 is finalized in the fifth PL. Parts 8 and P10 are firstly produced in the third PL, but
they are finalized also in the fifth PL. Parts P1 and P2 pass firstly through the fourth PL and they are
finalized in the last PL. Parts P3, P5, P6 and P7 are processed only in the last production line.

7.2. Analysis of Results

All the five process structures were assessed using above introduced optimal modularity
indicator M(G) and operational complexity indicator PCI and also tested through simulation software
to obtain MLT values. Obtained results for all the alternatives are depicted in Table 4.

Table 4. Obtained results for all the five process design alternatives.

Indicators Alt. A Alt. B Alt. C Alt.D Alt. E
M(G) 0,00079 0,00127 0,00126 0,00165 0,00244

MLT(min) 13,25 13,07 13,07 13,13 12,98

PCI(bits) 51,7 46,8 478 44.4 44,08

When comparing process modularity values and MLT values, it is possible to state that there is
the following relationship. If the modularity increases, then MLT decreases, and vice versa. When
comparing process modularity in relation to operational complexity, it can be seen that Alt. ”E” has
the lowest complexity, while its process modularity is the highest. The rest of process models are
subject to the same tendency and it can be said that OM positively impacts on operational complexity
of manufacturing systems.
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To confirm or deny the previous statements (from Section 6) to the RQs, the Spearman
correlation analysis and the sensitivity analysis were applied.

The Spearman correlation analysis confirmed very strong negative relationships (o = - 0,82)
between M(G) and MLT values, and between M(G) and PCI values as o = - 0,87.

Sensitivity index between M(G) and MLT enumerated using equation (10) equals — 47,17; and
between M(G) and PCI values is - 6,13. Based on the obtained results, it can be said that there is very
high sensitivity between these two relationships.

8. Conclusion

When exploring specific practical modularity problems, it seems to be useful to stress that the
first important task is to select appropriate method(s) to assess this system attribute. For the purpose
of this study, the optimal modularity indicator M(G) has been applied along with the operational
complexity indicator (PCI) and MLT indicator. The second precondition to deal with this issue is to
take adequate process models to carry out experiments. We tried to fulfill these two conditions
consistently.

As the purpose of this study is linked to the research questions presented in the introduction
section, we provide the following summarized answers to them, although partially it was done in
sections 6 and 7:

- Answer to RQ 1: Considering the achieved results presented in sections six and seven, one can
state that process structure modularity positively affects the manufacturing lead time in this sense
that if manufacturing process modularity increases, then MLT decreases, what was proved in both
the testing cases.

The answer to the question regarding to what extent modularity can impact MLT, it is
purposeful to quantify percentage change of MLT caused due to modularity using the both
simulation experiments. Then, one can easily find that difference of MLT between less and more
modular manufacturing process is: 4,8 % in case of theoretical process models, 2% in case of real
process models.

- Answer to RQ 2: Taking into account the obtained results from the experiments, it can be stated
that process structure modularity positively affects the complexity of manufacturing processes, so
that if manufacturing process modularity in-creases, then process complexity decreases. These
rigorously obtained results prove the statement that the concept of modularity is purpose-built to
reduce complexity by breaking a system into varying degrees of interdependence [61].

Finally, potential future research directions could be directed to explore the influence of process
modularity on smart mass customization assembly systems with the aim to validate presented
findings with a higher degree of generality.
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