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Abstract: This paper is concerned with variational methods for open quantum systems with
Markovian dynamics governed by Hudson-Parthasarathy quantum stochastic differential equations.
These QSDEs are driven by quantum Wiener processes of the external bosonic fields and are specified
by the system Hamiltonian and system-field coupling operators. We consider the system response
to perturbations in these operators and introduce a transverse Hamiltonian which encodes the
propagation of the perturbations through the unitary system-field evolution. This approach provides
an infinitesimal perturbation analysis tool which can be used for the development of optimality
conditions in quantum control and filtering problems. Such settings employ, as performance criteria,
quadratic (or more complicated) cost functionals of the system and field variables to be minimised
over the energy and coupling parameters of system interconnections. We demonstrate an application
of the transverse Hamiltonian variational approach to a mean square optimal coherent quantum
filtering problem for a measurement-free field-mediated cascade connection of a quantum system
with a quantum observer.
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1. Introduction

In comparison with classical mechanics which considers macroscopic objects both in deterministic
and stochastic settings, quantum mechanics, concerned with physical phenomena at atomic and
subatomic scales, inherently incorporates randomness. In particular, the squared absolute value of the
wave function of a quantum mechanical particle is interpreted as a probability density function, mixed
quantum states are built of pure ones using randomisation, and the latter is also present in the model
of quantum measurement [39,51]. However, in contrast to scalar-valued classical probability measures
[41], quantum probability describes statistical properties of quantum variables by using quantum
states in the form of density operators [16,30] on the same Hilbert space where those variables act as
linear operators.

The noncommutativity and canonical commutation structures, coming from the operator-valued
nature of quantum variables and quantum states, give rise to specific features of quantum probability
such as the absence of a classical joint probability distribution and conditional expectations for a set of
noncommuting quantum variables (whereas an individual self-adjoint operator has a well-defined
marginal distribution). Furthermore, since the microscopic realm is less amenable to manipulation
by conventional macroscopic tools (unlike, for example, the coin tossing as a manageable “random
number generator” for thought and practical experiments in classical probability theory), its natural
time evolution makes statistical properties of quantum systems particularly tied to their dynamics.
While an isolated quantum system undergoes a reversible evolution (according to a one-parameter
unitary group generated by the system Hamiltonian), a more realistic open dynamics scenario [6]
involves interaction of the system with its environment which can include other quantum or classical
systems, measuring devices and external quantum fields (quantised electromagnetic radiation).

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.
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The interaction of an open quantum system with its surroundings is accompanied by energy
exchange between the subsystems and gives rise to dissipative effects. This provides a way to influence
statistical and dynamic properties of such systems by arranging them into quantum networks [14] and
varying the energy and coupling parameters of the resulting interconnections, which can consist of a
quantum plant coupled in a measurement-based or coherent (that is, measurement-free) fashion to a
controller or observer. This paradigm is used in quantum control [3,5,8] which develops systematic
methods for achieving stability, robustness with respect to unmodelled dynamics, and optimality in
the sense of relevant performance criteria for quantum systems and their applications, for example, in
quantum optics [11,50] and quantum information processing [32].

An important part in these developments belongs to quantum filtering, which, similarly to its
classical predecessor (see for example, [23,28]), is concerned with mean square optimal real time
estimation of the internal variables of the quantum plant using a measurement-based quantum
Kalman filter [2,4,9] or a qualitatively different coherent quantum observer [31,45]. The latter does
not process classical observations and, in contrast to the classical filters, does not compute the
conditional expectations of the plant variables (this conditioning and related Bayesian approaches
are not applicable in the noncommutative quantum case as mentioned above). Instead, the coherent
quantum filter is driven by the output quantum fields of the plant so as to produce a quantum process,
whose performance, as an estimator of the plant variables, can be optimised in the sense of minimising
the mean square value of the “estimation error” by varying the parameters of the Hamiltonian and
coupling operators of the filter.

The optimisation problems, arising in coherent quantum filtering and control (with the latter
considering more complicated feedback interconnections of a quantum plant and a quantum controller)
involve physical realisability (PR) constraints [22,40] which originate from the canonical commutation
structures of quantum dynamic variables, the energetics of open quantum systems, and unitarity
in the augmented system-environment evolution. These features of open quantum dynamics are
incorporated in the Hudson-Parthasarathy quantum stochastic calculus [19,35] (see also [15]) which is
often employed as a unified modelling framework in quantum filtering and control. In this approach,
the external fields at the input of a quantum system of interest are represented by a multichannel
quantum Wiener process with noncommuting components, which act on a symmetric Fock space
and drive the quantum stochastic differential equation (QSDE) governing the system dynamics. In
contrast to the classical SDEs with a standard Wiener process [24], the QSDE reflects the unitarity of
the augmented system-field evolution, and its drift and dispersion terms (as well as the generator
of Markovian quantum dynamics) are specified by the Hamiltonian and coupling operators. These
operators (together with a scattering matrix representing the photon exchange between the fields
[35]) describe the energetics of the quantum system and its interaction with the environment and
are usually functions (for example, polynomials or Weyl quantization integrals [10]) of the system
variables. A particular form of this dependence and the commutation structure of the system variables
affect tractability of the quantum system.

In particular, a quadratic dependence of the system Hamiltonian and a linear dependence of the
system-field coupling operators on the quantum mechanical position-momentum variables [29] lead to
linear QSDEs for open quantum harmonic oscillators (OQHOs) [9,11] which play the role of building
blocks in linear quantum control theory [8,22,34,38,54,55]. The dynamics of such systems are relatively
well understood and are similar to the classical linear SDEs in a number of respects, including the
preservation of Gaussian nature of quantum states [20,36] in the case of vacuum input fields. However,
the coherent quantum analogue [33] of the classical linear-quadratic-Gaussian (LQG) control problem
[1,25] for OQHOs is complicated by the above mentioned PR constraints on the state-space matrices of
the quantum controller and by the impossibility to take advantage of the classical estimation-actuation
separation principle and classical conditional expectations with their variational properties [28].

One of the existing approaches to the coherent quantum LQG (CQLQG) control and coherent
quantum filtering (CQF) problems employs the Frechet derivatives of the mean square cost (with
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respect to the state-space matrices subject to the PR constraints) for obtaining the optimality conditions
[44,45] and for the numerical optimization [42]. This approach takes into account the quantum nature
of the underlying problem only through the PR constraints, being “classical” in all other respects, which
has its own advantages from the viewpoint of well-developed conventional optimization methods.
However, a disadvantage of this approach is that it is limited to certain parametric classes of linear
controllers and observers. In particular, the resulting optimality conditions do not provide information
on whether nonlinear quantum controllers or observers can outperform the linear ones for linear
quantum plants. For this reason, the coherent quantum control and filtering problems require novel
variational methods for their solution, which would be able to operate with sensitivity of the system
dynamics and relevant cost functionals to perturbations over wider classes of the Hamiltonian and
coupling operators in a “coordinate-free” fashion.

To this end, the present paper (some of its results were briefly announced in [48]) outlines a fully
quantum variational method which allows the sensitivity of the internal and output variables of a
nonlinear quantum stochastic system to be investigated with respect to arbitrary (that is, not only
linear-quadratic) perturbations of the Hamiltonian and coupling operators. This approach is based
on using a transverse Hamiltonian, defined as an auxiliary time-varying self-adjoint operator which
encodes the propagation of such perturbations through the unitary system-field evolution. This leads
to an infinitesimal perturbation formula for quantum averaged performance criteria (such as the mean
square cost functional) which is applicable to the development of optimality conditions in coherent
quantum control and filtering problems over larger classes of controllers and observers. In particular,
this approach allows the sensitivity of OQHOs with quadratic performance criteria to be studied with
respect to general perturbations of the Hamiltonian and coupling operators. In fact, the transverse
Hamiltonian method has already been employed in [47] in order to establish local sufficiency of linear
observers in the mean square optimal CQF problem [45] for linear quantum systems with respect
to varying the Hamiltonian and coupling operators of the observer along linear combinations of
the Weyl operators [10]. Note that our approach is different from [13] which develops a quantum
Hamilton-Jacobi-Bellman principle (for the density operator instead of the dynamic variables) in a
measurement-based quantum feedback control problem. We also mention a parallel between the
perturbation analysis, discussed in the present paper, and the fluctuation-dissipation theorem [26].

The paper is organised as follows. Section 2 specifies the class of quantum stochastic systems
under consideration. Section 3 discusses sensitivity of the internal and output variables of OQHOs to
parametric perturbations within the families of quadratic system Hamiltonians and linear system-field
coupling operators. Section 4 returns to general QSDEs and introduces the transverse Hamiltonian
associated with arbitrary perturbations of the Hamiltonian and coupling operators of the system. The
transverse Hamiltonian is used in Section 5 for infinitesimal perturbation analysis of system operators.
Section 6 extends the transverse Hamiltonian method to quantum averaged performance criteria.
Section 7 applies this approach to a mean square optimal CQF problem. Section 8 makes concluding
remarks.

We use the following principal notation in the paper. Denoted by [A,B] := AB — BA is the
commutator of linear operators A, B, with ad(-) := [A, -] a linear superoperator associated with
A. This extends to the commutator (1 x m)-matrix [X, YT] := XYT — (YXT)T = (IX;, YD 1<j<ni<k<m
for vectors X, Y of operators X, ..., Xy, Y1, ..., Yy, respectively. Vectors are organised as columns
unless indicated otherwise, and the transpose (-)T acts on matrices of operators as if their entries were
scalars. In application to such matrices, (-)7 := ((-)*)T is the transpose of the entry-wise operator
adjoint (-)¥. For complex matrices, (-)T is the usual complex conjugate transpose (-)* := ((-))T. The
subspaces of real symmetric, real antisymmetric and complex Hermitian matrices of order n are
denoted by S,,, A, and H, := S, + iA,, respectively, where i := 1/—1 is the imaginary unit. The real
and imaginary parts of a complex matrix are denoted by Re(-) and Im(-). These extend to matrices
M with operator-valued entries as ReM := %(M + M*) and ImM := %(M — M*) which consist of
self-adjoint operators. Positive (semi-) definiteness of matrices and the corresponding partial ordering
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are denoted by (>) >. Also, S; and Hj denote the sets of positive semi-definite real symmetric and
complex Hermitian matrices of order #, respectively. The tensor product of spaces or operators (in
particular, the Kronecker product of matrices) is denoted by ®. The tensor product A ® B of operators
A, B acting on different spaces will sometimes be abbreviated as AB. The identity matrix of order n
is denoted by I;;, and the identity operator on a space H by Zy. The Frobenius inner product of real
or complex matrices is denoted by (M, N) := Tr(M*N). Denoted by ||v|g := VvTKv is a weighted
Euclidean (semi-)norm of a real vector v specified by a real positive (semi-)definite symmetric matrix
K. The quantum expectation E¢ := Tr(oC) of a quantum variable { over a density operator p extends
in an entry-wise fashion to vectors and matrices of such variables.

2. Quantum stochastic systems being considered

We consider an open quantum system, which interacts with an external multichannel bosonic field
and is equipped with dynamic variables X; (), ..., X,(t), evolving in time ¢ > 0 and assembled into
a vector X(t) := (Xi(t))1<k<n- These system variables are assumed to be self-adjoint operators on a
composite system-field Hilbert space H ® F. Here, H is the initial space of the system, which provides
a domain for X;(0),...,X,(0), and F is a symmetric Fock space [35] for the action of an even number
m of quantum Wiener processes Wi (t), ..., Wy, (t). The latter are time-varying self-adjoint operators,
which model the external fields and are assembled into a vector W(t) := (W (t))1<k<m- Unlike the
classical Brownian motion [24] in R™, the quantum Wiener process W consists of noncommuting
operator-valued components and has a complex Ito matrix () := (wjk)1<jk<m € H,), (identified with
QO ® Iyr) for its future-pointing Ito increments dW:

dwdw®nT = Qdt,  Q:= I, +i]. 1)

Here, the matrix | € A, specifies the canonical commutation relations (CCRs) for the constituent field
processes Wy, ..., Wy:

[dW(), dW(OT] =2ifdt, = 1,2 @), Jim l—ol (1’] ?

(with J spanning the subspace of antisymmetric (2 x 2)-matrices), which is an incremental form of the
two-point CCRs
[W(s), W(t)T] = 2imin(s, t)],  s,t>0. ()

These CCRs are closely related to the continuous tensor-product structure of the Fock space [37] and
are complemented by the commutativity between the Ito increments of W and adapted processes
Z := (Z(t))i>0 taken at the same (or an earlier) moment of time:

[Z(s),dW(t)] =0, t>s>0. (4)

The adaptedness of quantum processes on the system-field space H ® F is understood with respect to
a filtration (#¢)s>0, where
Hi=HQF, )

and (F})s=o is the Fock space filtration, so that for any ¢ > 0, the operators W;(t) act effectively on 73,
while X (¢) act on the subspace H;.

The energetics of the quantum system and its interaction with the external fields is specified by a
system Hamiltonian H() and system-field coupling operators L1 (), ..., Ly (t) which are time-varying
self-adjoint operators, organised as deterministic functions (for example, polynomials with constant
coefficients) of the system variables X (t),..., X, () and assembled into a vector L() := (Li(#))1<k<m-
Accordingly, the operators H(0), L1(0),..., Ly (0) act on the initial space . Depending on the context,
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a system operator ¢ (a function of the initial system variables X1(0), ..., X,;,(0)) on the initial space H
will be identified with its extension o ® Zr to the system-field space H ® F.

The system and the fields form a composite quantum system which evolves according to a
quantum stochastic flow as described below. This evolution is specified at any time t > 0 by a unitary
operator U(t) on H ® F governed by the following stochastic Schrodinger equation [19,35]:

du(t) = — (i(HOdt + LTAW () + %Lgmodt) u), ©6)

with initial condition Uy := Zygr, so that U(t) captures the internal dynamics of the system and
the system-field interaction over the time interval [0, t]. Here and in what follows, the subscript 0
marks the initial values of time-varying operators (or vectors or matrices of operators): Hy := H(0),
Ly := L(0), Up := U(0), while the time arguments will often be omitted for the sake of brevity.
Also, the units are chosen so that the reduced Planck constant is # = 1. The quantum stochastic
differential equation (QSDE) (6) corresponds to a particular yet important case of the identity scattering
matrix, when there is no photon exchange between the fields, and the gauge processes [35] can
be eliminated from consideration. The term LgdW in (6) can be interpreted as an incremental
Hamiltonian of the system-field interaction, while LIQLydt involves the quantum Ito matrix Q
from (1) and counterbalances the Ito correction term dUdUT = LgQLodt in the differential relation
d(uut) = (du)ut + udu’ +dudu’ = 0 which describes the preservation of the co-isometry property
umumt = up ul = Iyngr forall t > 0. The system variables at time ¢t > 0, as operators on the
system-field space H ® F, are the images

Xk(t) :jt(Xk(O))l k= 11”'/”/ (7)

of their initial values under the quantum stochastic flow j; which maps a system operator oy on the
initial space H to the operator

o(t) = ji(on) = Ut) (0o @ ZF)UL(t) 8)

on H; in (5). The resulting quantum adapted process ¢ satisfies the following Hudson-Parthasarathy
QSDE [19,35]:
do = G(o)dt —i[o, L"|dW,  G(0) := i[H,0] + D(0), 9)

where use is made of the Hamiltonian and the coupling operators evolved by the flow j; from (8) as

H(t) = ji(Ho), L(t) = ji(Lo) := (jt(Lk(0)))1<k<m (10)

(the flow acts entry-wise on vectors and matrices of operators). Also, D in (9) is the decoherence
superoperator which acts on o (t) as

D(o) = %(LTQ[U, L]+ [LT,0]0L) = —[o, LT]OL %[LTQL, o]. (1)

The second equality in (11) is applicable to the case when ¢ is a vector of operators
on which the superoperator D acts entry-wise. The superoperator G in (9) is the
Gorini-Kossakowski-Sudarshan-Lindblad (GKSL) generator [12,27], which is a quantum counterpart
of the infinitesimal generators of classical Markov processes [24]. The identity (0o ® Zr)U = Uo,
which holds for system operators ¢ in view of (8) and the unitarity of U(t), allows the QSDE (6) to be
represented in the Heisenberg picture by using (10) along with the commutativity (4) as

du = —u(i(Hdt +LTdW) + %LTQLdt). (12)
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In application to the vector X(t) of system variables, the quantum stochastic flow j; also acts entry-wise
as

X(t) :=j1(Xo) = UM (Xo @ ZF)U(H), (13)

in accordance with (7), (8), so that the corresponding QSDE (9) can be represented in vector-matrix
form:
dX = Fdt + GdW, F:=G(X), G:= —i[X,LT], (14)

where the n-dimensional drift vector F = (G(X;))1<j<n and the dispersion (n x m)-matrix G =
—i([Xj, Li])1<j<n1<k<m consist of time-varying self-adjoint operators on H ® F.
The interaction of the system with the input field W produces the output fields Yi(¢),..., Y (t)

assembled into a vector
Y(t) = (Y(t)r<kem = UBT (T @ W(H)U(H), (15)

where the system-field unitary evolution is applied to the current input field variables (which reflects
the innovation nature of the quantum Wiener process and the continuous tensor product structure of
the Fock space mentioned above). The output field Y satisfies the QSDE

dY = 2JLdt +dW, (16)

where the matrix [ is given by (2), and L is the vector of system-field coupling operators from (10). The
system-field interaction makes the output field Y different from the input field W only through the
drift vector 2JL in (16).

The common unitary evolution in (13), (15) preserves the commutativity between the system
variables and the output field variables in time t > 0:

[X(5),Y()] = Ut) [Xo® L, Ty @ W(HT]U(t) =0, (17)

where the entries of Xy, W(f) commute as operators on different spaces H, F. By a similar reasoning,
the output field Y inherits the CCR matrix | from the input quantum Wiener process W:

[Y(£), Y()T] = U(H T[Ty @ W(E), Ty @ W(H)T]U(t)
= 2itJU(H) Ty rU(t) = 2it], (18)

where (3) is used with s = t. By (1), (2), the relation (18) can also be established as a corollary of the
property that Y in (16) inherits the quantum Ito matrix Q from W as dYdYT = dWdWT = Qdt.

In view of (6) (see also (12)), the quantum stochastic flow j; in (8) depends on the system
Hamiltonian Hy and the system-field coupling operators in L. In turn, Hy and Lg are usually functions
(such as polynomials or Weyl quantization integrals [10] in [49, Eq. (32)]) of the initial system variables
X1(0),...,X4(0). The dependence of Hy, Ly on X(0) is inherited by H, L as functions of X and (along
with a given commutation structure of the system variables) specifies a particular form of the resulting
QSDEs (14), (16), thus influencing their tractability.

3. Open quantum harmonic oscillators with parametric dependence

An important class of quantum stochastic systems is provided by multimode open quantum
harmonic oscillators (OQHOs) [9] with an even number # of system variables Xj, ..., X, (for example,
consisting of 5 conjugate position-momentum pairs [29]) satisfying the Heisenberg CCRs

[X(t), X(H)T] = 2i© (19)
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(on a dense domain in H ® F), where the CCR matrix ® € A, is identified with ©® ® 73,5 7 and remains
unchanged over the course of time ¢ > 0. The Hamiltonian H of the OQHO is a quadratic function and
the system-field coupling operators Li, ..., Ly in (10) are linear functions of the system variables,

H-= %XTRX, L = NX, (20)

parameterised by an energy matrix R € S, and a coupling matrix N € R"*". In this case, the QSDEs (14),
(16) take the form
dX = AXdt + BdW, dY = CXdt +dW, (21)

where the drifts F = AX and 2JL = CX depend linearly on the system variables Xj, ..., X,,, with A €
R™", C e R™*" and the dispersion matrices G = B € R"*™ and I, being constant real matrices. This
linearity makes some of the dynamic properties of (21) similar to those of a classical linear stochastic
system with a state-space realization quadruple (A4, B,C, I,;) and the corresponding C"*"-valued
transfer function F on the complex plane:

F(s):=C(sl,—A)'B+1,  seC, (22)

thus allowing for application of transfer function techniques [52]. However, in addition to the
noncommutative nature of quantum variables, the matrices of coefficients of these QSDEs have
a specific parameterization in terms of the energy, coupling and CCR matrices:

A=20(R+NTJN), B=20N', C=2]N. (23)

Since the energy matrix R is symmetric, and the CCR matrices ©, | are antisymmetric, the matrices A,
B, C satisfy
A®+0AT+B/BT =0, ©C'+BJ=0. (24)

These equalities pertain to the fulfillment of the CCRs (19) and the commutativity (17) at any moment
of time and provide necessary and sufficient conditions for physical realizability (PR) [22,40] of the
linear QSDEs (21) as an OQHO with the CCR matrix © for the system variables. The first equality
in (24) has the structure of an algebraic Lyapunov equation (ALE) with respect to ®, which has a
unique solution if and only if the Kronecker sum A® A := [, ® A + A® I, is a nonsingular matrix
(that is, no two eigenvalues of A are centrally symmetric about the origin in C). The latter condition
holds, for example, when the matrix A is Hurwitz. For more general open quantum systems (such as
anharmonic oscillators whose dynamic variables satisfy the CCRs (19), while the Hamiltonian and the
coupling operators are not necessarily quadratic and linear functions of the system variables), the CCR
preservation is secured by the unitary evolution of the system variables in (13).

By analogy with the state-space realizations of transfer functions in classical linear systems theory
[1,25], we will use the input-output map for the OQHO (21) with the matrix quadruple (A, B, C, L,):

SaBc, - (Xo,W) =Y. (25)

Now, suppose the energy and coupling matrices R, N, which specify the Hamiltonian and the coupling
operators in (20), depend smoothly on an auxiliary parameter € € R (while the quantum Wiener
process W is independent of €). Then so also do the matrices A, B, C in (23) and the system and output
variables which comprise the vectors X(t), Y () (the differentiability of X, Y is understood in the weak
sense). The corresponding partial derivatives

X(t) := 0eX(t), Y(t) = 0:Y(t) (26)
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atany t > 0 give rise to adapted quantum processes with self-adjoint operator-valued entries satisfying
the QSDEs
dX' = (A'X + AX')dt + B'dW, dY' = (C'X + CX')dt (27)

(the second of which is, in fact, an ODE (Y’)" = C’X + CX’ involving the time derivative () of Y’),
with zero initial conditions Xé =0, Y(’, = 0 since Xy, Yy do not depend on €. Here,

A" =20(R'+ NTIN+NTJN'), B =20N"T, (' =2JN’ (28)

are the derivatives of the matrices A, B, C from (23) with respect to the parameter € satisfying the
relations
A'®+0AT +B'JBT+BJBT =0, ©CT+B]=0, (29)

which are obtained by differentiating the PR conditions (24), with the CCR matrices ®, | being constant.
Since the CCR matrices ©, | are antisymmetric (and hence, ®A’T + BJB'T = —(A’@ + B'JBT)T), the
first equality in (29) implies that

A'®+ B'JBT €S,. (30)

By assembling the system variables and their parametric derivatives from (26) to an augmented vector

S = (31)

X/

a combination of the QSDEs (21), (27) allows the parametric derivative of the map (25) to be represented
as the input-output map
S, = SaBco: (Xo, W)=Y (32)

associated with
dS = ASdt+BdwW,  (Y)" =CS. (33)

Here, the initial condition Sy = [ OO]’ in view of X6 = 0, is identified with Xj, and the matrices

Ae Ranan Be R2n><m, Ce Rm*2n are given by

A0 B:=l31' c;:[cf c]. (34)

A= WA

B/

This can also be obtained by using the transfer functions of the corresponding linear systems (including
(22)) as

E(s) = C'(sI, — A)"'B + C(sI, — A)"1A(sI, — A)"'B + C(sI, — A)"'B’

_ (sI, — A)~! 0
| (s —

o _ —1
AT A (shy — A1 (sl — a1 | BT CE—ATB

for any s € C which is not an eigenvalue of A. Here, use is made of a particular case of the block matrix

1
a 0 B a—l 0
[v ﬁ} [—ﬁ‘lw‘l p

The block lower triangular structure of the dynamics matrix A in (32), (34) is closely related to the
Gateaux derivative of the matrix exponential e/ in the direction A’ (see, for example, [18]):

inverse formula [17]:

1
ey = [O In] e llgl :f el=9)4 AlesAds, (35)
0
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Atany time t > 0, both X(¢) and Y(t)’ depend linearly on the matrices R’, N’ from (28) in view of the
following representation of the solutions of the QSDEs (27), which regards A’Xdt + B'dW as a forcing
term in the first of these QSDEs:

X(t) = f e=94(A'X(s)ds + B'AW(s)),  Y(1) = f(c'X(s) +CX(s))ds, (36)
0 0
where ,
X(t) = e X + J e(t=)ABdW(s) (37)
0

is the unperturbed solution of the first QSDE in (21) which does not depend on R’, N’. In the case of
linear QSDEs whose coefficients depend smoothly on parameters, the mean square differentiability of
their solutions with respect to those parameters can be verified directly by using the closed form (37)
(under certain integrability conditions for the underlying quantum state in terms of relevant moments
of the system variables such as E(X{ Xq) < +).

An additional insight into the structure of the process X’ is provided by its cross-commutation
relations with X, W. In particular, X' inherits the commutativity with the Ito increments of the input
field W from that of the underlying system variables in (4), and so also does S in (31):

X,dWT]
’ dWT = [ / =0. 38
[S ] [ X/, dWT]} ( )
Furthermore, the differentiation of (19) in €, combined with the identity [&,17T] = —[#, &']" for vectors
¢, 7 of operators, leads to
0=[X, X"+ [X X" =[x, xT] - [X,X"]", (39)

whereby the cross-commutation matrix [X’, XT] is symmetric (which holds regardless of a particular
structure of the QSDEs (21) and remains valid for quantum anharmonic oscillators with nonlinear
dynamics). This matrix evolves in time (with zero initial condition because X, = 0) and has a
steady-state value computed below.

Theorem 1. Suppose the matrix A of the OQHO (21) in (23) is Hurwitz. Then there exist the following limits
. ’ T~ . / Ty _ 9
tl}Tw[X(t) ,X(1)"] = 2i0y, tl}inoo[X(t) ,X(1)7] = 2i0y, (40)

where the matrices @1 € Sy, O € Ay, are found as unique solutions of the ALEs

AOy + Oy AT+ A'© + B'JBT =0, (41)
AOy + Op AT — A'Oy + 0, AT + B'JBT = 0. (42)

Proof. In view of the CCRs (19), the commutator matrix for the vector S in (31) is organised as

X, X1 [X,X'T] 20 Epp
25,87 = | R I el D 43
ST exn xoxm)| T e e 4
where the blocks Zy := [X/, X1] = —E],, B15 := [X, X'T] and Ey := [X’, X'T] consist of time-varying

skew self-adjoint operators on the system-field space H ® F. By using the quantum Ito lemma [19,35]

doi:10.20944/preprints202305.2179.v1
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and the bilinearity of the commutator along with the QSDE (33) and the commutativity (38), it follows
that (43) satisfies the QSDE

d= = [dS, ST] + [S,dST] + [dS,dST]
= [ASdt + BAW, ST + [S, ST ATdt + dWTBT] + [BAW,dWTBT]
= A[S,ST]dt + B[dW, ST + [S, ST]ATdt + [S, dWT|BT + B[dW,dWT|BT
= (AE+ EAT +2iBJBT)dt,

which (similarly to [22, Eq. (56)]) reduces to the ODE

E=A=+2A" +2iBJBT, (44)
with the initial condition
2iI0 0
N 45
0 l 0 0] (45)

in view of X{; = 0. Hence, at any time ¢ > 0, the matrix E(t) is an imaginary antisymmetric matrix

which can be represented as
(t) = 2i l © @12“)1 (46)

[11

On1(t) Ox(t)

with time-varying matrices @15 (t) = —@,1(t)T € R"*" and @ () € A,,. Substitution of (46) into (44)
and using (34) leads to the ODEs

Oy = AOy; + O AT + A’ + B'JBT, (47)
O = AOq + On AT + A'Opy + @5, AT + B'JBT, (48)

with zero initial conditions @,1(0) = 0, ®22(0) = 0 in accordance with the corresponding blocks in (45).
Now, the matrix @1 (t) is symmetric at any time f > 0 due to (39). This also follows from (47) in view
of the symmetry (30). Hence, ®1, = —@51, and the ODE (48) takes the form

O = AOyp + Op AT — A'@y + @ AT + B'JBT. (49)

If the matrix A is Hurwitz, then the solutions of the ODEs (47), (49) converge to their unique steady-state
values which (slightly abusing notation) satisfy the ALEs (41), (42) and specify the limits (40). O

The relations (28)—(36) and Theorem 1 provide infinitesimal perturbation analysis for sensitivity
of the internal and output variables of the OQHO to the matrices R, N. Under the perturbations of R,
N, the Hamiltonian H and the coupling operators in L, given by (20), remain in the corresponding
classes of quadratic and linear functions of the system variables. Accordingly, the above analysis is
not applicable to more general perturbations (for example, higher order polynomials of the system
variables) and is restricted to linear QSDEs, so that an alternative approach is needed in the general
case.

4. Transverse Hamiltonian

For the general quantum stochastic system, described in Section 2 and governed by (14), (16),
we will now consider its response to arbitrary perturbations in the system Hamiltonian Hy and the
system-field coupling operators in Ly. More precisely, suppose they are perturbed in directions Ky, My
as

Hy — Hy + €K, Ly — Lo+ eMj. (50)
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Here, Ky and the entries of the m-dimensional vector M are self-adjoint operators on the initial system
space H, and € is a small real-valued parameter as before, so that Ky = Hj and My = L. In what
follows, the derivative (-)’ := 0c(-) is taken at € = 0. The perturbations Ky, My in (50) are also assumed
to be functions of the initial system variables X;(0), ..., X,;(0), and these dependencies describe

K(t) :=j1(Ko),  M(t) := jt(Mo) (51)

as functions of X(t) under the unperturbed flow (8). For example, in the case of OQHOs considered in
Section 3, the perturbations K, M, which are caused by the perturbations in the energy and coupling
matrices R, N, inherit the structure of the Hamiltonian as a quadratic function and the coupling
operators as linear functions of the system variables in (20), respectively:
K = %XTR’X, M = N'X. (52)
Returning to the general case, we will avoid at this stage technical assumptions on Ky, My in (50), so that
the calculations, carried out below for arbitrary perturbations, should be regarded as formal. Since the
operators Hy, Ly completely specify the dynamics of the unitary operator U(t) in (6) which determines
the evolution of the system and output field variables, the response of the latter to the perturbations
(50) of Hp, Lo reduces to that of U(t). Therefore, the propagation of the initial perturbations Ko, My of
the operators Hy, Lo through the subsequent unitary system-field evolution can be described in terms
of the operator
V(t):=U(t), (53)

which satisfies Vy = 0 since Uy = Zygr does not depend on €. The smoothness of dependence of
U(t) on the parameter € is analogous to the corresponding property of solutions of classical SDEs
(whose drift and dispersion satisfy suitable regularity conditions [24,43]) and holds at least in the case
of linear QSDESs discussed in Section 3. The following theorem is closely related to Stone’s theorem on
generators of one-parameter unitary groups [53].

Theorem 2. For any time t > 0, the operator V(t) in (53), associated with the unitary evolution U(t) from (6),
can be represented as

V(t) = —il(H)Q(b). (54)

Here, Q(t) is a self-adjoint operator on the system-field space H @ F, which satisfies zero initial condition
Qo = 0and is governed by the QSDE

dQ = (K —Im(LTQM))dt + MTdW. (55)

Furthermore, Q(t) depends linearly on the initial perturbations Ko, My of the Hamiltonian and coupling
operators in (50) through their unperturbed evolutions in (51).

Proof. The differentiation of both sides of the unitarity relation U(t)TU(t) = Zg 7 with respect to the
parameter € at € = 0 leads to VU + UTV = (UTV)T + UTV = 0, which implies self-adjointness of the
operator

Q(t) := (1) v (1), (56)

thus establishing (54). Now, consider the time evolution of Q(¢). To this end, the differentiation of (6)
with respect to € yields

dV = — (i(Kodt + MEdW) + Re(L{ QMy)dt)U

— (i(HOdt +LIdw) + %LgﬂLodt) V. (57)
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By left multiplying both sides of (57) by U and recalling (56), it follows that
utdv = —i(Kdt + M'dW) — Re(LTQM)dt
n (%LTQLdt — Hdt— Lwa) Q
: T i T
— (- iK—Re(LTOM) + (EL OL—H)Q)dt
—(LQ+iM)Tdw, (58)

where use is made of the evolved perturbations (51). By a similar reasoning, a combination of (12) with
(56) leads to

duhyv = (i(Hdt + LTdW) — 1LTQLdt) utv

(Hdt +LTAW + %LTQLdt> 0, (59)
dufdv =iL"dwu'tdv = —iLTdwdwT(LQ + iM)
= LTOM —iLQ)dt, (60)

where use is also made of (58) along with the quantum Ito product rules [35] and (1), (4). It now follows
from (56), (58)—(60) that

i((duhyv + ufdv +dutav)
(K +iLTQOM — iRe(LTQM))dt + MTdW
= (K —Im(LTQM))dt + MTdW,

dQ

which establishes (55). The linear dependence of Q(f) on Ky, My follows from the integral

representation
t

Qt) = L((K(S) —Im(L(s)TQM(s)))ds + M(s) dW(s)) (61)

of the QSDE (55) and the property that the evolved perturbations K, M in (51) depend linearly on K,
Moy, respectively. [

In view of Theorem 2, for any fixed but otherwise arbitrary time t > 0, the relation (54), represented
as

u(t) = —it(HQ(t),

has the structure of isolated quantum dynamics in fictitious time €, where Q(f) plays the role of
a Hamiltonian pertaining to the perturbation of the unitary operator U(t). In order to reflect this
property, we will refer to the time-varying operator Q as the transverse Hamiltonian associated with the
perturbations K, M of the system Hamiltonian H and the system-field coupling operators in L. The
computation of Q is illustrated by the following two examples.

Example 1

In the absence of perturbation to the system-field coupling, when the vector My in (50) consists of
zero operators, and hence, so also does M in (51), the transverse Hamiltonian in (61) reduces to

t
Qt) — f K(s)ds. ©62)

doi:10.20944/preprints202305.2179.v1
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Moreover, if the system is isolated, that is, L = 0, then (6) reduces to the ODE U(t) = —iHoU(t) which
leads to
U(t) = eitH, (63)

with the Hamiltonian being preserved in time: H(t) = Hy for all # > 0. In this case of isolated system
dynamics, (62) takes the form

t . £
Q) — J eisH R pe—sHodgs — f i3y (Ky)ds = ¢E(itad ) (Ko). 64)
0 0

Here, use is made of Hadamard’s lemma [29] along with an entire function E(z) := eZ;1 =
Zkiog (kiikl)' of a complex variable (with E(0) = 1 by continuity) which plays a role in the solution of

nonhomogeneous linear ODEs with constant coefficients and constant forcing terms [18]. The Gateaux

derivative (53) of (63) can be represented by using an operator version of (35) as

B L|Ho O Ty
o=l e ([ 2)[3]
1 . t
= —itJ el 6=Vt g e —istHogs — —jlI(¢) f eSHogye—sHogs, (65)
0 0
which provides an alternative verification of (54) for this particular case, with Q given by (64). A

Example 2

For the OQHO of Section 3, substitution of the perturbations (52) into (61) leads to the transverse
Hamiltonian

Q(t) = f t (<1X(5)TR’X(S) —Im(X(s)"NTON'X(s)) ) ds + X(s) N"TdW(s))
- f t (%X(S)T(R’ +i(NTQN’ — N'TQN)) X (s)ds + X(S)TN’TdW(s))

- J (% X(s)T(R' + N'TIN — NTIN') X(s)ds + X(S)TN'TdW(s)>
0
—(N@,N')t (66)

which depends linearly on the matrices R/, N” and in a quadratic fashion on the past history of the
system variables. The latter are given by the unperturbed equation (37). The last term (N®, N’) t in
(66) comes from the relation Im(i(NTQON’ — N'TQN)) = NTN’ — N'TN (following from (1)) and the
identity XTYX = i(Y, ®) which holds for any matrix Y € A, in view of the CCRs (19). A

5. Infinitesimal perturbation analysis of system operators

Since the transverse Hamiltonian Q(t) in (56), (61) encodes the propagation of the initial
perturbations of the Hamiltonian and coupling operators in (50) through the unitary system-field
evolution over the time interval [0, f], it provides a tool for infinitesimal perturbation analysis of
general system operators. The following theorem is concerned with an extended setting which, in
addition to (50), allows for a smooth dependence of a system operator o on the parameter ¢, so that an
appropriate infinitesimal perturbation in it is specified by an operator o) on the initial space #, with
0y also being a function of the initial system variables X;(0),..., X;,(0).
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Theorem 3. For any self-adjoint system operator oy on the initial space H, which smoothly depends on the
same scalar parameter € as in (50) and is evolved by the flow (8), the derivative of its evolved version o (t) with
respect to € can be represented as

T(t) == o(t) =ilog) + ¢(t), (1) == i[Q(t), o (t)] (67)

at any time t > 0, where Q(t) is the transverse Hamiltonian from Theorem 2. Here, the operator ¢(t) satisfies
the QSDE
dp = (i[Q, 9(@)] + x(e))dt + ([Q e, LT]] ~ ilo, MT])AW, (68)

with zero initial condition ¢g = 0, where G is the unperturbed GKSL generator from (9), and ) is a linear

superoperator given by
x(0) := i[K = Im(LTQM), 7] — 2Re([c, LT]QOM). (69)

Proof. By using the Leibniz product rule together with (8), (53), (54) and the self-adjointness of Q(t), it
follows that

o = UM @Tr)U+ V(@ Zr)U + Ul (00 @ TF)V
= j1(0}) + (=iUQ) (0o @ Zr)U — il (0p @ ZF)UQ
= ji(0p) +iQU (00 ® Tr)U — ioQ = ji(0p) +i[Q, 7], (70)

which establishes (67), with the initial condition @g = 0 being inherited by ¢ from Qp = 0. We will
now obtain a QSDE for the process ¢. To this end, by combining the quantum Ito lemma with the
bilinearity of the commutator, and using the QSDEs (9), (55), it follows that

d[Q,c] =[dQ, 7] +[Q,dr] + [dQ, dr]

=[K — Im(LTQM), o]dt — [o, MT]dW
+[Q,G(0)]dt —i[Q,[o, LT]]dW
— [MTdW, i[o, LT]dW]

=([K = Im(LTYQM), o] + [Q, G(0)] + 2iIm(i[c, LT]QM))dt
— ([o, M"] +i[Q, [0, LT]])dW

=([K — Im(LTQM), o] + [Q, G(0)] + 2iRe([o, LT]QM))d¢
— ([o, MT] +i[Q, [o, LT]])dW. (71)

Here, the quantum Ito product rules are applied together with the commutativity (4) between adapted
processes and the Ito increments of the quantum Wiener process W. In the second and third of
the equalities (71), use is also made of the relations [a, BfdW] = [, T]dW and [aTdW, BTdW] =
2iIm(aTQ)B)dt for appropriately dimensioned adapted processes a, B with self-adjoint operator-valued
entries. These relations are combined with the identity Im(i[o, LT]QM) = Re([c, LT]QM) in the fourth
equality of (71). The QSDE (68) is now obtained my multiplying both sides of (71) by i and using the
superoperator x from (69). O

As can be seen from (70), the process j;(¢7) in (67) is the response of ¢ (t) to the initial perturbation
0y, of the system operator under the unperturbed flow (8) and satisfies the QSDE (9):

djs(c9) = G(jt(c))dt — ifje(op), LT ]dW. (72)

In contrast to j(c), the operator ¢(t) in (67) describes the response of the flow j; itself to the
perturbations (50) of the Hamiltonian and coupling operators and will be referred to as the derivative
process for the system operator o. Accordingly, the term i[Q, G(c)] in the drift of the QSDE (68) is
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the derivative process for G(o). At any given time ¢ > 0, the last equality in (67) is organised as
the right-hand side of the Heisenberg ODE (in fictitious time €) of an isolated quantum system with
the state space H ® F and the Hamiltonian Q(t). While j;(0) (evolved by the unperturbed flow)
depends linearly on ¢, the derivative process ¢(t) depends linearly on the perturbations Ko, My of
the Hamiltonian Hy and the coupling operators in Ly through the transverse Hamiltonian Q and the
superoperator ) in (69).

In application to the vectors X, L of the system variables and the system-field coupling operators,
the QSDEs (68), (72) and the definition (69) lead to

dX’ =(i([K — Im(LTQM), X] + [Q, F]) + 2Im(GOM))dt

+i([Q, G] — [X, M])dW, (73)
dL' =(G(M) +i([K — Im(LTQM), L] + [Q, G(L)]) — 2Re([L, LT]QM))dt
+([Q, [L, LT]] = i[L, MT] — i[M, LT])dW, (74)

where F, G are the unperturbed drift vector and the dispersion matrix from (14). In (73), use is also
made of the absence X|, = 0 of initial perturbations in the system variables, whereby j;(X{) = 0 for
any t > 0. Furthermore, in (74), we have used the relations j;(L{,) = j:(Mp) = M(t) in view of (50),
(51). Since the matrix | and the quantum Wiener process W do not depend on the parameter ¢, the
derivative of the output field Y of the system in (16) evolves according to the ODE

(Y)" =2JL, (75)

where L' is governed by the QSDE (74).

In particular, for the OQHO of Section 3 with the perturbations (52), the QSDEs (73)—(75) lead to
the relations (27), (28) which were obtained in Section 3 using more elementary techniques. However,
the latter are limited to quadratic perturbations of the Hamiltonian and linear perturbations of the
coupling operators in (52), whereas the transverse Hamiltonian approach allows the system response
to be investigated for general perturbations of these operators. Therefore, this approach can be used
for the development of optimality conditions in quantum control and filtering problems for larger
classes of controllers and observers.

6. Sensitivity of infinite-horizon quantum averaged functionals

Similarly to optimal control of classical time invariant stochastic systems [1,25], suppose the
infinite-horizon performance of the quantum system being considered is described by a cost functional

Z:=li 7
Jim EZ (), (76)
which (whenever it exists) leads to the same Cesaro limit limt_,+oo(% S(t) EZ(s)ds) = Z and is to be
minimised in optimal quantum control settings. Here, the quantum expectation E(-) is taken over the
tensor product
pPi=0RV (77)

of the initial quantum state @ of the system and the vacuum state [35] v in the Fock space F for the
external bosonic fields. This expectation is applied in (76) to a quantum criterion process Z, specified as

Z(t) := f(X(#), L(#)) (78)

by a function f : R"*" — R. The latter is extended to the noncommutative system variables and
the coupling operators (with L being in a bijective correspondence with the drift vector 2JL of the
output field in (16) since det] 0 in view of (2)) so as to make Z(f) a self-adjoint operator for any
t = 0. Such an operator-valued extension of f is straightforward in the case of polynomials and
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can be carried out through the Weyl quantization [10] for more general functions. In the coherent
quantum linear-quadratic-Gaussian (CQLQG) control and filtering problems [33,44,45], the function f
in (78) is a positive semi-definite quadratic form, in which case, the minimization of (76) provides an
infinite-horizon mean square optimality criterion.

Now, if the Hamiltonian and coupling operators of the quantum system are perturbed according
to (50), then application of the transverse Hamiltonian Q from Theorems 2, 3 leads to

(EZ(1)) = E(e(Zo) + 9(1), (1) == i[Q(t), Z(1)], (79)

where ¢ is the derivative process for Z. Note that, despite X, = 0, the operator Z{ can be nonzero due
to the dependence of Z in (78) on L. Assuming the existence and interchangeability of appropriate
limits, (79) leads to the following perturbation formula for the cost functional Z in (76):

2= lim (Eil(Z)) + Ep(1)) (80)

The right-hand side of (80) is a linear functional of the perturbations Ky, My, which describes the
corresponding (formal) Gateaux derivative of Z in the direction (Ko, Mp). Therefore, the quantum
system is a stationary point of the performance criterion (76) with respect to a subspace T of
perturbations (Ko, My) in (50), if T is contained by the null space of the linear functional Z’ in
(80):

T < ker Z'. (81)

This inclusion provides a first-order necessary condition of optimality in the quantum control problem
of minimising (76) over a manifold of the Hamiltonian and coupling operators with the local tangent
space 7.

While lim;_, o Ej¢(Z() in (80) reduces to averaging over the invariant quantum state of
the unperturbed system (provided certain integrability conditions are satisfied together with the
existence of and weak convergence to the invariant state), the computation of lim;_, y oo E¢(t) is less
straightforward. Due to the product structure (77) of the system-field state p (with the external fields
being in the vacuum state v), the martingale part of the QSDE (68) does not contribute to the time

derivative

(Ep) =Eyp+Ex(2), ¢:=i[QG(2)], (82)
where ¢ is the derivative process for G(Z), and the superoperator x from (69) is applied to the criterion
process Z in (78).

The relation (82) is a complicated integro-differential equation (IDE). However, this IDE admits
an efficient solution, for example, in the case when the system is an OQHO, and the function f in
(78) is a polynomial. In this case, due to the structure of the GKSL generator of the OQHO, G(Z) is
also a polynomial in the system variables of the same degree, thus leading to a linear relation (with
constant coefficients) between the derivative processes ¢, i and to algebraic closedness in the IDE (82).
Therefore, for stable OQHOs (with a Hurwitz matrix A) and a polynomial criterion process Z, the
computation of Z’ (and verification of the stationarity condition (81)) reduces to averaging over the
unperturbed invariant state (which is unique and Gaussian [36]). These calculations are exemplified
below.

Example 3

Consider the OQHO of Section 3, described by (19)—(23) with a Hurwitz matrix A. Suppose
the criterion process Z in (78) is a quadratic polynomial of the system variables Xj, ..., X, and the
system-field coupling operators L1, ..., Ly:

z::%[xT LT

X
L

= 1XTPX, IT:= [ (83)

2 Iy Ilxp

Iy Hu]


https://doi.org/10.20944/preprints202305.2179.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 May 2023

17 of 23

+
whereITe S,

R?*M and

is a given weighting matrix, partitioned into blocks ITy; € S}, Iy € S;};, IT1p = Hgl €

P =TIy + II;pN + NIy + NTTI,N e S (84)

is an auxiliary matrix which involves the coupling matrix N from (20). Then, in view of X{, = 0, it
follows from (83), (52) that

jt(Zp) = Re((TTy X + Ty L)' M) = Re(X" (ITy, + N'TIp) M). (85)

The second equality in (83) allows the quantum average of the corresponding derivative process ¢ in
(79) to be represented as

Ep = %(P, Y),  Y:=iE[Q&], E:=Re(XX!)=XXT-i0. (86)

Here, Y is the expectation of the derivative process i[Q, E] for E and hence, satisfies the following IDE,
similar to (82):
Y =iE[Q,G(E)] + Ex(8), (87)

where the superoperator x from (69) is applied to E entry-wise as
X(XjXy) = i[K — Im(LTQM), X; X] — 2Re([X; X}, LT]OM)
= i[K — Im(X"NTOM), X; X;] + 4Im((XOjs + XjOr)N'QOM), (88)
with O, the /th row of the CCR matrix ©. By substituting the Hamiltonian and coupling operators of

the OQHO from (20) into the GKSL generator G in (9), (11) and using the CCRs (19) together with the
state-space matrices (23), it follows that

G(8) = AE+EAT + BBT. (89)
Substitution of (89) into (87) reduces the IDE to a Lyapunov ODE:
Y = iE[Q, AZ + EAT + BBT] + Ex(8) = AY + YAT + Ex(2). (90)

Since the matrix A is Hurwitz, the unperturbed OQHO has an invariant state which is Gaussian [36]
with zero mean EX = 0 and covariance matrix E(XX") = £ + i@ € H;, where T € S} is a unique
solution of the ALE

AY + X AT + BBT — 0. (91)

Therefore, under appropriate integrability conditions for x(E), the solution of the Lyapunov ODE (90)
has a limit Yoo := lim¢—, 4 Y(¢) which is a unique solution of the ALE

AYop + Yoo AT + Lim Ex(2) =0, (92)

where lim;_, {  Ex(E) can be computed by averaging x(Z) over the invariant Gaussian state of the
OQHO. Therefore, by assembling (85), (86) into (80), it follows that

1
Z' = lim ERe(XT(ITj + NTTI)M) + E<P, Yoo), (93)

t—+400

where the limit also reduces to averaging over the invariant Gaussian state and is expressed in terms
of E(XMT) as
ERe(XT(IT;5 + NTTIn)M) = (I1j5 + NTTIx, ReE(XMT)). (94)
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The relations (84), (88), (92)—(94) allow the Gateaux derivative Z’ of the quadratic cost functional
(76), specified by (83), to be computed through mixed moments of the system variables X and the
perturbations K, M over the invariant zero-mean Gaussian quantum state whose covariance matrix
is found from (91). In particular, if K, M are polynomials of the system variables Xj, ..., X, then
these moments can be calculated in terms of the covariances by using the Isserlis-Wick theorem [21].
Alternatively, the perturbations K, M can be trigonometric polynomials, that is, linear combinations of
unitary Weyl operators [10]

W, = it X — wi

—u’

ueR”, (95)

associated with the system variables, or more generally, represented as the Weyl quantization integrals

K:=1 Wya(du), M:= [ W,B(du), (96)

R" R"
similar to those in [49, Eq. (32)]. Here, «,  are countably additive measures of finite variation on
the o-algebra 8" of Borel subsets of R”, which take values in C and C™, respectively, and satisfy the
Hermitian property a(S) = a(—S) and B(S) = B(—S) for any S € B", thus ensuring that K and the
entries of M in (96) are self-adjoint operators in view of the second equality in (95). Now, the Weyl
CCRs W, 4y = eiuT®UWqu for all u, v € R" (with their infinitesimal Heisenberg form given by (19))

imply that 0, W,, = 0yei?! (X+6u) ’v:OW” = i(X + ®u)W,,, whereby
XW,, = —(®u + idy)W,. 97)

Since the quantum expectation commutes with the differential operator on the right-hand side of
(97), and the quasi-characteristic function [7] of the invariant zero-mean Gaussian state is given by
EW, = e_%”””%, then

E(XW,) = —(@u +i0,) EW, = —(Ou +id,)e2HIE
- e—%H”H%(iZ -0, ueR", (98)

which can also be obtained by using quantum Price’s theorem [46]. A combination of the second
equality from (96) with (98) leads to

ReE(XMT) := Ref E(XW,)B(du)’

n

= f e 2luERe((iT — @)up(du)T)
=— f e 2l4E (ZuImp(du)T + OuRep(du)"). (99)
Rﬂ

The computation of the limit in (93) in the Weyl quantization framework is now completed by
substituting (99) into (94). In this framework, the matrix Ex(Z), which is needed for finding Y
from the ALE (92) for the last term in (93), is computed by averaging (88) in a similar fashion. A

7. Mean square optimal coherent quantum filtering problem

We will now outline an application of the transverse Hamiltonian approach of Sections 4-6 to a
quantum filtering problem for the open quantum system, described in Section 2 and referred to as a
quantum plant. The plant has the Hamiltonian H, the vector L of system-field coupling operators, the
input field W, the vector X of internal variables and the output field Y governed by the QSDEs (14),
(16). Although the plant is not necessarily an OQHO, we assume that the plant variables X1, ..., X;
are organised as position-momentum pairs and satisfy the CCRs (19).
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Suppose the quantum plant is cascaded in a measurement-free field-mediated fashion with
another open quantum system, playing the role a coherent quantum observer, which is driven by the
plant output Y and another quantum Wiener process w of an even dimension y on a different bosonic
Fock space §; see Fig. 1. The observer is endowed with its own initial Hilbert space §, dynamic

plant f«—— W

Y

N < observer w

Figure 1. The series connection of a quantum plant with a coherent quantum observer, mediated by
the plant output field Y and affected by the environment through the input quantum Wiener processes
W, w. The observer design objective is that the drift part of its output # has to approximate the plant
variables of interest in a mean square optimal fashion.

variables ¢1(t),. .., & (t) with a CCR matrix A € Ay (so that [(t), &(t)T] = 2iA for any t > 0, similarly
to (19)), and an (m + p)-dimensional output field #(¢):

§i=(Chsksr, W= Wik 1= (M) 1<k<mrp- (100)

Since the observer is driven by the plant output Y (together with the quantum noise w), the observer
output 77 acquires, over the course of time, quantum statistical correlations with the plant variables
and can be used for estimating the latter in a mean square optimal fashion as specified below. To this
end, we denote the observer Hamiltonian by I' and the vectors of operators of coupling of the observer
with the plant output Y and with the quantum Wiener process w by

D= (Pphicksm ¥ i= (Po)r<ksus (101)

respectively. The Hamiltonian I' and the coupling operators @y, ..., &y, ¥1,..., ¥, are functions of
the dynamic variables ¢, ...,y of the observer and hence, commute with the plant variables and
functions thereof, including H, L. The plant and observer form a composite quantum stochastic system,
whose vector X of dynamic variables satisfies the CCRs

e 0 X
T| _ o .: o
(X, X'] =2iO, OF 0o Al X ¢ (102)
and is driven by an augmented quantum Wiener process V¥V with the following Ito table:
Qo0 . W
deWT = th, Q = lo 6] = Ier]l + lJ, J = I(m_,’_y)/z ®], W = lw‘| . (103)

Here, U is the Ito matrix of the quantum Wiener process w of the observer, which is defined similarly
to Q) from (1), (2) as
dodw' =0dt, U= I +il,, ®]J. (104)

The quantum feedback network formalism [14] allows the Hamiltonian H of the plant-observer system
and its vector L of operators of coupling with W to be computed as

L+

H=H+T+®'JL, L= -

(105)
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Hence, the internal and output variables ¢y,...,8y and 71, ..., m+p of the observer in (100) are
governed by the QSDEs

dZ = G(&)dt —i[¢, LT]dW = (i[T, €] + A(&))dt —i[¢, [cpT ‘I’T] ld [Y] , (106)

w

dy = 2JLdt + dW. (107)

Here,
G(¢) :=i[H, ] + D(Q)
is the GKSL generator of the plant-observer system, and

D) = ~[{ L)L - [T eL,]

is the corresponding decoherence superoperator, in accordance with (11), (103), (105). In (106), use is
also made of the partial decoherence superoperator A which acts on the observer variables as

A(g) = —[¢,@"10® - [¢, ¥T]UY — %[CDTQCI) +¥T0Y, ¢

in view of (102)—(105). Now, consider a coherent quantum filtering (CQF) problem formulated as the
minimisation of the mean square discrepancy

Z:= lim EZ(t) — min, Z:= %(sx —TL)Y(SX - TL) (108)

t—+00
between r linear combinations of the plant variables of interest and the entries of the drift part 2JL of

the observer output 7 in (107) as specified by given weighting matrices S € R"*" and T := [Tl Tz],
with Ty € R™™, T, € R"™*¥. The criterion process Z in (108) is similar to that in (83):

T _qT
1 ’ H:_[ss ST], (109

Z::E[XT LT]H X

-TTs T1TT

with X being the only subvector of X’ from (102) which is present in (109). The minimization in (108) is
over the observer Hamiltonian I" and the vector ® of the observer-plant coupling operators in (101) as
functions of the observer variables ¢, ..., y. This mean square optimal CQF problem extends [45]
in that we do not restrict attention to linear observers even if the plant is an OQHO and ¥ depends
linearly on the observer variables ¢. Note that the Hamiltonian H of the plant and its coupling L to the
input quantum noise W are fixed, and so also is the coupling ¥ of the observer to the input quantum
noise w; see Fig. 1. If I'g, @ are perturbed in the directions

Ko:=T),  My:=®), (110)

consisting of self-adjoint operators representable as functions of the initial observer variables
¢1(0),...,¢v(0), then the corresponding perturbations of the plant-observer Hamiltonian and coupling
operators in (105) are

M
H) = Ko+ M{JLy, Lj= [ 001. (111)

doi:10.20944/preprints202305.2179.v1
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By applying Theorem 2 and using (103), (110), (111), it follows that the corresponding transverse
Hamiltonian Q for the plant-observer system satisfies the QSDE

dQ = (K + MTJL - Im(LTQ llﬂ ))dt + [MT 0] dw
= (K—Im((2L + ®)TQM))dt + MTdW, (112)

where use is also made of Im(LTQM) = —MT]L (following from (1) and the commutativity [L, MT] =
0). Then the Gateaux derivative Z’ of the cost functional in (108) is given by (80), where

j#(Zy) = Re((TL — SX)TTy M)

in view of (109), (111) and similarly to (85). In accordance with (82), the expectation of the derivative
process ¢ := i[Q, Z] satisfies the IDE

(Ep)" = iE[Q, G(2)] + Ex(2),
where, in view of (112), the superoperator x in (69) is given by
x(Z) = i[K —Im((2L + ®)TQOM), Z] — 2Re([Z, (L + @) " |QOM).

In particular, if both the plant and the unperturbed observer are OQHOs with Hurwitz dynamics
matrices (while the perturbations in (110) are not necessarily linear-quadratic), then Z’ can be found
(in a form similar to (93)) along the lines of Example 3 of Section 6 due to the criterion process Z in
(108), (109) being a quadratic function of the plant and observer variables in X" from (102).

The transverse Hamiltonian method, outlined above, was used in [47] for showing that, in the
mean square optimal CQF problem for linear quantum plants, those observers, which are locally
optimal in the class of linear quantum observers, cannot be improved locally (in the sense of the
first-order optimality conditions (81)) by varying the Hamiltonian and coupling operators of the
observer along linear combinations of the Weyl operators associated with the observer variables.

8. Concluding remarks

For a class of open quantum systems governed by Markovian Hudson-Parthasarathy QSDEs, we
have introduced a transverse Hamiltonian and derivative processes associated with perturbations of
the system Hamiltonian and system-field coupling operators. This provides a fully quantum tool for
infinitesimal perturbation analysis of system operators and cost functionals which involve averaging
over the invariant quantum state of the system. The proposed variational method can be used for
the development of first-order necessary conditions of optimality in quantum control and filtering
problems. We have illustrated these ideas for OQHOs with quadratic performance criteria and the
mean square optimal CQF problem.
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ALE algebraic Lyapunov equation
CCR canonical commutation relation
CQF coherent quantum filtering

CQLQG  coherent quantum linear-quadratic-Gaussian
GKSL Gorini-Kossakowski-Sudarshan-Lindblad

IDE integro-differential equation

ODE ordinary differential equation

OQHO  open quantum harmonic oscillator

PR physical realizability

QSDE quantum stochastic differential equation
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