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Abstract: This paper is concerned with variational methods for open quantum systems with

Markovian dynamics governed by Hudson-Parthasarathy quantum stochastic differential equations.

These QSDEs are driven by quantum Wiener processes of the external bosonic fields and are specified

by the system Hamiltonian and system-field coupling operators. We consider the system response

to perturbations in these operators and introduce a transverse Hamiltonian which encodes the

propagation of the perturbations through the unitary system-field evolution. This approach provides

an infinitesimal perturbation analysis tool which can be used for the development of optimality

conditions in quantum control and filtering problems. Such settings employ, as performance criteria,

quadratic (or more complicated) cost functionals of the system and field variables to be minimised

over the energy and coupling parameters of system interconnections. We demonstrate an application

of the transverse Hamiltonian variational approach to a mean square optimal coherent quantum

filtering problem for a measurement-free field-mediated cascade connection of a quantum system

with a quantum observer.

Keywords: quantum stochastic system; infinitesimal perturbation analysis; transverse Hamiltonian;

integro-differential equation
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1. Introduction

In comparison with classical mechanics which considers macroscopic objects both in deterministic

and stochastic settings, quantum mechanics, concerned with physical phenomena at atomic and

subatomic scales, inherently incorporates randomness. In particular, the squared absolute value of the

wave function of a quantum mechanical particle is interpreted as a probability density function, mixed

quantum states are built of pure ones using randomisation, and the latter is also present in the model

of quantum measurement [39,51]. However, in contrast to scalar-valued classical probability measures

[41], quantum probability describes statistical properties of quantum variables by using quantum

states in the form of density operators [16,30] on the same Hilbert space where those variables act as

linear operators.

The noncommutativity and canonical commutation structures, coming from the operator-valued

nature of quantum variables and quantum states, give rise to specific features of quantum probability

such as the absence of a classical joint probability distribution and conditional expectations for a set of

noncommuting quantum variables (whereas an individual self-adjoint operator has a well-defined

marginal distribution). Furthermore, since the microscopic realm is less amenable to manipulation

by conventional macroscopic tools (unlike, for example, the coin tossing as a manageable “random

number generator” for thought and practical experiments in classical probability theory), its natural

time evolution makes statistical properties of quantum systems particularly tied to their dynamics.

While an isolated quantum system undergoes a reversible evolution (according to a one-parameter

unitary group generated by the system Hamiltonian), a more realistic open dynamics scenario [6]

involves interaction of the system with its environment which can include other quantum or classical

systems, measuring devices and external quantum fields (quantised electromagnetic radiation).
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The interaction of an open quantum system with its surroundings is accompanied by energy

exchange between the subsystems and gives rise to dissipative effects. This provides a way to influence

statistical and dynamic properties of such systems by arranging them into quantum networks [14] and

varying the energy and coupling parameters of the resulting interconnections, which can consist of a

quantum plant coupled in a measurement-based or coherent (that is, measurement-free) fashion to a

controller or observer. This paradigm is used in quantum control [3,5,8] which develops systematic

methods for achieving stability, robustness with respect to unmodelled dynamics, and optimality in

the sense of relevant performance criteria for quantum systems and their applications, for example, in

quantum optics [11,50] and quantum information processing [32].

An important part in these developments belongs to quantum filtering, which, similarly to its

classical predecessor (see for example, [23,28]), is concerned with mean square optimal real time

estimation of the internal variables of the quantum plant using a measurement-based quantum

Kalman filter [2,4,9] or a qualitatively different coherent quantum observer [31,45]. The latter does

not process classical observations and, in contrast to the classical filters, does not compute the

conditional expectations of the plant variables (this conditioning and related Bayesian approaches

are not applicable in the noncommutative quantum case as mentioned above). Instead, the coherent

quantum filter is driven by the output quantum fields of the plant so as to produce a quantum process,

whose performance, as an estimator of the plant variables, can be optimised in the sense of minimising

the mean square value of the “estimation error” by varying the parameters of the Hamiltonian and

coupling operators of the filter.

The optimisation problems, arising in coherent quantum filtering and control (with the latter

considering more complicated feedback interconnections of a quantum plant and a quantum controller)

involve physical realisability (PR) constraints [22,40] which originate from the canonical commutation

structures of quantum dynamic variables, the energetics of open quantum systems, and unitarity

in the augmented system-environment evolution. These features of open quantum dynamics are

incorporated in the Hudson-Parthasarathy quantum stochastic calculus [19,35] (see also [15]) which is

often employed as a unified modelling framework in quantum filtering and control. In this approach,

the external fields at the input of a quantum system of interest are represented by a multichannel

quantum Wiener process with noncommuting components, which act on a symmetric Fock space

and drive the quantum stochastic differential equation (QSDE) governing the system dynamics. In

contrast to the classical SDEs with a standard Wiener process [24], the QSDE reflects the unitarity of

the augmented system-field evolution, and its drift and dispersion terms (as well as the generator

of Markovian quantum dynamics) are specified by the Hamiltonian and coupling operators. These

operators (together with a scattering matrix representing the photon exchange between the fields

[35]) describe the energetics of the quantum system and its interaction with the environment and

are usually functions (for example, polynomials or Weyl quantization integrals [10]) of the system

variables. A particular form of this dependence and the commutation structure of the system variables

affect tractability of the quantum system.

In particular, a quadratic dependence of the system Hamiltonian and a linear dependence of the

system-field coupling operators on the quantum mechanical position-momentum variables [29] lead to

linear QSDEs for open quantum harmonic oscillators (OQHOs) [9,11] which play the role of building

blocks in linear quantum control theory [8,22,34,38,54,55]. The dynamics of such systems are relatively

well understood and are similar to the classical linear SDEs in a number of respects, including the

preservation of Gaussian nature of quantum states [20,36] in the case of vacuum input fields. However,

the coherent quantum analogue [33] of the classical linear-quadratic-Gaussian (LQG) control problem

[1,25] for OQHOs is complicated by the above mentioned PR constraints on the state-space matrices of

the quantum controller and by the impossibility to take advantage of the classical estimation-actuation

separation principle and classical conditional expectations with their variational properties [28].

One of the existing approaches to the coherent quantum LQG (CQLQG) control and coherent

quantum filtering (CQF) problems employs the Frechet derivatives of the mean square cost (with
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respect to the state-space matrices subject to the PR constraints) for obtaining the optimality conditions

[44,45] and for the numerical optimization [42]. This approach takes into account the quantum nature

of the underlying problem only through the PR constraints, being “classical” in all other respects, which

has its own advantages from the viewpoint of well-developed conventional optimization methods.

However, a disadvantage of this approach is that it is limited to certain parametric classes of linear

controllers and observers. In particular, the resulting optimality conditions do not provide information

on whether nonlinear quantum controllers or observers can outperform the linear ones for linear

quantum plants. For this reason, the coherent quantum control and filtering problems require novel

variational methods for their solution, which would be able to operate with sensitivity of the system

dynamics and relevant cost functionals to perturbations over wider classes of the Hamiltonian and

coupling operators in a “coordinate-free” fashion.

To this end, the present paper (some of its results were briefly announced in [48]) outlines a fully

quantum variational method which allows the sensitivity of the internal and output variables of a

nonlinear quantum stochastic system to be investigated with respect to arbitrary (that is, not only

linear-quadratic) perturbations of the Hamiltonian and coupling operators. This approach is based

on using a transverse Hamiltonian, defined as an auxiliary time-varying self-adjoint operator which

encodes the propagation of such perturbations through the unitary system-field evolution. This leads

to an infinitesimal perturbation formula for quantum averaged performance criteria (such as the mean

square cost functional) which is applicable to the development of optimality conditions in coherent

quantum control and filtering problems over larger classes of controllers and observers. In particular,

this approach allows the sensitivity of OQHOs with quadratic performance criteria to be studied with

respect to general perturbations of the Hamiltonian and coupling operators. In fact, the transverse

Hamiltonian method has already been employed in [47] in order to establish local sufficiency of linear

observers in the mean square optimal CQF problem [45] for linear quantum systems with respect

to varying the Hamiltonian and coupling operators of the observer along linear combinations of

the Weyl operators [10]. Note that our approach is different from [13] which develops a quantum

Hamilton-Jacobi-Bellman principle (for the density operator instead of the dynamic variables) in a

measurement-based quantum feedback control problem. We also mention a parallel between the

perturbation analysis, discussed in the present paper, and the fluctuation-dissipation theorem [26].

The paper is organised as follows. Section 2 specifies the class of quantum stochastic systems

under consideration. Section 3 discusses sensitivity of the internal and output variables of OQHOs to

parametric perturbations within the families of quadratic system Hamiltonians and linear system-field

coupling operators. Section 4 returns to general QSDEs and introduces the transverse Hamiltonian

associated with arbitrary perturbations of the Hamiltonian and coupling operators of the system. The

transverse Hamiltonian is used in Section 5 for infinitesimal perturbation analysis of system operators.

Section 6 extends the transverse Hamiltonian method to quantum averaged performance criteria.

Section 7 applies this approach to a mean square optimal CQF problem. Section 8 makes concluding

remarks.

We use the following principal notation in the paper. Denoted by rA, Bs :“ AB ´ BA is the

commutator of linear operators A, B, with adAp¨q :“ rA, ¨s a linear superoperator associated with

A. This extends to the commutator pn ˆ mq-matrix rX, YTs :“ XYT ´ pYXTqT “ prXj, Yksq1ăjăn,1ăkăm

for vectors X, Y of operators X1, . . . , Xn, Y1, . . . , Ym, respectively. Vectors are organised as columns

unless indicated otherwise, and the transpose p¨qT acts on matrices of operators as if their entries were

scalars. In application to such matrices, p¨q: :“ pp¨q#qT is the transpose of the entry-wise operator

adjoint p¨q#. For complex matrices, p¨q: is the usual complex conjugate transpose p¨q˚ :“ pp¨qqT. The

subspaces of real symmetric, real antisymmetric and complex Hermitian matrices of order n are

denoted by Sn, An and Hn :“ Sn ` iAn, respectively, where i :“
?

´1 is the imaginary unit. The real

and imaginary parts of a complex matrix are denoted by Rep¨q and Imp¨q. These extend to matrices

M with operator-valued entries as ReM :“ 1
2 pM ` M#q and ImM :“ 1

2i pM ´ M#q which consist of

self-adjoint operators. Positive (semi-) definiteness of matrices and the corresponding partial ordering
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are denoted by (ě) ą. Also, S`
n and H`

n denote the sets of positive semi-definite real symmetric and

complex Hermitian matrices of order n, respectively. The tensor product of spaces or operators (in

particular, the Kronecker product of matrices) is denoted by b. The tensor product A b B of operators

A, B acting on different spaces will sometimes be abbreviated as AB. The identity matrix of order n

is denoted by In, and the identity operator on a space H by IH . The Frobenius inner product of real

or complex matrices is denoted by xM, Ny :“ TrpM˚Nq. Denoted by }v}K :“
?

vTKv is a weighted

Euclidean (semi-)norm of a real vector v specified by a real positive (semi-)definite symmetric matrix

K. The quantum expectation Eξ :“ Trpρξq of a quantum variable ξ over a density operator ρ extends

in an entry-wise fashion to vectors and matrices of such variables.

2. Quantum stochastic systems being considered

We consider an open quantum system, which interacts with an external multichannel bosonic field

and is equipped with dynamic variables X1ptq, . . . , Xnptq, evolving in time t ě 0 and assembled into

a vector Xptq :“ pXkptqq1ďkďn. These system variables are assumed to be self-adjoint operators on a

composite system-field Hilbert space H b F . Here, H is the initial space of the system, which provides

a domain for X1p0q, . . . , Xnp0q, and F is a symmetric Fock space [35] for the action of an even number

m of quantum Wiener processes W1ptq, . . . , Wmptq. The latter are time-varying self-adjoint operators,

which model the external fields and are assembled into a vector Wptq :“ pWkptqq1ďkďm. Unlike the

classical Brownian motion [24] in Rm, the quantum Wiener process W consists of noncommuting

operator-valued components and has a complex Ito matrix Ω :“ pωjkq1ďj,kďm P H`
m (identified with

Ω b IF ) for its future-pointing Ito increments dW:

dWptqdWptqT “ Ωdt, Ω :“ Im ` i J. (1)

Here, the matrix J P Am specifies the canonical commutation relations (CCRs) for the constituent field

processes W1, . . . , Wm:

rdWptq, dWptqTs “ 2i Jdt, J :“ Im{2 b J, J :“
«

0 1

´1 0

ff

(2)

(with J spanning the subspace of antisymmetric p2 ˆ 2q-matrices), which is an incremental form of the

two-point CCRs

rWpsq, WptqTs “ 2i minps, tqJ, s, t ě 0. (3)

These CCRs are closely related to the continuous tensor-product structure of the Fock space [37] and

are complemented by the commutativity between the Ito increments of W and adapted processes

Z :“ pZptqqtě0 taken at the same (or an earlier) moment of time:

rZpsq, dWptqs “ 0, t ě s ě 0. (4)

The adaptedness of quantum processes on the system-field space H b F is understood with respect to

a filtration pHtqtě0, where

Ht :“ H b Ft, (5)

and pFtqtě0 is the Fock space filtration, so that for any t ě 0, the operators Wjptq act effectively on Ft,

while Xkptq act on the subspace Ht.

The energetics of the quantum system and its interaction with the external fields is specified by a

system Hamiltonian Hptq and system-field coupling operators L1ptq, . . . , Lmptq which are time-varying

self-adjoint operators, organised as deterministic functions (for example, polynomials with constant

coefficients) of the system variables X1ptq, . . . , Xnptq and assembled into a vector Lptq :“ pLkptqq1ďkďm.

Accordingly, the operators Hp0q, L1p0q, . . . , Lmp0q act on the initial space H. Depending on the context,
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a system operator σ (a function of the initial system variables X1p0q, . . . , Xnp0q) on the initial space H

will be identified with its extension σ b IF to the system-field space H b F .

The system and the fields form a composite quantum system which evolves according to a

quantum stochastic flow as described below. This evolution is specified at any time t ě 0 by a unitary

operator Uptq on H b F governed by the following stochastic Schrödinger equation [19,35]:

dUptq “ ´
´

ipH0dt ` LT
0 dWptqq ` 1

2
LT

0 ΩL0dt
¯

Uptq, (6)

with initial condition U0 :“ IHbF , so that Uptq captures the internal dynamics of the system and

the system-field interaction over the time interval r0, ts. Here and in what follows, the subscript 0

marks the initial values of time-varying operators (or vectors or matrices of operators): H0 :“ Hp0q,

L0 :“ Lp0q, U0 :“ Up0q, while the time arguments will often be omitted for the sake of brevity.

Also, the units are chosen so that the reduced Planck constant is h̄ “ 1. The quantum stochastic

differential equation (QSDE) (6) corresponds to a particular yet important case of the identity scattering

matrix, when there is no photon exchange between the fields, and the gauge processes [35] can

be eliminated from consideration. The term LT
0 dW in (6) can be interpreted as an incremental

Hamiltonian of the system-field interaction, while 1
2 LT

0 ΩL0dt involves the quantum Ito matrix Ω

from (1) and counterbalances the Ito correction term dUdU: “ LT
0 ΩL0dt in the differential relation

dpUU:q “ pdUqU: ` UdU: ` dUdU: “ 0 which describes the preservation of the co-isometry property

UptqUptq: “ U0U:
0 “ IHbF for all t ě 0. The system variables at time t ě 0, as operators on the

system-field space H b F , are the images

Xkptq “ jtpXkp0qq, k “ 1, . . . , n, (7)

of their initial values under the quantum stochastic flow jt which maps a system operator σ0 on the

initial space H to the operator

σptq :“ jtpσ0q “ Uptq:pσ0 b IF qUptq (8)

on Ht in (5). The resulting quantum adapted process σ satisfies the following Hudson-Parthasarathy

QSDE [19,35]:

dσ “ Gpσqdt ´ irσ, LTsdW, Gpσq :“ irH, σs ` Dpσq, (9)

where use is made of the Hamiltonian and the coupling operators evolved by the flow jt from (8) as

Hptq “ jtpH0q, Lptq “ jtpL0q :“ pjtpLkp0qqq1ďkďm (10)

(the flow acts entry-wise on vectors and matrices of operators). Also, D in (9) is the decoherence

superoperator which acts on σptq as

Dpσq :“ 1

2
pLT

Ωrσ, Ls ` rLT, σsΩLq “ ´rσ, LTsΩL ´ 1

2
rLT

ΩL, σs. (11)

The second equality in (11) is applicable to the case when σ is a vector of operators

on which the superoperator D acts entry-wise. The superoperator G in (9) is the

Gorini-Kossakowski-Sudarshan-Lindblad (GKSL) generator [12,27], which is a quantum counterpart

of the infinitesimal generators of classical Markov processes [24]. The identity pσ0 b IF qU “ Uσ,

which holds for system operators σ in view of (8) and the unitarity of Uptq, allows the QSDE (6) to be

represented in the Heisenberg picture by using (10) along with the commutativity (4) as

dU “ ´U
´

ipHdt ` LTdWq ` 1

2
LT

ΩLdt
¯

. (12)
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In application to the vector Xptq of system variables, the quantum stochastic flow jt also acts entry-wise

as

Xptq :“ jtpX0q “ Uptq:pX0 b IF qUptq, (13)

in accordance with (7), (8), so that the corresponding QSDE (9) can be represented in vector-matrix

form:

dX “ Fdt ` GdW, F :“ GpXq, G :“ ´irX, LTs, (14)

where the n-dimensional drift vector F “ pGpXjqq1ďjďn and the dispersion pn ˆ mq-matrix G “
´iprXj, Lksq1ďjďn,1ďkďm consist of time-varying self-adjoint operators on H b F .

The interaction of the system with the input field W produces the output fields Y1ptq, . . . , Ymptq
assembled into a vector

Yptq :“ pYkptqq1ďkďm “ Uptq:pIH b WptqqUptq, (15)

where the system-field unitary evolution is applied to the current input field variables (which reflects

the innovation nature of the quantum Wiener process and the continuous tensor product structure of

the Fock space mentioned above). The output field Y satisfies the QSDE

dY “ 2JLdt ` dW, (16)

where the matrix J is given by (2), and L is the vector of system-field coupling operators from (10). The

system-field interaction makes the output field Y different from the input field W only through the

drift vector 2JL in (16).

The common unitary evolution in (13), (15) preserves the commutativity between the system

variables and the output field variables in time t ě 0:

rXptq, YptqTs “ Uptq:rX0 b IF , IH b WptqTsUptq “ 0, (17)

where the entries of X0, Wptq commute as operators on different spaces H, F . By a similar reasoning,

the output field Y inherits the CCR matrix J from the input quantum Wiener process W:

rYptq, YptqTs “ Uptq:rIH b Wptq, IH b WptqTsUptq
“ 2itJUptq:IHbFUptq “ 2itJ, (18)

where (3) is used with s “ t. By (1), (2), the relation (18) can also be established as a corollary of the

property that Y in (16) inherits the quantum Ito matrix Ω from W as dYdYT “ dWdWT “ Ωdt.

In view of (6) (see also (12)), the quantum stochastic flow jt in (8) depends on the system

Hamiltonian H0 and the system-field coupling operators in L0. In turn, H0 and L0 are usually functions

(such as polynomials or Weyl quantization integrals [10] in [49, Eq. (32)]) of the initial system variables

X1p0q, . . . , Xnp0q. The dependence of H0, L0 on Xp0q is inherited by H, L as functions of X and (along

with a given commutation structure of the system variables) specifies a particular form of the resulting

QSDEs (14), (16), thus influencing their tractability.

3. Open quantum harmonic oscillators with parametric dependence

An important class of quantum stochastic systems is provided by multimode open quantum

harmonic oscillators (OQHOs) [9] with an even number n of system variables X1, . . . , Xn (for example,

consisting of n
2 conjugate position-momentum pairs [29]) satisfying the Heisenberg CCRs

rXptq, XptqTs “ 2iΘ (19)
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(on a dense domain in HbF ), where the CCR matrix Θ P An is identified with Θ b IHbF and remains

unchanged over the course of time t ě 0. The Hamiltonian H of the OQHO is a quadratic function and

the system-field coupling operators L1, . . . , Lm in (10) are linear functions of the system variables,

H “ 1

2
XTRX, L “ NX, (20)

parameterised by an energy matrix R P Sn and a coupling matrix N P Rmˆn. In this case, the QSDEs (14),

(16) take the form

dX “ AXdt ` BdW, dY “ CXdt ` dW, (21)

where the drifts F “ AX and 2JL “ CX depend linearly on the system variables X1, . . . , Xn, with A P
Rnˆn, C P Rmˆn and the dispersion matrices G “ B P Rnˆm and Im being constant real matrices. This

linearity makes some of the dynamic properties of (21) similar to those of a classical linear stochastic

system with a state-space realization quadruple pA, B, C, Imq and the corresponding Cmˆm-valued

transfer function F on the complex plane:

Fpsq :“ CpsIn ´ Aq´1B ` Im, s P C, (22)

thus allowing for application of transfer function techniques [52]. However, in addition to the

noncommutative nature of quantum variables, the matrices of coefficients of these QSDEs have

a specific parameterization in terms of the energy, coupling and CCR matrices:

A “ 2ΘpR ` NT JNq, B “ 2ΘNT, C “ 2JN. (23)

Since the energy matrix R is symmetric, and the CCR matrices Θ, J are antisymmetric, the matrices A,

B, C satisfy

AΘ ` ΘAT ` BJBT “ 0, ΘCT ` BJ “ 0. (24)

These equalities pertain to the fulfillment of the CCRs (19) and the commutativity (17) at any moment

of time and provide necessary and sufficient conditions for physical realizability (PR) [22,40] of the

linear QSDEs (21) as an OQHO with the CCR matrix Θ for the system variables. The first equality

in (24) has the structure of an algebraic Lyapunov equation (ALE) with respect to Θ, which has a

unique solution if and only if the Kronecker sum A ‘ A :“ In b A ` A b In is a nonsingular matrix

(that is, no two eigenvalues of A are centrally symmetric about the origin in C). The latter condition

holds, for example, when the matrix A is Hurwitz. For more general open quantum systems (such as

anharmonic oscillators whose dynamic variables satisfy the CCRs (19), while the Hamiltonian and the

coupling operators are not necessarily quadratic and linear functions of the system variables), the CCR

preservation is secured by the unitary evolution of the system variables in (13).

By analogy with the state-space realizations of transfer functions in classical linear systems theory

[1,25], we will use the input-output map for the OQHO (21) with the matrix quadruple pA, B, C, Imq:

SA,B,C,Im
: pX0, Wq ÞÑ Y. (25)

Now, suppose the energy and coupling matrices R, N, which specify the Hamiltonian and the coupling

operators in (20), depend smoothly on an auxiliary parameter ϵ P R (while the quantum Wiener

process W is independent of ϵ). Then so also do the matrices A, B, C in (23) and the system and output

variables which comprise the vectors Xptq, Yptq (the differentiability of X, Y is understood in the weak

sense). The corresponding partial derivatives

Xptq1 :“ BϵXptq, Yptq1 :“ BϵYptq (26)
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at any t ě 0 give rise to adapted quantum processes with self-adjoint operator-valued entries satisfying

the QSDEs

dX1 “ pA1X ` AX1qdt ` B1dW, dY1 “ pC1X ` CX1qdt (27)

(the second of which is, in fact, an ODE pY1q‚ “ C1X ` CX1 involving the time derivative 9p q of Y1),

with zero initial conditions X1
0 “ 0, Y1

0 “ 0 since X0, Y0 do not depend on ϵ. Here,

A1 “ 2ΘpR1 ` N1T JN ` NT JN1q, B1 “ 2ΘN1T, C1 “ 2JN1 (28)

are the derivatives of the matrices A, B, C from (23) with respect to the parameter ϵ satisfying the

relations

A1
Θ ` ΘA1T ` B1 JBT ` BJB1T “ 0, ΘC1T ` B1 J “ 0, (29)

which are obtained by differentiating the PR conditions (24), with the CCR matrices Θ, J being constant.

Since the CCR matrices Θ, J are antisymmetric (and hence, ΘA1T ` BJB1T “ ´pA1Θ ` B1 JBTqT), the

first equality in (29) implies that

A1
Θ ` B1 JBT P Sn. (30)

By assembling the system variables and their parametric derivatives from (26) to an augmented vector

S :“
«

X

X1

ff

(31)

a combination of the QSDEs (21), (27) allows the parametric derivative of the map (25) to be represented

as the input-output map

S1
A,B,C,Im

“ SA,B,C,0 : pX0, Wq ÞÑ Y1 (32)

associated with

dS “ ASdt ` BdW, pY1q‚ “ CS . (33)

Here, the initial condition S0 “
„

X0

0

ȷ

, in view of X1
0 “ 0, is identified with X0, and the matrices

A P R2nˆ2n, B P R2nˆm, C P Rmˆ2n are given by

A :“
«

A 0

A1 A

ff

, B :“
«

B

B1

ff

, C :“
”

C1 C
ı

. (34)

This can also be obtained by using the transfer functions of the corresponding linear systems (including

(22)) as

Fpsq1 “ C1psIn ´ Aq´1B ` CpsIn ´ Aq´1 A1psIn ´ Aq´1B ` CpsIn ´ Aq´1B1

“ C

«

psIn ´ Aq´1 0

psIn ´ Aq´1 A1psIn ´ Aq´1 psIn ´ Aq´1

ff

B “ C psI2n ´ Aq´1
B

for any s P C which is not an eigenvalue of A. Here, use is made of a particular case of the block matrix

inverse formula [17]:
«

α 0

γ β

ff´1

“
«

α´1 0

´β´1γα´1 β´1

ff

.

The block lower triangular structure of the dynamics matrix A in (32), (34) is closely related to the

Gateaux derivative of the matrix exponential eA in the direction A1 (see, for example, [18]):

peAq1 “
”

0 In

ı

eA

«

In

0

ff

“
ż 1

0
ep1´sqA A1esAds. (35)
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At any time t ě 0, both Xptq1 and Yptq1 depend linearly on the matrices R1, N1 from (28) in view of the

following representation of the solutions of the QSDEs (27), which regards A1Xdt ` B1dW as a forcing

term in the first of these QSDEs:

Xptq1 “
ż t

0
ept´sqApA1Xpsqds ` B1dWpsqq, Yptq1 “

ż t

0
pC1Xpsq ` CXpsq1qds, (36)

where

Xptq “ etAX0 `
ż t

0
ept´sqABdWpsq (37)

is the unperturbed solution of the first QSDE in (21) which does not depend on R1, N1. In the case of

linear QSDEs whose coefficients depend smoothly on parameters, the mean square differentiability of

their solutions with respect to those parameters can be verified directly by using the closed form (37)

(under certain integrability conditions for the underlying quantum state in terms of relevant moments

of the system variables such as EpXT
0 X0q ă `8).

An additional insight into the structure of the process X1 is provided by its cross-commutation

relations with X, W. In particular, X1 inherits the commutativity with the Ito increments of the input

field W from that of the underlying system variables in (4), and so also does S in (31):

rS , dWTs “
«

rX, dWTs
rX1, dWTs

ff

“ 0. (38)

Furthermore, the differentiation of (19) in ϵ, combined with the identity rξ, ηTs “ ´rη, ξTsT for vectors

ξ, η of operators, leads to

0 “ rX1, XTs ` rX, X1Ts “ rX1, XTs ´ rX1, XTsT, (39)

whereby the cross-commutation matrix rX1, XTs is symmetric (which holds regardless of a particular

structure of the QSDEs (21) and remains valid for quantum anharmonic oscillators with nonlinear

dynamics). This matrix evolves in time (with zero initial condition because X1
0 “ 0) and has a

steady-state value computed below.

Theorem 1. Suppose the matrix A of the OQHO (21) in (23) is Hurwitz. Then there exist the following limits

lim
tÑ`8

rXptq1, XptqTs “ 2iΘ21, lim
tÑ`8

rXptq1, Xptq1Ts “ 2iΘ22, (40)

where the matrices Θ21 P Sn, Θ22 P An are found as unique solutions of the ALEs

AΘ21 ` Θ21 AT ` A1
Θ ` B1 JBT “ 0, (41)

AΘ22 ` Θ22 AT ´ A1
Θ21 ` Θ21 A1T ` B1 JB1T “ 0. (42)

Proof. In view of the CCRs (19), the commutator matrix for the vector S in (31) is organised as

Ξ :“ rS ,STs “
«

rX, XTs rX, X1Ts
rX1, XTs rX1, X1Ts

ff

“
«

2iΘ Ξ12

Ξ21 Ξ22

ff

, (43)

where the blocks Ξ21 :“ rX1, XTs “ ´ΞT
12, Ξ12 :“ rX, X1Ts and Ξ22 :“ rX1, X1Ts consist of time-varying

skew self-adjoint operators on the system-field space H b F . By using the quantum Ito lemma [19,35]
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and the bilinearity of the commutator along with the QSDE (33) and the commutativity (38), it follows

that (43) satisfies the QSDE

dΞ “ rdS ,STs ` rS , dSTs ` rdS , dSTs
“ rASdt ` BdW,STs ` rS ,STATdt ` dWTBTs ` rBdW, dWTBTs
“ ArS ,STsdt ` BrdW,STs ` rS ,STsATdt ` rS , dWTsBT ` BrdW, dWTsBT

“ pAΞ ` ΞAT ` 2iB JBTqdt,

which (similarly to [22, Eq. (56)]) reduces to the ODE

9Ξ “ AΞ ` ΞAT ` 2iB JBT, (44)

with the initial condition

Ξ0 “
«

2iΘ 0

0 0

ff

(45)

in view of X1
0 “ 0. Hence, at any time t ě 0, the matrix Ξptq is an imaginary antisymmetric matrix

which can be represented as

Ξptq “ 2i

«

Θ Θ12ptq
Θ21ptq Θ22ptq

ff

(46)

with time-varying matrices Θ12ptq “ ´Θ21ptqT P Rnˆn and Θ22ptq P An. Substitution of (46) into (44)

and using (34) leads to the ODEs

9Θ21 “ AΘ21 ` Θ21 AT ` A1
Θ ` B1 JBT, (47)

9Θ22 “ AΘ22 ` Θ22 AT ` A1
Θ12 ` Θ21 A1T ` B1 JB1T, (48)

with zero initial conditions Θ21p0q “ 0, Θ22p0q “ 0 in accordance with the corresponding blocks in (45).

Now, the matrix Θ21ptq is symmetric at any time t ě 0 due to (39). This also follows from (47) in view

of the symmetry (30). Hence, Θ12 “ ´Θ21, and the ODE (48) takes the form

9Θ22 “ AΘ22 ` Θ22 AT ´ A1
Θ21 ` Θ21 A1T ` B1 JB1T. (49)

If the matrix A is Hurwitz, then the solutions of the ODEs (47), (49) converge to their unique steady-state

values which (slightly abusing notation) satisfy the ALEs (41), (42) and specify the limits (40).

The relations (28)–(36) and Theorem 1 provide infinitesimal perturbation analysis for sensitivity

of the internal and output variables of the OQHO to the matrices R, N. Under the perturbations of R,

N, the Hamiltonian H and the coupling operators in L, given by (20), remain in the corresponding

classes of quadratic and linear functions of the system variables. Accordingly, the above analysis is

not applicable to more general perturbations (for example, higher order polynomials of the system

variables) and is restricted to linear QSDEs, so that an alternative approach is needed in the general

case.

4. Transverse Hamiltonian

For the general quantum stochastic system, described in Section 2 and governed by (14), (16),

we will now consider its response to arbitrary perturbations in the system Hamiltonian H0 and the

system-field coupling operators in L0. More precisely, suppose they are perturbed in directions K0, M0

as

H0 ÞÑ H0 ` ϵK0, L0 ÞÑ L0 ` ϵM0. (50)
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Here, K0 and the entries of the m-dimensional vector M0 are self-adjoint operators on the initial system

space H, and ϵ is a small real-valued parameter as before, so that K0 “ H1
0 and M0 “ L1

0. In what

follows, the derivative p¨q1 :“ Bϵp¨q is taken at ϵ “ 0. The perturbations K0, M0 in (50) are also assumed

to be functions of the initial system variables X1p0q, . . . , Xnp0q, and these dependencies describe

Kptq :“ jtpK0q, Mptq :“ jtpM0q (51)

as functions of Xptq under the unperturbed flow (8). For example, in the case of OQHOs considered in

Section 3, the perturbations K, M, which are caused by the perturbations in the energy and coupling

matrices R, N, inherit the structure of the Hamiltonian as a quadratic function and the coupling

operators as linear functions of the system variables in (20), respectively:

K “ 1

2
XTR1X, M “ N1X. (52)

Returning to the general case, we will avoid at this stage technical assumptions on K0, M0 in (50), so that

the calculations, carried out below for arbitrary perturbations, should be regarded as formal. Since the

operators H0, L0 completely specify the dynamics of the unitary operator Uptq in (6) which determines

the evolution of the system and output field variables, the response of the latter to the perturbations

(50) of H0, L0 reduces to that of Uptq. Therefore, the propagation of the initial perturbations K0, M0 of

the operators H0, L0 through the subsequent unitary system-field evolution can be described in terms

of the operator

Vptq :“ Uptq1, (53)

which satisfies V0 “ 0 since U0 “ IHbF does not depend on ϵ. The smoothness of dependence of

Uptq on the parameter ϵ is analogous to the corresponding property of solutions of classical SDEs

(whose drift and dispersion satisfy suitable regularity conditions [24,43]) and holds at least in the case

of linear QSDEs discussed in Section 3. The following theorem is closely related to Stone’s theorem on

generators of one-parameter unitary groups [53].

Theorem 2. For any time t ě 0, the operator Vptq in (53), associated with the unitary evolution Uptq from (6),

can be represented as

Vptq “ ´iUptqQptq. (54)

Here, Qptq is a self-adjoint operator on the system-field space H b F , which satisfies zero initial condition

Q0 “ 0 and is governed by the QSDE

dQ “ pK ´ ImpLT
ΩMqqdt ` MTdW. (55)

Furthermore, Qptq depends linearly on the initial perturbations K0, M0 of the Hamiltonian and coupling

operators in (50) through their unperturbed evolutions in (51).

Proof. The differentiation of both sides of the unitarity relation Uptq:Uptq “ IHbF with respect to the

parameter ϵ at ϵ “ 0 leads to V:U ` U:V “ pU:Vq: ` U:V “ 0, which implies self-adjointness of the

operator

Qptq :“ iUptq:Vptq, (56)

thus establishing (54). Now, consider the time evolution of Qptq. To this end, the differentiation of (6)

with respect to ϵ yields

dV “ ´ pipK0dt ` MT
0 dWq ` RepLT

0 ΩM0qdtqU

´
´

ipH0dt ` LT
0 dWq ` 1

2
LT

0 ΩL0dt
¯

V. (57)
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By left multiplying both sides of (57) by U: and recalling (56), it follows that

U:dV “ ´ ipKdt ` MTdWq ´ RepLT
ΩMqdt

`
´ i

2
LT

ΩLdt ´ Hdt ´ LTdW
¯

Q

“
´

´ iK ´ RepLT
ΩMq `

´ i

2
LT

ΩL ´ H
¯

Q
¯

dt

´ pLQ ` iMqTdW, (58)

where use is made of the evolved perturbations (51). By a similar reasoning, a combination of (12) with

(56) leads to

pdU:qV “
´

i
`

Hdt ` LTdW
˘

´ 1

2
LT

ΩLdt
¯

U:V

“
´

Hdt ` LTdW ` i

2
LT

ΩLdt
¯

Q, (59)

dU:dV “ iLTdWU:dV “ ´iLTdWdWTpLQ ` iMq
“ LT

ΩpM ´ iLQqdt, (60)

where use is also made of (58) along with the quantum Ito product rules [35] and (1), (4). It now follows

from (56), (58)–(60) that

dQ “ ippdU:qV ` U:dV ` dU:dVq
“ pK ` iLT

ΩM ´ iRepLT
ΩMqqdt ` MTdW

“ pK ´ ImpLT
ΩMqqdt ` MTdW,

which establishes (55). The linear dependence of Qptq on K0, M0 follows from the integral

representation

Qptq “
ż t

0
ppKpsq ´ ImpLpsqT

ΩMpsqqqds ` MpsqTdWpsqq (61)

of the QSDE (55) and the property that the evolved perturbations K, M in (51) depend linearly on K0,

M0, respectively.

In view of Theorem 2, for any fixed but otherwise arbitrary time t ě 0, the relation (54), represented

as

Uptq1 “ ´iUptqQptq,

has the structure of isolated quantum dynamics in fictitious time ϵ, where Qptq plays the role of

a Hamiltonian pertaining to the perturbation of the unitary operator Uptq. In order to reflect this

property, we will refer to the time-varying operator Q as the transverse Hamiltonian associated with the

perturbations K, M of the system Hamiltonian H and the system-field coupling operators in L. The

computation of Q is illustrated by the following two examples.

Example 1

In the absence of perturbation to the system-field coupling, when the vector M0 in (50) consists of

zero operators, and hence, so also does M in (51), the transverse Hamiltonian in (61) reduces to

Qptq “
ż t

0
Kpsqds. (62)
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Moreover, if the system is isolated, that is, L “ 0, then (6) reduces to the ODE 9Uptq “ ´iH0Uptq which

leads to

Uptq “ e´itH0 , (63)

with the Hamiltonian being preserved in time: Hptq “ H0 for all t ě 0. In this case of isolated system

dynamics, (62) takes the form

Qptq “
ż t

0
eisH0 K0e´isH0ds “

ż t

0
eisadH0 pK0qds “ tEpitadH0

qpK0q. (64)

Here, use is made of Hadamard’s lemma [29] along with an entire function Epzq :“ ez´1
z “

ř`8
k“0

zk

pk`1q!
of a complex variable (with Ep0q “ 1 by continuity) which plays a role in the solution of

nonhomogeneous linear ODEs with constant coefficients and constant forcing terms [18]. The Gateaux

derivative (53) of (63) can be represented by using an operator version of (35) as

Vptq “
”

0 IH

ı

exp

˜

´it

«

H0 0

K0 H0

ff¸ «

IH

0

ff

“ ´it

ż 1

0
eips´1qtH0 K0e´istH0 ds “ ´iUptq

ż t

0
eisH0 K0e´sH0 ds, (65)

which provides an alternative verification of (54) for this particular case, with Q given by (64). ▲

Example 2

For the OQHO of Section 3, substitution of the perturbations (52) into (61) leads to the transverse

Hamiltonian

Qptq “
ż t

0

´´1

2
XpsqTR1Xpsq ´ ImpXpsqTNT

ΩN1Xpsqq
¯

ds ` XpsqTN1TdWpsq
¯

“
ż t

0

´1

2
XpsqT

`

R1 ` ipNT
ΩN1 ´ N1T

ΩNq
˘

Xpsqds ` XpsqTN1TdWpsq
¯

“
ż t

0

´1

2
XpsqT

`

R1 ` N1T JN ´ NT JN1
˘

Xpsqds ` XpsqTN1TdWpsq
¯

´ xNΘ, N1y t (66)

which depends linearly on the matrices R1, N1 and in a quadratic fashion on the past history of the

system variables. The latter are given by the unperturbed equation (37). The last term xNΘ, N1y t in

(66) comes from the relation ImpipNTΩN1 ´ N1TΩNqq “ NTN1 ´ N1TN (following from (1)) and the

identity XTΥX “ ixΥ, Θy which holds for any matrix Υ P An in view of the CCRs (19). ▲

5. Infinitesimal perturbation analysis of system operators

Since the transverse Hamiltonian Qptq in (56), (61) encodes the propagation of the initial

perturbations of the Hamiltonian and coupling operators in (50) through the unitary system-field

evolution over the time interval r0, ts, it provides a tool for infinitesimal perturbation analysis of

general system operators. The following theorem is concerned with an extended setting which, in

addition to (50), allows for a smooth dependence of a system operator σ0 on the parameter ϵ, so that an

appropriate infinitesimal perturbation in it is specified by an operator σ1
0 on the initial space H, with

σ1
0 also being a function of the initial system variables X1p0q, . . . , Xnp0q.
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Theorem 3. For any self-adjoint system operator σ0 on the initial space H, which smoothly depends on the

same scalar parameter ϵ as in (50) and is evolved by the flow (8), the derivative of its evolved version σptq with

respect to ϵ can be represented as

τptq :“ σptq1 “ jtpσ1
0q ` ϕptq, ϕptq :“ irQptq, σptqs (67)

at any time t ě 0, where Qptq is the transverse Hamiltonian from Theorem 2. Here, the operator ϕptq satisfies

the QSDE

dϕ “ pirQ,Gpσqs ` χpσqqdt `
`

rQ, rσ, LTss ´ irσ, MTs
˘

dW, (68)

with zero initial condition ϕ0 “ 0, where G is the unperturbed GKSL generator from (9), and χ is a linear

superoperator given by

χpσq :“ irK ´ ImpLT
ΩMq, σs ´ 2Reprσ, LTsΩMq. (69)

Proof. By using the Leibniz product rule together with (8), (53), (54) and the self-adjointness of Qptq, it

follows that

σ1 “ U:pσ1
0 b IF qU ` V:pσ0 b IF qU ` U:pσ0 b IF qV

“ jtpσ1
0q ` p´iUQq:pσ0 b IF qU ´ iU:pσ0 b IF qUQ

“ jtpσ1
0q ` iQU:pσ0 b IF qU ´ iσQ “ jtpσ1

0q ` irQ, σs, (70)

which establishes (67), with the initial condition φ0 “ 0 being inherited by ϕ from Q0 “ 0. We will

now obtain a QSDE for the process ϕ. To this end, by combining the quantum Ito lemma with the

bilinearity of the commutator, and using the QSDEs (9), (55), it follows that

drQ, σs “rdQ, σs ` rQ, dσs ` rdQ, dσs
“rK ´ ImpLT

ΩMq, σsdt ´ rσ, MTsdW

` rQ,Gpσqsdt ´ irQ, rσ, LTssdW

´ rMTdW, irσ, LTsdWs
“prK ´ ImpLT

ΩMq, σs ` rQ,Gpσqs ` 2iImpirσ, LTsΩMqqdt

´ prσ, MTs ` irQ, rσ, LTssqdW

“prK ´ ImpLT
ΩMq, σs ` rQ,Gpσqs ` 2iReprσ, LTsΩMqqdt

´ prσ, MTs ` irQ, rσ, LTssqdW. (71)

Here, the quantum Ito product rules are applied together with the commutativity (4) between adapted

processes and the Ito increments of the quantum Wiener process W. In the second and third of

the equalities (71), use is also made of the relations rα, βTdWs “ rα, βTsdW and rαTdW, βTdWs “
2iImpαTΩβqdt for appropriately dimensioned adapted processes α, β with self-adjoint operator-valued

entries. These relations are combined with the identity Impirσ, LTsΩMq “ Reprσ, LTsΩMq in the fourth

equality of (71). The QSDE (68) is now obtained my multiplying both sides of (71) by i and using the

superoperator χ from (69).

As can be seen from (70), the process jtpσ1
0q in (67) is the response of σptq to the initial perturbation

σ1
0 of the system operator under the unperturbed flow (8) and satisfies the QSDE (9):

djtpσ1
0q “ Gpjtpσ1

0qqdt ´ irjtpσ1
0q, LTsdW. (72)

In contrast to jtpσ1
0q, the operator ϕptq in (67) describes the response of the flow jt itself to the

perturbations (50) of the Hamiltonian and coupling operators and will be referred to as the derivative

process for the system operator σ. Accordingly, the term irQ,Gpσqs in the drift of the QSDE (68) is
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the derivative process for Gpσq. At any given time t ě 0, the last equality in (67) is organised as

the right-hand side of the Heisenberg ODE (in fictitious time ϵ) of an isolated quantum system with

the state space H b F and the Hamiltonian Qptq. While jtpσ1
0q (evolved by the unperturbed flow)

depends linearly on σ1
0, the derivative process ϕptq depends linearly on the perturbations K0, M0 of

the Hamiltonian H0 and the coupling operators in L0 through the transverse Hamiltonian Q and the

superoperator χ in (69).

In application to the vectors X, L of the system variables and the system-field coupling operators,

the QSDEs (68), (72) and the definition (69) lead to

dX1 “piprK ´ ImpLT
ΩMq, Xs ` rQ, Fsq ` 2ImpGΩMqqdt

` iprQ, Gs ´ rX, MTs
˘

dW, (73)

dL1 “pGpMq ` iprK ´ ImpLT
ΩMq, Ls ` rQ,GpLqsq ´ 2ReprL, LTsΩMqqdt

` prQ, rL, LTss ´ irL, MTs ´ irM, LTsqdW, (74)

where F, G are the unperturbed drift vector and the dispersion matrix from (14). In (73), use is also

made of the absence X1
0 “ 0 of initial perturbations in the system variables, whereby jtpX1

0q “ 0 for

any t ě 0. Furthermore, in (74), we have used the relations jtpL1
0q “ jtpM0q “ Mptq in view of (50),

(51). Since the matrix J and the quantum Wiener process W do not depend on the parameter ϵ, the

derivative of the output field Y of the system in (16) evolves according to the ODE

pY1q‚ “ 2JL1, (75)

where L1 is governed by the QSDE (74).

In particular, for the OQHO of Section 3 with the perturbations (52), the QSDEs (73)–(75) lead to

the relations (27), (28) which were obtained in Section 3 using more elementary techniques. However,

the latter are limited to quadratic perturbations of the Hamiltonian and linear perturbations of the

coupling operators in (52), whereas the transverse Hamiltonian approach allows the system response

to be investigated for general perturbations of these operators. Therefore, this approach can be used

for the development of optimality conditions in quantum control and filtering problems for larger

classes of controllers and observers.

6. Sensitivity of infinite-horizon quantum averaged functionals

Similarly to optimal control of classical time invariant stochastic systems [1,25], suppose the

infinite-horizon performance of the quantum system being considered is described by a cost functional

Z :“ lim
tÑ`8

EZptq, (76)

which (whenever it exists) leads to the same Cesaro limit limtÑ`8p 1
t

şt
0 EZpsqdsq “ Z and is to be

minimised in optimal quantum control settings. Here, the quantum expectation Ep¨q is taken over the

tensor product

ρ :“ ϖ b υ (77)

of the initial quantum state ϖ of the system and the vacuum state [35] υ in the Fock space F for the

external bosonic fields. This expectation is applied in (76) to a quantum criterion process Z, specified as

Zptq :“ f pXptq, Lptqq (78)

by a function f : Rn`m Ñ R. The latter is extended to the noncommutative system variables and

the coupling operators (with L being in a bijective correspondence with the drift vector 2JL of the

output field in (16) since det J ‰ 0 in view of (2)) so as to make Zptq a self-adjoint operator for any

t ě 0. Such an operator-valued extension of f is straightforward in the case of polynomials and
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can be carried out through the Weyl quantization [10] for more general functions. In the coherent

quantum linear-quadratic-Gaussian (CQLQG) control and filtering problems [33,44,45], the function f

in (78) is a positive semi-definite quadratic form, in which case, the minimization of (76) provides an

infinite-horizon mean square optimality criterion.

Now, if the Hamiltonian and coupling operators of the quantum system are perturbed according

to (50), then application of the transverse Hamiltonian Q from Theorems 2, 3 leads to

pEZptqq1 “ EpjtpZ1
0q ` ϕptqq, ϕptq :“ irQptq, Zptqs, (79)

where ϕ is the derivative process for Z. Note that, despite X1
0 “ 0, the operator Z1

0 can be nonzero due

to the dependence of Z in (78) on L. Assuming the existence and interchangeability of appropriate

limits, (79) leads to the following perturbation formula for the cost functional Z in (76):

Z 1 :“ lim
tÑ`8

pEjtpZ1
0q ` Eϕptqq. (80)

The right-hand side of (80) is a linear functional of the perturbations K0, M0, which describes the

corresponding (formal) Gateaux derivative of Z in the direction pK0, M0q. Therefore, the quantum

system is a stationary point of the performance criterion (76) with respect to a subspace T of

perturbations pK0, M0q in (50), if T is contained by the null space of the linear functional Z 1 in

(80):

T Ă kerZ 1. (81)

This inclusion provides a first-order necessary condition of optimality in the quantum control problem

of minimising (76) over a manifold of the Hamiltonian and coupling operators with the local tangent

space T .

While limtÑ`8 EjtpZ1
0q in (80) reduces to averaging over the invariant quantum state of

the unperturbed system (provided certain integrability conditions are satisfied together with the

existence of and weak convergence to the invariant state), the computation of limtÑ`8 Eϕptq is less

straightforward. Due to the product structure (77) of the system-field state ρ (with the external fields

being in the vacuum state υ), the martingale part of the QSDE (68) does not contribute to the time

derivative

pEϕq‚ “ Eψ ` EχpZq, ψ :“ irQ,GpZqs, (82)

where ψ is the derivative process for GpZq, and the superoperator χ from (69) is applied to the criterion

process Z in (78).

The relation (82) is a complicated integro-differential equation (IDE). However, this IDE admits

an efficient solution, for example, in the case when the system is an OQHO, and the function f in

(78) is a polynomial. In this case, due to the structure of the GKSL generator of the OQHO, GpZq is

also a polynomial in the system variables of the same degree, thus leading to a linear relation (with

constant coefficients) between the derivative processes ϕ, ψ and to algebraic closedness in the IDE (82).

Therefore, for stable OQHOs (with a Hurwitz matrix A) and a polynomial criterion process Z, the

computation of Z 1 (and verification of the stationarity condition (81)) reduces to averaging over the

unperturbed invariant state (which is unique and Gaussian [36]). These calculations are exemplified

below.

Example 3

Consider the OQHO of Section 3, described by (19)–(23) with a Hurwitz matrix A. Suppose

the criterion process Z in (78) is a quadratic polynomial of the system variables X1, . . . , Xn and the

system-field coupling operators L1, . . . , Lm:

Z :“ 1

2

”

XT LT
ı

Π

«

X

L

ff

“ 1

2
XTPX, Π :“

«

Π11 Π12

Π21 Π22

ff

, (83)
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where Π P S
`
n`m is a given weighting matrix, partitioned into blocks Π11 P S`

n , Π22 P S`
m , Π12 “ ΠT

21 P
Rnˆm, and

P :“ Π11 ` Π12N ` NT
Π21 ` NT

Π22N P S
`
n (84)

is an auxiliary matrix which involves the coupling matrix N from (20). Then, in view of X1
0 “ 0, it

follows from (83), (52) that

jtpZ1
0q “ ReppΠ21X ` Π22LqTMq “ RepXTpΠ12 ` NT

Π22qMq. (85)

The second equality in (83) allows the quantum average of the corresponding derivative process ϕ in

(79) to be represented as

Eϕ “ 1

2
xP, Υy, Υ :“ iErQ, Ξs, Ξ :“ RepXXTq “ XXT ´ iΘ. (86)

Here, Υ is the expectation of the derivative process irQ, Ξs for Ξ and hence, satisfies the following IDE,

similar to (82):
9Υ “ iErQ,GpΞqs ` EχpΞq, (87)

where the superoperator χ from (69) is applied to Ξ entry-wise as

χpXjXkq “ irK ´ ImpLT
ΩMq, XjXks ´ 2ReprXjXk, LTsΩMq

“ irK ´ ImpXTNT
ΩMq, XjXks ` 4ImppXkΘj‚ ` XjΘk‚qNT

ΩMq, (88)

with Θℓ‚ the ℓth row of the CCR matrix Θ. By substituting the Hamiltonian and coupling operators of

the OQHO from (20) into the GKSL generator G in (9), (11) and using the CCRs (19) together with the

state-space matrices (23), it follows that

GpΞq “ AΞ ` ΞAT ` BBT. (89)

Substitution of (89) into (87) reduces the IDE to a Lyapunov ODE:

9Υ “ iErQ, AΞ ` ΞAT ` BBTs ` EχpΞq “ AΥ ` ΥAT ` EχpΞq. (90)

Since the matrix A is Hurwitz, the unperturbed OQHO has an invariant state which is Gaussian [36]

with zero mean EX “ 0 and covariance matrix EpXXTq “ Σ ` iΘ P H`
n , where Σ P S`

n is a unique

solution of the ALE

AΣ ` ΣAT ` BBT “ 0. (91)

Therefore, under appropriate integrability conditions for χpΞq, the solution of the Lyapunov ODE (90)

has a limit Υ8 :“ limtÑ`8 Υptq which is a unique solution of the ALE

AΥ8 ` Υ8 AT ` lim
tÑ`8

EχpΞq “ 0, (92)

where limtÑ`8 EχpΞq can be computed by averaging χpΞq over the invariant Gaussian state of the

OQHO. Therefore, by assembling (85), (86) into (80), it follows that

Z 1 “ lim
tÑ`8

ERepXTpΠ12 ` NT
Π22qMq ` 1

2
xP, Υ8y, (93)

where the limit also reduces to averaging over the invariant Gaussian state and is expressed in terms

of EpXMTq as

ERepXTpΠ12 ` NT
Π22qMq “ xΠ12 ` NT

Π22, ReEpXMTqy. (94)
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The relations (84), (88), (92)–(94) allow the Gateaux derivative Z 1 of the quadratic cost functional

(76), specified by (83), to be computed through mixed moments of the system variables X and the

perturbations K, M over the invariant zero-mean Gaussian quantum state whose covariance matrix

is found from (91). In particular, if K, M are polynomials of the system variables X1, . . . , Xn, then

these moments can be calculated in terms of the covariances by using the Isserlis-Wick theorem [21].

Alternatively, the perturbations K, M can be trigonometric polynomials, that is, linear combinations of

unitary Weyl operators [10]

Wu :“ eiuTX “ W
:
´u, u P R

n, (95)

associated with the system variables, or more generally, represented as the Weyl quantization integrals

K :“
ż

Rn
Wuαpduq, M :“

ż

Rn
Wuβpduq, (96)

similar to those in [49, Eq. (32)]. Here, α, β are countably additive measures of finite variation on

the σ-algebra Bn of Borel subsets of Rn, which take values in C and Cm, respectively, and satisfy the

Hermitian property αpSq “ αp´Sq and βpSq “ βp´Sq for any S P Bn, thus ensuring that K and the

entries of M in (96) are self-adjoint operators in view of the second equality in (95). Now, the Weyl

CCRs Wu`v “ eiuTΘvWuWv for all u, v P Rn (with their infinitesimal Heisenberg form given by (19))

imply that BuWu “ BveivTpX`Θuq
ˇ

ˇ

v“0
Wu “ ipX ` ΘuqWu, whereby

XWu “ ´pΘu ` iBuqWu. (97)

Since the quantum expectation commutes with the differential operator on the right-hand side of

(97), and the quasi-characteristic function [7] of the invariant zero-mean Gaussian state is given by

EWu “ e´ 1
2 }u}2

Σ , then

EpXWuq “ ´pΘu ` iBuqEWu “ ´pΘu ` iBuqe´ 1
2 }u}2

Σ

“ e´ 1
2 }u}2

Σ piΣ ´ Θqu, u P R
n, (98)

which can also be obtained by using quantum Price’s theorem [46]. A combination of the second

equality from (96) with (98) leads to

ReEpXMTq :“ Re

ż

Rn
EpXWuqβpduqT

“
ż

Rn
e´ 1

2 }u}2
Σ ReppiΣ ´ ΘquβpduqTq

“ ´
ż

Rn
e´ 1

2 }u}2
Σ pΣuImβpduqT ` ΘuReβpduqTq. (99)

The computation of the limit in (93) in the Weyl quantization framework is now completed by

substituting (99) into (94). In this framework, the matrix EχpΞq, which is needed for finding Υ8

from the ALE (92) for the last term in (93), is computed by averaging (88) in a similar fashion. ▲

7. Mean square optimal coherent quantum filtering problem

We will now outline an application of the transverse Hamiltonian approach of Sections 4–6 to a

quantum filtering problem for the open quantum system, described in Section 2 and referred to as a

quantum plant. The plant has the Hamiltonian H, the vector L of system-field coupling operators, the

input field W, the vector X of internal variables and the output field Y governed by the QSDEs (14),

(16). Although the plant is not necessarily an OQHO, we assume that the plant variables X1, . . . , Xn

are organised as position-momentum pairs and satisfy the CCRs (19).
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Suppose the quantum plant is cascaded in a measurement-free field-mediated fashion with

another open quantum system, playing the role a coherent quantum observer, which is driven by the

plant output Y and another quantum Wiener process ω of an even dimension µ on a different bosonic

Fock space F; see Fig. 1. The observer is endowed with its own initial Hilbert space H, dynamic

plant

observer✛

✛

✛η

❄

Y

ω

W

Figure 1. The series connection of a quantum plant with a coherent quantum observer, mediated by

the plant output field Y and affected by the environment through the input quantum Wiener processes

W, ω. The observer design objective is that the drift part of its output η has to approximate the plant

variables of interest in a mean square optimal fashion.

variables ξ1ptq, . . . , ξνptq with a CCR matrix Λ P Aν (so that rξptq, ξptqTs “ 2iΛ for any t ě 0, similarly

to (19)), and an pm ` µq-dimensional output field ηptq:

ξ :“ pξkq1ďkďν, ω :“ pωkq1ďkďµ, η :“ pηkq1ďkďm`µ. (100)

Since the observer is driven by the plant output Y (together with the quantum noise ω), the observer

output η acquires, over the course of time, quantum statistical correlations with the plant variables

and can be used for estimating the latter in a mean square optimal fashion as specified below. To this

end, we denote the observer Hamiltonian by Γ and the vectors of operators of coupling of the observer

with the plant output Y and with the quantum Wiener process ω by

Φ :“ pΦkq1ďkďm, Ψ :“ pΨkq1ďkďµ, (101)

respectively. The Hamiltonian Γ and the coupling operators Φ1, . . . , Φm, Ψ1, . . . , Ψµ are functions of

the dynamic variables ξ1, . . . , ξν of the observer and hence, commute with the plant variables and

functions thereof, including H, L. The plant and observer form a composite quantum stochastic system,

whose vector X of dynamic variables satisfies the CCRs

rX ,X Ts “ 2iΘ, Θ :“
«

Θ 0

0 Λ

ff

, X :“
«

X

ξ

ff

(102)

and is driven by an augmented quantum Wiener process W with the following Ito table:

dWdWT “ Ωdt, Ω :“
«

Ω 0

0 ℧

ff

“ Im`µ ` iJ , J :“ Ipm`µq{2 b J, W :“
«

W

ω

ff

. (103)

Here, ℧ is the Ito matrix of the quantum Wiener process ω of the observer, which is defined similarly

to Ω from (1), (2) as

dωdωT “ ℧dt, ℧ :“ Iµ ` iIµ{2 b J. (104)

The quantum feedback network formalism [14] allows the Hamiltonian H of the plant-observer system

and its vector L of operators of coupling with W to be computed as

H “ H ` Γ ` Φ
T JL, L “

«

L ` Φ

Ψ

ff

. (105)
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Hence, the internal and output variables ξ1, . . . , ξν and η1, . . . , ηm`µ of the observer in (100) are

governed by the QSDEs

dξ “ Gpξqdt ´ irξ, LTsdW “ pirΓ, ξs ` ∆pξqqdt ´ i
“

ξ,
”

ΦT ΨT
ı

‰

d

«

Y

ω

ff

, (106)

dη “ 2JLdt ` dW . (107)

Here,

Gpζq :“ irH, ζs ` Dpζq

is the GKSL generator of the plant-observer system, and

Dpζq “ ´rζ, LTsΩL ´ 1

2
rLT

ΩL, ζs

is the corresponding decoherence superoperator, in accordance with (11), (103), (105). In (106), use is

also made of the partial decoherence superoperator ∆ which acts on the observer variables as

∆pξq “ ´rξ, Φ
TsΩΦ ´ rξ, Ψ

Ts℧Ψ ´ 1

2
rΦT

ΩΦ ` Ψ
T
℧Ψ, ξs

in view of (102)–(105). Now, consider a coherent quantum filtering (CQF) problem formulated as the

minimisation of the mean square discrepancy

Z :“ lim
tÑ`8

EZptq ÝÑ min, Z :“ 1

2
pSX ´ TLqTpSX ´ TLq (108)

between r linear combinations of the plant variables of interest and the entries of the drift part 2JL of

the observer output η in (107) as specified by given weighting matrices S P Rrˆn and T :“
”

T1 T2

ı

,

with T1 P Rrˆm, T2 P Rrˆµ. The criterion process Z in (108) is similar to that in (83):

Z :“ 1

2

”

XT LT
ı

Π

«

X

L

ff

, Π :“
«

STS ´STT

´TTS TTT

ff

, (109)

with X being the only subvector of X from (102) which is present in (109). The minimization in (108) is

over the observer Hamiltonian Γ and the vector Φ of the observer-plant coupling operators in (101) as

functions of the observer variables ξ1, . . . , ξν. This mean square optimal CQF problem extends [45]

in that we do not restrict attention to linear observers even if the plant is an OQHO and Ψ depends

linearly on the observer variables ξ. Note that the Hamiltonian H of the plant and its coupling L to the

input quantum noise W are fixed, and so also is the coupling Ψ of the observer to the input quantum

noise ω; see Fig. 1. If Γ0, Φ0 are perturbed in the directions

K0 :“ Γ
1
0, M0 :“ Φ

1
0, (110)

consisting of self-adjoint operators representable as functions of the initial observer variables

ξ1p0q, . . . , ξνp0q, then the corresponding perturbations of the plant-observer Hamiltonian and coupling

operators in (105) are

H1
0 “ K0 ` MT

0 JL0, L1
0 “

«

M0

0

ff

. (111)
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By applying Theorem 2 and using (103), (110), (111), it follows that the corresponding transverse

Hamiltonian Q for the plant-observer system satisfies the QSDE

dQ “
´

K ` MT JL ´ Im
´

LT
Ω

«

M

0

ff

¯¯

dt `
”

MT 0
ı

dW

“ pK ´ Impp2L ` ΦqT
ΩMqqdt ` MTdW, (112)

where use is also made of ImpLTΩMq “ ´MT JL (following from (1) and the commutativity rL, MTs “
0). Then the Gateaux derivative Z 1 of the cost functional in (108) is given by (80), where

jtpZ1
0q “ ReppTL ´ SXqTT1Mq

in view of (109), (111) and similarly to (85). In accordance with (82), the expectation of the derivative

process ϕ :“ irQ, Zs satisfies the IDE

pEϕq‚ “ iErQ, GpZqs ` EχpZq,

where, in view of (112), the superoperator χ in (69) is given by

χpZq “ irK ´ Impp2L ` ΦqT
ΩMq, Zs ´ 2ReprZ, pL ` ΦqTsΩMq.

In particular, if both the plant and the unperturbed observer are OQHOs with Hurwitz dynamics

matrices (while the perturbations in (110) are not necessarily linear-quadratic), then Z 1 can be found

(in a form similar to (93)) along the lines of Example 3 of Section 6 due to the criterion process Z in

(108), (109) being a quadratic function of the plant and observer variables in X from (102).

The transverse Hamiltonian method, outlined above, was used in [47] for showing that, in the

mean square optimal CQF problem for linear quantum plants, those observers, which are locally

optimal in the class of linear quantum observers, cannot be improved locally (in the sense of the

first-order optimality conditions (81)) by varying the Hamiltonian and coupling operators of the

observer along linear combinations of the Weyl operators associated with the observer variables.

8. Concluding remarks

For a class of open quantum systems governed by Markovian Hudson-Parthasarathy QSDEs, we

have introduced a transverse Hamiltonian and derivative processes associated with perturbations of

the system Hamiltonian and system-field coupling operators. This provides a fully quantum tool for

infinitesimal perturbation analysis of system operators and cost functionals which involve averaging

over the invariant quantum state of the system. The proposed variational method can be used for

the development of first-order necessary conditions of optimality in quantum control and filtering

problems. We have illustrated these ideas for OQHOs with quadratic performance criteria and the

mean square optimal CQF problem.
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ALE algebraic Lyapunov equation

CCR canonical commutation relation

CQF coherent quantum filtering

CQLQG coherent quantum linear-quadratic-Gaussian

GKSL Gorini-Kossakowski-Sudarshan-Lindblad

IDE integro-differential equation

ODE ordinary differential equation

OQHO open quantum harmonic oscillator

PR physical realizability

QSDE quantum stochastic differential equation
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