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Abstract: Visual inertial SLAM algorithms enable robots to autonomously explore and navigate in 

unknown scenes. However, most of the current SLAM systems highly rely on static environment 

assumptions, which fails in the exsitence of motional objects in the real environment. To improve 

the robustness and localization accuracy of SLAM systems in dynamic scenes, this paper proposes 

a visual-inertial SLAM framework that fuses semantic and geometric information, called DA-VINS. 

First, this paper presents a dynamic object classification method based on feature’s current motion 

state, which obtains temporary static features in the environment. Secondly, a features dynamics 

check module based on IMU prior and adjacent frame’s geometry constraint is designed to calculate 

dynamic factors. It also verifies the classification results of temporary static features. Finally, a dy-

namic adaptive bundle adjustment module based on the features’ dynamic factors is designed to 

adjust the weights of features in nonlinear optimization. We evaluated our method in public and 

our dataset. The results show that D-VINS is one of the most real-time, accurate, and robust systems 

in dynamic scenes. 

Keywords: VISLAM; dynamic environments; object detection; geometric constraint; IMU prior con-

straint 

 

1. Introduction 

Simultaneous localization and mapping (SLAM)[1] is the crucial technology for ad-

vanced robotics applications, such as collision-free navigation and environment explora-

tion[2]. It relies on the sensors carried by robots to accomplish high-precision localization 

and environment mapping simultaneously. Visual SLAM (VSLAM) [3,4] estimates the ro-

bot's location by cameras, which has advantages of inexpensive, less energy-consuming 

and less computationally demanding. Visual-Inertial SLAM (VISLAM) [4] integrates IMU 

with camera to further improve the positioning accuracy and robustness of VSLAM sys-

tem. Over the last decade, VSLAM framework has developed rapidly, with great open-

source frameworks such as MSCKF[6], VINS-Mono[7], ORB-SLAM3[8], DM-VIO[9]. 

These open-source SLAM algorithms are classified into two categories according to dif-

ferent optimization methods: filter-based methods and nonlinear optimization-based 

methods. The filter-based approach uses Kalman filter with extended algorithms to esti-

mate the robot's state. The advantages of filter-based methods are that they can be de-

ployed on embedded platforms. For example [10] is the visual-Inertial odometry(VIO) 

that integrates camera and IMU by ESKF. Optimization-based SLAM utilizes nonlinear 

optimization in the back end, such as Gaussian Newton, Levenberg-Marquardt, DogLeg. 

Nonlinear optimization provides higher accuracy but higher computational consumption. 

[11]is a VISLAM system that utilizes optical flow to track feature points at the front-end 

and optimizes the minimum reprojection error to solving the poses with bundle adjust-

ment(BA) at the back-end; ORB-SLAM2[12] uses ORB feature points to improve tracking 

and adds a loop closure thread to obtain higher accuracy global pose. Based on ORB-

SLAM2, ORB-SLAM3 adds IMU to enhance the robustness of the system and is one of 
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the best VISLAM so far. Those open-source frameworks have high accuracy and robust-

ness in static environments. However, in the real world, all of the mentioned algorithms 

lose accuracy or even fail in localization with numerous dynamic objects in city streets or 

rural roads. 

As early as 2003[13], there have been some studies on SLAM in Dynamic Environ-

ments (SLAMIDE) problem. The key to the dynamic SLAM problem is to detect dynamic 

objects in the environment.We classify dynamic SLAM methods into two categories: ge-

ometric-based methods and semantic-based methods. Geometry-based methods utilize 

constraints provided by camera movement between frames. But they ignore the potential 

motility of objects leading to missed detection of moving object. Semantic information-

based methods can accurately identify potential moving objects through deep learning. 

However, large networks are hard to deploy in embedded platforms. The real motion 

state at current frame is also unknown. 

To address these issues, we extends the work of VINS-Fusion and proposes a robust 

dynamic VISLAM, called D-VINS. D-VINS integrates semantic information and geomet-

ric constraints to divide features into different classes and adjusts the features’ weights in 

cost function accroding to different feature dynamics class. The main contributions of this 

paper are summarized as follows: 

• A feature classification using YOLOV5 [14] object detection algorithm is proposed in 

the front-end, which divide dynamic feature points into three categories: absolute 

static points, absolute dynamic points and temporary static points. Then, dynamic 

factors of temporary static features are calculated based on the IMU pre-integration 

prior constraint and the epipolar constraint. Temporary static features are classified 

again according to dynamic factors. 

• A robust BA optimization method based on dynamics factor is proposed in the back-

end. If the object is more dynamic, its features weights are decreased, and vice versa, 

its features weights are increased. 

• Extensive experiments are carried out on public datasets like TUM,KITTI and VI-

ODE and our dataset. The experiment results demonstrate the accuracy and robust-

ness of our proposed D-VINS. 

The rest of this paper is organized as follows: Section 2 discusses related work. Sec-

tion 3 introduces our proposed system in detail. Section 4 details the experimental process 

and comparative analysis of the experimental results. Finally, the conclusion is made in 

Section 5. 

2. Related Work 

Most SLAM systems suffer severe accuracy loss in dynamic scenes. In terms of meth-

ods, Dynamic SLAM can be divided into two categories, geometry-based methods and 

semantic-based methods. 

2.1. Geometry based dynamic SLAM 

The geometry-based method utilizes geometric constraints between camera frames 

to remove outliers. Dynamic objects can be selected out because they are not conform the 

geometric motion consistency between frames. In addition, the inner points(static points) 

can be separated from the outliers(dynamic points) by statistics. The majority SLAM sys-

tems employs RANSAC[15] with epipolar constraints to remove outliers, such as VINS-

Mono. It calculate the fundamental matrix by the eight-point method RANSAC. However, 

RANSAC is not work when the outliers are dominant. DGS-SLAM [16]proposes a RGB-D 

SLAM in the dynamic enviroment, which decomposes the camera motion into two parts, 

translation and rotation. Two geometric constraints are proposed to localize dynamic ob-

ject regions. Besides, the method reduces the impacts of outliers in optimization by de-

signing new robust kernel functions. DynaVINS[17] proposed method without deep 

learning to identify the dynamic features, which designs a novel loss function with IMU 
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pre-integration results as prior in the bundle adjustment. In loop closure detection 

moudule, the loops from different features are grouped for selective optimization. PFD-

SLAM [18]utilizes GMS (Grid-based Motion Statistics)[19] algorithm to guarantee the 

matching accuracy with RANSAC. Then it calculates homography transformation to ex-

tract the dynamic region, which is accurately obtained with particle filtering. ClusterS-

LAM[20] clusters feature points according motion consistency to reject dynamic objects. 

In general, geometry-based methods have higher accuracy and less computational cost 

than deep learning-based methods. But they lacks semantic information for precise seg-

mentation. Meanwhile, geometry-based methods heavily rely on experience-based hy-

perparameters, which will significantly reduce algorithm feasibility. 

2.2. Deep learning based dynamic SLAM 

At present, deep learning networks in object detection, semantic segmentation, opti-

cal flow, have made continuous breakthroughs in speed and accuracy. They can obtain 

the object detection results, like bounding boxes for SLAM systems in dynamic environ-

ments. In order to obtain the real motion state at the current frame, geometric information 

are usually added in deep learning based methods for accurate dynamic object recogni-

tion and rejection.  

For example, DynaSLAM[21] is the first known dynamic SLAM sysetm that com-

bines  multi-view geometry and deep learning. It uses MASK R-CNN that provides pixel-

level semantic priors for potential dynamic objects in images. Dynamic-SLAM[22] detects 

dynamic objects by SSD (Single Shot MultiBox Detector)[23] object detection network and 

compensates the missing detection problem based on constant velocity motion model. 

They set a threshold for average parallax of features in bounding boxes area to further 

reject dynamic features. However, this method relies on bounding boxes, which may 

causes wrong rejection of static feature points belonging to the background. DS-SLAM[24] 

utilizes SegNet network to eliminates dynamic objects’ features, which are tracked with 

Lucas–Kanade (LK) optical flow[25]. For matched points, fundamental matrix is found 

with RANSAC with the most inliers. The distance from the matched points to their epi-

polar line is obtained. If the distance is higher than a certain threshold, the point is re-

garded as a dynamic point and will be deleted. In addition, depth information provided 

by the RGB-D camera is usually used for dynamic object detection. Dynamic-VINS [26] 

proposes RGB-D based visual inertial odometry for embedded platforms, which reduces 

computational burden using grid-based feature detection algorithms.The dynamic fea-

tures’ semantic label and depth are combined to separate the foreground and background. 

Moving consistency check based on IMU pre-integration is proposed for missed detection 

problem. YOLO-SLAM[27] is a RGB-D SLAM system that obtains object’s semantic labels 

by Darknet19-YOLOv3. SG-SLAM[28] is a real-time RGB-D SLAM system which adds 

dynamic object detection thread and semantic mapping thread based on ORB-SLAM2 for 

creating global static 3D reconstruction maps. 

Generally, the advantage of geometry-based methods is fast. But they lack semantic 

information and cannot detect moving targets using prior knowledge of the scene and 

robustness are usually lower than deep learning based methods. Deep learning based 

methods have advantages in dynamic object detection. They can segment potential dy-

namic objects with semantic information. But deep learning is hard to run in real-time on 

embedded platforms and its accuracy is highly dependent on the results of training. In 

addition, most of the above methods uses RGB-D cameras,where geometric information 

is tightly-coupled with depth information.Those methods are more reliable in indoor en-

vironments. There are few algorithms that are suitable for outdoor dynamic scenes. We 

propose a dynamic SLAM that combines geometric information and semantic infor-

mation. IMU prior constraints are tightly-coupled in dynamic features check and optimi-

zation. We fused those model into VINS-Fusion to attain better performances in both in-

door and outdoor dynamic scenes. 
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3. Methods 

 

Figure 1. Overview of DA-VINS. The red dashed line indicates that absolute dynamic points are 

eliminated. The blue and green arrows represent the flow of temporary static points and absolute 

static features, respectively. feature dynamic check moudule also filters out some of the absolute 

dynamic points. Only absolute static feature points are sent to the keyframe database. 

The system is implemented based on VINS-Fusion, which is divided into three sec-

tions: data preprocess, features detection and tracking, bundle adjustment optimization. 

Figure 1 shows the illustration of system workflow. 

Firstly, the color image are sent to the YOLOV5 to obtain semantic labels of the COCO 

dataset[29] and the bounding boxes of objects. In dynamic object classification, bayesian 

updating is employed to distinguish absolute dynamic objects, absolute static objects and 

temporary static objects. The harries keypoints are extracted and only those points from 

absolute static objects and temporary static objects will be tracked by LK optical flow in 

the front end. The IMU sensor provides features states, like translation, rotation and ve-

locity with prior motion constraints. The feature’s dynamic factor is the root mean square 

of IMU pre-integration error and epipolar constraint. In feature dynamics check, the dy-

namic factors of temporary static points are calculated, whose numerical value indicates 

the movement of feature points. A larger numerical value shows indicates that the feature 

points are likely to be dynamic.The key of feature rejection strategy is to preserve poten-

tial points judged by dynamic factors, instead of removing all the movable points. This 

strategy increases the number of feature points in the high dynamic scene to guarantee 

the sufficient features for localization. 

At the back-end, we proposes a novel loss function with adaptive weights based on 

dynamic factors in BA adjustment. Feature weights are added into cost function as pa-

rameters to be optimized. D-VINS divides conventional optimization process into two 

steps. Firstly, features’ weights are fixed the to optimizes system states separately. Then 

system states are fixed to optimize the weights. The above process is iterated until re-

quired times or weights are converged. In addition, dynamics factors are added to adjust 

features’ weights.  

3.1. Dynamic Object Classification 

Tracking static features is the key for SLAM systems to maintain localization accu-

racy in dynamic environments. However, in most scenes, dynamic objects are movabel 

instead moving, which is the drawback of pure deep learning based methods. The bound-

ary between dynamic and static objects is not clear for deep learning. For instance, books 
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are commonly considered as static objects. But when a person holding a book, the book 

becomes a dynamic object, which is the same as a car in a parking lot or running in the 

highway. Therefore, semantic information is not enough to assist robots to detect the mov-

ing objects in dynamic environment. In D-VINS, we propose a classification method for 

obtained semantic labels。 

3.1.1. Semantic label incremental updating with Bayes’ rule 

In order to recognize most objects in life, we selected COCO dataset to training the 

YOLOV5, which contains 80 categories of common objects. Not all objects need to be de-

tected. So we selected 17 most common categories. Firstly, color images are input to the 

YOLOV5 with TensorRT [30] accelerating to obtain semantic labels of COCO categories. 

Bounding boxes can locate the approximate region of a dynamic object in an image. The 

feature points inside the bounding boxes will be given its semantic labels. Since object 

detection network can only detect semantic information of the current frame and exists 

missing or incorrect detection problem,D-VINS updates features’ semantic label accord-

ing to Bayes' rule to to avoid the error in a certain frame, which transforms the labeling 

problem into a maximum a posteriori problem. 

The 𝑚th map point in a given world coordinates 𝑊 is observed by 𝑘th frame can be 

written as 𝑃𝑘
𝑊(𝑥, 𝑦, 𝑧, 1) . 𝑝𝑚

𝑘 (𝑢, 𝑣, 1) denotes the pixels in camera coordinates that corre-

sponds to the 𝑚th map point. The projection process of feature points is as follows: 

 𝑠𝑝𝑚
𝑘 = 𝐾𝑇𝑃𝑘

𝑊. (1) 

Where, 𝑠 is the depth of map points and 𝐾 is the extrinsic matrix. 𝑇 denotes the 

transformation matrix from the world coordinates to the observation frame. De-

note  𝑙𝑡𝑟𝑢𝑒 = {𝑙𝑖
𝑘|𝑘 ∈ (1,2,3, . . . , 𝑁), 𝑖 ∈ (1,2,3, . . . , M)} and 𝑏𝑜𝑏𝑠𝑒𝑟𝑣𝑒 = {𝑏𝑖

𝑘|𝑘 ∈

(1,2,3, . . . , 𝑁), 𝑖 ∈ (1,2,3, . . . , M)} as the ground truth of the semantic labels of the 𝑚th fea-

ture points from the beginning frame to the 𝑘th frame and the measurements of deep 

learning bounding boxes. According to Bayes’ rule, there is： 

𝑃(𝑙𝑡𝑟𝑢𝑒|𝑏𝑜𝑏𝑠𝑒𝑟𝑣𝑒) =
𝑃(𝑏𝑜𝑏𝑠𝑒𝑟𝑣𝑒|𝑙𝑡𝑟𝑢𝑒)𝑃(𝑙𝑡𝑟𝑢𝑒)

𝑃(𝑏𝑜𝑏𝑠𝑒𝑟𝑣𝑒)
∝ 𝑃(𝑏𝑜𝑏𝑠𝑒𝑟𝑣𝑒|𝑙𝑡𝑟𝑢𝑒)𝑃(𝑙𝑡𝑟𝑢𝑒) (2) 

In fact, this is a Maximize a Posterior problem, shown as: 

𝑎𝑟𝑔𝑚𝑎𝑥𝑙𝑡𝑟𝑢𝑒 =𝑎𝑟𝑔𝑚𝑎𝑥 𝑃 (𝑙𝑡𝑟𝑢𝑒|𝑏𝑜𝑏𝑠𝑒𝑟𝑣𝑒) = 𝑎𝑟𝑔𝑚𝑎𝑥 𝑃 (𝑏𝑜𝑏𝑠𝑒𝑟𝑣𝑒|𝑙𝑡𝑟𝑢𝑒)𝑃(𝑙𝑡𝑟𝑢𝑒) (3) 

When dynamic objects are detected in previous frames, the same result should also 

be obtained by the current frame. So the semantic labels of feature points are affected by 

multi-frame in the past. The semantic label probability distribution of the  𝑚th feature 

point in 𝑘th frame is: 

𝑃(𝑙𝑘
𝑚|𝑏1:𝑘) = 𝑃(𝑙𝑘

𝑚|𝑙𝑘−1
𝑚 , 𝑏1:𝑘−1). . . 𝑃(𝑙2

𝑚|𝑙1
𝑚, 𝑏1 : 2)𝑃(𝑙1

𝑚|𝑏1) =∏𝑃(𝑙𝑖
𝑚|𝑙𝑖−1

𝑚 , 𝑏𝑖)

k

i=1

 (4) 

When the semantic information of the current frame is obtained, D-VINS will deter-

mine whether it is consistent with the previous frames. If the previous semantic label is 

same as that in the current frame, the detection resut of the current frame is more trusted, 

and vice versa. The specific algorithm steps are shown in Algorithm 1. 

 

 

 

 

Algorithm 1: Semantic label updating with Bayesian rule 

Input: current frame bounding box 𝐴𝑚𝑎𝑠𝑘 ; Current frame’s feature points 𝑃; Previous 

frame’s dynamic label 𝑙𝑘−1; Non-updated current frame’s dynamic label 𝑏𝑘; Threshold 

of dynamic label 𝜀𝑦𝑜𝑙𝑜; Frequency of feature point being observed 𝑁𝑜𝑏𝑠𝑒𝑟𝑣𝑒. 
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3.1.2. Feature points motion state classification 

The feature points classification is divided into two parts. The first part is to classify 

COCO categories according to the possibility of motion based on life experience. The clas-

sification is divided into 1~5 levels. the higher the level the higher the possibility of move-

ment. Those five levels are level I public facilities (traffic light, bench), Level II furniture 

(chair, sofa, bed), Level III transportation (bicycle, car, motorbike, bus, truck, boat), Level 

IV sports (football, basketball), people (person) and Level V animals (cat, dog, bird), seen 

in the Figure 2.  

The second part is to classify the feature points into three categories according to the 

movement in their current frame, which can be divided into absolute stationary points, 

temporary stationary points and absolute dynamic points. In general, if one object is de-

tected as bench, sofa or potted plant, its feature points are most likely to be a static, which 

can be involved in the pose estimation and mapping. If the semantic label is animal such 

as birds, cats or dogs, those features are considered to be dynamic features. Animals usu-

ally keep moving and occupy a small area in an image, which have less impact on the 

SLAM system. As shown in Figure 2, objects of level I and level II are considered as abso-

lute static objects, objects of level III and level IV are temporary static objects and objects 

of level V are absolute dynamic objects. For temporary static objects, their motion state 

cannot be determined by prior semantics from deep learning. If such feature points oc-

cupy a large area in the image, eliminating all of them will impair the localization accuracy 

due to insufficient feature points for tracking. 

 

Figure 2. Dynamic object hierarchy. The common objects in the COCO dataset are classified based 

on life experience, The higher the level, the higher the potential motion of the object. I and II are 

considered as static objects, III and IV are considered as temporary static objects, and V is considered 

as dynamic objects. 

3.2. Features Dynamics Check with IMU Prior and Epipolar Constraint 

In order to check current motion state of movable objects, D-VINS calculate dynamic 

factors to find the absolute dynamic points. For absolute static objects, like furniture, 

Output: Current frame’s dynamic label 𝑙𝑘. 

1：for each 𝑃𝑗 in this Frame 𝑃 do: 

2:     for each bounding box in this Frame do: 

3:         if (InThisBoundingBox(𝑃𝑗,𝐴𝑚𝑎𝑠𝑘) ) && (𝑏𝑘 ≥ 𝜀𝑦𝑜𝑙𝑜)) then, 

4：         𝑁𝑜𝑏𝑠𝑒𝑟𝑣𝑒++; 

5：         𝑟𝑎𝑡𝑖𝑜 =
|𝑙𝑘−1−𝑏𝑘|

𝑙𝑘−1
; 

6:          𝑙𝑘
𝑡𝑒𝑚𝑝

=
𝑁𝑜𝑏𝑠𝑒𝑟𝑣𝑒

𝑟𝑎𝑡𝑖𝑜×𝑠𝑖𝑧𝑒(𝑃)
× 𝑏𝑘 + (1 −

𝑁𝑜𝑏𝑠𝑒𝑟𝑣𝑒

𝑠𝑖𝑧𝑒(𝑃)
) (1 −

1

𝑟𝑎𝑡𝑖𝑜
) × 𝑙𝑘−1; 

7:         end if 

8:     end for 

9：   𝑙𝑘 = 𝑚𝑎𝑥( 𝑙𝑘
𝑡𝑒𝑚𝑝

); 

10:  end for 
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traffic lights and benches, their feature points are kept for all process of SLAM system. For 

absolute dynamic points like animals, all those feature points are removed and do not 

participate BA optimization or global pose optimization. For temporary static points, the 

first part of dynamic factors is calculated by IMU pre-integration, which is utilized as the 

initial pose of current frame to obtain the reprojection error by projecting the 3D feature 

points onto the image plane. According to eipipolar geometry, the foundational matrix is 

calculated to obtain the distance from feature points to their epipolar lines, which is the 

second part of dynamic factor. If one of the dynamic factors of the feature point is lower 

than a certain threshold, the point will be labeled as absolute dynamic points.  

3.2.1. Dynamic factor of reprojection error based on IMU prior constraint 

Conventional visual reprojection projects a feature point from its previous observed 

frame to the pixels plane of current frame. The reprojection error cannot be calculated if 

camera pose of current frame is unknown. IMU preintegration provides an initial estimate 

for current frame’s camera pose, which enables calculating reprojection error to reject dy-

namic objects with the IMU sensor.  

There must be errors between the estimation pose and real camera pose, which means 

the reprojection points and the observation points are usually not coincident. For map 

point in world coordinate 𝑷 = [𝑋𝑝, 𝑌𝑝, 𝑍𝑝, 1]
𝑇
, its pixel coordinates projected on the jt frame 

is 𝒑𝐶𝑗 = [𝑢𝑗, 𝑣𝑗 , 1]T. According to Equation (1), the relationship between map points and 

pixel points according to the camera projection model exists as follows： 

𝑠 [
𝑢𝑗

𝑣𝑗

1

] = 𝑲exp (𝝃∧) [

𝑋𝑝
𝑌𝑝
𝑍𝑝
1

] (5) 

Equation (5) can be written in matrix form 𝒑𝑪𝒋 = 𝑲exp (𝝃∧)𝑷 and the resisual 𝑟𝐶  of 

the reprojection error as follows： 

𝑟𝐶 = ∥
∥
∥
𝒑𝑪𝒋 −

1

𝑠
𝑲exp (𝝃∧)𝑷

∥
∥
∥

2

2

 (6) 

𝝃∧ is the Lie algebra of the 𝑗th frame  in body frame and 𝑲 is the intrinsic matrix 

obtained by camera calibration[31]. The camera pose of 𝑗th frame is obtained by IMU pre-

integration: 

𝐑𝑤
𝑏𝑗−1

𝐩𝑏𝑗
𝑤 = 𝐑𝑤

𝑏𝑗−1
(𝐩𝑏𝑗−1

𝑤 + 𝐯𝑏𝑗−1
𝑤 Δt −

1

2
𝐠𝑤Δt2) + 𝜶𝑏𝑗

𝑏𝑗−1

𝐑𝑤
𝑏𝑗−1

𝐯𝑏𝑗
𝑤 = 𝐑𝑤

𝑏𝑗−1
(𝐯𝑏𝑗−1

𝑤 − 𝐠𝑤Δt) + 𝜷𝑏𝑗
𝑏𝑗−1

𝐪𝑤
𝑏𝑗−1

⊗𝐪𝑏𝑗
𝑤 & = 𝜸

𝑏𝑗

𝑏𝑗−1

 (7) 

where，𝜶𝑏𝑗
𝑏𝑗−1

、𝜷𝑏𝑗
𝑏𝑗−1

 and 𝜸𝑏𝑗
𝑏𝑗−1

 are the pre-integration terms of position, velocity, 

and pose, which changes the reference frame from the world frame to the local body 

frame 𝑏𝑗−1；𝐩𝑏𝑗
𝑤、𝐯𝑏𝑗

𝑤  and 𝐪𝑏𝑗
𝑤  are system state the state of the jth body frame. From equa-

tion (7), the pose of jth frame is obtained. The pixel coordinates in jth frame projected from 

ith frame is 𝑷𝐶𝑗 = [𝑢𝑖
𝑗
, 𝑣𝑖

𝑗
, 1]

𝑇
. And the observation in jth frame is 𝑷̅𝐶𝑗 = [𝑢̂𝑖

𝑗
, 𝑣̂𝑖

𝑗
, 1]

𝑇
. By 

equation (6), the new visual reprojection resisual 𝑟𝑝𝑟𝑜𝑗𝑒𝑐𝑡(𝑷) of map point 𝑷 can be estab-

lished by camera projection model: 

{
 
 

 
 𝑷𝐶𝑗 = 𝜋 (𝐓𝑏

𝑐𝐓𝑤
𝑏𝑗
𝐓𝑏𝑖
𝑤𝐓𝑐

𝑏𝑃𝐶𝑗)

𝑷𝐶𝑖 = 𝜋 (𝐓𝑏
𝑐𝐓𝑤

𝑏𝑖𝐓𝑏𝑗
𝑤𝐓𝑐

𝑏𝑃𝐶𝑖)

𝑟𝑝𝑟𝑜𝑗𝑒𝑐𝑡(𝑷) = ‖𝑷̅𝐶𝑗 − 𝑷𝐶𝑗‖
2

2
+ ‖𝑷̅𝐶𝑖 − 𝑷𝐶𝑖‖2

2

 (8) 
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where，𝐓𝑏
𝑐  is the transformation matrix from the body frame to camera frame, which 

is obtained by Kalibr[32]. 𝐓𝑤
𝑏𝑗  and 𝐓𝑏𝑖

𝑤  represents the transformation matrix between 

imu frames and the world coordinate. 𝑝𝑏𝑖
𝑤  and 𝑝𝑏𝑖

𝑤  are translation matrix between body 

frame and world frame. 𝜆𝑙 represents the inverse depth of feature point P.  𝜋(∙)repre-

sents the pinhole camera projection model. 

As shown in the Figure 3, the distance in red denotes the dynamic factor of IMU 

reprojection error,which is utilized to evaluate how far the object is away from the main 

optical axis. It shows the observation and projection of the static map point P and the 

dynamic point P’ in two camera frames. O denotes camera’s optical center. 𝑥1 and 𝑥4 are 

feature points matched for the two frames with optical flow. 𝑥2 is the feature point pro-

jected by the static point P in jth camera frame. 𝑥3 is the feature point projected by the 

dynamic point P’ in j-1th camera frame.  

Generally, it is effective to determining the dynamics of the object by feature points 

reprojection error. However, this method will fail when the dynamic object is moving 

along the camera's optical center ( either toward or away from the camera), which is 

shown in Figure 3. The reprojection error is close to 0 even P is not a dynamic point. 

Therefore, we propose additional reprojection error on the previous frame to the conven-

tional visual reprojection in equation (8). Even the point is moving along the optical center, 

there will be at least one reprojection error is not close to 0. So the two reprojection process 

are complementary to each other, which minimizes the effect on the dynamic judgment 

of feature points with the special object motion direction. Then the first part of the dy-

namic factors 𝜆𝑝 is obtain as below:  

𝜆𝑝 = 𝑟𝑝𝑟𝑜𝑗𝑒𝑐𝑡(𝑃) (9) 

 

  

(a) Regular motion (b) Motion toward the optical center 

Figure 3. Reprojection error based on IMU prior constraint for temprary static points. (a) Reprojec-

tion process with IMU pre-intergration. (b)A special case for moving toward the optical center Oj. 

The red line represents the reprojection error. The short dashed line indicates that the object is static. 

For convenience of viewing, green and red line represent the overlapping parts, in (b). 

3.2.1. Dynamic factor of Epipolar constraint 

Epipolar constraint is a critical property to limit the position of feature points, which 

is frequently utilized to accelerate the matching process at the front end in various SLAM 

systems. In D-VINS, the data association between the feature points is obtained by py-

ramidal iterative Lucas-Kanade optical flow. Then, the seven-point method based on 

RANSAC is used to calculate the fundamental matrix between two camera frames. The 

epipolar lines of feature points in the current frame are calculated with the fundamental 

matrix. The distance from a point to its epipolar line is defined as the second part of dy-

namic factor. Finally, the distance is used to determine whether the point is dynamic or 
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not. According to the pinhole camera model, the map point P is observed by different 

camera frames, which is shown in Figure 4. x1 and x3 are matched feature points in differ-

ent frames, and x2 is the feature point projected to the jth frame by the map point P. The 

short dashed lines I and I' are the epipolar lines of the two frames. 

𝒙𝟏 = [𝑢1, 𝑣1, 1], 𝒙𝟐 = [𝑢2, 𝑣2, 1]  are the homogeneous coordinate forms of the two 

matched feature points, belonging to the j-1th frame and jth frame, respectively. Then, the 

epipolar line 𝐼′of 𝑥2 in the jth frame is as follows： 

𝑰′ = [
𝑋
𝑌
𝑍
] = 𝑭𝒙𝟏

𝑇 = 𝑭 [
𝑢1
𝑣1
1
] (10) 

Where 𝑋,𝑌 and 𝑍 denote the real constants in general form of a straight line(Xu+Yv+Z 

= 0). F denotes the fundamental matrix. Then, for feature point 𝑥2, the epipolar constraint 

is as follows: 

𝒙𝟐𝑭𝒙𝟏
𝑇 = 𝒙𝟐𝑰

′ = 𝟎 (11) 

In Figure 4, the distance from the point to the epipolar line is marked by the blue line. 

For the matched feature point 𝑥𝑖(𝑖 = 2,3)  of  𝑥1 , the residual of epipolar constraint 

𝑟𝑒𝑝𝑖𝑝𝑜𝑙𝑎𝑟(𝑃) can be described as follows: 

𝑟𝑒𝑝𝑖𝑝𝑜𝑙𝑎𝑟(𝑷) =
|𝒙𝒊𝑭𝒙𝟏

𝑇|

√‖𝑋‖2 + ‖𝑌‖2
 (12) 

Then the second part of the dynamic factor is obtain as below:  

𝜆𝑒 = 𝑟𝑒𝑝𝑖𝑝𝑜𝑙𝑎𝑟(𝑷) (13) 

For the features of static objects，𝑟𝑒𝑝𝑖𝑝𝑜𝑙𝑎𝑟(𝑷) should be 0 or close to 0. But for the 

features of dynamic objects, like P’, there is an offset between the real pixel coordinates 

and its observatoin. But when the feature point moves toward the optical center of j-1 

frame, the feature point is still on its epipolar line. So it is hard to determine whether the 

object is in motion or not. Therefore, when defining whether features are in moving state, 

it needs to combine the two distances of 𝜆𝑝 and 𝜆𝑒. 

  

(a) Regular motion (b) Motion toward the optical center 

Figure 4. Epipolar constraint for temprary static points. (a) Epipolar constraint in regular cases. (b)A 

special case for moving toward the optical center Oj-1. The blue line represents the distance between 

feature point to its epipolar line. The short dashed line indicates the epipolar lines. 

The threshold 𝜀𝑟𝑒𝑝𝑟𝑜𝑗𝑒𝑐𝑡  of the reprojection dynamic factor is set to 4 pixels and 

𝜀𝑒𝑝𝑖𝑝𝑜𝑙𝑎𝑟  of the epipolar dynamic factor is set to 3 pixels. If the errors exceeds those thresh-

olds then the feature points are considered as absolute dynamic points and rejected. Then 

the feature is marked as ADP. So far, the two dynamic factors 𝜆𝑝 and 𝜆𝑒 are obtained. 

This method enables a more accurate classification of temporary static objects and 

finds the dynamic feature points. In addition, the feature points of dynamic objects with 
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small movements can be fully utilized by the SLAM system. The specific algorithm steps 

are shown in Algorithm 2. 

1 TSP and ADP are enum integral constants in C++, which represent the abbreviation of temporary 

static points and absolute dynamic points, respectively. 

 

3.3. Dynamic Adaptive Bundle Adjustment 

The current conventional bundle adustment optimization maintains the same weight 

for all feature points, and is not effective to reject outlier and dynamic points. Meanwhile, 

higher weights should be set for absolute static features and the weights for dynamic 

points should be reduced to ensure localization accuracy. For dynamic points with lower 

dynamics, the weights of their feature points should be positive correlation to the dynamic 

factor. Therefore, in addition to distinguishing dynamic and static objects by empirical 

thresholds in subsection 3.2, this study designs a novel bundle adjustment optimization 

algorithm based on the dynamics factor. 

3.3.1. Conventional bundle adjustment optimization 

In the conventional visual-inertial state estimator, the bundle adjustment optimiza-

tion equation is as follows： 

𝑚𝑖𝑛
𝒳
 {∥∥𝐫𝑝 − 𝐇𝑝𝒳∥∥

2
+     ∑ 

𝑘∈ℬ

∥
∥𝐫ℬ (𝐳̂𝑏𝑘+1

𝑏𝑘 , 𝒳)∥
∥
𝐏𝑏𝑘+1

𝑏𝑘

2

+

    ∑  

(𝑙,𝑗)∈𝒞

𝜌 (∥∥𝐫𝒞(𝐳̂𝑙
𝑐𝑗
, 𝒳)∥∥𝐏𝑙

𝑐𝑗

2
)
}
 
 

 
 

 (14) 

where，𝜌𝐻(∙) denotes the huber kernel function. 𝐫𝑝 represents marginalization re-

siduals, 𝐫ℐ represents IMU pre-integration residuals and 𝐫𝒫 represents visual reprojec-

tion error. 𝐇𝑝 represents the marginalization of the measurement state estimation matrix

， 𝐳̂𝑏𝑘+1
𝑏𝑘  represents IMU observation and 𝐳̂𝑗

𝑐𝑖  represents visual observation. 𝐏𝑏𝑘+1
𝑏𝑘  de-

notes the covariance of IMU measurement and 𝐏𝑗
𝑐𝑖  denotes the visual covariance. ℬ rep-

resents the set of all IMU observations,𝒞 represents the set of tracked features in sliding 

window and 𝒳 denotes the estimated states to be optimized。 

It shows that the traditional bundle adjustment formulation can neither reject nor 

change the weights of the dynamic feature points。If all temporary static points are elim-

inated, the visual observations for optimization will be insufficient. This leads to unstable 

or error BA optimization result, so a more robust BA optimization approach needs to be 

implemented. 

Algorithm 2：Dynamic feature rejection algorithm. 

Input: Previous frame 𝐹𝑖; Current frame 𝐹𝑗; Previous frame’s feature points 𝑃𝑙
𝐶𝑖 ; Current 

frame’s feature points 𝑃𝑙
𝐶𝑗; The threshold of the reprojection dynamic factor 𝜀𝑟𝑒𝑝𝑟𝑜𝑗𝑒𝑐𝑡; The 

threshold of the epipolar dynamic factor 𝜀𝑒𝑝𝑖𝑝𝑜𝑙𝑎𝑟 . 

Output: Current frame’s feature points’ dynamic factors 𝜆𝑝 and 𝜆𝑒; Current frame’s fea-

ture points’ dynamic lable. 

1：for each 𝑃𝑙
𝐶𝑗in this Frame 𝐹𝑗 do: 

2:     if ( 𝑃𝑙
𝐶𝑗.dynamics_lable == TSP1) do: 

3:       F_Maxtrix = cv::FindFundamentalMat(𝐹𝑖, 𝐹𝑗, CV_FM_RANSAC); 

4：      𝑃
𝑙

𝐶𝑗 .A = CalIMUProjectDis(𝐹𝑖, 𝐹𝑗); 

5：      𝑃𝑙
𝐶𝑗 .B = CalEpipolarDis(𝐹𝑖, 𝐹𝑗, F_Maxtrix); 

6:        if ((A > 𝜀𝑟𝑒𝑝𝑟𝑜𝑗𝑒𝑐𝑡)&&(B > 𝜀𝑒𝑝𝑖𝑝𝑜𝑙𝑎𝑟)) do:  

7:           𝑃𝑙
𝐶𝑗 .dynamics_lable = ADP1; 

8:        end if 

9:  end for 
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3.3.2. Dynamic Adaptive Cost Function with Dynamic Factors 

This noval cost function has two features. The first is to reject dynamic features, while 

the second is to adjust the weights of feature points in optimization according to the dy-

namics factors. Inspired by DynaVINS,we proposes the form of dynamics-adaption loss 

function as follows: 

𝜌𝐷(𝜆𝑝, 𝜆𝑒 ,𝑊𝑗 , L𝑗 , 𝐫𝒫
𝑗
) = (1 − 𝐿𝑗) × [𝑊𝑗

2𝜌𝐻(𝜆) + (1 −𝑊𝑗)
2𝜆𝑤] + 𝐿𝑗 × 𝜌𝐻(𝐫𝒫

𝑗
) (15) 

𝜌𝐷(𝜆𝑝, 𝜆𝑒 ,𝑊𝑗, L𝑗 , 𝐫𝒫
𝑗
) = {

𝑊𝑗
2𝜌𝐻(𝜆) + (1 −𝑊𝑗)

2𝜆𝑤    , L𝑗 = 1

𝜌𝐻(𝐫𝒫
𝑗
)    , L𝑗 = 0

 (16) 

𝜆 = √
𝜆𝑝

2 + 𝜆𝑒
2

2
 (17) 

Where, 𝜆𝑝and 𝜆𝑒 denotes two dynamic factors of a feature point in frame j . 𝑊𝑗 ∈

[0,1] denotes the weights of feature points and the weight is fixed to 1 with absolute static 

points. L𝑗 ∈ {0,1} represents dynamic lable, which will be 1 with absolute static points 

and 0 with temporary static points. Equation (17) denotes the dynamic factors. For abso-

lute static points, the L𝑗 is 1 and the back-end optimization loss function is the same as the 

conventional one. For temporary static points, the loss function will switches to 

𝑊𝑗
2𝜌𝐻(𝜆) + (1 −𝑊𝑗)

2𝜆𝑤 shown in equation (16). As the loss function is designed in a non-

linear quadratic form, the optimal weights 𝑊𝑗 can be derived as follows: 

𝑊𝑗 =
𝜆𝑤

𝜌𝐻(𝜆) + 𝜆𝑤
 (18) 

After optimizing the weights, those features with higher dynamic factor 𝜆 will be 

lower weights. The losses’gradient of those features will be close to zero, which have no 

impact on BA. Quadratic form is designed for non-linear form because linear system 

doesn't need optimization. 𝜆𝑤 is a constant parameter used to increasing gradient value 

and convexity, which is set to 2 empirically. Different from DynaVINS, the weight mo-

mentum factor doesn’t need with the help of semantic labels and the points weights are 

delivered with bounding boxes.  𝜌𝐷(𝜆𝑝, 𝜆𝑒 ,𝑊𝑗 , L𝑗, 𝐫𝒫
𝑗
) is utilized instead of the pure huber 

kernel function in the conventional cost function. The total cost function based on the dy-

namic factors is as follows： 

𝑚𝑖𝑛
𝒳,𝑊

 {∥∥𝐫𝑝 −𝐇𝑝𝒳∥∥
2
+∑  

𝑘∈ℬ

∥∥𝐫ℐ
𝑘∥∥
2
+ ∑  

𝑗∈𝐅𝒫

𝜌𝐷(𝐴𝑗 , 𝐵𝑗 ,𝑊𝑗 , L𝑗, 𝐫𝒫
𝑗
)} (19) 

This algorithm aims to utilize as many feature points as possible, as well as to main-

tain the accuracy of pose estimation. The strategy is to increase the weight of absolute 

static points and decrease the weight of temporary static points in BA optimization, com-

pletely discarding absolute dynamic points in optimization. In addition, the threshold is 

a hyperparameter, which requires specific adjustment according to the environment and 

equipment.It makes the algorithm difficult to be widely used. To improve the algorithm 

applicability, a loose threshold is set in this paper to fit the majority scenes. 

In order to avoid artificial adjustment of hyperparameters that lead to the degrada-

tion of the applicability of the system, the weights of feature points are optimized to obtain 

more robust localization results. In optimizing the current state 𝒳, the weights of each 

feature point are fixed. After that, the current state 𝒳 is fixed, and feature points weights 

𝑊 are optimized according to the dynamic adaptive cost function,which is as follows： 

𝑚𝑖𝑛
𝑊𝑗

 {∑  

𝑗∈𝐅𝒫

𝜌𝐷(𝐴𝑗 , 𝐵𝑗 ,𝑊𝑗, L𝑗 , 𝐫𝒫
𝑗
)} (20) 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 30 May 2023                   doi:10.20944/preprints202305.2154.v1

https://doi.org/10.20944/preprints202305.2154.v1


 12 of 23 
 

 

Since the feature points weights 𝑊𝑗 are independant from each other the overall loss 

function is obtained by accumulating the cost equations of each feature point： 

𝑚𝑖𝑛
𝑊𝑗∈[0,1]

 {𝑊𝑗
2 ( ∑  

𝑖∈TSP

𝜌𝐻 (∥∥𝐫𝒫
𝑗,𝑖
∥∥
2
)) + (1 −𝑊𝑗(𝜆))

2𝜆} (21) 

Ultimately, different optimization weights can be used based on different dynamic 

factors of the feature points. 

4. Experimental Results 

In this section, the effectiveness of D-VINS is validated. Public dataset, like TUM 

RGB-D[33], KITTI[34] and VIODE[35] are utilized to verify the performance of the algo-

rithm in different dynamic scenes. The experimental results will be analyzed from quali-

tative and quantitative perspectives. The results include the comparison of DVINS with 

the original algorithm (ORB-SLAM2, VINS) and the state-of-the-art dynamic VISLAM al-

gorithm (DynaVINS). We integrated D-VINS with ROS and all experiments were run on 

a laptop with 16GB RAM (CPU: AMD Ryzen7 5800H, GPU: NVIDIA GEFORCE RTX 

3050TI). 

In this paper, the root mean square error(RMSE) of absolute trajectory error (ATE) 

and the root mean square value of relative positional error (RPE) are selected as evaluation 

metrics. The unit of ATE is m. The unit of translational drift in RPE is m/s, and the unit of 

rotational drift is °/s.They represent the global consistency of the trajectory and the drift 

of the odometer per unit time, respectively. 

4.1. TUM RGB-D, VIODE and KITTI Dataset Evaluation 

4.1.1. TUM RGB-D dataset 

The TUM RGB-D dataset was obtained by a Microsoft Kinect camera at a 30Hz frame 

rate and contains 39 image sequences containing both color and depth images. it has be-

come one of the most commonly used datasets for evaluating visual odometry in dynamic 

scenes, and numerous algorithms, such as DS-SLAM and SG-SLAM, have validated their 

algorithms on this dataset. The ground truth of camera motion is acquired by a high pre-

cision motion capture system. The dataset provides 9 sequences for dynamic scenes, 

where dynamic objects move at different levels and can be divided into low and high 

dynamic sequences. The low-dynamic sequences are named by sitting (fr3/sitting_static, 

fr3/sitting_xyz, fr3/sitting_halfsphere, fr3/sitting_rpy), both sitting on a stool with less 

movement; High-dynamic sequences are named by walking (fr3/walking_static, fr3/walk-

ing_xyz, fr3/walking_halfsphere, fr3/walking_rpy). Two people will walk back and forth 

in front of the camera as high-dynamic objects, as well as sitting on a chair as low-dynamic 

objects. Since it contains dynamic objects like moving person, and usually occupy more 

than half of the image. It is reliable to verify the feasibility of SLAM algorithm in dynamic 

scenes. In addition, TUM dataset contains no IMU data and VINS does not support mo-

nocular VO mode, so modules contains IMU was excluded from D-VINS for experiment. 

In this paper, we use the open source trajectory evaluation tool Evo (Available online: 

https://github.com/MichaelGrupp/evo (accessed on 25 April 2023)) to visualize the trajec-

tory differences between D-VINS and ORB-SLAM2. And the ATE and RPE of each algo-

rithms are analyzed with groud truth. The data were obtained from the actual experi-

ments in the dataset.The Figure 5 shows the plotted trajectories of the two algorithms. The 

black dashed line represents the ground truth, provided by the dynamic capture. The blue 

solid line represents the trajectory generated by D-VINS and the green solid line repre-

sents the trajectory generated by ORB-SLAM2 for comparative analysis. According to fig-

ure (h), it can be seen that when dynamic objects appeared, it causes serious impairment 

to the trajectory accuracy. The quantitative analysis of this figure fully demonstrates the 

necessity of dynamic object rejection and the effectiveness of D-VINS. 
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(a) fr3_sitting_halfsphere (b) fr3_sitting_static (c) fr3_sitting_xyz (d) fr3_walking_ halfsphere 

   
 

(e) fr3_walking_rpy (f) fr3_walking_static (g) fr3_walking_xyz (h) ATE Comparision 

   Figure 5. Comparison trajectories results of D-VINS (blue) and ORB-SLAM2 (green) in TUM da-

tasets. (a)-(g) are the trajectory comparison results for each sequence of the TUM RGB-D dataset.  

(h) is the comparision results for the two algorithms of the fr3_walking_rpy sequence. Horizontal 

axis represents time in seconds, and the longitudinal axis represents the ATE in meters. 

Table 1 summarizes the quantitative experimental results of ORB-SLAM2 and D-

VINS for TUM 7 sequences. The horizontal line in (h) represents loopback detection. Ac-

cording to the experimental results, D-VINS outperforms ORB-SLAM2 in six sets of ex-

periments, which proves the effectiveness of its dynamic object identification and rejection 

method. Since the person sitting on the chair in "fr3_sitting_xyz" sequence remains sta-

tionary for a long time, the dynamic feature points occupy a lower percentage of the view. 

And this has little impact on the localization accuracy. Whereas in "fr3_walking_rpy" and 

"fr3_walking_static" sequences, due to the large movement of persons, the dynamic fea-

ture points occupy a larger portion of the view. This will severely impair the accuracy of 

visual localization. The D-VINS shows a good localization accuracy even though it is not 

a pure visual odometer. The reliability dynamic object recognition and rejection with deep 

learning and geometric constraints is verified with this dataset. 

Table 1. The ATE and RPE RMSE (m) of ORB-SLAM2 and D-VINS in TUM RGB-D dataset. 

Sequences 
ORB-SLAM2 D-VINS* Improvement 

ATE RPE ATE RPE ATE RPE 

fr3_sitting_static 0.0116 0.0152 0.008 0.0114 31.03% 25.00% 

fr3_sitting_xyz 0.0133 0.0199 0.0153 0.0179 - 10.05% 

fr3_sitting_halfsphere 0.0336 0.0124 0.0252 0.0122 25.00% 1.61% 

fr3_walking_static 0.4121 0.0299 0.0069 0.0101 98.32% 66.22% 

fr3_walking_xyz 0.8856 0.1255 0.0155 0.0182 98.24% 85.49% 

fr3_walking_rpy 0.5987 0.0528 0.0422 0.0432 92.95% 18.18% 

fr3_walking_ halfsphere 0.4227 0.0338 0.0216 0.0234 94.89% 30.77% 

Note: ”*” indicates that D-VINS removed the module containing IMU. Symbol "-" indicates that the 

algorithm has no improvement. 

4.1.2. KITTI dataset 
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The KITTI dataset provides sequences containing stereo color images in 00 to 10 ur-

ban street and highway environments for evaluating the accuracy of odometry localiza-

tion. The table shows the results of one of the sequences 05 and 07 in comparison with 

VINS-Fusion and DynaVINS and the bolded data indicate the best performance, as shown 

in Figure 6. Since dynamic objects on both 00 and 05 sequence streets are sparse, dynamic 

object rejection provides limited improvement to the system accuracy. The experimental 

data are obtained from real measurements, rather than directly from the paper to compare 

the generalizability of the algorithms. As shown in Table 2, the localization accuracy and 

dynamic feature recognition rejection of DynaVINS are highly dependent on the hyperpa-

rameters (momentum factor and regularization factor). Therefore, its localization results 

in different data sets are worse and it is hard to keep the algorithm to localize with high 

accuracy even after a long time of parameter adjustment. Experimental results on the 

KITTI dataset show that D-VINS has better generalizability than DynaVINS,and has a cer-

tain accuracy improvement compared to VINS-Fusion。 

Table 2. The ATE RMSE(m) of VINS-Fusion、DynaVINS and D-VINS in KITTI dataset. 

Sequences VINS-Fusion DynaVINS D-VINS 

KITTI 05 1.913 12.4668 1.7631 

KITTI 07 2.1927 3.8006 2.1100 

Note: Bold letters indicates the best results. 

 

   

(a) KITTI 05 VINS-Fusion, DynaVINS and D-VINS accuracy heat maps 

   
(b) KITTI 05 ATE distribution and comparision 
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(c) KITTI 07 VINS-Fusion, DynaVINS and D-VINS accuracy heat maps 

 
  

(d) KITTI 07 ATE distribution and comparision 

Figure 6. Comparison trajectories results of VINS-Fusion, DynaVINS and D-VINS in KITTI 05 and 

07 sequences. (a), (b)represent the accuracy heat maps and comparison results for the 05 sequence 

and (c), (b) is for 07 sequence, respectively. 

4.1.3. VIODE dataset 

VIODE is a simulation dataset for testing VIO performance in dynamic environments 

such as urban areas, filling the gap in dynamic VIO system evaluation. The dataset simu-

lates the UAV localization problem in different dynamic environments (daytime city 

street environment, dark city street environment and underground parking environ-

ment). Each scenes are divided into 4 sequences according to the number of dynamic ob-

jects. 0_none, 1_low, 2_mid and 3_high has a total of 12 sequences. In the high sequences, 

the camera field of view is included with the entire occlusion to evaluate the localization 

accuracy and system robustness of the VIO in extreme situations. The dataset contains 

time-synchronized stereo color images, IMU data, instance segmentation mask and 

ground truth of trajactory. To validate the accuracy of the algorithm for the dynamic 

recognition of absolute dynamic points and Temporary static points, D-VINS and 

DynaVINS are both compared. VINS-Fusion is also involved in the comparison to prove 

the necessity and effectiveness of the dynamic rejection module. The hyperparameters in 

DynaVINS use the same values as in the paper, regularization factor 𝜆𝑤 = 1.0 and mo-

mentum factor 𝜆𝑚 = 2.0. 

In general, the bundle adjustment of D-VINS incorporating the dynamics factor 

achieves the most accurate pose estimation results in static scenes as shown in Table 3. It 

has better localization accuracy in low dynamic scenes and has similar accuracy to 

DynaVINS in high dynamic scenes, even a better performance of D-VINS in some se-

quences. D-VINS removes feature points that are far away or negative in depth after BA. 

And with the help of RANSAC, there is a certain resistance to the influence of dynamic 

objects. But these features affect the results of BA before they are deleted and also damage 

the effectiveness of RANSAC as the number of dynamic objects in the field of view in-

creases. Eventually the combined leads to an increase in the error of the D-VINS trajectory. 

In addition, the spacing and number of feature points in the front end can significantly 

affect the performance of D-VINS. Stereo system accuracy is seriously impaired when re-

mote features occupy the majority of the field of view or the feature spacing is too small. 

So for the same parameters in the City sequence, VINS and D-VINS does not perform as 

well as in the parking_lot environment. The localization accuracy of DynaVINS relies 

highly on the hyperparameters, regularization factor 𝜆𝑤  and momentum factor 𝜆𝑚. How-

ever, those hyperparameters rely on manual experience and are badly generalized to 

scenes. The same values have very high localization accuracy in some scenes, but are not 

suitable for other sequences. For instance, the localization accuracy of DynaVINS in the 

City_day dataset is not stable. 

For dynamic scenes with low occlusion, D-VINS contains a deep learning module 

that can identify dynamic objects by observing their full appearance and calculate the dy-

namic factors, based on the geometric characteristics. D-VINS offers higher accuracy in 
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dynamic feature point screening than DynaVINS, which rejects dynamic objects in a 

purely geometric manner,like(d), (h) and (l) in Figure 7. Therefore, the positioning accu-

racy is higher in low and mid sequences. The green feature points are Absolute static 

points, the white feature points are Absolute dynamic points, and the purple feature 

points are Temporary dynamic points. Due to the dynamic object is close to the camera, 

D-VINS fails with deep learing network to detect the object in the high occlusion environ-

ment. Currently, D-VINS relies heavily on dynamic factors and the accuracy of feature 

point segmentation is reduced, but it is still robust for this challenging environment, as 

3_high sequence in City_day. 

Table 3. The ATE RMSE(m) of VINS-Fusion、DynaVINS and D-VINS in VIODE dataset. 

Scenes Sequences VINS-Fusion DynaVINS D-VINS 

Parking_lot 

0_none 0.0774 0.0595 0.0538 

1_low 0.1126 0.0826 0.0472 

2_mid 0.1174 0.0630 0.0396 
3_high 0.1998 0.0982 0.0664 

City_day 

0_none 0.1041 0.1391 0.0882 
1_low 0.2043 0.0748 0.0912 
2_mid 0.2319 0.0520 0.0864 
3_high 0.3135 0.0743 0.0835 

City_night 

0_none 0.2624 0.1801 0.1561 
1_low 0.5665 0.1413 0.1221 
2_mid 0.3862 0.1192 0.1395 
3_high 0.7611 0.1519 0.1566 

Note: Bold letters indicates the best results. 

       

    

(a) Parking_lot ATE distribution and trajactory comparision 

    
(b) Parking_lot detection and feature classification 

    
(c) City_day ATE distribution and trajactory comparision 
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(d) City_day detection and feature classification 

    
(e) City_night ATE distribution and trajactory comparision 

    
(f) City_night detection and feature classification 

Figure 7. Result of trajactory and detection of VINS-Fusion, DynaVINS and D-VINS in VIODE da-

taset(parking_lot, city_day and city_night scenes).In (a), (c) and (e), the first three figures are ATE 

distribution of 0_none, 1_low, 2_mid, and 3_high sequences and the last figures are the trajactory of 

three algorithms in 3_high sequence. In (b), (d) and (f), the first three figures demonstrate features 

dynamics check result, where green points are absolute static points, purple points are temporary 

static points and white points are absolute dynamic points.The last figures are the bounding box 

from YOLOV5. 

4.2. Data collecting equipment and real environment dataset experiments 

To demonstrate D-VINS can be applied to real project, we builds a self-made data 

acquisition device and creates a dataset with it.  

4.2.1. Data collection devices and real datasets 

 

Figure 8. handheld/backpack data collection equipment. (a) shows the overall of the equipment. (b) 

shows the handheld part. (c) shows the backpack part. (d) and (e) show the data collection work 

with different mode. 
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The device integrates GNSS, inertial navigation, LIDAR and stereo camera which is 

mainly divided into two parts, the handheld part and the backpack part. As shown in 

Figure 8, the device has three working modes, handheld, backpack, and vehicle working 

mode. The handheld part includes GNSS antenna, Velodyne VLP-32C mechanical LIDAR, 

Inertial Labs INS-D GNSS/IMU inertial guidance, ZED2 color binocular camera, and the 

backpack part includes NVIDIA Jetson AGX Xavier processor, 12V DC lithium battery, 

MD-649 4G DTU 4G communication module and antenna. In this paper, one handheld 

rural sequence and two city street sequence were selected for experimental validation: 

• 5_SLAM_country_dynamic_loop_1 sequence was collected in a village in Xiangyin 

County, Yueyang City, Hunan Province, in a relatively open environment, where a 

pedestrian and child were always present in the image moving in synchronization 

with the camera. The start and end points of the sequence are close to each other, but 

there is no loop clouse to detect the drift. 

• 14_SLAM_car_road_1 sequence is a street in Xiangyin County, Yueyang City, Hunan 

Province. The sequence is an open environment. This environment is challenging for 

stereo visual localization, which causes severe drift. Rural roads are narrow with 

many vehicles, and there are villager gatherings in the middle of the road. Pedestri-

ans and vehicles are intricate and occupy a large field of view, making positioning 

difficult and challenging. 

• 18_SLAM_car_road_2, sequence is an urban environment with wider roads, more 

vehicles and more pedestrians compared to 14 rural streets. It is suitable as a dynamic 

rejection algorithm evaluation sequence. The main data types include: GNSS raw 

data, IMU data, LiDAR point cloud data, and binocular color image data. The ground 

truth of trajectory is obtained with GNSS RTK. 

4.2.2 Feature classification results in real dataset 

In 5_SLAM_country_dynamic_loop_1 sequence, there are two person walking in 

front of the camera, which is easy for deep learning to accomplish object detection task. 

As shown in Figure 9, if the person with jacket is moving in the second row in (a), the 

dynamic features are segmented accurately. When the person is movable but remian static 

at current time shown in first row in (a), those feature points are kept for optimization. In 

high dynamic sequence, the majority of points are movable and only few of them is mov-

ing. D-VINS is able to reject dynamic features that close to the camera with higher dy-

namic factors. In the city street, the cars parked on the roadside and driving on the road 

are detected with different motion state classification. 

 

    

    
(a) Rural sidewalk (low dynamics) 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 30 May 2023                   doi:10.20944/preprints202305.2154.v1

https://doi.org/10.20944/preprints202305.2154.v1


 19 of 23 
 

 

    

    
(b) Rural road (high dynamics) 

    

    
(c) City road (medium dynamics) 

Figure 9. Feature classification results in our datasets. (a) shows 5_SLAM_country_dynamic_loop_1 

sequence. (b) shows 14_SLAM_car_road_1 sequence. (c) shows 18_SLAM_car_road_2 sequence. 

Features in white are absolute dynamic points, those in green are absolute static points and those in 

purple are temporary static points. 

4.2.3 Trajectories results in real dataset 

This paper compares the results of the current state-of-the-art algorithms DynaVINS 

and D-VINS, VINS algorithms in real data set sequences. D-VINS gets better measurement 

results in real data sets, effectively overcoming the influence of dynamic objects. As shown 

in Table 4, D-VINS obtains better localization accuracy than DynaVINS in the 

5_SLAM_dynamic_loop_1 sequence. Even though the ATE RMSE is similar to VINS, more 

detailed results show that D-VINS has more accurate localization accuracy in the presence 

of dynamic objects, and D-VINS has a lower median and mean. Even after parameter ad-

justments, DynaVINS had difficulty finding parameters that could accomplish good ac-

curacy in localization (those hyperparameters provided in the paper could not accomplish 

localization, even though they worked well in the VIODE and KITTI datasets). The high 

reliance on equipment and hyperparameters is also the drawback for geometry-based 

methods. In Figure 10, D-VINS achieves excellent positioning results in two road se-

quences without loop detection. The pure VIO system (no global optimization and loop-

back detection) can effectively reduce the influence of dynamic objects and substantially 

exceed the positioning accuracy of VINS. In summary, D-VINS has stronger robustness 

and scene applicability in dynamic scenes compared to other algorithms. 

Table 4. The ATE RMSE(m) of VINS-Fusion、DynaVINS and D-VINS in KITTI dataset. 
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Sequences VINS-Fusion DynaVINS D-VINS 

5_SLAM_dynamic_loop_1 0.657039 2.145493 0.654882 

14_SLAM_car_road_1 37.31964 - 27.60877 

18_SLAM_car_road_2 299.7889 - 151.2075 

Note: “-” indacates that the method failed to estimate camera pose. Bold letters indicates the best 

results. 

 

    

(a) Rural sidewalk (low dynamics) 

    
(b) Rural road (high dynamics) 

    
(c) City road (medium dynamics) 

Figure 10. APE distribution results in our datasets. (a) shows 5_SLAM_country_dynamic_loop_1 

sequence. (b) shows 14_SLAM_car_road_1 sequence. (c) shows 18_SLAM_car_road_2 sequence. 

DynaVINS failed to estimate in 14_SLAM_car_road_1 and 18_SLAM_car_road_2 sequence, so it 

was not compared in those sequences.  

5. Discussion 

In the experimental results of Table 1 - Table 4, D-VINS and these contrasting SLAM 

systems all finished the validation experiments. In terms of the ATE and RPE, D-VINS 

achieved better performance in 6 sequences in TUM RGB-D dataset. ORB-SLAM2 can’t 

identify static and dynamic features and only achieves quite accurate results for low dy-

namic sequences. In the high dynamic sequences, the performance of ORB-SLAM2 is sig-

nificantly reduced. Table 1 validates the effectiveness of the dynamic rejection with deep 

learning and epipolar constraints in D-VINS, which is not a pure VSLAM, but still achieve 

good localization accuracy. Table 2 displays the results in KITTI sequences, which demon-

strate the effectiveness of D-VINS in outdoor scenes. The state-of-the-art DynaVINS can 

segment features without prior semantic information and reached high accuracy in VI-

ODE simulation dataset, shown in Table 3. But DynaVINS is highly relied on the two hy-

perparameters, which is difficult to achieve the same high accuracy in different datasets. 
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In KITTI 05 and 07 sequences, dynamic objects is fewer than those in VIODE, which have 

less impact on position estimation. DynaVINS didn’t show great performance in the KITTI 

sequences, as it did in VIODE, displayed in Figure 6. For the highly occluded scenes ap-

pearing in VIODE dataset, deep learning will fail and the objects will move towards the 

camera optical center, shown in the first image of Figure 7(b). D-VINS shows good dy-

namic features segmentation performance and trajectory accuracy,which shows D-VINS 

has better robustness in multiple environments shown in Figure 7(b),(d),(f). However, the 

accuracy of DynaVINS decreases in dynamic objects with fewer sequences such as 0_none 

sequences. 

In addition, D-VINS shows great perfomance in features classification and trajectory 

accuracy in the rural and city sequence, as shown in Figure 9. For our real datasets,  

DynaVINS is more difficult to accomplish localization task. Because the higher reprojec-

tion errors may come from the movement of the camera itself or from the dynamic fea-

tures, weights just indicate the magnitude of the reprojection error instead of feature’s 

motion state. As both rural road and city road sequence are in large space without loop 

closure, VINS-Fusion shows worse performance compared to D-VINS. 

It can be concluded from the above experimental results: D-VINS first classifies fea-

ture points twice with semantic information and IMU motion constraints, which is differ-

ent from other dynamic SLAM methods. The hyperparameters of D-VINS are few and 

have good applicability to indoor-outdoor datasets, simulation datasets and our real scene 

datasets. The discussion shows that D-VINS has practical application potentiality aiming 

at dynamic scenes.  

6. Conclusions 

In this paper, we propose a new dynamic VIO system for outdoor dynamic scenes, 

which can significantly reduce the effect of dynamic objects. In D-VINS, it contains four 

modules: target identification and data pre-processing, feature point classification and 

tracking, back-end dynamic factor BA optimization. Dynamic object recognition relies on 

YOLOV5 to get semantic information about the scene, such as walking people and 

stopped cars. The semantic labels are incrementally updated, which divided dynamic 

points into absolute dynamic points, absolute static points and temporary static points. 

After that, the dynamic factors of temporary static points is calculated with IMU pre-inte-

gration and epipolar constraint. Only absolute static points and temporary static points 

are sent to nonlinear optimization. The feature point weights are adjusted according to 

the dynamic lable and dynamic factors in BA. The effectiveness of the system for dynamic 

environments is verified in the TUM RGB-D , KITTI , VIODE datasets and our dataset. 

The experimental results shows better performance than VINS and state-of-the-art 

method DynaVINS. However there are still many work to do in the future. For instance, 

to further expand the robotics applications, octree global maps have to be rebuilt. And the 

more effective loss function needs to be studyed. The problem of areas occluded by dy-

namic objects must be reconstructed with the help of multi-view geometry or deep learn-

ing methods to accomplish advanced robotic applications. 
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