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Abstract: In the present paper we introduce three new classes of bi-univalent functions connected
with Gregory coefficients. For functions in each of these three bi-univalent function classes we have
derived the estimates of the Taylor-Maclaurin coefficients |a;| and |a3| and Fekete-Szeg6 functional
problems for functions belonging to these new subclasses. We defined three subclasses of the class of
the bi-univalent functions ¥, namely $®y, &My (1) and Gy (A) by using the subordinations with the
function whose coefficients are Gregory’s numbers. First, we proved that these classes are not empty,
i.e. contains other functions than the identity one. Using the well-known Carathéodory Lemma for
the functions with real positive parts in the open unit disk, together with an estimation due to P.
Zaprawa (see https://doi.org/10.1155/2014/357480) and another one of Libera and Zlotkiewicz, we
gave upper bounds for the above mentioned initial coefficients and for the Fekete-Szeg6 functionals.
The main results are followed by some particular cases, and the novelty of the definitions and the
proofs could involve further studies for such type of similarly defined subclasses.

Keywords: univalent functions; bi-univalent functions; starlike and convex functions of some order;
subordination, Fekete-Szeg® problem.

MSC: 30C45, 30C50, 30C80

1. Definitions and preliminaries

Let A denote the class of all analytic functions f defined in the open unit disk D :=
{z € C: |z| < 1} and normalized by the conditions f(0) = 0 and f’(0) = 1. Thus, each
f € Ahas a Taylor-Maclaurin series expansion of the form

flz)=z+ i a,z", z € D. 1)
n=2

Further, let S denote the class of all functions f € A which are univalent in D.
Let the functions f and g be analytic in D. We say that the function f is subordinate to
g, written as f(z) < g(z), if there exists a function @, which is analytic in D with

@(0)=0and |@(z)| <1, z€D,

such that
f(z) =g(@(z)), z€D.

Besides, if the function g is univalent in D, then the following equivalence holds:

f(z) <g(z) & f(0) = g(0) and f(D) C g(D).
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It is well known that every function f € S has an inverse f !, defined by

ff(2) =2 z€eD,

and

f(ffl(w)) =w, |w| <ro(f), ro(f) > 411

Suppose that f~! has an analytic continuation to D. Then, the function f is said to be
bi-univalent in D if both f and f~! are univalent in D. In this case let

g(w) == f Y (w) = w — apw® + (Za% — a3)w3 - (Sag — Sapaz + a4>w4 +..., (@

and let = denote the class of bi-univalent functions in D given by (1). Examples of functions
in the class ¥ are, for example

z 1 1+z

1 I
1—z 9%81_-z 98\ 13

However, the familiar Koebe function is not a member of %, while other common
examples of analytic functions in ID such

2

2z —z z
5 and -2

are also not members of 2. Lewin [1] investigated the bi-univalent function class ¥ and

showed that |a;| < 1.51. Subsequently, Brannan and Clunie [2] conjectured that |ap| < v/2.

Netanyahu [3], on the other hand, showed that rfnazx |az| = 4/3. The coefficient estimate
€

problem for each of the Taylor-Maclaurin coefficients |a,| for n € N, n > 3, is presumably
still an open problem.

Similar to the familiar subclasses S*(p) and IC(p) of starlike and convex function of
order p, 0 < p < 1, respectively, Brannan and Taha [4] (see also [5]) introduced certain
subclasses of the bi-univalent function class ¥, namely the subclasses Ss: (p) and K5 (p) of
bi-starlike functions and of bi-convex functions of order p, 0 < p < 1, respectively. For
each of the function classes S5 (p) and Ky (p) they found non-sharp estimates of the first
two Taylor-Maclaurin coefficients |a;| and |a3|. In fact, Srivastava et al. [6] have actually
revived the study of analytic and bi-univalent functions in recent years for some intriguing
examples of functions and characterization of the class X (see [6-14]).

The Fekete-Szeg functional |a3 — pa3| for f € S is well known for its rich history in
the field of Geometric Function Theory. Its origin was in the disproof by Fekete and Szeg6
[15] conjecture of Littlewood and Paley, that the coefficients of odd univalent functions
are bounded by unity. This functional has since received great attention, particularly for
many subclasses of the family of univalent functions. The problem of finding the sharp
bounds for this functional of any compact family of functions f € S for any complex y is
commonly known as the classical Fekete-Szeg® problem (or inequality).

Gregory coefficients A,. Gregory coefficients also known as reciprocal logarithmic
numbers, Bernoulli numbers of the second kind, or Cauchy numbers of the first kind, are

. 1 1 1 19
the decrease rational numbers > T13’ 21’ 70’
expansion of the reciprocal logarithm

.... They occur in the Maclaurin series

z 1 1 1 19
N S U RS S D.
og(ltz) 2% 2% T2g® “70t T €
These numbers are named after James Gregory who introduced them in 1670 in the numeri-
cal integration context. They were subsequently rediscovered by many mathematicians and
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often appear in works of modern authors, Laplace, Mascheroni, Fontana, Bessel, Clausen,
Hermit, Pearson and Fisher.

In this paper we considered the generating function of the Gregory coefficients A
(see [16,17]) to be given by

®(z) = log 1 +z) Z Anz!

=
19 , 3 5 863

1
=1+ z——z +—z — 5552 + =2

e )
327127 T247 ~70° T1e0° eoaso” T FED

where the function log is considered at the main branch, that is log1 = 0. Clearly, A, for
some values of n € N are
1 1 1 19 3 863

A():l, Alzi, AZI*E, A3:ﬂ, A4:*ﬁ0, ASIE, andAézfm,

Finding the upper bound for the Taylor coefficients have been one of the vital topic of
research in Geometric function theory as it offers numerous properties for many subclasses
of As. Therefore, we will be inquisitive about the subsequent hassle in this segment:
find sup |a,| if n = 2,3,... for subclasses of univalent functions. In particular, bound
for the second one coefficient offers growth and distortion theorems for features of those
subclasses. Further, the use of the Hankel determinants (which also deals with the bounds
of the coefficients), and we mention that Cantor [18] proved that “if ratio of two bounded
analytic features in D, then the function is rational”.

2. Coefficient bounds of the class H By,

In 2010 Srivastava et al. [6] have actually revived the study of analytic and bi-univalent
functions. Inspired by that, in this section we consider the class of analytic bi-univalent
function relating with generating function of the Gregory coefficients to obtain initial
coefficients |az| and |as].

Definition 1. A function f € L given by (1) is said to be in the class $®yx if the following
subordinations

f'(z) < &(2), ®)
§'(w) < &(w) 4)

are satisfied, and the function g(w) = f~1(w) is defined by (2).

Remark 1. 1. For the function & we have &(0) = 1, &'(0) # 0, and using the 3D plot of the
MAPLE™ computer software, we obtain that the image of the open unit disk D by the function

28/ (z)

U(z) :=Re 6 -1’

ze,

is positive, hence & is a starlike (and also univalent) function with respect to the point 1 (see Figure

1).
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Figure 1. The image of U(D).

2. We would like to emphasize that the class H®y is not empty. Thus, if we consider

fi(z) = 7 —Zuz’ la| < 1, then it is easy to check that f. € S, and moreover, f, € X with
go(w) = £71(w) = .

Using the fact that f(—az) = g\ (az) for all z € D it follows that f(D) = g\ (D). For the
particular case a = 0.15, using the 2D plot of the MAPLE™ computer software we obtain the
image of the boundary 9D by the functions f,, g, and & shown in the Figure 2. Since & is univalent
in D, the previous reason yields that the subordinations f,(z) < &(z) and g\ (w) < &(w) hold
whenever f,(0) = ¢.(0) = &(0) and f.(D) = ¢.(D) C &(D) (see Figure 2). Concluding,
f« € H®sx, hence the class H By is not empty and contains other functions than the identity.

0.44
0.34
0.24
0.1

-0.14
-0.24

-0.34
-0.44

Figure 2. The images of f/(e'?), ¢’ (e) (blue color) and &(e?) (red color), 6 € [0,27).

In our first results we obtain the upper bounds for the modules of the first two
coefficients for the functions that belong to the class $®y given in Definition 1. Further,
we use the following lemmas, which were introduced by Zaprawa in [19,20] and we will
discuss the Fekete-Szeg6 functional problems [15].
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Let P(B), with 0 < B < 1, denotes the class of analytic functions p in D with p(0) =1
and Re p(z) > B, z € D. Especially, we will use the notation P instead of P(0) for the usual
Carathéodory’s class of functions.

The next two lemmas will be used in our studies.

Lemma 1. [21]If p € P has the form p(z) = 1+ c1z+ 22> + ...,z € D, then
len] <2, n>1, (5)
and this inequality is sharp for each n € N.

We mention that this inequality is the well-known result for the Carathéodory Lemma
[21] (see also [22, Corollary 2.3, p. 41], [23, Carathéodory’s Lemma, p. 41]).

The second lemma is a generalization of Lemma 6 from [20] that could be obtained for
=1

Lemma 2. [20, Lemma 7, p. 2] Let k,1 € Rand zq,z € C. If |z1| < Rand |zp| < R, then

2|k|R, for |k| > |I],

|(k+ D)z + (k—1D)zp| < { 2|l|R, for k| < |1

The next result gives the upper bounds for the first two coefficients of the functions
that belong to $H®y.

Theorem 1. If f € $By is given by (1), then

3 23
<4/=—~0. < —~0.
las] <4/ 7 0.0234..., and |ag| < EE 0.2072

Proof. If f € $By, from the Definition 1 the subordinations (3) and (4) hold. Then, there
exists an analytic function u in D with #(0) = 0 and |u(z)| < 1, z € D, such that

fl(z) = &(u(2), z€ D, (6)

and an analytic function v in D with v(0) = 0 and |[v(w)| < 1, w € D, such that

¢ (w) = 6(v(w)), w € D. 7)
Therefore, the function
_1+u(z) 2
h(z) = = u(z) =1+cz+cz"+...,z€D,

belongs to the class P, hence

2\ ,2 3\ .3
C C
u(z)_czlz—l—<cz—1>Z+<C3—C1€2+1>Z+~-rZEDI

and

_ c T/ 52 2 1 3_ 3
S(u(z)) =1+ 17 + 48< 7c] + 12c2>z + 9% (17c1 56¢1¢o +4SC3)Z +...,
zeD. (8)
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Similarly, the function
k(w) = 1+2(w) =1+dw+dw® +..., weD,
1—ov(w)
belongs to the class P, therefore
dl d% wz d% ZU3
v(w) = 5w+ <d2—2 7+ d3—dldz+Z o T w e D,
and
So(w) =1+ w4 = (—7d2 + 12d2)w2 + L (17d3 — 56d1d, + 48d3>w3 ¥
47 48 ! 192\ '
webD. (9
From the equalities (6) and (7) we obtain that
T U A 2
f(z)—1+4z+48< 73 +126)22 + ..., 2 €D, (10)
and p 1
g’(w):1+le+@(—7d%+12d2)w2+...,weID). (11)
Since the function g has the form (2), upon comparing the corresponding coefficients in
(10) and (11) we get
1
2ay = T (12)
2 7,
3as 1 48C1’ (13)
dy
—2a; = Z/ (14)
d 7
2 _ _%2 /2
3(2a2 a3> 75 (15)
From (12) and (14) it follows that
1 — _dl (16)
and
2 4 d? = 12843. (17)
If we add the equalities (13) and (15) we get
1 7
6&1% = 1(02 +dy) — B (C% + d%), (18)
and substituting the value of (c? + d?) from (17) in the right hand side of (18) we deduce
that 3( i)
2 olea+dp
B=""og (19)

Using (5) together with the triangle’s inequality in the relations (12) and (19) it follows

1 /3
laa| < 1= 025 and |ap| < 71 ~0.0234...

that proves our first result.
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Moreover, if we subtract (15) from (13) we obtain
1 7
6((13 - a%) = Z(Cz —dy) — 15 (C% — d%), (20)
and in view of (16) the equality (20) becomes
1
2 = _
a3 = a; + 71 (cp — dp). (21)
This relation combined with (12) leads to
2
_ay -
a3 = oy + 5p(c2 —da). (22)

Using the triangle’s inequality and (5), from (22) we get

1 1 11
< —4+-=—~0.
|a3| < 16+6 8 0.2291

and using our first assertion together with (21) it follows

3 1 23
< —4+-=—~0.
|a3|_74+6 111 0.2072...,

which completes the proof of our theorem. O

Using the above values for a5 and a3 we will prove the following Fekete-Szeg6 type
inequality for the functions of the class H®5.

Theorem 2. If f € H®y is given by (1), then for any u € R the next inequality holds:

E for e 28 46
6’ K 9’9 |’
3

1yl 287 [46
74 fOT’ [ZS (—OO,—9:| U |:9,+00>

Proof. If f € H®By has the form (1), from (19) and (21) we get

s - <

oo Bleatdy) 1 1 1
as V’lz—(l :u) 296 +24(CZ dz)_ h(y)+24 C2+ h(l/‘) 24 d2/

where

According to Lemma 1 we have |cy| < 2 and we have |dy| < 2. Then, in view of Lemma 2
we obtain

1 1
-, f h < —,
Ah(p)l, for [h(u)| = 7,

which is equivalent to our result. O

3. Coefficient bounds for the class &My (1)

In the second results we will obtain the upper bounds for the modules of the first two
coefficients for the functions that belong to the class &Mty (1) defined below, then we will
study the Fekete-Szeg6 functional problems for this functions class.
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Definition 2. A function f € X given by (1) is said to be in the class &My (1) if the following
subordinations hold:

o n2f() zf"(2)

P(z):=(1—p) ) ~|—y(1 + 02) ) < 6(z), (23)
w8 (w) wg" (w)

Y(w):=(1—p) (@) +y<1 + (@) > < 6(w), (24)

where 0 < y < 1and g(w) = f~1(w) is defined by (2).
By fixing 4 = 0 or u = 1, we have the following special subclasses:

Remark 2. 1. For y = 0 let Gy, := &My (0) the subclass of functions f € X satisfying

zf'(2) wg' (w)
5 < 6(z) and (@) < 6(w),

with g(w) = f~H(w).
Fixing y = 1 let Yy, := &My, (1) the subclass of functions f € X that satisfy

zf"(z) wg" (w)
1+ ) <6(z) and 1+ 2 (@) < &(w),

where g(w) = f~Y(w).

Remark 3. We will prove that appropriate choice of the parameter y the class &My, (y) is not

empty. Letting f.(z) = 1_27, la| < 1, then it easily follows that f. € S, and additionally,
. i W
fi € Zwith gu(w) = f,+(w) = T o
With the notations of (23) and (24) a simple computation shows that ®(—az) = ¥ (az) for
all z € D, which implies that ®(D) = ¥ (D). Taking the particular case a = 0.15 and p = 0.9, by
using the 2D plot of the MAPLE™ computer software we obtain the image of the boundary oD
by the functions ®, Y and & presented in the Figure 3. Using the fact that & is univalent in D,
the above reasons show that the subordinations ®(z) < &(z) and ¥(w) < &(w) hold whenever
®(0) = ¥(0) = &(0) and ®(D) = ¥(D) C &(D) (see Figure 3). Therefore, f, € &Mx(0.9),
hence the class &My, (1) is not empty and contains other functions than the identity.

0.44
0.34

Figure 3. The images of ®(e'?), ¥(e') (red color) and &(el?) (blue color), 8 € [0,277).
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Theorem 3. If f € &My () is given by (1), then

] < 3 and |y < 7u? +29u + 16
2 2(1+ ) (10 + 7p) =40 )0+ 7)1 2p)
Proof. If f € &My (1) has the form (1), from the Definition 2, for some analytic functions
in D namely u and v such that u(0) = v(0) = 0 and |u(z)| < 1, |[v(w)| < 1forall z,w € D,
we can write

) 2f"(2)\ _
(1—p) ) +,u<1+ ) > &(u(z)), z€D, (25)
and
wg' (w) L ws" (W) _
( ,’Ll) (w) + ]/l( g/(w) ) - Qi(v(w)), w e D. (26)

From the equalities (25) and (26) combined with (8) and (9) we obtain

(1—y)zf/(z)+y(1+zfﬁ(z)> 1+— + 1( 7c%+12c2)zz+...,zem>, (27)

f(z) f'(z) 48
and
(1 —#)wgggg) +u(1+ wg%/(lz(u”;)) —1+ d1w+ 418( 743 +12dy )w? + .., w € D. (28)

Thus, upon equating the first coefficients of (27) and (28) we have

(4w =, 29)
201+ 2p)az — (1+3p)a2 = %8(—7& +120), (30)
~pa =1, @
(3+5p)a% — 2(1+ 2p)az = % (—7d% + 12d2). (32)

From (29) and (31) it follows that

1= —di (33)
and 2, p

21+ g = T2, (34)

that is s

d

e s (35)

32(14p)

If we add (30) and (32) we get
1

20+ B = (et d) - - (F+a), (36)

and substituting the value of (C% + d%) from (34) in the right hand side of (36) we deduce
that

2 21 2 C+d

S[3+m + 700+ a3 = 22,

that is p p
2= 3(c2 +da) __ 3(ea+do) (37)

8B(1+pu)+7(1+u)?]  8(1+u)(10+7u)’
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From the same reasons like in the proof of Theorem 1, using (5) in (29), (35) and (37)
we find that

1 3
|a2| < m =: A(.u) and ‘112| < \/2(1 +,14)(10+7ll) = B(l’l)

A simple computation shows that A(u) > B(u) whenever 0 < u < 1, hence we obtain our
first inequality.
Moreover, if we subtract (30) from (32) we obtain

a1+ 2p) (o —a3) = 22— (G- ). @)

In view of (33) and (35) the relation (38) becomes

2 2
1 +d1 Cr — dz
as = + , 39
T 31+ p)? | 16(1+2p) 9)

and using the triangle’s inequality together with (5) we conclude that

1 1 pr+4p+2
az| < + = =:C(n).
R L T vy BT W TG R U

Also, taking into the account the relation (35) the formula (39) could be rewritten as

_ 2, C—d
=0t 1 on) “0)
and from the triangle’s inequality together with (5) using the fact that |a;| < B(p) it follows

3 1 7u% +29u + 16
< = =:D .
S 210170 T AT 2n) T A0+ )10+ 7p) (L + 2p) ()

|as|

Since it’s easy to check that C(y) > D(u) for 0 < u < 1, our second inequality is
proved. O

The next result gives us an upper bound for the fekete-Szeg6 functional for the class
&M (1)

Theorem 4. If f € &My (u) is given by (1), then

1 1

o Jor YR < =7,
‘arka%‘ <) 42 16(1i|—2pt) (1)

4Y(k)|, for |Y(k)| > 16(1 +2p)’

where
3(1—k)

(k) = 8(1+u)(10+7p)

(42)

Proof. If f € &My (), using the same notations like in the proof of the previous theorem,

from (37) and (40) we get
P S 3(ca +da) 0 —dy
o —kny = (1=K gq o+ 70 T 161320
1 1
= YR+ 16(1+2y)]c2+ {Y(k) eI R
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where Y (k) is given by (42). According to Lemma 2, from the inequality (5) we obtain the
conclusion (41). O

For y = 0 and p = 1 the above theorem reduces to the following two results, respec-
tively:

Example 1. 1. If f € &Gy is given by (1), then

/3 2
<4/ =~0. < -=0.
las| < 20 0.3872..., a3z < 5 0.4,

and . s
1, for |17k| S g,

‘“3_"”%‘ =9 3 5

1= —kl > =

20|1 k|, for |1—k|> 3

2. If f € Dy is given by (1), then

3 13
<3/ = ~0. < — ~0.
|az| < \/; 0.21004..., |az| < T 0.1274.. .,

and . 17
— — < —
P for |1—k| < 9

17

‘”3_]“’%’ =9 3
iy —kl > =~
68|1 k|, for |1—k|> 9

4. Coefficient bounds of the class &y (A)

In this section we will obtain the upper bounds for the modules of the first two
coefficients for the functions that belong to the class ®x(A) that will be introduced, and we
will find an upper bound for the Fekete-Szeg® functional for this class.

Definition 3. A function f € X given by (1) is said to be in the class &y, (A) if the following
subordinations are satisfied:

2f(zx)  1+et 22f(z)

0(z) := ) T2 @ &(z),
_wg'(w) | 1+t wi(w)
A = P+ T T <o (w),

where A € (—7, 7t| and g(w) = f~Y(w) is defined by (2).

Remark 4. Note that by fixing A = 1w we get Sy, := Gy, () as it was given in the Example 2.
For A = 0 we obtain the class Q&5 := &x(0).

Remark 5. We will prove that for convenient choice of the parameter A the class &y,(A) is not
empty. Taking f.(z) = 2 la| <1, it could be easily shown that f, € S and f, € X with

Z}] —az’
— 1(y) —
g () = fi () = .

Using the notations of the Definition 3 it is easy to check that ©(—az) = A(az) forall z € D,
hence ®(D) = Y(D). Taking the particular case a = 0.12, A = 71/3, and using the 2D plot of
the MAPLE™ computer software we obtain the image of the boundary oD by the functions ©, A
and & presented in the Figure 4. Since the function & is univalent in D, hence the subordinations
O(z) < &(z) and A(w) < &(w) hold because ©(0) = A(0) = &(0), O(D) C &(D) and
A(D) C &(D) (see Figure 4). Hence f,. € ®x(m/3), therefore the class ®x (A) is not empty and
contains other functions than the identity.
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0.44
0.31
0.2
0.1

-0.14
-0.24

_0_3.
-0.44

Figure 4. The images of ©(e'?), A(e?) (red color) and & (el?) (blue color), 8 € [0,277).

In the following theorem we will determine the results for the initial coefficients
bounds of the class By (A).

Theorem 5. If f € &x(A) is given by (1), then

3
'\/2|37+20€”‘ + 7¢2A] }

lag| < min{

1
2|2+ €ir

and

, 1 1 3 1
93] < mm{4’2 e T 2[5 1 3¢0| 2]37 1 2067 1 73] T 2[5 1 36| }

Proof. If f € &y (A), from the Definition 3 there exist two analytic functions in D, namely
u and v such that #(0) = v(0) =0and |u(z)| < 1, |[v(w)| < 1forall z,w € D, with

zf'(z) L 1+ et ‘ 22f"(z)

5 5 @) &(u(z)), z€D, (43)
wg'(w) | 1+et wg"(w) _
(@) 7 @) &(v(w)), w € D. (44)

With the same notations like in the proof of the Theorem 3, from the equalities (43)
and (44) we obtain that

zf'(z)  14e* 22f"(z) . o 1 ’ )
s R _1—|—Zz—|—@( 7 +120)22 4., z€D,  (45)
and
wg' (w) 1+ei/\_w2g"(w) B dy 1/ _» 2
o T3 o _1+4w—|—48( 7d1+12d2)w L., weD.  (46)
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Equating the corresponding coefficients in (45) and (46) we have
ir _4a
(2+¢")ar = + 47)
. . 1
iA _ ir) 2 [ 2
(543" )as — (2+ ™) a3 48( 76 +12¢,), (48)
and
; d
_ Mg, = 21
(2+e )ﬂz 1 (49)
‘ ‘ 1
A2 iA — (732
(8+5e >a2 (5+3e )a3 48( 7d1+12d2). (50)
The relations (47) and (49) lead to
c=—d (51)
and )
32 (2 + em) a3 =3 +d?,
that is b
ci+d
ﬂ% = 1712 (52)
32(2+¢t)
If we add (48) and (50) we get
2(3 4263 = (e + ) — o (G +43) (53)
P4 48\t Ly
and substituting the value of (C% + d%) from (52) in the right hand side of (53) we deduce
that
‘ 14 1\ 2 1
iA - i\ 2 _ -
{2(3+2e )+ = (2+¢") }az g2 +d2),
hence 5( i)
c +
a3 = 2 172 (54)

4[6(3+2¢1) + 14(2+¢)?|

Using (5) of Lemma 1 and the triangle’s inequality in (52) and (54) we obtain

1 3
M| < ——= d |ap| < . .
a2l < gy and el < \/2\37+20e1A+7e21A

4

that proves our first inequality.
If we subtract (50) from (48) we obtain

2(5+3ei/\> <a3 —a%) = Cz;dZ - %(c% —d%),

and in view of (51) and (52) the above relation leads to

2, o—d  g+di co —dy
27 8(5+3¢")  3p(24eih)?  B(5+3¢)

az =a (55)

Using again Lemma 1 and the triangle’s inequality it follows that

1 1
las| < 4‘2_,_61'A‘Z + 2|5+ 3¢t |’
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Similarly, in view of (54) and (51) the relation (55) could be written as

3(cy +dp) e —dy

a3 = + .
" a6+ 20h) £ 1421 et)?] B+

and from Lemma 1 and the triangle’s inequality we conclude that

3 1

< - - -
93] < 337 2007 + 7] T 2[5 1 30

7

and this proves the second result.

To determine the upper bound of the Fekete-Szeg6 functional for the class &x (1) we
will use the following lemma:

Lemma 3. [24, (3.9), (3.10) p. 254] If p(z) = 1+ c1z + 2> + ..., z € D with p € P, then
there exist some x, { with |x| < 1,|¢| <1, such that

2¢c) = ¢ +x(4— c%),
dez =3 +2c1x(4 - c‘%) - (4 - c{-)clxz +2(4 - c‘%) (1 - |x|2>§.

Theorem 6. If f € &5 (A) is given by (1), then

42 ir|2
2 2|5 + 3t 3!5—1—36”4
a3 — pa| < " (56)
1—pl 42+¢"|
P for 1—plz s
4)2 4 ¢ir 3|5+ 3eit |
2
Proof. If f € &x(A) has the form (1), using (51) and (52), we have a3 = 712 Thus,
16(2 + ¢it)
from (54) and (55) we get
C% Cy — d2

2

With the same notations like in the proof of the Theorem 3, from Lemma 3 we have
2, =c+x(4—c3) and 2dy = d5 + y(4 —d3), |x| <1, |y| <1, and using (51) we get

hence

2 (4—cH)(x—y)
16(2+eh)?  16(5+3e")
Using the triangle’s inequality, taking |x| = J, |y| = «, 6,k € [0, 1], and without losing of
generality we can assume that ¢c; € R, ¢; =t € [0,2], thus we obtain

as — paz = (1-p)

t2 N 1 (
16‘2+€i)“2 16|5+3€i)‘|

|as — paz| < [1—p] 4—12)(5+x).
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—ol$2 _ 2
Denoting M(t) := 7p|tz >0and N (t) := 47% > 0 the above relation
16]2 + ¢iA| 165 + 3¢ |

could be rewritten in the form
lag — pa5| < M(t) + N (t)(6 +x) =: V(6,x), 6,k € [0,1].
Thus,
max{Y(8,x) : 6,k € [0,1]} = Y(1,1) = M(t) + 2N () =: H(t), t € [0,2].

and substituting the value M(t) and N (¢) in the above last equality we obtain

1 22+ 1
H(t) = 16‘24»617“2 <|1_P| a |5+3ei/‘| g +2|5+3ei/\|.

Now we will determine the maximum of H on [0, 2]. Since

! 2+ ¢
H(t) = ————([1—p| - 20— |,
W 8|2+ eit|” <| 4 5 +3¢|

202+ €|
it is clear that H'(t) < 0 if and only if |1 — p| < |’5_;L3M|| In this case function H is a
e
decreasing function on [0, 2], therefore
1

2|24 ¢ |?

, hence the function H is an increasing

function on [0, 2], and consequently

max{H(t) : t € [0,2]} = H(2) = M,

and the estimation (56) is proved. O

5. Conclusions

In our present investigation we have introduced and studied the initial coefficient
problems associated with each of the new subclasses $®y, My (7) and Gy (A) of the well-
known bi-univalent class .. These bi-univalent function subclasses are given by Definitions
1 2, and 3 respectively. For the functions in each of these bi-univalent subclasses we have
obtained the estimates of the Taylor-Maclaurin coefficients |a;| and |a3|, and we gave
solutions for the Fekete-Szeg6 functional problems. New results are shown to follow upon
specializing the parameters involved in our main results as given in Remark 2 for the class
of bi-starlike and bi-convex functions associated with Gregory coefficients which are new
and not yet studied sofar. Further we can extend these type of studies based on generalized
telephone numbers (see [25-27]).
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