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Abstract: In 1937, German mathematician L. Collatz proposed a conjecture: for any positive integer, if it is even, 

divide it by 2; if it is odd, multiply it by 3 and add 1 to get an even number; keep going on and on, and the final 

result is 1. This paper gives a sequence classification of odd numbers, and gives 1-1 mapping of odd numbers 

and odd number sequences,and uses these results to give a proof of this conjecture. 
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1. Introduction  

In 1937, German  mathematician L. Collatz posed a problem that later became known as Collatz 

conjecture: for a definite positive integer p, if p is even, divide it by 2; if p is odd, multiply it by 3 and 

add 1 to get an even number; then continue according to the above rule, the final result will be 1.  

Collatz conjecture has been studied  by many people and has long been regarded as an 

unsolved problem.See [1,2,3,4].This paper gives a sequence classification of odd numbers, and an 1-

1 mapping between odd numbers and odd number sequences,and gives a proof of this conjecture. 

Definition 1.1: Starting from a positive integer p, the above process is called a Collatz sequence; 

p is said to be successful to 1 if 1 is finally obtained；otherwise,p is not successful to 1. 

Remark: Any positive integer p can be written as: p = 2k (2m-1),here m is a positive integer and 

k is a positive integer or 0; when k > 0, p is even; when k = 0, p=2m-1 is odd. If any odd number is 

successful to 1, then since the even number p = 2k (2m-1) is divided by 2 k times to get the odd number 

2m-1, the even number p = 2k(2m-1) is also successful to 1. In other words, to prove that Collatz 

conjecture holds, it is sufficient to show that any odd  number is successful to 1. 

In this paper, the following discussion focuses on the Collatz sequence for odd numbers, and 

the even numbers in the Collatz sequence are omitted. 

Example: For a positive integer p = 44, its Collatz  sequence is: 44, 22, 11, 34, 17, 52, 26, 13, 40, 

20, 10, 5, 16, 8, 4, 2, 1，4，2,1，.... By removing all the even numbers, it becomes: 11, 17, 13, 5, 1,1....We 

will omit the duplicate odd number 1 later on.It becomes: 11, 17, 13, 5, 1. That is, the odd number 11 

is  successful to 1. This implies: odd 17, odd 13, odd 5, odd 1 are also successful to 1. This also implies: 

even 2k , even 2 k × 5, even 2 k × 13, even 2 k × 17, even 2 k × 11 are also successful to 1,where k = 1, 2, 3, 

.... 

Definition 1.2: For two odd numbers p and q in a Collatz  sequence, if 3p + 1= 2k q ,where k > 0 

is a positive integer; then p is said to be a pre odd number of q ,and q is said to be a post odd number 

of p. 

In the previous example , because 11 × 3 + 1 = 17 × 2, where k = 1, so 11 is a pre odd number of 

17, and 17 is a post odd number of 11. Similarly, because 17 × 3 + 1 = 13 × 2  2 , where k = 2, so 17 is a 

pre  odd number of 13, 13 is a post odd number of 17, etc. 

Theorem 1.1: If p is a pre odd number of q, then 4p+1 is also a pre odd number of q;and  

if 3p+1 = 2 kq,here k > 0 is a positive integer, then 3(4p+1)+1 = 2k+2q. 

Proof: Since p is a pre odd number of q, there exists a positive integer k > 0,such that  

3p+1 = 2kq. So 3(4p+1)+1 = 12p+4 = 4(3p+1) = 4 × 2 kq= 2k+2 q. ■ 

Consider the sequence {an }:a1 ,a2 ,..., an ,...; here a1 is an odd number, and an =4an-1 + 1,n = 2,3,4,.... 
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Corollary 1.2: For the above sequence {a n }, if the odd number a1 is a pre odd number of an odd 

number p, then each term in the sequence {a n } is a pre odd number of p; and if 3a1  + 1 = 2k p, then 

3a2  + 1 = 2k+2 p,... ,3an + 1 = 2k+2(n-1)p, where n = 2,3,4,.... 

Proof: This is a direct corollary of Theorem 1.1.■ 

Theorem 1.3: Any odd number p has a post odd number q, and q is the unique post odd number 

of p. 

Proof: It follows from the Collatz sequence that for any odd number p, 3p + 1 is an even number, 

and every even number can always be written as 2k q,where q is a definite odd number and k is a 

definite positive integer; that is, 3p + 1 = 2k q holds for a definite odd number q. By Definition 1.2,q is 

a post odd number of p, and q is the unique post odd number of p.■ 

Theorem 1.4: In a Collatz  sequence,if p is a pre odd number of p,（Certainly,p is also a post 

odd number of p.）then it is only case that p = 1. 

Proof: Since p is a pre odd number of p,there exists a positive integer k > 0,such that 3p+1 = 2k p. 

So 2k p -3p = p(2k -3) = 1,here p is odd. 

Case 1: k = 1. Then p(2-3) = -p = 1, which cannot be true. 

Case 2: k > 1. Then 2k -3 is a positive integer,and  p(2k -3) = 1.The only way this can be true ,if p 

= 1 and k = 2. ■ 

2. A sequence classification of odd numbers 

All odd numbers can be divided into two types: {4n-1∣n = 1,2,3,...},and {4n+1∣n = 0,1,2,3,...}. Where 

{4n+1} can yet be divided into two types: 4n+1 (n is 0 or even), that is: 1, 9, 17, ...; and 4n+1 (n is odd), 

that is: 5, 13, 21, .... 

Definition 2.1: An odd number of the form 4n-1 (n is a positive integer) is called a class A odd 

number; an odd number of the form 4n+1 (n is 0 or an even number) is called a class B odd number; 

an odd number of the form 4n+1 (n is an odd number) is called a class C odd number. 

Definition 2.2: (1) For a sequence{an }:If a1 is a class A odd number and an = 4an-1 + 1,n=2,3,4,..., 

then {an } is said to be a class I sequence. 

(2) For a sequence {an }:If a1 is a class B odd number and an = 4an-1 + 1,n= 2,3,4,..., then {an } is said 

to be a class II sequence. 

Example: The first two sequences in class I: 

{an }:3,13,53,..., (a1 = 3); {bn }:7,29,117,..., (b1 = 7). 

The first two sequences in class II: 

{an }:1,5,21,85,..., (a1 = 1); {bn }:9,37,149,..., (b1 = 9). 

Theorem 2.1: All terms (odd  numbers) in all class I sequences and all class II sequences contain 

all odd numbers ; and each odd number must be in the only one of these sequences. 

Proof: Notice that all odd numbers can be classified into three classes： class A, class B and class 

C. Any odd number in class A must be the first term a1 of some definite class I sequence {an}; 

similarly,any odd number in class B must be the first term a1 of some definite class II sequence {an}. 

So just prove that all terms of all sequences in class I and class II  contain any class C odd number of 

the form 4n+1 (n is an odd number), and any class C odd number must be in the only one of these 

sequences. 

Let p = 4n1 + 1 be any definite class C odd number , where n1 is a definite odd number. But all 

odd numbers can be classified into three classes A,B,C. 

Case 1: If n1 is a class A odd number, then n1 is the first term a1 of some definite class I sequence 

{an }; by the construction of a class I sequence, p = 4n1 + 1 is the second term a2 of this definite class I 

sequence {an}; similarly, if n1 is a class B odd number, then p = 4n1 + 1 is the second term a2 of some 

definite class II sequence {an }. 

Case 2: If n1 is a class C odd number, then there exists a definite odd number n2 , such that n1 = 

4n2 + 1. If n2 is some class A (or class B) odd number, then according to Case 1, n1 = 4n2  + 1 is the 

second term a2 of some definite class I (or class II) sequence , and p = 4n1 + 1 is the third term a3 of this 

definite class I (or class II) sequence. 
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Case 3: If n 2 is some class C odd number, then we are back to the beginning of case 2. Continuing, 

since p = 4n1 + 1 is a definite class C odd number, and n2  < n1 , so after finitely many case 2, we can 

always get some nk , so that nk-1 = 4nk + 1, n1 > n2  > ... > nk , and nk must be some definite class A (or 

class B) odd number, which is the first term a1 of some definite class I (or class II) sequence ,nk-1 is the 

2nd term a2 of the sequence ,...,n1 is the kth term ak ,and p = 4n1 + 1 is the k+1st term  ak+1 of the definite 

class I (or class II) sequence . ■ 

3. Results 

Notice that all odd numbers can again be divided into three types : {6n-3| n = 1,2,3,...}, {6n-1| n 

= 1,2,3,...}, {6n+1| n = 0,1,2,3,...}. 

Definition 3.1: An odd number of the form 6n-1 (n = 1,2,3,...) is called a class D odd number , 

6n+1 (n = 0,1,2,3,...) is called a class E odd number , and 6n-3 (n = 1,2,3,...) is called a class F odd 

number. Since 6n-3 is divisible by 3, a class F odd number is also called triple odd number. 

Lemma 3.1: The class A odd number 4n-1 is a pre odd number  of the class D odd  number  

6n-1, or 6n-1 is the post odd number of 4n-1,where n = 1,2,3,.... 

Proof: Since 3(4n-1) + 1 = 2(6n-1). ■ 

Notice that the class B odd number 4n+1 (n is 0 or even) can again be written as 8n+1(n = 0,1,2,...). 

Lemma 3.2: The class B odd number 8n+1 is a pre odd number of the class E odd number  

6n+1, or 6n+1 is the post odd number of 8n+1,where n = 0,1,2,3,.... 

Proof: Since 3(8n+1) + 1 = 22 (6n+1).   ■ 

Lemma 3.3: The triple odd number 6n-3 cannot be a post odd number of any odd number; in 

other words, the class F odd number 6n-3 have no pre odd number,where n = 1,2,3,.... 

Proof: Suppose that 6n-3 is a post odd number of some odd number p= 2m-1.Then 3(2m-1)+1 = 

2k(6n-3) holds for some positive integer k; at this point, the right side 2k(6n-3) of the equation is 

divisible by 3, while the left side 3(2m-1)+1 of the equation is not divisible by 3. Contradiction.  ■ 

Consider the class I and class II sequences given in §2.  

Theorem 3.4:For all class I sequences {an } (where a1 = 4k-1, an = 4an-1  + 1(n = 2,3,4,...), where k is 

a definite positive integer) and all the class D odd numbers 6k-1 (here k is the same as above) there 

exists a 1-1 mapping according to the pre and post odd number relationship; and  the class I 

sequence {an } with a1 = 4k-1 corresponds to the class D odd  number 6k-1, while each term of this 

class I sequence {an } is a pre odd  number of this class D odd  number 6k-1, and 3an + 1 = 22n-1(6k-1) 

(n = 1,2,3,...). 

Proof: By Lemma 3.1, for a definite positive integer k,the first term  4k-1 of the class I sequence 

{an } with a1 = 4k-1 is the pre odd  number of the class D odd 6k-1; then by Corollary 1.2, each term 

of the class I sequence {an } is a pre odd  number of the class D odd  number 6k-1 ,and 3an + 1 = 22n-1 

(6k-1)(n = 1,2,3 ...); then by Theorem 1.3, each term of this class I sequence {an } has a unique post odd 

number 6k-1.So, according to the relationship between the pre and post odd numbers, the class I 

sequence {an } with a1 = 4k-1 and  the class D odd number 6k-1is a 1-1 mapping,where k = 1,2,3,.... ■ 

Example: Take k = 1, then a1 = 3, {an }:3,13,53,213,...; each term of this class I sequence {an } is a pre 

odd number of the class D odd number 5. 

Theorem 3.5: For all class II sequences {an } (where a1 = 8k+1, an = 4an-1 + 1(n = 2,3,4,...), where k is 

0 or a definite positive integer) and all class E odd number 6k+1 (here k is the same as above) there 

exists a 1-1 mapping according to the pre and post odd number relationship; and the class II sequence 

{an } with a1 = 8k+1 corresponds to the class E odd number 6k+1, while each term of the class II 

sequence {an } is the pre odd  number of this  class E odd number 6k+1,and 3an +1 = 22n (6k+1)(n = 

1,2,3,...). 

Proof: As proved in Theorem 3.4, the result can be obtained from Lemma 3.2, and Corollary 1.2 

and Theorem 1.3 of Section 1.■  

Example: Take k = 0, then a1  = 1,{an }:1,5,21,85,...; each term of this class II sequence {an } is a pre 

odd number of the class E odd number 1. 

Theorem 3.6: Let p be an odd number and q = 4p+1,then 

(1) If p is a class E odd number , then q is a class D odd number ; 
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(2) If p is a class D odd number, then q is a class F odd number ； 

(3) If p is a class F odd number, then q is a class E odd number .  

Proof: (1) Since p is a class E odd number, let p = 6k+1, where k is 0 or a definite positive integer; 

then q = 4p+1 = 4(6k+1)+1 = 24k+5 = 6(4k+1)-1, so q is a class D odd number; 

(2) Since p is a class D odd number, let p = 6k-1,where k is a definite positive integer; then q = 

4p+1 = 4(6k-1)+1 = 24k-3 = 6(4k) -3, so q is a class F odd number; 

(3) Since p is a class F odd number , let p = 6k-3, where k is a definite positive integer; then q = 

4p+1 = 4(6k-3)+1 = 24k-11= 6(4k-2)+1, so q is a class E odd number.■ 

Remarks: In the class I sequence {an }, a1 = 4k-1 is a class A odd number; and all class A odd 

numbers are {4k-1}:3, 7, 11, 15, 19, 23, ...; where 3, 15, ... are class F odd numbers, 7, 19, ... are class E 

odd numbers, and 11, 23, . ... are class D odd numbers. 

In the class II sequence {an }, a1 = 8k+1 (k = 0,1,2,...) is a class B odd number; and all class B odd 

numbers are {8k+1}:1, 9, 17, 25, 33, 41,...; where 9, 33,... are class F odd numbers, 1, 25,. ... are class E 

odd numbers, and 17, 41, ... are class D odd numbers. 

That is, the first term a1 can be any one of the three odd classes  D,E,F, whether the sequence 

{an} is a class I or a class II . 

Theorem 3.7: In any one of class I and class II sequence {an},  

(1) If a1 is a class E odd number, then a2 is a class D odd number, a3 is a class F odd number, and a4 

is a class E odd number,etc. The subsequent terms cycle in this manner; 

(2) If a1 is a class F odd number,then loop by F,E,D,F,E,D; 

(3)  If a1 is a class D odd number,then loop by D,F,E,D,F,E. 

Proof: This is a direct corollary of Theorem 3.6.■ 

Remark: If the first term is excluded from the class I and class II sequence, then the other terms 

are all class C odd numbers, that is, odd numbers of the form 4n+1 (n is odd). According to Theorem 

3.7, these terms can also be any one of the three classes D,E,F. 

The Collatz  sequence now under discussion has omitted even numbers, so the following 

definition is given. 

Definition 3.2: If pk ,pk-1 ,...,p1 ,1 is a Collatz  sequence  with  k odd numbers other than 1, then 

we say that pk is k steps  successful to 1; and it is specified that the odd number 1 is 1 step successful 

to 1. 

Example: 11, 17, 13, 5, 1 is the Collatz sequence given in Introduction . Then we have: odd 5 is 1 

step successful to 1, 13 is 2 steps successful to 1, 17 is 3 steps successful to 1, and 11 is 4 steps  

successful to 1.Specially,1 is 1 step successful to 1. 

Corollary 3.8: If p is a pre odd number of q ,q ≠ 1 and q is k steps  successful to 1, then p is k+1 

steps successful to 1;if p is a pre odd number of 1,then p is 1 step successful to 1. 

Proof: This is a direct consequence of Definition 3.2.■  

In the following we construct a set H of sequences by recursive method. 

By Theorem 3.5, the class E odd number 1 corresponds to the class II sequence {an }:1, 5, 21, 85, 

341, .... Put this sequence into a sequence set H1. There is exactly one sequence in H1. 

In this sequence of H1 , since a1 = 1 is a class E odd number, by Theorem 3.7,a3k-2 is  

a class E odd number, a3k-1 is a class D odd number, and a3k is a class F odd number, where k = 

1,2,3 ,.... By Lemma 3.3, any class F odd number has no pre odd number. By Theorem 3.4, any class D 

odd number corresponds to a unique class I sequence; by Theorem 3.5, any class E odd number 

corresponds to a unique class II sequence. We take all the class I sequences and all the class II 

sequences corresponding to all the class D odd numbers and all the class E odd numbers of this 

sequence in H1 (removing the class E odd number 1) to form a sequence set H2. 

(Note: In H2 ,the removal of the class II sequence corresponding to class E odd number 1 is to 

prevent the sequence that appeared in H1 from reappearing in H2 .) 

Assume that the sequence set  Hn has been formed. 

Then all the class I sequences and all the class II sequences corresponding to all the class D odd 

numbers and all the class E odd numbers of each sequence in Hn form a set Hn+1 . 

Now the sequence sets H1 ,H2 ,H3 ,...,Hn ,... have been constructed. 
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Write H = ⋃ 𝐻∞𝑛=1 n 

Remark: To get an intuitive sense of the composition of the set H, several sequences in H1 and 

H2 are given here according to Theorem 3.4 and Theorem 3.5. 

There exists unique class II sequence {an } in H1 corresponding to the.class E odd number 1.{an 

}:1,5,21,85,341,1365,... 

The sequences in H2 correspond to all class D odd numbers and all class E odd numbers of the 

above sequence {an } in H1.In the above sequence,a1 = 1 is a class E odd number, which corresponds 

to just above sequence {an}. To avoid  repetition, do not put it in H2; a2  = 5 is a class D odd number, 

which corresponds to the class I sequence {bn }:3,13,53,213,...,put it in H2; a3 = 21 is a class F odd 

number (triple odd number), which does not exist any pre odd number; a4  = 85 is a class E odd 

number, which corresponds to the class II sequence {bn }:113,453,1813,...,put it in H2.; a5 = 341 is a class 

D odd number, which corresponds to the class I sequence {bn }:227,909,3637,...,put it into H2 ; a6  = 

1365 is a class F odd number, there is no pre odd number; and so on. 

Theorem 3.9: (1) There are no identical sequences in the above sequence sets H1 ,H2 ,...,Hn ,...; and 

no two different sequences in them have the same term. 

(2) All terms of any sequence in Hn are n steps successful to 1, where n = 1, 2, 3, .... 

(3) If the odd number p is successful to 1, then p must be in some sequence of the sequence set 

H. 

Proof: (1) Induction. First the sequence of H1 is the class II sequence corresponding to the class 

E odd number 1.All the sequences of H2 are all the class I sequences and all the class II sequences 

corresponding to all the class D odd numbers and all the class E odd numbers in H1 except for the 

class E odd number 1. The class E odd number 1 corresponding to the sequence in H1 and all the class 

D odd numbers and all the class E odd numbers corresponding to these sequences in H2 are just all 

the class D odd numbers and all the class E odd numbers in H1, all of which are not identical to each 

other, and from Theorem 3.4 and Theorem 3.5, all the sequences in H1 and H2 are not identical to each 

other. 

Then since all the sequences in H1 and H2 are class I and class II sequences, by Theorem 2.1, 

different sequences will not have the same term. 

Suppose all the sequences in H1 ,H2 ,...,Hn are different from each other and no two different 

sequences have the same term. 

Consider Hn+1 . Since all Class I and all Class II sequences in H1,H2 ,...,Hn correspond to all Class 

D odd and all Class E odd numbers that appear in H1 ,H2 ,...,Hn-1 (including the Class E odd number 

1 corresponding to the sequence in H1 ); and all Class I and all Class II sequences in Hn+1 correspond 

to all Class D odd and All Class E odd numbers that appear in Hn ; according to the assumption of 

induction, no two different sequences in H1 ,H2 ,...,Hn have the same term; that is, these Class D odd 

numbers and Class E odd numbers of each sequence in Hn do not appear in the sequences of H1 ,H2 

,...,Hn-1 . So by Theorem 3.4 and Theorem 3.5, all the sequences of Hn+1 and any of the sequences of 

H1,H2 ,...,Hn will not be the same; that is, all the sequences of H1 ,H2 ,...,Hn ,Hn+1 are not the same as 

each other. By Theorem 2.1, no two sequences in H1,H2,...,Hn ,Hn+1 have the same term. 

(2) Induction. First of all, all the terms of the sequence in H1 are the pre odd numbers of class E 

odd number 1. By definition 3.2,all the terms of the sequence in H1 are 1 step successful to 1 . 

Suppose all terms of any sequence in Hn are n steps  successful to 1 . 

Consider Hn+1 . Notice that any sequence {an } in Hn+1 corresponds to some class D (or class E) 

odd number p of a sequence in Hn , that is, all the terms of the sequence {an } are the pre odd numbers 

of that odd number p. Since the odd number p is in a sequence in Hn , by induction hypothesis, the 

odd number p is n steps successful to 1 ; by Corollary 3.8, all the terms of the sequence {an } are n+1 

steps successful to 1. 

(3) Since the odd number p is successful to 1, then there must exist some positive integer n,such 

that p is n steps successful to 1, so it is enough to prove that p must be in some sequence of Hn. 

Induction. First look at n = 1. Let the odd number p be 1 step successful to 1.Note that the odd 

number p must be in some definite class I (or class II) sequence. By Theorem 3.5, for the class E odd 

number 1,it corresponds to some class II sequence {an }, where all the terms of the class II sequence 
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{an } are the pre odd numbers of the class E odd number 1. Then by Theorem 3.4 and Theorem 3.5,all 

the class D (or class E) odd numbers corresponding to all other class I (or class II) sequences cannot 

be 1; that is,any term in all other class I (or class II) sequence cannot be a pre odd number of 1.In the 

other words,if the odd number p is in any other sequence excluding {an }, the odd number p cannot 

be 1 step successful to 1; so the odd number p can only be in the class II sequence {an } corresponding 

to the class E odd number 1, and the class II sequence {an } is exactly the one in H1. Therefore, the 

result holds for n = 1. 

Assume that the result holds for n = 2,3,...,k; that is, if the odd number p is 2 steps,3 steps,...,k 

steps successful to 1 respectively, then p is in some sequence of H2 ,H3 ,...,Hk respectively. 

Now let n = k+1; that is, the odd number p is k+1 steps successful to 1. Let Collatz sequence of 

the odd number p be p ,pk ,pk-1 ,...,p1 ,1. Then the odd  number  pk  is  k steps  successful to 1; by 

inductive assumption, pk is in some sequence of Hk . For simplicity, let pk be in some class I sequence 

{bn } of Hk . (If pk is in some class II sequence {bn }of Hk , then the same treatment follows.) Since all 

the terms of the sequence {bn } have class D, class E, and class F odd numbers, that pk cannot be a class 

F odd number.(Because p is a pre odd number of pk , and any class F odd number  has no pre odd 

number;) Therefore, pk is some definite class D (or class E) odd number in {bn }. Let’s assume  pk is a 

definite class D odd number in {bn }. Then, by the construction of Hk+1, the class I sequence 

corresponding to the class D odd number pk is some definite sequence {cn } in Hk+1 , and all terms of 

{cn } are pre odd numbers of the odd number pk . Since this is an 1-1 mapping, the class D (or class E) 

odd number corresponding to any class I (or class II) sequence other than the class I sequence {cn } 

cannot be pk. That is, any term in any other class I (or class II) sequence other than {cn } cannot be the 

pre odd number of pk . Therefore, the pre odd number p of pk can only be in this sequence {cn } of Hk+1 

. Therefore, the result holds when n = k + 1.■   

Remark: From Theorem 3.9, it follows that every term of every sequence in H = ⋃ 𝐻∞𝑛=1 n is 

successful to 1; and every odd number that is successful to 1 must be in one of these sequences of H. 

Therefore, to prove that all odd numbers are successful to 1, it is sufficient to show that every odd 

number is in one of the sequences of H. For this purpose, the following lemmas are given firstly. 

Lemma 3.10: (1) If p is a pre odd number of q and the odd number q is not successful to 1, then 

the odd number p is also not successful to 1; 

(2) If r is a post odd number of q and the odd number q is not successful to 1, then the odd 

number r is also not successful to 1. 

Proof: (1) First, since q is not successful to 1, q ≠ 1. Assuming that the odd number p is successful 

to 1,then there exists a positive integer k,such that p is k steps successful to 1, and by Theorem 1.3, q 

is the unique post odd number of p. Then, by Definition 3.2, k > 1, and q is k-1 steps successful to 1. 

Contradiction. 

(2) Assuming that the odd number r is successful to 1,then  there exists a positive integer m,such 

that r is m steps successful to 1, so q is m+1 steps successful to 1. Contradiction.■  

By Theorem 2.1, any odd number is a term of some class I (or class II) sequence. 

Lemma 3.11: If an odd number p is not successful to 1, then all terms of the class I (or class II) 

sequence {an },in which the odd number p is located ,are not successful to 1. 

Proof: From Theorem 3.9, it follows that all odd numbers in the sequence set H are successful to 

1; since the odd number p is not successful to 1, p is not in H.Let the odd number p be a term in some 

definite class I(or class II) sequence {an }.Since H is the sequence set , that sequence {an } is also not in 

H. In the other words, all terms of {an } are not in H. By Theorem 3.9, all terms of {an } are not successful 

to 1.■   

As with the construction of the sequence set H, the following series Gn of sequence sets is 

constructed. 

First put a class I (or class II) sequence{an } into a sequence set, denoted as G11 ; G11 contains only 

one sequence {an }. 

As before, there are infinitely many class D, class E and class F odd numbers in {an }, and then 

all class I sequences and all class II sequences corresponding to all class D odd numbers and all class 

E odd numbers of the sequence {an } in G11 form a sequence set G12 .  
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Suppose that the sequence set G1n has been formed. 

Then all the class I sequences and all the class II sequences corresponding to all the class D odd 

numbers and all the class E odd numbers of all sequences of G1n form a sequence set G1,n+1. 

Denote G1 = ⋃ 𝐺∞𝑛=1 1n 

Lemma 3.12: If some term in this sequence {an } of G11 is not successful to 1,then 

(1)There are no identical sequences in the sequence set G1 ;and no two different  sequences in 

G1 have the same term. 

(2) Any term of all sequences in the set G1 is not successful to 1. 

Proof: (1) First, following the method proved in Theorem 3.9(1), it is obtained that there are no 

identical sequences in the above sequence sets G11 ,G12 ,...,G1n ,..; and no two different sequences have 

the same term. 

(2) Induction for G1n. First of all, by Lemma 3.11,any term of the sequence {an } in G11 is not 

successful to 1. So the result holds when n = 1. 

Assume that the result holds for n = k, i.e., that any term of any sequence in G1k is not successful 

to 1. 

Consider G1,k+1 . Let the sequence {bn } be any definite class I (or class II) sequence in G1,k+1 , then 

{bn } corresponds to some class D (or class E) odd number p of some definite sequence in G1k. And all 

terms of {bn } are the pre odd numbers of that odd number p. By induction hypothesis, any term of 

any sequence in G1k is not successful to 1. So the odd number p is also not successful to 1. And by 

Lemma 3.10,any term in {bn } is not successful to 1. So the result holds for n = k+1.■   

Starting from the sequence set G1 above, we will construct the sequence set Gn ，where n = 2,3,4，... 

Start with the construction of G2 . Use the recursive method. First look at G11 in G1, there is only 

one class I (or class II) sequence in G11 , which is denoted as {an }. Let the class D (or class E)odd 

number corresponding to this class I (or class II) sequence {an } be p, then each item in {an } is a pre 

odd number of the odd number p. Since every odd number must be in some definite class I (or class 

II) sequence, let the class I (or class II) sequence containing the odd number p be {bn }. Put the class I 

(or class II) sequence {bn } into a sequence set, denoted G21 . G21 contains only one sequence {bn  }. 

At this point, there are infinitely many class D,class E and class F odd numbers in the sequence 

{bn }, and the above odd number p is just one of the class D (or class E) odd numbers in {bn }. Take all 

the class I sequences and all the class II sequences corresponding to all the class D odd numbers and 

all the class E odd numbers of the sequence {bn } in G21 ,and form a sequence set G22 . (Note: the 

sequence {an } in G11 is exactly that sequence in G22 corresponding to the odd number p in the sequence 

{bn } of G21.)  

Suppose that the sequence set G2k has been formed. 

Then  all class I sequences and all class II sequences corresponding to all class D odd numbers 

and all class E odd numbers of all sequences in G2k form the sequence set G2,k+1.       Write G2 = ⋃ 𝐺∞𝑘=1 2k. 

So on and so forth. 

Suppose again that Gn = ⋃ 𝐺∞𝑘=1 nk has been constructed. 

At this point, Gn1 has only one class I (or class II) sequence, denoted {cn }. Let the class D (or class 

E) odd number corresponding to this class I (or class II) sequence {cn } in Gn1 be q. Then each item in 

{cn } is a pre odd number of the odd number q. Let the class I (or class II) sequence containing the odd 

number q be {dn }. Now put that class I (or class II) sequence {dn } into a sequence set, denoted Gn+1,1 ; 

Gn+1,1 has only one sequence {dn }. 

There are infinitely many class D, class E and class F odd numbers in {dn }, and the odd number 

q above is just one of these class D (or class E) odd numbers. Put all class I sequences and all class II 

sequences corresponding to all class D odd numbers and all class E odd numbers of the sequence {dn 

} in Gn+1,1 into a sequence set,denoted Gn+1,2 . (Note that the sequence {cn } in Gn1 is exactly the sequence 

of Gn+1,2 corresponding to the odd number q in the sequence {dn } of Gn+1,1.) 

Suppose that the sequence set Gn+1,k has been formed. 

Then all the class I sequences and all the class II sequences corresponding to all the class D odd 

numbers and all the class E odd numbers of all sequences of Gn+1,k form a sequence set Gn+1,k+1. 
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Denote Gn+1 = ⋃ 𝐺∞𝑘=1 n+1,k. 

Now Gn , where n = 1,2,3,..., has been constructed recursively. 

Lemma 3.13: If any term of any sequence in the sequence set  G1 is not successful to 1, then  

(1) for n = 2,3,4,..., there are no identical sequence in the sequence set Gn constructed above, and 

no two different sequences have the same term; 

(2) For n = 2, 3, 4, ..., any term of any sequence in the sequence set Gn is not successful to 1; 

(3) G1 ⊂ G2  ⊂ ... ⊂ Gn  ⊂ ... 
Proof: (1) For n = 2,3,4,..., notice that the construction method of Gn is exactly the same as that of 

G1 and also exactly the same as that of H. Therefore, as proved in Theorem 3.9(1), the result holds; 

(2) Since any item of any sequence in G1 is  not successful to 1, then every item of the unique 

sequence {an } in G11 is not successful to 1. By the construction of G2 , the sequence {an } corresponds 

to the odd number p, and every item of {an } is the pre odd number of the odd number p. Therefore, 

by Lemma 3.10(2), the odd number p is not successful to 1. And by the construction of G2 , the odd 

number p is in the class I (or class II) sequence {bn }of G21 ; by Lemma 3.11, all terms in {bn } are not 

successful to 1. And as proved in Lemma 3.12, any term of any sequence in the set G2 is not successful 

to 1. 

By analogy, it is clear that any term of any sequence in the set Gn is not successful to 1,where n 

= 3,4,5,... 

(3) First prove that G1 ⊂ G2 . Looking back at the construction of G2 , G11 has the unique class I 

(or class II) sequence {an }, which corresponds to a class D (or class E) odd number p. And p is in the 

unique class I (or class II) sequence {bn } of G21 . While all class I sequences and all class II sequences 

corresponding to all class D odd numbers and all class E odd numbers of the sequence {bn } in G21 

form the sequence set G22 . Because p is in {bn }, so the sequence {an } corresponding to p is in G22, that 

is, G11 ⊂ G22 . Then by the generation of G12 and G23 it follows that since G11 ⊂ G22 , so G12 ⊂ G23 . By 

analogy ,it follows that G13 ⊂ G24 ,...,G1n ⊂ G2,n+1 , etc. 

Since G1 = G11 ∪ G12 ∪ ... ∪ G1n ∪ ... 
G2 = G21 ∪ G22 ∪ ... ∪ G2n ∪ G2,n+1 ∪ ... 
So G1 ⊂ G2. By analogy, G2 ⊂ G3 ⊂ ... ⊂ Gn ⊂ ....■  

Remarks: (1) From the construction of G2 , it is clear that the class D (or class E) odd number p 

corresponding to the class I (or class II) sequence {an } in G11 is just a general odd number in the 

sequence {bn } of G21 , and its corresponding sequence {an } grows in the pre odd number direction 

(let's say) to obtain a G1 . While there are infinitely many class D and infinitely many class E odd 

numbers in the sequence {bn } of G21 ,and  G2 is obtained by growing the infinitely many class D and 

class E odd numbers in {bn } in the pre odd number direction. Where each class D (or class E) odd 

number also generates a sequence set equivalent to G1. Thus, G2 is "infinitely many times" larger than 

G1 . 

Similarly, for n = 3,4,...,Gn is "infinitely many times"  larger than Gn-1 . 

(2)The difference between sequence set Gn and the sequence set H is that: all terms of  

all sequences in H are successful to 1, so when they grow in the post odd direction (let's say ), 

they stop at odd number 1; while all terms of all sequences in Gn are not successful to 1, so as n 

increases infinitely, Gn is endlessly expanding. From Theorem 3.9, we know that the sequences in H 

are not identical to each other, and no two sequences have the same term (odd number). So H can be 

regarded as a set of odd numbers; similarly, Gn can also be regarded as a set of odd numbers. From 

the above, it is obtained that as a set of odd numbers, H is a definite set of odd numbers; and as n 

increases infinitely， lim𝑛→∞𝐺n is an indeterminate set of odd numbers. 

Theorem 3.14: Any odd number is successful to 1. 

Proof: Let the set of all odd numbers be Q.Consider H as a set of odd numbers. By Theorem 3.9 , 

the set of all odd numbers successful to 1 is H. Suppose there is an odd number ,that is not successful 

to 1. And  let the set of all odd numbers not successful to 1 be G. then G ∩ H = Ø,and G ∪ H = Q. 

From Lemma 3.12 and Lemma 3.13, if there is an odd number that is not successful to 1, then the 

sequence set Gn ,which is regarded as the set of odd numbers, can be obtained.  

And it is known that any odd number of Gn is not successful to 1. And from the above remark  
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(2),when n tends infinity, lim𝑛→∞𝐺n is an indeterminate set of odd numbers. Because  Gn ⊂ G,where n = 1,2,3,..., so lim𝑛→∞𝐺n ⊂ G,and the set G of all odd numbers, those are not successful 

to 1 ,is also an indeterminate set of odd numbers.And the sets of odd numbers H and Q are both 

definite sets of odd numbers, so the equation G ∪ H = Q does not hold, contradiction.Thus,G = Ø, H 

= Q,and any odd number is successful to 1.■  

Remarks:(1)Treat each odd number in the set H as a vertex,and then connect an edge between 

any two odd numbers (vertices) in H that have a pre and post odd number relationship; in 

particular,connect an edge between odd number 1 and any other odd number in the odd number set 

H1 except for odd number 1.At this point,H can be regarded as a tree with an odd root 1.We call it 

the H-tree.This H-tree contains all odd numbers.Because any triple odd number has no  pre odd 

number,each odd number in the triple odd number set F is a leaf of this H-tree. 

(2)For Gn,where n= 1,2,3,...,as above,each odd number in Gn is treated as a vertex,and an edge is 

connected between any two odd numbers in Gn that have a pre and post odd number 

relationship,then  𝐥𝐢𝐦𝒏→∞𝑮n  is an unrooted tree.According to the proof of Theorem 1 in reference [4], 

the number of vertices in 𝐥𝐢𝐦𝒏→∞𝑮n is uncountable,it is impossible,so G = Ø. 

Theorem 3.15: Any positive integer is successful to 1 , i.e., Collatz conjecture holds. 

Proof: See the description at the top part of § 1 Introduction.■  
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