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Abstract: Pavement friction plays a crucial role in ensuring the safety of road networks. Accurately assessing 
friction levels is vital for effective pavement maintenance and management strategies employed by state 
highway agencies. Traditionally, friction evaluations have been conducted on a case-by-case basis, focusing on 
specific road sections. However, this approach fails to provide a comprehensive assessment of friction 
conditions across the entire road network. This paper introduces a hybrid clustering algorithm, namely the 
combination of density-based spatial clustering of applications with noise (DBSCAN) and Gaussian mixture 
model (GMM), to perform pavement friction performance rating across a statewide road network. A large, 
safety-oriented dataset is first generated by integrating network friction and vehicle crash data based on the 
attributes contributing possibly to friction related crashes. One-, two-, and multi-dimensional clustering 
analyses, respectively, are then performed to rate pavement friction. The Chi-square test is further employed 
to validate and identify the practical ratings. It is shown that by effectively capturing the hidden, intricate 
patterns within the integrated, complex dataset and prioritizing friction-related safety attributes, the hybrid 
clustering algorithm can produce pavement friction ratings that align effectively with the current practices of 
the Indiana Department of Transportation (INDOT) in friction management. 

Keywords: pavement friction rating; network level; road safety attributes; hybrid clustering; 
density-based spatial clustering of applications with noise (DBSCAN); Gaussian mixture model 
(GMM); Chi-square test  

 

1. Introduction 

Pavement friction plays a critical role in ensuring road safety by preventing vehicle tires from 
sliding or skidding on the roadway pavement surface. Its primary purpose is to provide adequate 
traction, especially in wet conditions, between the tires and the pavement [1]. By facilitating traction, 
pavement friction helps drivers maintain control over their vehicles, significantly reducing the risk 
of accidents caused by skidding or hydroplaning. This is particularly important at critical locations 
such as curves, intersections, tunnel entrances, and downhill gradients. Also, emergency vehicles, 
buses, heavy trucks, and motorcycles rely heavily on sufficient pavement friction for safe 
maneuvering. Various factors influence pavement friction, including the texture of the pavement 
surface, the type of surface material, the properties of the tires, the speed of the vehicle, and the 
prevailing weather conditions [2, 3]. To ensure an acceptable level of pavement friction, regular 
maintenance and friction treatments are essential. It is also necessary to monitor the performance and 
conditions of friction, employing measures such as periodic assessments and friction testing [4-6]. 
These proactive measures contribute to maintaining sufficient pavement friction, thereby enhancing 
overall road safety. 

Pavement friction performance ratings play a crucial role in assessing the level of friction and 
the resulting safety provided by a road surface, especially during challenging weather conditions. 
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These ratings are valuable tools for highway agencies as they assist in identifying areas in need of 
maintenance and repair. By incorporating these findings into pavement preservation, resurfacing, 
and overlay programs, optimal performance of the road surface can be ensured. In addition, many 
countries and roadway or airport authorities have established regulations and standards for 
pavement friction performance that must be adhered to in order to ensure safety and prevent 
accidents [7-10]. Utilizing pavement friction performance ratings aids in meeting these regulations 
and standards, guaranteeing compliance and enhancing overall safety. 

However, obtaining reliable and objective ratings for pavement friction can be a complex task 
due to several factors. Firstly, different testing methods and devices can yield varying results, making 
it difficult to compare data obtained from different testing approaches. Secondly, there is currently 
no standardized method for assessing pavement friction performance. Various agencies and 
organizations adopt different criteria and scales, leading to challenges in comparing results from 
different sources. Thirdly, the friction of pavement is influenced by its surface texture, especially 
microtexture, which presents difficulties in accurately and consistently measuring texture. Lastly, 
despite significant efforts to investigate the impact of pavement friction on vehicle crashes [11-16], a 
widely accepted correlation has not been established yet. This is primarily due to that vehicle crashes 
result from the combined effects of human, vehicle, and roadway factors [17]. Each type of factor 
encompasses multiple attributes that can individually or collectively influence vehicle crashes, and 
obtaining information about specific safety attributes may not always be readily available or easily 
accessible. Consequently, identifying hidden crash patterns within a dataset containing diverse safety 
attributes using traditional statistical algorithms becomes extremely challenging. 

The objective of this paper is to analyze the existing limitations of current methods utilized for 
assessing pavement performance, specifically in terms of friction. Additionally, the paper aims to 
develop and implement a safety-focused machine learning algorithm, specifically Gaussian mixture 
model (GMM)-based clustering, to establish pavement friction performance ratings, particularly at a 
network level. 

2. Literature Review 

2.1. Threshold-based Rating Methods 

Pavement performance rating encompasses the evaluation of various factors, including surface 
distresses, ride quality, structural integrity, and friction, to determine the overall performance or 
serviceability of the pavement. This assessment aids in prioritizing maintenance and rehabilitation 
efforts. Presently, several methods are utilized to rate pavement performance, including visual 
inspection, automated data collection, and non-destructive testing (NDT) [18, 19]. Different agencies 
and organizations may employ variations of these methods or develop customized approaches 
tailored to their specific requirements and available resources. 

Pavement friction, a result of tire-pavement interaction, primarily varies with vehicle speed, tire 
characteristics, pavement surface texture, and the presence of water. Various methods can be 
employed to rate pavement friction, depending on the user's specific needs. Friction threshold-based 
rating methods typically involve measuring friction coefficient, texture, or a combination of both. 
Friction coefficient measurements are commonly made using devices such as the locked wheel skid 
tester (LWST) [20], the British pendulum tester (BPT) [21], or the dynamic friction tester (DFT) [22]. 
Texture measurements are typically the mean profile depth (MPD) of macrotexture [23] obtained 
using the sand patch test [24] or noncontact techniques such as the circular track meter (CTM) [25]. 
The International Friction Index (IFI) combines friction coefficient and mean profile depth to provide 
a comprehensive rating of pavement friction, enabling comparisons between different pavements 
[26]. 

In the United States, state highway agencies commonly rely on the LWST to obtain friction 
measurements [2, 27]. The threshold-based methods aim to identify friction threshold values to 
mitigate vehicle crashes on wet pavement. This simplifies the rating process by conducting field tests 
to measure friction and comparing the results against the threshold value. If the measured friction 
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falls below the threshold value, appropriate actions may be required to restore adequate friction 
levels. Table 1 provides an overview of the friction threshold values recommended by different 
researchers. The table illustrates significant variations in the threshold values between researchers 
and highway agencies. These variations can be attributed to two primary factors. Firstly, some 
agencies utilize standard rib tires [28], while others use standard smooth tires [29]. Friction 
measurements with rib tires are considerably higher than those obtained with smooth tires. Secondly, 
researchers employ diverse datasets and consider various factors, resulting in substantial 
discrepancies in the recommended threshold values. 

Table 1. Friction threshold values for remedy actions. 

Source Test Condition Threshold Value 
Kummer and Meyer [30] Rib tire, 40 mph 37 
Henry [2] Rib or smooth tire, 40 mph 30~45 
Noyce et al. [31] Rib tire, 40 mph 35 
Kuttesch [32] Smooth tire, 40 mph 25~30 
Li et al. [33] Smooth tire, 40 mph 20 
Zhao et al. [15] Smooth tire, 40 mph 20 

The above rating method and the like offer two advantages. Firstly, they provide a 
straightforward and measurable evaluation of pavement friction, based on predetermined 
engineering thresholds. Secondly, the threshold values establish a standardized criterion for 
assessing and comparing pavement friction, which ensures consistency across different sections of 
pavement and is essential for crash prevention, especially in adverse weather conditions. However, 
the arbitrary threshold values lack a robust scientific foundation and exhibit inconsistencies among 
different highway agencies. By adopting an arbitrary friction threshold, essential contextual factors 
such as vehicle speed, traffic volume, road geometry, weather conditions, and related costs may not 
be accurately evaluated. Moreover, pavement friction is a dynamic property that constantly changes 
due to weather, traffic, and various other factors. An arbitrary threshold may fail to account for these 
variations or provide a mechanism to adjust the threshold based on evolving conditions. 
Consequently, threshold-based rating methods fall short in delivering adequate warning or transition 
time to implement preventive measures, leading to missed opportunities for timely maintenance. 

2.2. Multilevel-based Rating Methods 

Recently, a novel trend has surfaced in the evaluation of pavement friction, which involves the 
utilization of supervised learning techniques to assess pavement friction across multiple levels. 
Noteworthy contributions in this domain include the research endeavors of Zhan et al. [34] and Zhao 
et al. [35]. The former introduced an innovative approach employing a deep residual network 
(ResNets) to predict pavement friction using surface texture. On the other hand, the latter 
demonstrated the application of the extreme gradient boosting (XGBoost) to establish a correlation 
between friction and safety. Given the subject matter of this paper, this section primarily provides a 
brief introduction to the work of Zhao et al. In their research work, the XGBoost model was utilized 
to classify crash severity, identify the contributing factors through the model outputs, and quantify 
the relationships between friction and crash severity. Their work yielded five pavement friction 
classes based on the friction numbers (FNs): FNS<20, FNS∈(20, 25), FNS∈(25, 38), FNS∈(38, 70), and 
FNS>70. ∈(20, 25).  

Evidently, the above multilevel classification method can offer a more comprehensive, informed, 
and systematic approach to assess and manage pavement friction and aid in decision-making, 
planning, budgeting, and performance monitoring. Nevertheless, the classifications can often become 
problematic. An example is that within FNS∈(20, 25), a significant number of observations exhibit a 
lower probability of fatal or injury crashes. This is likely because there are several crucial safety 
attributes, such as the vehicle speed at the time of crashing and the pavement friction at the crash 
location that cannot be accessible or accurately determined. Although the analyzed datasets included 
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friction, vehicle, and crash attributes, no class labels or target values were assigned to them. created 
employing supervised learning techniques such as the XGBoost to ascertain the collective impact 
generated by these attributes is exceedingly challenging. 

3. Data and Integration 

3.1. Datasets 

Two types of datasets, such as pavement friction and vehicle crashes, are used in this paper. The 
pavement friction data was obtained through the annual pavement friction inventory test program 
of the Indiana Department of Transportation (INDOT) [3, 33]. This program comprises four main 
components: in-house system calibration, field testing, data processing, and reporting. Field friction 
testing is carried out at one-mile intervals using the LWST on all interstate highways in both 
directions each year, while on other routes such as US highways and State roads, testing is done in 
one direction every three years. Friction is measured in the left wheel track of the driving lane using 
a standard smooth tire, at speeds of 48 km/h (30 mph), 64 km/h (40 mph), or 80 km/h (50 mph). The 
calculation method is as shown below [20]: 

SN=F/W×100 (1)

where SN=skid number that is used interchangeably with friction number (FN) in this paper, 
F=horizontal force applied to the test tire at the tire-pavement contact patch, lbf (or N), and 
W=dynamic vertical force on the test wheel, lbf (or N). 

The obtained friction dataset consists of attributes, such as geographic region (district and 
county), road details (name, direction, test lane, and type of road surface like asphalt, concrete, or 
bridge deck), test conditions (speed and temperature), and test results (friction number at the actual 
test speed and friction number converted to the standard test speed of 40 mph). Additionally, the 
dataset includes test location indicated by reference post (RP) and global positioning system (GPS) 
coordinates. Notably, the friction dataset spans three consecutive years: 2017, 2018, and 2019, 
resulting in a substantial collection of 25,458 data points. This approach ensures comprehensive 
coverage of the entire road network under the jurisdiction of INDOT.  

The vehicle crash dataset was obtained through the Automated Reporting Information Exchange 
System (ARIES) [36] of the Indiana State Police (ISP). ARIES serves as a central repository for 
capturing, organizing, and reporting information related to vehicle crashes that occur within the state 
of Indiana. In line with the collected pavement friction dataset, the vehicle crash dataset was also 
generated for the years 2017, 2018, and 2019, comprising fifty-nine attributes, providing detailed 
information about each crash event. The available details include the date, time, location, road 
conditions (geometrics, surface type, median type, and junction type), weather conditions, light 
conditions, traffic control, types of vehicles involved, primary factors contributing to the crash, 
manner of collision, and collision outcomes. The combination of crash data from these three years 
yields a total of 200,145 crash events. 

3.2. Integration 

To ensure the availability of a comprehensive and robust dataset suitable for safety-oriented 
friction analysis and evaluation, the integration of pavement friction data and vehicle crash data was 
conducted in four steps as follows: 

• Data reorganization: Using the year and road type (i.e., interstate highways, US highways and 
state roads) obtained from both datasets, the crash and friction data were grouped in pairs, 
resulting in the formation of nine groups of sub datasets.  

• Spatial integration: Using geographic information systems (GIS) coordinates or reference posts, 
the distances between each crash event location and all friction test locations were calculated. 
Each crash event was then linked to the friction measurement with the shortest distance that is 
commonly 1 mile or less, considering the interval of friction testing by INDOT. 
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• Data merging: All data points generated in the spatial integration step were merged based on 
the road name. 

• Safety-oriented filtering: A meticulous filtering approach was implemented to eliminate crash 
events caused by factors unrelated to friction. These factors included vehicle malfunctions, 
driver usage of cellphones or telematics, and driver illness.  

The data integration preprocessing described above was implemented using the Python 3.9 
programming language. The integrated dataset contains 29,136 data entries, each characterized by 
five safety related variables (or attributes), namely friction number, crash severity level, surface 
condition, road geometrics, and pavement surface type. These variables are presented in Table 2. 
Apart from the friction number, all other variables are categorical in nature. Specifically, the "crash 
severity level" variable encompasses two categories: property damage only (PDO) and injury or 
fatality. The "surface condition" variable comprises four groups: dry, wet/water, ice, and snow/others 
(slush/muddy/loose materials on road surface). Road geometrics includes three types: grade, level, 
and hillcrest. The "surface material" variable consists of three types: asphalt, concrete, and gravel. To 
ensure consistency, all data in the dataset underwent a standardization process, scaling the values to 
a uniform magnitude. 

Table 2. Variable descriptions. 

Variables Description Categories 
FNS Friction 

numbers 
NA 

   

Crash Severity 
Level 

Property 
damage only 
(PDO), and 
injury or 
fatality. 

0=PDO  
(87.94%)  

1=Injury or 
Fatality 
(12.06%) 

  

Surface Condition Affected by 
weather 
when crashes 
happened. 

1=Dry  
(71.57%)  

2 - Wet/Water  
(15.91%)  

3=Ice  
(5.99%)  

4=Snow/Others  
(6.52%) 

Road Geometrics Grade, level, 
and hillcrest. 

1=Grade  
(17.18%)  

2=Level  
(78.44%)  

3=Hillcrest  
(4.38%)  

 

Surface Material Asphalt, 
concrete, and 
gravel 

1=Asphalt  
(73.42%) 

2=Concrete  
(26.53%)  

3= Gravel  
(0.5%)  

 

4. Methodology 

4.1. Density-Based Spatial Clustering of Applications with Noise 

The density-based spatial clustering of applications with noise (DBSCAN) algorithm is a widely 
employed density-based clustering technique known for its ability to identify clusters of various 
shapes within a dataset, while effectively handling noise and outliers [37, 38]. Unlike other clustering 
algorithms, DBSCAN does not require a predefined number of clusters, identifying clusters based on 
the density characteristics of the data. This makes DBSCAN particularly advantageous for clustering 
tasks where the number of clusters is unknown or variable. DBSCAN utilizes two critical 
hyperparameters: epsilon (ε), i.e., the radius for defining neighboring points within the same cluster, 
and the minimum number of points (minPts) to set the threshold for forming dense regions or 
clusters. The appropriate values for ε and minPts need to be predetermined. Typically, ε can be set 
to the average distance between points or the distance at which the k-nearest neighbors graph 
achieves connectivity. The minPts can be established as the dimensionality of the data plus one. To 
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determine the optimal hyperparameters for DBSCAN, the silhouette score is commonly employed 
and calculated as follows:  𝑠 = 𝑏 − 𝑎maxሺ𝑎, 𝑏ሻ (2)

where s=silhouette score; a=the average distance between an object and all other objects in the same 
cluster; and b=the average distance between an object and all other objects in the next nearest cluster.  

The resulting silhouette score, ranging from -1 to 1, serves as a performance metric for evaluating 
the quality of clustering. A silhouette score approaching -1 signifies that the clustering outcome is 
incorrect or poorly separated. Conversely, a silhouette score nearing 1 suggests a higher clustering 
density and a more accurate clustering result. A silhouette score close to 0 implies that the clustering 
is sketchy or the data points are close to decision boundaries between clusters. The silhouette score 
aids in quantitatively assessing the efficacy of the clustering algorithm and determining the 
appropriateness of the chosen hyperparameters. Once ε and minPts have been determined, the 
clustering process is performed as illustrated elsewhere [37, 38].  

4.2. Gaussian Mixture Model 

The Gaussian mixture model (GMM) is a probabilistic model that postulates the data as 
originating from a mixture of multiple Gaussian distributions [38], wherein the parameters of these 
distributions are unknown. The calculation of a multivariate Gaussian distribution can be expressed 
as follows: 𝑁ሺ𝒙|𝝁, 𝚺ሻ = 1ඥሺ2𝜋ሻଶௗ|𝚺| exp ൜− 12 ሺ𝒙 − 𝝁ሻ்𝚺ିଵሺ𝒙 − 𝝁ሻൠ (3)

where x=a d-dimensional random vector, and x~N(μ,Σ); μ=a d-dimensional mean vector; and Σ=a d 
× d covariance matrix. 

GMM requires determining the optimal number of clusters in advance. To ascertain the optimal 
number of clusters for the GMM, it is beneficial to choose the model that minimizes a theoretical 
information criterion. Two commonly employed metrics for determining the optimum cluster 
number in the GMM are Bayesian Information Criterion (BIC) and the Akaike Information Criterion 
(AIC) expressed as follows [39, 40]: 𝐵𝐼𝐶 = logሺ𝑛ሻ 𝑝 − 2 log൫𝐿෠൯ (4)𝐴𝐼𝐶 = 2𝑝 − 2 log൫𝐿෠൯ (5)

where n=the number of points; p=the number of parameters learned by the model; and 𝐿෠ = the 
maximized value of the likelihood function of the model. Notice that although BIC and AIC often 
yield similar results, there can be instances where they diverge. In such cases, BIC tends to prefer 
simpler models, while AIC may select a model that is better tailored to the specific characteristics of 
the data. 

Maximum likelihood estimation is a widely adopted method for deriving parameters in 
statistical models. However, in scenarios where the underlying distribution generating the dataset is 
unknown, utilization of the maximum likelihood principle for parameter estimation becomes 
challenging. In such cases, the Expectation-Maximization (EM) algorithm is employed. The EM 
algorithm consists of two main steps: the exception step and the maximization step. The expectation 
step involves estimating the missing or unobserved variables. In the maximization step, the new set 
of estimated parameters is determined to maximize the expected likelihood, which optimizes the 
parameters based on the completed data, incorporating the information from the expectation step. 
The expectation step and maximization step iteratively alternate until a stopping criterion is met. This 
criterion can be defined as either the parameters reaching a state of convergence where they no longer 
change significantly, or the change in parameters falling below a predetermined threshold. This 
iterative process allows for the refinement of parameter estimates, gradually improving the accuracy 
of the model [38]. 
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4.3. DBSCAN-GMM Algorithm 

The DBSCAN-GMM algorithm is a hybrid clustering approach that combines the strengths of 
both DBSCAN and GMM, aiming to improve clustering performance and mitigate their respective 
limitations. The DBSCAN-GMM algorithm is more suitable for datasets containing clusters with 
diverse density distributions, and more effective for identifying noisy points in the presence of 
overlapping clusters or data with complex distributions. It has enhanced ability to distinguish 
genuine clusters from noise and reduced sensitivity, leading to more accurate and robust cluster 
assignments, reliable cluster assignments, and improved clustering accuracy.  

The hybrid algorithm first utilizes the DBSCAN algorithm to identify the core points and border 
points within the dataset. Then, the GMM is applied to effectively model the underlying distribution 
within each identified cluster. This approach enables effectively capturing intricate patterns hidden 
in the data, including the presence of clusters exhibiting multiple modes. By integrating the strengths 
of DBSCAN and GMM, the hybrid algorithm is capable of handling complex data structures and 
accurately representing the underlying distribution within each cluster. 

4.4. Chi-square Test 

In the context of this paper, the Chi-square test is employed as a tool to determine the final 
pavement friction performance ratings. Specifically, it is used to investigate the relationship between 
variables within each friction performance rating. By analyzing the association between these 
variables, valuable insights can be gained regarding the impact of different factors on pavement 
friction performance. 

To conduct a Chi-square test, the initial step involves stating the null hypothesis (H଴) and the 
alternative hypothesis (Hୟ) based on the specific research question. Following this, a contingency 
table is created to summarize the observed frequencies of the categorical variables under 
investigation. This table provides a structured representation of the relationship between the 
variables. The Chi-square statistic is then calculated by comparing the observed frequencies with the 
expected frequencies. The formula to calculate the Chi-square test statistic is as follows: 𝜒ଶ = ෍ ሺ𝑂 − 𝐸ሻଶ𝐸  (6)

where 𝜒ଶ=the Chi-square statistic; O=the observed frequency in each cell of the contingency table, 
i.e., the actual count observed in the sample data for each combination of categories in the variables 
being analyzed; and E=the expected frequency in each cell under the assumption of independence, 
i.e., the frequency expected if the variables were independent, calculated based on the marginal totals 
and assuming independence.  

A larger Chi-square value indicates a stronger discrepancy between the observed and expected 
frequencies, suggesting a more significant association between variables. When performing a Chi-
square test, the calculated Chi-square test statistic is compared to the critical value from the Chi-
square distribution, considering the degrees of freedom.  The degree of freedom for the Chi-square 
test is determined by the dimensions of the contingency table. If the number of rows is denoted by r 
and the number of columns by c, then the degree of freedom is calculated as: 𝑑𝑓 = ሺ𝑟 − 1ሻ × ሺ𝑐 − 1ሻ (7)

The Chi-square distribution and the degree of freedom are employed for computing the p-value 
associated with the Chi-square statistic. If the p-value is below a predetermined significance level 
(usually 0.05), the null hypothesis of independence is rejected. This provides evidence of an 
association between the variables being examined. 
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5. Results and Analysis 

5.1. One-Dimensional Clustering Analysis 

The one-dimensional DBSCAN-GMM algorithm was first developed to investigate the attributes 
of friction numbers (FNS). The distribution of FNS is represented in Figure 1, demonstrating a left-
skewed pattern. The 25th, 50th, and 75th percentiles correspond to values of 27.6, 38.2, and 48.8 
respectively. Notably, approximately 95% of the friction numbers fall within the range of 15.5 to 71.8. 

 

Figure 1. Distribution of friction numbers. Note: FNS@40 denotes the friction numbers measured at 
40 mph. 

To implement the DBSCAN-GMM algorithm, the hyperparameter ε and minPts were fine-tuned 
to values of 0.1 and 5, respectively, in this model. The optimum number of clusters in the GMM was 
determined by evaluating both BIC and AIC scores as shown in Figure 2. Based on the AIC and BIC 
scores, the optimum number of clusters for the 1-dimensional DBSCAN-GMM model is determined 
to be 5. Additionally, Figure 3 displays the cumulative frequency distribution (CFD) of the clustered 
FNS. The results indicate that the FNS are initially divided into 5 distinct groups, as presented in 
Table 3. However, to further validate the effectiveness of the clustering results, additional variables 
need to be explored. 

 

Figure 2. AIC and BIC score for 1-D DBSCAN-GMM model. 
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Figure 3. CFD of clustered friction numbers generated by 1-D DBSCAN-GMM model. Note: FNS@40 
denotes the friction numbers measured at 40 mph. 

Table 3. Friction performance ratings based on 1-D DBSCAN-GMM model. 

No. Friction Number (FN) 
1 0 < FN ≤ 25 
2 25 < FN ≤ 35 
3 35 < FN ≤ 50 
4 50 < FN ≤ 70 
5 FN > 70 

5.2. Two-Dimensional Clustering Analysis 

Two-dimensional clustering was performed by including the influence of crashes. Notice that 
88% of the crashes in the dataset were property damage only accidents. The hyperparameters ε and 
minPts were fine-tuned, resulting in values of 1 and 3, respectively. Figure 4 presents the AIC and 
BIC scores obtained from the 2-D DBSCAN-GMM model. The optimum number of clusters 
determined from these scores is 8. Evidently, there are overlaps among clusters obtained from 1-D 
and 2-D DBSCAN-GMM models, respectively. The 8 clusters can be divided into two groups. The 
first one solely consists of PDO crashes, while the second group exclusively comprises injury or fatal 
crashes. Among these 8 clusters, 5 clusters are formed by friction numbers associated with PDO 
crashes, while the remaining 3 clusters are generated by friction numbers associated with injury or 
fatal crashes.  

 
Figure 4. AIC and BIC score for 2-D DBSCAN-GMM model. 
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Figure 5 presents the cumulative frequency distribution (CFD) of the clustered friction numbers 
obtained using the 2-D DBSCAN-GMM model. Figure 5(a) displays the CFD of friction numbers 
associated with property damage only crashes, while Figure 5(b) represents the CFD of friction 
numbers linked to injury or fatal crashes. The friction number range within each cluster of PDO 
crashes remains consistent with the ranges generated in the 1-D model. Additionally, the friction 
number range of cluster 6 associated with PDO crashes is almost equal to the combined friction 
number ranges of clusters 1 and 2. Similarly, the friction number range of cluster 7 associated with 
PDO crashes is nearly equal to the combined friction number ranges of cluster 3 and 4. Furthermore, 
the friction number range of cluster 8 associated with the PDO crashes closely resembles the friction 
number range of cluster 5. Therefore, the pavement friction ratings generated by the 2-D DBSCAN-
GMM model are basically consistent with the results generated by the 1-D model as shown in Table 
3. 

 
(a) 

 
(b) 

Figure 5. CFD of clustered friction numbers generated by 2-D DBSCAN-GMM model. (a) CFD of 
friction number with property damage only crashes; and (b) CFD of friction number with injured or 
fatal crashes. 

5.3. Multi-Dimensional Clustering Analysis 

In addition to friction numbers and crash severity level, three other variables, namely surface 
condition, road geometrics, and surface material, were further included in the clustering analysis. 
Through fine-tuning the hyperparameters, the optimum values of ε and minPts were determined as 
0.5 and 5, respectively. As the number of variables increased, the optimal number of clusters also 
increased accordingly. Hence, the optimal cluster number for the multi-dimensional model was 
identified as 48. Figure 6 illustrates the AIC and BIC scores for varying cluster numbers. Similar to 
the 2-D DBSCAN-GMM model, there are observed overlaps among clusters in the friction numbers. 

 
Figure 6. AIC and BIC score for Multi-Dimensional DBSCAN-GMM model. 
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These 48 clusters were further grouped into 30 distinct categories based on the combination of 
crash severity level, surface condition, road geometrics, and surface material. Out of these 30 groups, 
7 groups consist of 2 clusters or more, while the remaining 23 groups comprise only one cluster each. 
This is because the friction number ranges within these clusters cover the entire range of friction 
numbers. Figure 7 depicts the CFD of the 7 groups that contain 2 clusters or more. In group 1, 
characterized by the combination of categorical variables [PDO, Dry, Level, Asphalt], the friction 
numbers are divided into 6 clusters, as shown in Figure 7(a). The clustering results of the multiple-
dimensional model are largely consistent with those of the 1-D and 2-D models, except for the friction 
number range of (35, 50]. While the 1-D and 2-D DBSCAN-GMM models assign these friction 
numbers to a single cluster, the multiple-dimensional model divided them into two separate clusters, 
namely (35, 45] and (45, 50]. In group 2, distinguished by the categorical variable combination [PDO, 
Dry, Level, Concrete], the clustering results of the multiple-dimensional model combine the friction 
number ranges of (25, 35] and (35, 50] which were divided into two separate clusters by the 1-D and 
2-D DBSCAN-GMM models, as shown in Figure 7(b). For other groups with three clusters or two 
clusters, the demarcation points occur around 35 and 70. Notably, the clustering results for group 3 
and group 5, as shown in Figures 7(c) and 7(e), exhibit slight differences compared to other groups, 
as there is an overlapping segment between clusters, specifically in the friction number range 
between 0 and 20. Based on the above results, the friction performance ratings generated by multiple-
dimensional clusters are summarized and listed in Table 4. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 
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(e) 

 
(f) 

 
(g) 

 

Figure 7. CFD of clustered friction numbers generated by the multiple-dimensional DBSCAN-GMM 
model. (a) CFD of group 1; (b) CFD of group 2; (c) CFD of group 3; (d) CFD of group 4; (e) CFD of 
group 5; (f) CFD of group 6; and (g) CFD of group 7. 

Table 4. Friction performance ratings based on multiple-dimensional DBSCAN-GMM model. 

No. Friction Number (FN) 
1 0 < FN ≤ 20 
2 20 < FN ≤ 25 
3 25 < FN ≤ 35 
4 35 < FN ≤ 45 
5 45 < FN ≤ 50 
6  50< FN ≤ 70 
7 FN > 70 

5.4. Chi-square Test Analysis 

A Chi-square test was employed to further determine the most appropriate pavement friction 
performance ratings. The purpose of the Chi-square is to assess the independence between the crash 
severity level and the three other variables, namely surface condition, road geometrics, and surface 
material. The hypotheses for the Chi-square test are as follows: 𝐻଴: 𝑆𝑒𝑣𝑒𝑟𝑖𝑡𝑦 𝑙𝑒𝑣𝑒𝑙 𝑖𝑠 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑜𝑓 𝑣௜ 𝐻௔: 𝑆𝑒𝑣𝑒𝑟𝑖𝑡𝑦 𝑙𝑒𝑣𝑒𝑙 𝑖𝑠 𝑛𝑜𝑡 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑜𝑓 𝑣௜ 
where 𝑣௜=one of the three variables; and i=surface condition, road geometrics, and surface material, 
respectively.  
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The significance level is established at 0.05, which serves as a threshold for decision-making in 
the Chi-square test. This significant level helps determine the statistical significance of the 
relationship between the severity level and the variables under investigation. If the relationship 
between the crash severity level and the other variables in two consecutive clusters is found to be the 
same, it is permissible to combine these two clusters. However, if the relationship differs between the 
two clusters, they cannot be merged. This criterion ensures that clusters with similar patterns and 
associations between the severity level and the three variables are grouped together, while clusters 
with distinct patterns are kept separate. The decision to combine or separate clusters is based on the 
consistency or inconsistency of the relationships observed between the crash severity level and the 
other three variables across consecutive clusters.  

Table 5 presents the outcomes obtained from the Chi-square tests. The Chi-square test results 
indicate that, within the friction range of (0, 20], there is a significant relationship between the severity 
level and the surface condition. Similarly, for the friction ranges of (25, 35] and (50, 70], the crash 
severity level exhibits an association with the surface material. In contrast, across all clusters, the 
severity level appears to be independent of the surface condition, road geometrics, and surface 
materials within the range of (35, 45] and (45, 50). As a result of these consistent Chi-square test 
findings, it is justifiable to combine these two contiguous ranges together. 

Table 5. Chi-square test results. 

FNS Variable 1 Variable 2 χ2 df p-value 
Accept H଴ or not 

0 < FN ≤ 20 Severity Level Surface 
Condition 

20.0990 3 0.0002 Reject 

Road 
Geometric 

4.7952 2 0.0909 Accept 

Surface 
Material 

0.6405 2 0.7260 Accept 

20 < FN ≤ 25 Severity Level Surface 
Condition 

5.4039 3 0.1445 Accept 

Road 
Geometric 

0.7559 2 0.6853 Accept 

Surface 
Material 

4.3729 2 0.1123 Accept 

25 < FN ≤ 35 Severity Level Surface 
Condition 

2.8680 3 0.4124 Accept 

Road 
Geometric 

1.6748 2 0.4328 Accept 

Surface 
Material 

7.7221 2 0.0210 Reject 

35 < FN ≤ 45 Severity Level Surface 
Condition 

5.6471 3 0.1301 Accept 

Road 
Geometric 

0.2079 2 0.9013 Accept 

Surface 
Material 

0.5696 2 0.7522 Accept 
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FNS Variable 1 Variable 2 χ2 df p-value 
Accept H଴ or not 

45 < FN ≤ 50 Severity Level Surface 
Condition 

1.9873 3 0.5751 Accept 

Road 
Geometric 

3.1309 2 0.2090 Accept 

Surface 
Material 

0.1312 2 0.9365 Accept 

50< FN ≤ 70 Severity Level Surface 
Condition 

3.9647 3 0.2653 Accept 

Road 
Geometric 

0.0896 2 0.9562 Accept 

Surface 
Material 

6.7126 2 0.0349 Reject 

FN > 70 Severity Level Surface 
Condition 

3.0918 3 0.3777 Accept 

Road 
Geometric 

1.0527 2 0.5908 Accept 

Surface 
Material 

1.3914 1 0.2382 Accept 

The analysis conducted using the DBSCAN-GMM models and the Chi-square tests has led to 
the identification of six distinct friction performance ratings, which are summarized in Table 6. Figure 
8 visualizes the characteristics of crash severity level in relation to the other variables for each friction 
performance rating using 100% stacked columns. Several specific friction number ranges exhibit 
distinct characteristics in relation to crash severity and other variables. These characteristics provide 
valuable insights into pavement friction performance ratings: 

• FNS ∈ (0, 20]: This range, as shown in Figures 8(a) and 8(b), indicates a higher likelihood of 
injury or fatal crashes. The proportion of crashes on icy surfaces is substantially higher, with a 
statistical result showing that more than 25% of crashes on icy surfaces lead to injury or fatality, 
compared to around 12% in other clusters. 

• FNS ∈ (20, 25]: This range indicates a heightened occurrence of injury and fatal crashes on wet 
surfaces. More than 15% of crashes transpiring on wet surfaces result in injury or fatality, 
surpassing the 11% observed in other clusters. 

• FNS ∈ (35, 50]: Within this range, over 97% of crashes occurring on snow surfaces were classified 
as PDO crashes, with only 2.19% resulting in injured or fatal accidents. The proportion of PDO 
crashes and injured or fatal crashes on other surface conditions is almost the same as in other 
ratings. Hence, this particular range represents a favorable friction range. 

Additionally, Figures 8(c) and 8(d) demonstrate the relationship between friction and the 
occurrence of crashes on different road surfaces. As friction increases, the proportion of crashes on 
concrete roads gradually decreases. However, at high friction values, the proportion of injured or 
fatal crashes on concrete roads begins to increase gradually, while the proportion on asphalt roads 
decreases gradually. 
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Table 6. Chi-square test results. 

No. Friction Number (FN) 
1 0 < FN ≤ 20 
2 20 < FN ≤ 25 
3 25 < FN ≤ 35 
4 35 < FN ≤ 50 
5  50< FN ≤ 70 
6 FN > 70 
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(c) 

 
(d) 

Figure 8. 100% stacked columns. (a) 100% stacked column of surface condition under different crash 
severity levels; (b) 100% stacked column of crash severity level under different surface conditions; (c) 
100% stacked column of surface material under different crash severity levels; and (d) 100% stacked 
column of crash severity level under different surface materials. 

Provided below are the current practices of INDOT in managing pavement friction: 

• A friction number of 20 is the flag value of friction that indicates necessary actions are 
warranted to restore pavement friction. 

• A friction number ranging between 20 and 25 indicates the pavement friction may be lower 
than the flag value in the coming year(s), which can facilitate district pavement engineers to 
better plan pavement preservation, overlay, and resurfacing activities.  

• A friction number of 35 is the minimum friction requirement for pavement warranty projects 
[41]. 

• A friction number greater than 70 is commonly required for new high friction surface 
treatment (HFST) that is commonly utilized at crash-prone areas with exceptionally high 
friction demand, such as sharp curves, ramps, bus stops, intersections, tunnel entrances, and 
steep grades [42]. 

Evidently, the ratings in Table 6 align effectively with the current practices. This may appear to 
be a coincidence, but it reflects the long-lasting and profound impact of INDOT's current practices in 
pavement friction management on the overall pavement friction performance of the road network. 
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6. Conclusions 

Based on the findings presented in this paper, several key conclusions can be drawn as follows: 
This paper has established six distinct pavement friction performance ratings, which are 

categorized as (0, 20], (20, 25], (25, 35], (35, 50], (50, 70], and (70, ∞]. These ratings effectively align 
with INDOT's current practice in managing pavement friction. 

The range (0, 20] indicates a higher likelihood of injury or fatal crashes compared to other ratings. 
Similarly, the range (20, 25] highlights an increased occurrence of injury and fatal crashes. On the 
other hand, the rating (35, 50] demonstrates a remarkably low rate of injury or fatal crashes, indicating 
a favorable pavement friction performance. 

Regarding snow/other surfaces, as friction increases, the crash rate tends to decrease. 
Additionally, with increasing friction, the proportion of crashes on concrete roads gradually 
decreases. However, at high friction values, the proportion of injured or fatal crashes on concrete 
roads increases, while the proportion on asphalt roads decreases gradually. 

These findings help better understand the relationship between pavement friction, crash 
severity, and other safety-related variables. They provide valuable insights for improving road safety 
and friction management. Furthermore, the comprehensive analysis and comparison with the 
outcomes obtained from the one-, two-, and multi-dimensional DBSCAN-GMM models offer 
compelling evidence to support the reliability and effectiveness of the DBSCAN-GMM hybrid 
clustering algorithm in accurately determining pavement friction performance ratings. 
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