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Abstract: Loose Tangle is a concept in graph theory that has a dual relationship with branch-width
which is well-known graph width parameter. Ultrafilter, a fundamental notion in mathematics, is
similarly known to have a dual relationship with branch-width when extended to a connectivity
system (X, f). In this compact paper, we revisit and contemplate the interplay between Loose Tangle
and Filter through the lens of a submodular partition function.
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1. Introduction

The investigation of graph width parameters finds extensive applications across diverse fields,
such as matroid theory, lattice theory, theoretical computer science, game theory, network theory,
artificial intelligence, graph theory, and discrete mathematics, as evidenced by numerous studies (for
example, see [1-20,22,28-33]). These graph width parameters are frequently explored in conjunction
with obstruction, contributing to a robust body of research.

Loose tangle, an innovative concept initially brought forward in reference [1], occupies a central
role in ascertaining whether a branch-width is at most a natural number k, where k+1 denotes the
order of the tangle. The relevance and potential of loose tangles have further been explored in the
context of submodular partition functions [22]. These submodular partition functions significantly
broaden the understanding of various well-established tree decompositions of graphs.

Furthermore, the ultrafilter, a concept well-regarded in the mathematical arena, is
acknowledged to maintain a dual relationship with branch-width when extended over a connectivity
system (X, f).

In this compact and focused paper, we revisit and contemplate the interplay between Loose
Tangle and Filter through the lens of a submodular partition function.

2. Preliminaries

In this section, we present the essential definitions required for this paper. Throughout the
paper, we utilize a finite set (referred to as the underlying set) X, a set of partitions P, and natural
numbers i, k, and p. It is important to note that a partition involves dividing the elements of a set into
non-empty, distinct subsets, ensuring that each element belongs to one and only one subset.

Furthermore, in this paper, we employ the symbol a to represent collections of subsets, such as
a signifying a collection Aj, ..., A of subsets of a finite set (the underlying set) X. The collection « is
deemed a partition if the sets Ai are mutually disjoint, and their union forms the underlying set X.
We define the following notation: if a represents the collection Aj, ..., Ax, and A is another subset, then
an A denotes the collection A1N A4, ..., Axn A. Similarly, we use & \ A as a related notation. Lastly, [Bs,
..., Bp, al signifies the collection obtained from «a by inserting sets B, ..., By into the collection. Note
that this notation is adopted from reference [22].
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2.1. Submodular Partition Functions

We will explain about submodular partition functions. The definition of a partition function and
a submodular partition function of separations is provided below:

Definition 1[21,22]. A partition function is a function that maps the set of all partitions to non-
negative integers, satisfying the condition Y([4 al]) = (a) for every partition a. In other words,
inserting an empty set into a collection does not alter the value of the partition function. A partition
function ¢ is submodular if the following holds for every two partitions [A, a] and [B, B

Y([A, a]) + (B, B 2 P([A U (X\B), anB]) +Y([B U (X\A), BnAl).

We will further assume that ([ X]) = 0 since shifting all values of a submodular partition function
by a constant does not break the property. P{{’] denote the set of partitions a of X such that i(a) <k.
The submodular partition function exhibits certain characteristics. Lemma 3 and Lemma 4, in
particular, are obviously valid, and we provide a proof for clarity. This allows us to establish that the
submodular partition function possesses a symmetric property.

Lemma 2[22]. Let i) be a submodular partition function on X and [A, a] a partition. Then ¢/([A, al) 2
Y([A, X\A]) .

Lemma 3. Let ¢ be a submodular partition function on X. Then ([A, X\ A]) = {([X\ A, A]).

Proof of Lemma 3: To prove this, we can use the submodular property of the partition function as
given by the inequality:

B([A, ) + W(B, B) > WA U (X\B), anB])+ (B U (X\A), BnA])

Let's consider two sets A and B, where B = X\ A. We will show that {([A, X\ A]) = Y([X\ A, A])
using the submodular property.

First, let a = X\A and B = A. Then, a n B=X\ANn(X\A)=X\A, and Bn A=A n A= A. Plugging
these values into the inequality, we get:

VIA, X\AD) + PIX\VA, AN 2 PIA U (X\(X\A)), X\AD + §(I(X\A) U (X\A), A])

Since X\(X\A) = A, we have:

DA, XVAD +Y(IX\A, Al) 2 G(IA, X\A]) + P(X\A, A])

Thus, the inequality becomes an equality, which means the submodular property holds, and we
have shown that {([A, X\Al) = {([X\A, Al). This proof is completed.

Lemma 4. Let i) be a submodular partition function on X. Then /(@) = 0.

Proof of Lemma 4: From the definition of a submodular partition function, we have:
Wl g al) = Y(a) for every partition a.
Now, let's consider the partition @ = X. Then we have:
w(a XD =y¢(X)
By the assumption of submodular partition functions that ¢/([X]) = 0, we get:

wlg XD=0
Which gives us the result that:
W(@)=0

This completes the proof of Lemma 4.

2.2. Loose P-Tangle

The definition of Loose P-tangle for submodular partition functions is below.
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Definition 5[22]. Let ¢ be a submodular partition function on X. A loose P«[{]-tangle is a family T of
subsets of a finite set (an underlying set) X closed under taking subsets satisfying the following three
axioms.

(P1) @ €T, {e} €T, for all e € X such that the partition [{e}, X \{e}] belongs to P].

(P2)If A1, Az, .., ApeT,CGiC Aifori=1,...,p, [Cy ..., Cp X\(C1U...UCp)] €EP[Y], then C1U. ..U
CreT.

(P3)X ¢ T.

The loose Py ]-tangle exhibits the following dual properties.

Theorem 6 [22]. Let ) be a submodular partition function on X. There is no decomposition tree
compatible with Pi[1] if and only if there is a loose Pi[1)]-tangle.

2.3. Filter of partitions

This new definition holds an equivalent relationship with Loose Pi[1y]-Tangle (see section 3). The
definition of Filter for submodular partition functions is below.

Definition 7: Let ¢ be a submodular partition function on a finite set X. An Pii]-(non-principal)
filter of partitions is a family F satisfying the following four axiom:

(F1) For alle € X, if the partition [{e}, X\ {e}] belongs to P[], then {e}¢ F,

(F2)If A1 € F, A1 © Az [As, X\(A2)] € Py, then A2 € F,

(F3)If A1, Ao, .. ,Ai € Ffori=1,...,p [X\Ay .. X\ Ay, X\(X\NA1 U ... U X\Ap)] € Pii)], then
Ain..nAy, € F,

(F4) g ¢ F.

It's important to note that a filter is classified as principal if it encompasses a singleton.

The axioms that constitute the non-principal Pdy] filter of partitions echo the conceptual
underpinnings of a Sigma-filter. The Sigma-filter, acting as a selection mechanism for specific subsets
within a sigma-algebra, plays a pivotal role in the exploration of measure and integration.
Specifically, axiom (F3) is viewed as a counterpart to one of the axioms inherent in the Sigma-filter
construct.

For reference, the definition of a Sigma-filter is provided below.

Definition 8: Let X be a set and X be a sigma-algebra of subsets of X. A sigma filter on X of X is a
collection F of subsets of X that satisfies the following properties:

(SF2)IfA € F,B € L, A C B,thenB € F,

(SF3)If A1, Az, As, ... € F thenAin..nAp € F
(SF4) @ ¢ F.

The non-principal P«[1p] filter introduced in this context can be perceived as a distinctive variant
of the Sigma-filter, integrating conditions of a Submodular partition function and non-principal
properties into its foundational definition.

Alongside its counterpart, the Sigma-ideal, both these constructs serve as vital tools in measure
theory and probability theory, with extensive research dedicated to their understanding and
application. Given the abundance of research conducted in the field of sigma-algebras, it can be
considered as one of the crucial areas of study (ex. [23-27]).

3. Cryptomorphism between Loose tangle of partitions and Filter of partitions

In this section, we demonstrate the cryptomorphism between Loose P-tangle of partitions and
Filter of partitions. The main result of this paper is presented below.
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Theorem 9. Let i) be a submodular partition function on a finite set X. T is a loose Pi/y]-tangle iff F =
{Al X\A €& T}isa Pdy]-(non-principal) filter.

Proof of Theorem 9:
We'll prove the theorem in two steps:

- First, we'll show that if T is a loose Pi/y]-tangle, then F = {A | X\A € T }isa P« ]-(non-
principal) filter.

- Secondly, we'll show that if F is a P[1]-( (non-principal) filter, then T={A | X\A & Flisa
loose P y]-tangle.

Part 1:

Assume that T is a loose Pdy]-tangle. We'll show that F={A | X\A &€ T } is a Pdy]-(non-
principal) filter.

Let's show axiom (F1). If [{e}, X\{e}] belongs to Pi[1], then by (P1) in the definition of T, we have
{e} € T.Hence, X\{e}isinF.

Now, let's show axiom (F2).Suppose A1 € F, A1 € Az and [Az, X\Az2] € Py]. Since X\ A1 €
T and X\A2 € X\Aj, by the closure of T under taking subsets and [X\Az, A:2] € Py], we have

X\A1 € T.Hence A1=X\(X\A2) € F.

Let's show axiom (F3). Suppose that A1, Az, ..,Ai € Ffori=1, .. p,and [X\Ai .. X\ Ap,
X\X\A1 U ... U X\Ap)] € Py]. By definition of F, X\Ai € T. Thus, by axiom (P2) in the
definition of T and [X\ Ay, .. . X\ Ap, X\(X\A1 U ... U X\Ap)] € P], X\A1) U .. U (X\Ap)
€ T. Therefore, by definition of F, X\ ((X\A1) U ... U (X\Ap))=Ain..NnApisinF.

Finally, let's show axiom (F4). By axiom (P3) in the definition of T, we have X & T. Therefore,
X\X=@isinF.

Thus, if T is a loose P[]-tangle, then F={A | X\A & T }is a P[{]- (non-principal) filter.

Part 2:

Now, assume that F is a P«[i]-(non-principal) filter. We'll show that T={A | X\A & F}isaloose
Pl ]-tangle.

Let's show axiom (P1). If [{fe}, X\{e}] belongs to Px/y], then by axiom (F1) in the definition of F,
we have {e} ¢ F. Hence, X\{e} ¢ T.

Let's show axiom (P2). Suppose that A1, Az, ..., Aybelong to T, G & Aifori=1, ..., p,and [Cy, ...,
Cp, X\(C1 U ... U G)] belongs to P«[{]. By definition of T, we have X\Ai € F and X\Ai & X\Ci.
Thus, by axiom (F2) in the definition of F and Lemma 2, X\C1, X\ (>, ..., X\Cp is in F. By axiom (F3)
in the definition of F, X\Cin..NnX\C,=C1 U ... U Gisin T. So axiom (P2) holds.

Finally, let's show (P3). By (F4) in the definition of F, we have @ € F. Therefore, X\ @=X £T.

Thus, if F is a P{i]- (non-principal) filter, then T={A | X\A €& F}is a loose Pk[{]-tangle.

Hence, based on parts 1 and 2, the theorem is proven, thus concluding the proof.

4. Future tasks

We will consider about single ideal [19] and linear tangle [20] using Submodular Partition
Function. Also we will discuss about ultrafilter [7,11], tangle [10,32] using Submodular Partition
Function.
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