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Abstract: The purpose of this research was to analyze the moderating effect of clean energy innova-

tion on the relationship between corporate carbon footprint and corporate profits in those industrial 

sectors associated with high demand for fossil fuels in which it is "hard to abate" CO₂e emissions. It 

used a longitudinal research design, in particular a panel study under a structural equation model-

ing (SEM) approach, based on partial least squares. For the longitudinal moderation analysis, this 

research employed the Bayesian method by defining a multiple-indicator latent growth curve model 

(B-LGC model). A global sample was used consisting of 7,827 firm-year observations between 2015 

and 2021 corresponding to 167 international firms. The results revealed a very significant impact of 

the corporate carbon footprint on corporate profits. Likewise, the results showed that innovations 

in clean energy, when measured as the consumption of renewable energy, positively moderates the 

relationship between the greenhouse gas emissions from the value chain associated with Scope 3 of 

the Greenhouse Gas (GHG) Protocol, and the gross profit margin obtained. Besides the academic 

contribution represented by the moderating effect of clean energy innovation, these findings imply 

that a more detailed understanding of the emissions of the entire value chain (Scope 3 CO₂e) by 

executives and managers of high emitting CO₂e companies represents an effective mechanism to 

obtain higher profits, create competitive advantages and, at the same time, achieve a net zero emis-

sions strategy. More importantly, public policy makers will be able to use these results to revise 

CO₂e-related policies paying more attention to the Scope 3 CO₂e emissions produced by these com-

panies, to formulate regulatory and control mechanisms that stimulate clean energy innovation. 

Keywords: clean energy innovation, corporate carbon footprint, corporate profits, high CO₂e emis-

sions, longitudinal panel model, latent growth curve (LGC) 

1. Introduction 

The mitigation of climate change through the reduction of greenhouse gas emissions 

(GHG) is one of the most important challenges facing society today (Cadez et al., 2019). In 

this line, the Paris Agreement of 2015 seeks to limit the increase in global warming to less 

than 2 °C for which, among other objectives, the deep decarbonization is required of those 

industrial sectors with a high demand for conventional fossil fuels (Rissman et al., 2020; 

Wimbadi & Djalante, 2020). In particular, energy-intensive firms increasingly face de-

mands to act decisively to reduce these emissions, and thus have a positive impact on 

climate change (Damert & Baumgartner, 2018), given that they are considered as the larg-

est emitters of anthropogenic carbon dioxide and equivalent GHG (CO₂e), and therefore 

the main contributors to global warming (Boiral et al., 2012; Cadez et al., 2019; Lewan-

dowski & Ullrich, 2023; Wang et al., 2014; Wesseling et al., 2017; Wright & Nyberg, 2017). 

As a consequence, these companies face the double challenge of generating profits for 

shareholders, but with lower CO₂ emissions in their production processes (BP, 2018; Chev-

ron, 2018; Shell, 2018). To address these targets, clean and renewable energy sources can 

contribute to deep decarbonization, especially in those "hard-to-abate" CO₂ emissions sec-

tors that are associated with high energy consumption (Capurso et al., 2022; Yan et al., 

2023). 
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While there is a large body of recent literature with evidence of a direct relationship 

between corporate carbon footprint and corporate profits (e.g., Castro et al., 2021; Galama 

& Scholtens, 2021; Robaina & Madaleno, 2020; Russo et al., 2021; Wedari et al., 2023), the 

results are inconclusive. Therefore, the relationship between the carbon footprint and 

profits in fossil-based energy-intensive global companies from different sectors and coun-

tries is of particular interest in academia and in governments. On the other hand, techno-

logical innovation has been widely recognized as an effective means to combat negative 

environmental impacts (Zhou et al., 2019). Moreover, technological innovations take time 

to develop and implement, and their impact on companies’ performance is only perceived 

in the long term (Hang et al., 2019). This means that studies with a longitudinal research 

design are a particularly effective method for company-level research to examine the ef-

fect of clean energy innovation on GHG reduction and on increased profits. Thus, clean 

energy innovation has also gradually become an important topic in the business field (Bai 

et al., 2020). 

The literature has so far paid little attention to the potential moderating effect of 

firms’ clean energy innovation on the link between their carbon footprint and profits and, 

in particular, in leading CO₂e-intensive global firms from various industrial sectors that 

are operating in different countries (Zhang et al., 2020). Hence, this study addressed the 

gap in the literature and examined the moderating effect of clean energy innovation on 

this relationship, focusing on large firms from the primary industries with the most inten-

sive use of energy generated from fossil fuels. To accomplish this, this study developed a 

moderation model with longitudinal panel data obtained from the Carbon Disclosure Pro-

ject (CDP) and the Thomson Reuters Refinitiv database, which is analyzed under the 

Bayesian growth curve model approach. 

2. Literature Review and Hypothesis 

2.1. Corporate Carbon Footprint 

The corporate carbon footprint is dominated by carbon emissions and equivalent 

gases from the intensive consumption of energy (Nguyen et al., 2021), and often takes a 

size value expressed in absolute CO₂e emissions (Busch & Lewandowski, 2018; Dahlmann 

et al., 2019). As a result, a widely accepted taxonomy for accounting of and reporting ab-

solute CO₂e emissions is based on the philosophy and classification of the Greenhouse 

Gas Protocol (or GHG Protocol for short) (Harangozo & Szigeti, 2017; Lewandowski, 

2017). At the corporate level, the World Business Council for Sustainable Development 

(WBCSD) and World Resources Institute (WRI) Corporate Accounting and Reporting 

Standard (WBCSD & WRI, 2015) provided guidance for the preparation of a GHG emis-

sions inventory. In particular, this study defined three types of scopes for CO₂e, Scope 1, 

Scope 2 and Scope 3. First, as defined by the WBCSD and WRI (2015), the Scope 1 CO₂e 

inventory consists of “direct GHG emissions from sources owned or controlled by the 

company” (p. 25). Second, Scope 2 CO₂e comprises indirect GHG emissions from electric-

ity (Harangozo & Szigeti, 2017; Nguyen et al., 2021). More specifically, WBCSD and WRI 

(2015) stated that Scope 2 CO₂e “accounts for GHG emissions from the generation of pur-

chased electricity consumed by the company” (p. 25). Third, Scope 3 CO₂e also refers to 

indirect GHG emissions, but from the upstream and downstream supply chain that are 

mostly related to the use of the products and services sold (Nguyen et al., 2021; Yagi & 

Managi, 2018; WBCSD & WRI, 2013). To this end, the WBCSD and WRI (2011)'s Corporate 

Value Chain (Scope 3 CO₂e) Accounting and Reporting Standard (WBCSD & WRI, 2011) 

enables companies to prepare a GHG emissions inventory that includes Scope 3 CO₂e 

emissions and to identify where to focus their activities to reduce these emissions (WBCSD 

& WRI, 2015). 

 

2.2.  Linking Corporate Carbon Footprint and Profits 

Drawing from Barney 's (1991) resource-based view (RBV) theory of business and 

Freeman's (1984) stakeholder theory, it can be argued that reducing the carbon footprint 
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is a way for companies to achieve a greater competitive advantage (Penz & Polsa, 2018). 

Although a significant body of both accounting-based (e.g. profits, sales, ROA, ROE, ROS, 

EBITDA, etc.) and market-based (e.g. Tobin's Q) empirical investigations (e.g., Busch & 

Lewandowski, 2018; Naranjo Tuesta et al., 2021; Robaina & Madaleno, 2020; Russo et al., 

2021; Shahgholian, 2019; Yagi & Managi, 2018) has examined the direct relationship be-

tween the carbon footprint and some indicators of profitability, the results are still incon-

clusive. For instance, Busch and Lewandowski (2018), Robaina and Madaleno (2020), 

Russo et al. (2021), and Wedari et al. (2023) found a statistically significant positive rela-

tionship, while in Naranjo Tuesta et al. (2021) and Kim et al. (2021) found that this rela-

tionship was not statistically significant. On the other hand, Shahgholian (2019), Yagi and 

Managi (2018), and Busch et al. (2022) found mixed results. Furthermore, basically all re-

search is based on transversal studies, a major limitation when it comes to reaching strong 

conclusions. 

Consequently, there is a clear paucity of empirical studies that conduct longitudinal 

research between an (absolute) size value, such as carbon footprint, and a performance 

indicator based on a monetary metric, such as profit (Broadstock et al., 2017). Thus, the 

relationship between carbon footprint and profit in energy-intensive global companies is 

of particular interest in this study. In light of these arguments, the first hypotheses pro-

posed are the following: 

 

H1a. Scope 1 CO₂e has a positive influence on the gross profit margin. 

H1b. Scope 1 CO₂e has a positive influence on the EBITDA margin. 

H1c. Scope 1 CO₂e has a positive influence on the operating margin. 

H2a. Scope 2 CO₂e has a positive influence on the gross profit margin. 

H2b. Scope 2 CO₂e has a positive influence on the EBITDA margin. 

H2c. Scope 2 CO₂e has a positive influence on the operating margin. 

H3a. Scope 3 CO₂e has a positive influence on the gross profit margin. 

H3b. Scope 3 CO₂e has a positive influence on the EBITDA margin. 

H3c. Scope 3 CO₂e has a positive influence on the operating margin. 

H4a. Scope 1+2 CO₂e has a positive influence on the gross profit margin. 

H4b. Scope 1+2 CO₂e has a positive influence on the EBITDA margin. 

H4c. Scope 1+2 CO₂e has a positive influence on the operating margin. 

H5a. Scope 1+2+3 CO₂e has a positive influence on the gross profit margin. 

H5b. Scope 1+2+3 CO₂e has a positive influence on the EBITDA margin. 

H5c. Scope 1+2+3 CO₂e has a positive influence on the operating margin. 

 

2.3.  Clean Energy Innovation 

From an operational approach, Gallagher et al. (2006) defined clean energy innova-

tion as “the set of processes leading to new or improved energy technologies that can 

increase energy resources; enhance the quality of energy services; and reduce the eco-

nomic, environmental or political costs associated with the supply and use of energy” (p. 

193). More specifically, Horbach and Rammer (2018) defined renewable energy innova-

tions as “process innovations that lead to a substitution of fossil energy sources for renew-

able sources within companies” (p. 405). Underlying the concept of clean energy innova-

tion are the evolutionary theory of innovation in Nelson and Sidney (1982) and the eco-

logical modernization theory (EMT) of Joseph Huber (Spaargaren, 1997). The first holds 

that the activities that lead to technological change are the search for better technologies 

and the selection of successful innovations in the market (Ruttan, 1997). Porter & Linde 

(1995) argue that a truly competitive industry responds to global environmental chal-

lenges by reducing pollution through technological innovations that redesign industrial 

processes. More recently, Busch et al. (2018) stated that the neo-Schumpeterian approach 

(evolutionary model) raises the possibility that clean energy innovation is the important 

driver of a radical transformation towards a low-carbon economy. On the other hand, the 

EMT theory motivates industries that are energy intensive and therefore, highly polluting, 
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to use clean energy technologies that enable them to reduce the environmental impact of 

their business activities (Jänicke, 2008). 

 

2.4.  Moderating Role of Clean Energy Innovation on the Relationship between Carbon Footprint 

and Profits  

Porter's hypothesis (Porter & Linde, 1995) asserted that companies that design and 

execute environmental strategies that apply innovative technologies for pollution preven-

tion can simultaneously improve their environmental performance and increase their 

competitiveness (Demirel & Kesidou, 2019). Subsequently, Alvarez et al. (2016) indicated 

that, at a corporate level, the management of the carbon footprint promotes cleaner and 

greener technological innovations. On the other hand, Harangozo and Szigeti (2017) ar-

gued that obtaining a lower carbon footprint requires companies to make greater efforts 

in clean energy technological innovation. 

The ecological modernization theory (EMT), on the other hand, provides an approach 

for a corporate environmental strategy based on innovation and technology, also called 

"eco-efficient innovation" (or eco-innovation) (Jänicke, 2008). In this sense, clean energy 

innovation is a radical innovation that stems from the ecological modernization approach 

(Ding et al., 2019). Indeed, a fundamental tenet of this approach is that clean energy tech-

nological innovation helps improve the corporate environmental performance as well as 

its financial performance (Lin et al., 2019). Wedari et al. (2023) recently reviewed the cur-

rent state of research on the relationship between environmental-related innovation, en-

vironmental and economic performance. Their findings shed new light on the role of in-

novation in the adoption of proactive environmental innovation strategies as a source of 

competitive advantage. As a result, according to Zhang et al. (2020), the influence of clean 

energy innovation in different industrial sectors has not yet been explicitly tested. Thus, 

the following research hypotheses were formulated: 

 

H6a. Clean energy innovation positively moderates the relationship between Scope 1 

CO₂e and gross profit margin. 

H6b. Clean energy innovation positively moderates the relationship between Scope 1 

CO₂e and the EBITDA margin. 

H6c. Clean energy innovation positively moderates the relationship between Scope 1 

CO₂e and the operating margin. 

H7a. Clean energy innovation positively moderates the relationship between Scope 2 

CO₂e and gross profit margin. 

H7b. Clean energy innovation positively moderates the relationship between Scope 2 

CO₂e and the EBITDA margin. 

H7c. Clean energy innovation positively moderates the relationship between Scope 2 

CO₂e and the operating margin. 

H8a. Clean energy innovation positively moderates the relationship between Scope 3 

CO₂e and the gross profit margin. 

H8b. Clean energy innovation positively moderates the relationship between Scope 3 

CO₂e and the EBITDA margin. 

H8c. Clean energy innovation positively moderates the relationship between Scope 3 

CO₂e and the operating margin. 

H9a. Clean energy innovation positively moderates the relationship between Scope 1+2) 

CO₂e and the gross profit margin. 

H9b. Clean energy innovation positively moderates the relationship between Scope 1+2 

CO₂e and the EBITDA margin. 

H9c. Clean energy innovation positively moderates the relationship between Scope 1+2  

CO₂e and the operating margin. 

H10a. Clean energy innovation positively moderates the relationship between Scope 

1+2+3 CO₂e and the gross profit margin. 
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H10b. Clean energy innovation positively moderates the relationship between Scope 

1+2+3 CO₂e and the EBITDA margin. 

H10c. Clean energy innovation positively moderates the relationship between Scope 

1+2+3 CO₂e and the operating margin. 

 

Figure 1 presents an overview of the conceptual model used in this research. 

 
Figure 1. Conceptual Model. 

3. Research Methodology 

3.1. Data and Sample 

The sample used is a set of the world’s largest companies that are part of the CDP 

reports and that have a high impact on climate change due to their high CO₂e. Data on 

CO₂e emissions and clean energy innovation were collected from the database of the CDP, 

which is a recognized international organization dedicated to improving the quality of 

information available worldwide on corporate carbon emissions (Haney, 2017). Detailed 

financial data was taken from the Thomson Reuters Eikon database. Likewise, following 

the industrial sector level classification of the Global Industry Classification Standard 

(GICS), five energy-intensive primary industries were obtained for analysis: materials, 

consumer discretionary, industrials, utilities, technology, energy, and health care. Table 1 

summarizes the composition of the sample of companies by region and industry sector. 

 
Table 1. Distribution of the Sample of Firms by Sector and Region. 
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H2a,b,c 

Corporate Carbon 

Footprint (CCFP) 
Corporate Profits 

(CP) 

H1a,b,c 
Scope 1 CO₂e 

Scope 2 CO₂e 

H3a,b,c Scope 3 CO₂e 

Gross Profit 

Margin 

EBITDA Margin 

H4a,b,c 
Scope 1+2 CO₂e 

Operating Margin 
Scope 1+2+3 CO₂e 

CO₂e 

Clean Energy 

Innovation (CEI) 

Renewable Energy 

Consumption 

Region

Consumer 

discretionary
Energy Health care Industrials Technology Materials Utilities

OECD Eurasia 1 1 0.60%

OECD Oceania 1 2 3 1.80%

Non-OECD Americas 2 3 5 2.99%

Non-OECD Asia 1 3 8 1 13 7.78%

OECD Asia 16 1 8 5 12 1 43 25.75%

OECD Americas 8 3 10 3 12 8 44 26.35%

OECD Europe 13 5 8 2 22 8 58 34.73%

Total 37 11 1 26 13 58 21 167 100.00%

% of total 22.16% 6.59% 0.60% 15.57% 7.78% 34.73% 12.57% 100.00%

Note : Firms are allocated according to the Global Industry Classification Standard (GICS).

Total 

number of 

firms

% of total

GICS SECTOR
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The final sample, as shown in Table 2, consists of 7,827 firm-year observations made 

between 2015 and 2021 that correspond to 167 large firms from 27 countries and from 

various energy-intensive industry sectors. This is an unbalanced panel, since the number 

of firm-year observations is not always the same for each company. The firm-year obser-

vations with missing values in more than two consecutive years were removed from the 

data set. Following previous studies (Fernández-Cuesta et al., 2019; Lewandowski, 2017; 

Shahab et al., 2018), outlier distortions were taken into account by winsorizing the lowest 

and highest percentiles of all continuous variables used in the study. Winsorization 

reached 2.41% of the total data points in this research. 

 
Table 2. Sample Description. 

 

3.2. Data Collection 

3.2.1. Corporate Carbon Footprint 

The independent variable is the corporate carbon footprint (hereafter, CCFP). Fol-

lowing the practices of previous research (i.e., Naranjo Tuesta et al., 2021; Robaina & 

Madaleno, 2020; Yagi & Managi, 2018), this study used absolute metrics to measure the 

CCFP, specifically absolute firm-level carbon emissions expressed in CO₂ equivalent 

units, that is, in total tons of CO₂e reported annually. This means that not only carbon 

dioxide (CO₂) is considered, but also included are other GHGs with great global warming 

potential, which are then transformed into carbon dioxide equivalent (CO₂e) (Hertwich & 

Peters, 2009; Nguyen et al., 2021). Precisely, this metric is appropriate to measure the car-

bon footprint in those companies and industries with a high absolute GHG intensity (Ba-

taille et al., 2018). Furthermore, following Dahlmann et al. (2019), the Scope 1+2 CO₂e were 

added to annually capture the total carbon footprint of a company. Similarly, following 

the model proposed by Yagi and Managi (2018) for the decomposition of corporate carbon 

emissions, which broadens the firm’s total carbon footprint by including indirect Scope 3 

CO₂e emissions in order to address the entire GHG supply chain, all emissions were 

added to capture the total absolute annual CO₂e (Scope 1 + 2 + 3). 

3.2.2. Corporate Profits 

Given its multidimensional nature, corporate profits (hereafter, CP) tend to adopt 

different proxy measures in empirical research, with accounting-based performance 

measures being the most prevalent (Shahgholian, 2019; Smith et al., 2019). In this line, 

Firm-year 

observations

2015 2016 2017 2018 2019 2020 2021 Total

Region

OECD Eurasia 6 7 7 7 7 7 7 48

OECD Oceania 20 20 17 21 21 21 21 141

Non-OECD Americas 34 35 31 35 35 35 35 240

Non-OECD Asia 81 89 84 90 83 89 91 607

OECD Asia 282 288 285 299 295 295 301 2045

OECD Americas 272 282 258 299 306 308 304 2029

OECD Europe 374 384 352 402 398 402 405 2717

Total 1069 1105 1034 1153 1145 1157 1164 7827

Sectors

Health care 7 7 7 7 7 7 7 49

Energy 70 74 66 77 77 77 77 518

Technology 87 87 81 91 90 91 91 618

Utilities 127 139 130 143 146 147 147 979

Industrials 172 173 159 181 178 178 178 1219

Consumer discretionary 232 240 229 257 253 258 259 1728

Materials 374 385 362 397 393 400 405 2716

Total 778 798 750 835 824 836 842 7827

Firm-observations per year
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Broadstock et al. (2017) distinguished two types of measures: money-metric performance 

measures and measures based on ratios. For convenience and the current availability of 

detailed and reliable financial data for the same period (2015-2021) as the corporate carbon 

footprint panel data, this study measured profits by gross profit margin (Pr Mrg), EBITDA 

margin (EBITDA Mrg) and operating margin (Op Mrg). Gross profit margin (Pr Mrg) was 

also included because profits are significantly influenced by operational costs (Rentschler 

& Kornejew, 2017), and are therefore suitable for examining the effect of corporate carbon 

footprint reduction. Likewise, the EBITDA used in similar studies (e.g., Broadstock et al., 

2017; Galama & Scholtens, 2021; Makridou et al., 2019) was included as a way of capturing 

the financial cost-benefit ratio in companies that result from climate initiatives to reduce 

GHG emissions (Jackson & Belkhir, 2018). Finally, the operating margin (Op Mrg) was 

also used, since it is another indicator widely used in previous studies (e.g., Maama et al., 

2021; Russo et al., 2021; Velte et al., 2020), but mainly because it is an effective financial 

indicator for decision making at the managerial level (Pons et al., 2013). 

3.2.3. Clean Energy Innovation 

The moderating variable of our model is clean energy innovation (hereinafter, CEI), 

quantitatively measured through renewable energy consumption (RENC) and quantified 

in billions of kilowatt hours (kWh). Although output metrics are usually used (Gallagher 

et al., 2006), such as the number of new technologies used, the energy consumption from 

renewable sources and the number of patents granted (Gallagher et al., 2011; Cheng & 

Yao, 2021; Zhang et al., 2021), in the final stages of clean energy technology innovation 

processes, not all of these are appropriate. Instead, the use of renewable energy sources is 

a proxy measure of the development of clean energy technology innovation (Cheng & 

Yao, 2021). More importantly, renewable energy consumption is more plausible as an in-

dicator of progress in the adoption of clean energy technologies in energy-intensive in-

dustries with a high level of environmental pollution (Trencher et al., 2022; Yang et al., 

2019). 

Table 3 contains the definitions and a brief explanation of the measurements being 

examined. 

 

Table 3. Operational Definitions of the Variables Used in this Research. 

 

Variables Symbols Details Data Source

Dependent variables

Gross Profit Margin Pr_Mrg
Percentage ratio between the gross profit (revenue minus 

cost of goods sold) and revenue

Refinitiv 

Workspace

EBITDA Margin EBITDA_Mrg

Percentage ratio between the EBITDA (earning before 

interest, tax, depreciation and amortization) and total 

revenue

Refinitiv 

Workspace

Operating Margin Op_Mrg
Percentage ratio between the operating income and 

revenue

Refinitiv 

Workspace

Independent variables

Direct emissions

Scope 1 Emissions Scope1 CO₂e
Organization’s gross global Scope 1 emissions in metric 

tons CO₂-e
CDP

Indirect emissions

Scope 2 Emissions Scope2 CO₂e

Organization’s gross global Scope 2 emissions in metric 

tons CO₂-e, including location-based and market-based 

accounting

CDP

Scope 3 Emissions Scope3 CO₂e

Organization’s gross global Scope 3 emissions, 

disclosing and explaining any exclusions, in metric tons 

CO₂-e

CDP

Moderator variable

Renewable Energy 

Consumption
RENC

Organization’s energy consumption totals (excluding 

feedstocks) in MWh from renewable sources
CDP
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3.3. Data Analyses 

The present study used a longitudinal research design, in particular a panel study 

under a structural equation modeling (SEM) approach. In this regard, an approach widely 

adopted in the literature is the latent growth curve (LGC) model, based on the maximum 

likelihood estimation (MLE) method (Byrne, 2012; Geiser, 2021; Newsom, 2015). Moreo-

ver, the Bayesian method of multi-indicator latent growth curve models was used, which 

is an increasingly popular specialized model (Depaoli et al., 2017), mainly in longitudinal 

research in the field of developmental psychology (e.g., Depaoli et al., 2017); Oravecz & 

Muth, 2018; Zhang et al., 2007). The Bayesian LGC approach was adopted for three rea-

sons. First of all, according to Muthén and Asparouhov (2012) and Oravecz and Muth 

(2018), this method is appropriate to improve the accuracy of the estimation in the mod-

eling of latent variables. Secondly, compared to the MLE method, the Bayesian estimation 

is a more plausible technique for analyzing longitudinal data sets in small sample sizes 

(Muthén & Asparouhov, 2012; Zhang et al., 2007). Third, the availability of the Bayesian 

computational methods in software packages (e.g., Mplus, Amos, among others) is driv-

ing their application in different fields of social research (Van de Schoot et al., 2014), in 

particular, in social science research on climate change. Lastly, we analyzed the longitu-

dinal data collected with version 8.8 of the Mplus statistical software, mainly because it 

permits the moderation of latent variables. 

3.3.1. Bayesian LGC Model implemented 

The statistical model used for the moderation analysis is a Bayesian latent growth 

curve model (hereafter, B-LGC model) with structural equations (Little, 2013; McArdle & 

Nesselroade, 2014). Figure 2 presents the longitudinal structural model for this B-LGC 

model, which involves three continuous latent variables measured by multiple observed 

indicators. In particular, following the latent growth models proposed by Li et al. (2000), 

Wen et al. (2002) and Wen et al. (2014), this B-LGC model contains six time-changing latent 

growth predictors, that is, five latent exogenous variables 𝑋𝑖  (i=1,2,3…,5) and one latent 

moderation variable Z, as well as three latent growth outcome variables 𝑌𝑗  (j=1,2,3) and 

an 𝐼𝑁𝑇 cross-product indicator representing the interaction (moderation) of Z. Because 

the observed measurements of the predictor variables 𝑋𝑖 and Z correspond to the same 

point in time, the product indicator 𝐼𝑁𝑇 is formed by the cross product of the latent 

growth factors (slopes) ξ2 and ξ4 of 𝑋𝑖 and Z, respectively. Furthermore, 𝜂𝑗1 and 𝜂𝑗2 

correspond to the initial level (intercept) and the rate of change (slope) of 𝑌𝑗 . In this case, 

being a linear growth model, all intercept factors are restricted to a constant value of 1 as 

a starting point (initial state) for any change (growth) over time. Likewise, all slope factors 

are specified using fixed-value restrictions (i.e., 0, 1, 2, 3,…, 6) that represent straight-line 

growth in order to capture the rate of change of the trajectories over time (Li et al., 2000). 

On the other hand, the 𝑋𝑖 and Z growth curve factors interact with each other to influence 

the 𝑌𝑗  endogenous growth factors. Lastly, the model’s three latent variables (𝑋𝑖𝑡, 𝑍𝑡  and 

𝑌𝑗𝑡) were measured in total with 63 observed variables, each measured at seven equidis-

tant points in time (𝑡1, 𝑡2, 𝑡3, … . 𝑡7).  

Appendix A shows all the codes needed to estimate the hypothesized B-LGC model, 

in particular for the corporate carbon footprint (Scope 1 CO₂e), clean energy innovation 

(RENC) and profits (Pr Mrg) relationships. Likewise, Appendix A shows the Mplus-spe-

cific syntax for this multiple-indicator measurement model, which describes the relation-

ships between the latent moderation (𝑍), the latent interaction terms (𝐼𝑁𝑇1 and 𝐼𝑁𝑇2), 

the latent growth predictor (Xit), and the latent growth outcome (Yjt) as well as the struc-

tural model specification, using the Mplus commands. With respect to the distribution 

parameters (priors) used in the Bayesian estimation, this study adopts previous non-in-

formative priors, that is, Mplus default priors (Muthén & Asparouhov, 2012). 
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Figure 2. Path Diagram of the B-LGC Model Pertaining to a Latent Growth Curve Model for Three 

Constructs and Seven Time Points (𝑡=.1,2,…7). Note. Yjt = latent growth outcome variables 

(𝑗=1,2,3); Xit= latent growth predictor (i=1,2,3,..,5); 𝑍 = latent moderation variable; ξ3, ξ4= 

intercept and slope factors for 𝑍; η1, η2= intercept and slope factors for Yjt; INT= latent 

product indicator for slope factor of moderating interaction term; ζ1, ζ2= latent residual 

variables; ε, δ= measurement error variables. Adapted from “Interaction effects in latent 

growth models: Evaluation of alternative estimation approaches,” by Z. Wen et al., 2014, 

Structural Equation Modeling: A Multidisciplinary Journal, 21(3), 361–374, and “Modeling in-

teraction effects in latent growth curve models,” by F. Li et al., 2000, Structural Equation 

Modeling: A Multidisciplinary Journal, 7, 497–533. 

 

 

 

 

4. Empirical Results 

4.1. Diagnostic Test of B-LGC Model Fit 

To verify the reliability of the results of the B-LGC model, this study employed two 

diagnostic tools. First, posterior predictive verification was used together with posterior 

predictive p-values (PPP) (Muthén & Asparouhov, 2012; Oravecz & Muth, 2018; Van de 

Schoot et al., 2014). In essence, this approach is based on the notion that Bayesian p-values 

seek to assess the quality of the model, that is, that the data generated by the model should 

closely resemble the observed data. Any deviation would suggest an incorrect specifica-

tion of the model (Gelman et al., 2013; Hoyle, 2012). For the proposed B-LGC model, the 

model’s fit is acceptable for calculated PPP greater than zero and close to 0.5 (Muthén & 

Asparouhov, 2012; Van de Schoot et al., 2014). 

Secondly, from the Bayesian perspective, using Markov chain Monte Carlo (MCMC) 

algorithms, we examined whether the B-LGC model converges correctly, using the poten-

tial scale reduction (PSR) factor (Gelman et al., 2013), which is a specific numerical meas-

ure of the default convergence criterion in Mplus (Geiser, 2021; Kruschke, 2014). The B-

LGC model is estimated with a larger number of MCMC iterations (between 20,000 and 

30,000) where PSR values close to 1 are considered evidence of convergence, which 

"means that convergence is achieved when the between-chain variation is smaller than 

the within-chain variation” (Muthén & Asparouhov, 2012, p. 335). However, it is recom-

mended to examine model convergence using other diagnostic tools, such as trace plots, 
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autocorrelation plots, and posterior parameter distribution plots (Van de Schoot et al., 

2014). 

4.2. Hypotheses tests 

The numerical results of the analysis are shown in Tables 4a and 4b. Both Tables pro-

vide the standardized parameter estimates of the B-LGC model for each of the proposed 

hypotheses. For example, the fifth column presents the mean obtained from the posterior 

distribution in each simulation. In the sixth column, the posterior standard deviation (S.D) 

for the mean of each interaction is reported. In the seventh column, one-tailed PPP, based 

on the posterior distribution, is provided for the significance test of each of the proposed 

hypotheses. Shown for each interaction parameter is the posterior probability interval 

(Muthén & Asparouhov, 2012; Van de Schoot et al., 2014), also known as the Bayesian 95% 

credibility interval (CI). Lastly, the level of statistical significance is shown for each of the 

proposed hypotheses. More specifically, "significant interaction" in the Bayesian context 

must be interpreted when the credibility interval does not contain zero (Muthén & As-

parouhov, 2012). 

Table 4a corresponds to the results of the hypotheses of direct interaction between 

CCFP and CP. This Table shows that the PSR measures dropped rapidly to values close 

to 1.0 and remained at 1.0 between 10,000 and 20,000 MCMC iterations, which indicates 

that the convergence of the B-LGC model was achieved in all the MCMC hypotheses. 

Moreover, all the point estimates of the mean slope parameters reached PPP values 

greater than zero and below 0.05, which indicates an absolute fit of the B-LGC model in 

the Bayesian framework. With respect to the statistically significant results of the direct 

CCFP→CP interaction, only the hypotheses H1b, H3a, H4b, H4c, H5a, H5b and H5c ob-

tained plausible values at a significance level of 5%, since their corresponding CI, [-0.602, 

-0.101], [0.167, 0.643], [-0.647, -0.101], [-0.512, -0.020], [-0.521, -0.004], [-0.635, -0.098] and [-

0.501, - 0.014], do not contain zero. 

Table 4b presents the results of longitudinal moderation of clean energy innovation 

(CEI) in the direct CCFP→CP relationship. All the hypotheses reached convergence for 

the estimated parameter (mean), including the H8c hypothesis, which at 29,300 iterations 

reached a PSR value of 1.048. Nonetheless, according to Muthén and Asparouhov (2012), 

PSR values less than or equal to 1.1 are also considered evidence of convergence. Similarly, 

all the PPP indicated a good-fit of the B-LGC model and of the moderating effect of the 

CEI construct in the relationship between the exogenous (corporate carbon footprint) and 

endogenous variable (corporate profits). In fact, only the H8a hypothesis presented statis-

tical significance on the moderating effect of the CEI construct, measured by the continu-

ous observed moderator variable RENC, in the direct relationship between the observed 

variables Scope3 CO₂e →Pr Mrg, since its Bayesian 95% CI of [-0.991, -0.774] does not 

include zero, implying a positive intervention (moderation) effect. Figure 4 shows the 

standardized solution, confidence intervals, variance estimates, and standard errors pro-

vided by Mplus diagram for H8a. This output diagram shows a value of 0.886 and an 

interval confidence (-0.991, -0.774) for the 𝐼𝑁𝑇2. However, the hypotheses H7a, H7b and 

H8c showed PPP of 0.405, 0.490 and 0.357, respectively, close to 0.5, but very narrow CI 

that includes zero, which can be interpreted as marginal effects of moderating interaction 

of the CEI variable (Muthén & Asparouhov, 2012). 

 

Table 4a. Numerical Summary of B-LGC Model Estimate Parameters of Direct Interaction Effects 

between Corporate Carbon Footprint (CCFP) and Profits (CP). 
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Table 4b. Numerical Summary of B-LGC Model Estimate Parameters of the Interaction Moderat-

ing Effects of CEI (measured by RENC) in the CCFP→CP Relationship. 

 
** p-value ≤ 0.05 and C.I does not include zero, implying a positive moderating effect.   

* p-value ≤ 0.05 and C.I include zero, implying a marginal and positive moderating effect.  
Note. all estimates are standardized model results.       
RENC = Renewable energy consumption; Pr_Mg = Gross Profit Margin %; EBITDA = EBITDA Margin %; 

Op_Mrg = Operating Margin %; C.I. = Credible interval; S.D. = Standard deviation; PSR = Potential scale re-
duction; PPP = Posterior predictive p-value. 

4.3. Graphical illustrations of Longitudinal Moderating Effect 

Figure 3 shows the Bayesian trace plot on each chain of the MCMC process during 

the 20,000 iterations, which indicates a proper convergence of the autoregressive slope 

parameter corresponding to the moderating interaction term (𝐼𝑁𝑇) of the B-LGC model. 

This is seen in the fact that there are no trends or large fluctuations in the trace plot, which 

confirms that there was no abnormality in the convergence of the model (Zhou et al., 

2021). On the other hand, Figure 5 presents the autocorrelation plot of the autoregressive 

slope parameter, also corresponding to the interaction term 𝐼𝑁𝑇, where the autocorrela-

tion value is shown on the y-axis and the time lag between the 20,000 MCMC iterations, 

on the x-axis. More specifically, this plot shows a relatively high autocorrelation (just over 

0.5) for shorter lags between iterations, but as the time lag increases, the autocorrelation 

becomes smaller (close to zero). This is a good result, considering that "ideally, each 

MCMC iteration should result in independent information for the posterior distribution 

of a parameter (autocorrelation of zero)" (Geiser, 2021, p. 267). Lastly, Figure 6 shows the 

posterior distribution of the mean slope parameter of the 𝐼𝑁𝑇 term. It can be seen that 

Simulation Direct interaction effect Iterations PSR Estimate Posterior PPP Significance

(Hypotheis) (CCFP→CP) number measure (mean) S.D. One-Tailed Lower 2.5% Upper 2.5%

Direct CO₂ emissions

H1a Scope1 CO₂e → Pr_Mrg 14300 1.000 -0.200 0.128 0.058 -0.444 0.057

H1b Scope1 CO₂e → EBITDA_Mrg 10800 1.000 -0.354 0.128 0.004 -0.602 -0.101 **

H1c Scope1 CO₂e → Op_Mrg 16200 1.000 -0.226 0.120 0.032 -0.464 0.008

Indirect CO₂ emissions

H2a Scope2 CO₂e → Pr_Mrg 9700 1.000 -0.164 0.116 0.082 -0.391 0.061

H2b Scope2 CO₂e → EBITDA_Mrg 17200 1.000 -0.190 0.127 0.071 -0.429 0.066

H2c Scope2 CO₂e → Op_Mrg 9400 1.000 -0.005 0.004 0.127 -0.013 0.003

Supply‐chain CO₂ emissions

H3a Scope3 CO₂e → Pr_Mrg 14000 1.000 0.403 0.123 0.003 0.167 0.643 **

H3b Scope3 CO₂e → EBITDA_Mrg 22500 1.000 0.213 0.183 0.118 -0.229 0.517

H3c Scope3 CO₂e → Op_Mrg 29300 1.048 0.062 0.261 0.352 -0.464 0.458

Direct and Indirect

H4a [Scope 1+2 CO₂e] → Pr_Mrg 11700 1.000 -0.259 0.133 0.026 -0.518 0.006

H4b [Scope 1+2 CO₂e] → EBITDA_Mrg 9900 1.000 -0.374 0.140 0.004 -0.647 -0.101 **

H4c [Scope 1+2 CO₂e] → Op_Mrg 13700 1.000 -0.264 0.126 0.018 -0.512 -0.020 **

Corporate value‐chain

H5a [Scope 1+2+3 CO₂e] → Pr_Mrg 14700 1.000 -0.260 0.132 0.023 -0.521 -0.004 **

H5b [Scope 1+2+3 CO₂e] → EBITDA_Mrg 18100 1.001 -0.371 0.137 0.003 -0.635 -0.098 **

H5c [Scope 1+2+3 CO₂e] → Op_Mrg 11500 1.000 -0.259 0.124 0.018 -0.501 -0.014 **

95% C.I.

Simulation Interaction effect (moderation) Iterations PSR Estimate Posterior PPP Significance

(Hypotheis) of RENC number measure (mean) S.D. One-Tailed Lower 2.5% Upper 2.5%

Direct CO₂ emissions

H6a Scope1 CO₂e  → Pr_Mrg 14300 1.000 -0.044 0.033 0.090 -0.109 0.019

H6b Scope1 CO₂e → EBITDA_Mrg 10800 1.000 -0.063 0.035 0.037 -0.132 0.007

H6c Scope1 CO₂e → Op_Mrg 16200 1.000 -0.032 0.031 0.154 -0.095 0.028

Indirect CO₂ emissions

H7a Scope2 CO₂e → Pr_Mrg 9700 1.000 -0.016 0.062 0.405 -0.140 0.107 *

H7b Scope2 CO₂e → EBITDA_Mrg 17200 1.000 0.001 0.067 0.490 -0.134 0.133 *

H7c Scope2 CO₂e → Op_Mrg 9400 1.000 -0.001 0.002 0.285 -0.005 0.003

Supply‐chain CO₂ emissions

H8a Scope3 CO₂e → Pr_Mrg 14000 1.000 -0.886 0.112 0.003 -0.991 -0.774 **

H8b Scope3 CO₂e → EBITDA_Mrg 22500 1.000 -0.733 0.554 0.111 -0.995 0.914

H8c Scope3 CO₂e → Op_Mrg 29300 1.048 -0.266 0.855 0.357 -0.985 0.960 *

Direct and Indirect

H9a [Scope 1+2 CO₂e] → Pr_Mrg 11700 1.000 -0.050 0.033 0.059 -0.115 0.014

H9b [Scope 1+2 CO₂e] → EBITDA_Mrg 9900 1.000 -0.060 0.035 0.042 -0.130 0.009

H9c [Scope 1+2 CO₂e] → Op_Mrg 13700 1.000 -0.034 0.031 0.135 -0.096 0.026

Corporate value‐chain

H10a [Scope 1+2+3 CO₂e] → Pr_Mrg 14700 1.000 -0.050 0.032 0.056 -0.116 0.012

H10b [Scope 1+2+3 CO₂e] → EBITDA_Mrg 18100 1.001 -0.060 0.035 0.042 -0.130 0.008

H10c [Scope 1+2+3 CO₂e] → Op_Mrg 11500 1.000 -0.034 0.031 0.133 -0.093 0.028

95% C.I.
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this distribution is roughly symmetric; in fact, these distributions do not need to be normal 

or symmetric in the Bayesian analysis (Kruschke, 2014). The mean, median, and mode 

were 0.886, 0.902, and 0.927, respectively. The posterior S.D. was relatively small (0.112), 

indicating negligible uncertainty about the true value of the mean slope parameter of the 

𝐼𝑁𝑇 term. This is reflected in the narrow range of CI obtained, which goes from -0.99108 

to -0.77367 and does not cover zero. Consequently, it can be argued that the number of 

data points used (N = 167: 4,509 total data points) to test hypothesis H8a was sufficient to 

obtain small uncertainty and high statistical power. 

 

 
Figure 3. Mplus Output Diagram Obtained for B-LGC Model Examined in Hypothesis H8a. 

 

 
Figure 4. Bayesian Trace Plot Obtained for Slope Factor of the Moderation Interaction Term (INT) 

Examined in H8a. 
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Figure 5. Parameter Autocorrelation Plot Obtained for Slope Factor of the Moderation Interaction 

Term (INT) Examined in H8a. 

 
Figure 6. Posterior Parameter Distribution Plot Obtained for Slope Factor of the Moderation Inter-

action Term (𝐼𝑁𝑇) Examined in H8a. 

 

5. Discussion 

These results clearly illustrate that reducing the inventory of CO₂e emissions in those 

industrial sectors with a high consumption of fossil-based energy sources helps to im-

prove corporate environmental as well as financial performance. The interpretation of 

these results can be twofold. First, continuing to focus on measuring and reducing only 

emissions from their own operations (Scope 1 CO₂e) and from their own electricity con-

sumption (Scope 2 CO₂e) continues to be profitable for these companies in the short term. 

Secondly, the world's largest energy-intensive companies appear to derive greater eco-

nomic benefits from having a more accurate and detailed understanding of GHG emis-

sions from their supply chain (Scope 3 CO₂e). Consequently, these empirical results are 

consistent with the resource-based view (RBV) of the firm. 

On the other hand, this study suggests that, although clean and renewable energies 

can help deep decarbonization in the sample of companies studied, the results show that 

the change to new sources of clean and renewable energy is a gradual process that requires 

considerable capital investment (Castro et al., 2021), which dampens the effect of the re-

duction of Scope 2 CO₂e and Scope 3 CO₂e emissions on the efficiency of energy- and CO₂e 

-intensive firms to generate greater profits. Likewise, our results indicate that innovation 

based on clean and on renewable energy technologies, when driven by government envi-

ronmental policies aimed at reducing emissions from the corporate value chain (Scope 3 

CO₂e), represents an effective mechanism for these companies to achieve the objectives of 
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net zero emissions and increasing the profitability of the business, since the emissions of 

the value chain (Scope 3 CO₂e) represent most of companies’ total carbon footprint 

(Downie & Stubbs, 2012). In this regard, based on the ecological modernization theory 

(EMT), this result is consistent with an “eco-innovation” strategy (Jänicke, 2008; Lin et al., 

2019). 

This paper makes three main contributions to the literature on business and environ-

mental sustainability. First, it integrates two theoretical frameworks, the eco-innovation 

theory (Arranz et al., 2021; Bitencourt et al., 2020; Hojnik & Ruzzier, 2016) and the ecolog-

ical modernization theory (Huber, 2000; Jänicke, 2008), using a structural equation model, 

which has predictive and explanatory power (Hair et al., 2017). Second, it provides em-

pirical evidence of the positive moderating effect of clean energy innovation on the efforts 

of high-polluting industries to reduce their carbon footprint while generating higher re-

turns for their shareholders, at the same time reducing this negative impact on climate 

change. Third, it identifies the importance of technological innovation in clean energy in 

the transition towards a deep and accelerated decarbonization in these industries. 

 

5. Conclusion and Implications 

The findings reveal a significantly positive impact of corporate carbon footprint on 

profits. More specifically, we found a significant positive relationship among the follow-

ing direct interactions: (a) Scope 1 CO₂e on EBITDA Mrg, (b) Scope 3 CO₂e on Pr Mrg, (c) 

Scope 1+2 CO₂e on EBITDA Mrg and Pr Mrg and d) Scope 1+2 +3 CO₂e on EBITDA Mrg, 

Pr Mrg and Op Mrg. On the other hand, the results of the B-LGC model also support the 

hypothesis that clean energy innovation, when measured using renewable energy con-

sumption, positively moderates the relationship between value chain emissions (Scope 3 

CO₂e) and the gross profit margin in energy- and CO₂e -intensive industries. Furthermore, 

we found only marginal effects of moderating interaction of renewable energy consump-

tion in the relationships of Scope 2 CO₂e emissions with the gross profit margin, and 

EBITDA margin, as well as in the relationship between Scope 3 CO₂e emissions and the 

operating margin. 

This paper has several important implications for academics, for senior executives of 

companies with significant fossil CO₂e emissions, and for those who make public policy 

associated with GHG emissions and climate change. For researchers and academics, this 

study provides empirical evidence of the impact of clean energy innovation on CO₂e-in-

tensive companies in a global context of deep industrial decarbonization, and also sup-

ports the importance of the concept of eco-innovation coming from the ecological mod-

ernization approach (Ding et al., 2019) in management practices and in corporate environ-

mental strategies. For executives and managers of CO₂e-intensive companies, considera-

tion of the importance of the emissions of the entire business’s value chain (Scope 3 CO₂e), 

and not only Scope 1 and Scope 2 CO₂e emissions, represents an effective mechanism to 

obtain greater competitive advantages. Policy makers must pay particular attention to 

Scope 3 CO₂e emissions that are produced by CO₂e-intensive companies and industries in 

order to formulate regulatory and control mechanisms that stimulate clean energy inno-

vation. 

However, this study has some limitations that could be resolved by future research. 

Firstly, given the evidently sparse literature on metrics for clean energy innovation at the 

level of the firm, we used a single output metric as an indicator of this construct. Future 

studies could include additional input metrics, that is, those corresponding to the first 

stages of the innovation process for clean energy technologies. Secondly, due to the scar-

city of reliable statistical data, this is a longitudinal study whose time horizon is limited 

to 7 years (2015 to 2021), while the existing literature on longitudinal studies suggests the 

need for a minimum timeframe of 10 years to overcome random variation (Richard et al., 

2009). Therefore, future research might explore extensions of this timeframe, even using 

data containing missing values. 
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Appendix A 

Mplus-specific syntax for the B-LGC model 
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Note: Based on “An introduction to Bayesian statistics in health psychology,” by S. Depaoli, H. M. Rus, J. P. Clifton, R. 

van de Schoot, & J. Tiemensma, 2017, Health Psychology Review, 11(3), 248–264. 

 

Code in Mplus for the B-LGCM Description of code

TITTLE: Moderating effect analysis based 

on the Bayesian Latent Growth Curve 

(LGC) model

Title for the Bayesian analysis to be conducted

DATA: FILE = w_Data2022_7.dat; Data file to be used; w_Data2022_7.dat is the name of this data file

VARIABLE:

NAMES ARE Firm_ID Sector X11 

X12 X13 X14 X15 X16 X17 Z4 Z5 Z6 

Z7 Y11 Y12 Y13 Y14 Y15 Y16 Y17;

USEVAR ARE X11 X12 X13 X14 

X15 X16 X17 Z4 Z5 Z6 Z7 Y11 Y12 

Y13 Y14 Y15 Y16 Y17;

MISSING ARE ALL (-99);

ANALYSIS: 

ESTIMATOR = BAYES; Request the Bayesian estimator

TYPE = RANDOM;

POINT = MEAN; Use of mean-centered indicators

CHAINS = 3;

PROCESSORS = 3;

FBITERATIONS = 20000;

BCONVERGENCE = 0.025;

THIN = 30;
By specifying THIN = 30, we request that only every 30th iteration of the 

post-burn-in phase be used by Mplus to compute the posterior distribution

MODEL: Specification of the measument model to be tested.

X11-X17*;
Estimation of residual variances for independent variable X1 (Scope 1) for 

each time point (t=7)

Z1-Z7*;
Estimation of residual variances for moderator variable Z (RENC) for each 

time point (t=7).

Y11-Y17*;
Estimation of residual variances for dependent variable Y1 (Pr_Mrg) for 

each time point (t=7).

KSI1 KSI2 | X11@0 X12@1 X13@2 

X14@3 X15@4 X16@5 X17@6; 

KSI3 KSI4 | Z1@0 Z2@1 Z3@2 Z4@3 

Z5@4 Z6@5 Z7@6;

ETA1 ETA2 | Y11@0 Y12@1 Y13@2 

Y14@3 Y15@4 Y16@5 Y17@6;

KSI1*; KSI2*; KSI3*; KSI4*; ETA1*; 

ETA2*;
Estimation of variances of latent growth parameters

INT1 | KSI1 XWITH KSI3;
Definition of interaction term (moderation); INT1 corresponds to the latent 

product variable between the intersections KSI1 and KSI3

INT2 | KSI2 XWITH KSI4;
Definition of interaction term (moderation); INT2 corresponds to the latent 

product variable between the slopes KSI2 and KSI4

ETA1 ON KSI1 KSI3 INT1; Structural model specification

ETA2 ON KSI2 KSI4 INT2; Structural model specification

OUTPUT: CINTERVAL(hpd) TECH8 

STDYX;

PLOT: TYPE = PLOT2;

Name of the seven time points (t=7) of data for observable variables; we 

called them 'X1t' here to represent seven measures of Scope 1 emissions, 'Zt' 

for measures of renewable energy consumption (RENC) and, 'Y1t' for the 

gross profit margin (Pr_Mrg)

Specification of latent growth curve model with two latent growth 

parameters, intercepts (KSI1, KSI3 and ETA1) and slopes (KSI2, KSI4 and 

ETA2). All seven data time points (X11–X17, Z1–Z7, Y11–Y17) are used. 

The numbers to the right of @ indicate an equal time span between the data 

points, i.e. 0, 1, 2, 3, 4, 5, 6, and 7 reflect equidistant time points between 

2015 and 2021)
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