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Abstract: Loose Tangle is a concept in graph theory that has a dual relationship with branch-width 

which is well-known graph width parameter. Ultrafilter, a fundamental notion in mathematics, is 

similarly known to have a dual relationship with branch-width when extended to a connectivity 

system (X, f). In this compact paper, we revisit and contemplate the interplay between Loose Tangle 

and Filter through the lens of a submodular partition function. 
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1. Introduction 

The investigation of graph width parameters finds extensive applications across diverse fields, 

such as matroid theory, lattice theory, theoretical computer science, game theory, network theory, 

artificial intelligence, graph theory, and discrete mathematics, as evidenced by numerous studies (for 

example, see [1–20,22,28–33]). These graph width parameters are frequently explored in conjunction 

with obstruction, contributing to a robust body of research. 

Loose tangle, an innovative concept initially brought forward in reference [1], occupies a central 

role in ascertaining whether a branch-width is at most a natural number k, where k+1 denotes the 

order of the tangle. The relevance and potential of loose tangles have further been explored in the 

context of submodular partition functions [22]. These submodular partition functions significantly 

broaden the understanding of various well-established tree decompositions of graphs. 

Furthermore, the ultrafilter, a concept well-regarded in the mathematical arena, is 

acknowledged to maintain a dual relationship with branch-width when extended over a connectivity 

system (X, f). 

In this compact and focused paper, we revisit and contemplate the interplay between Loose 

Tangle and Filter through the lens of a submodular partition function. 

2. Preliminaries 

In this section, we present the essential definitions required for this paper. Throughout the 

paper, we utilize a finite set (referred to as the underlying set) X, a set of partitions P, and natural 

numbers i, k, and p. It is important to note that a partition involves dividing the elements of a set into 

non-empty, distinct subsets, ensuring that each element belongs to one and only one subset. 

Furthermore, in this paper, we employ the symbol α to represent collections of subsets, such as 

α signifying a collection A1, ..., Ak of subsets of a finite set (the underlying set) X. The collection α is 

deemed a partition if the sets Ai are mutually disjoint, and their union forms the underlying set X. 

We define the following notation: if α represents the collection A1, ..., Ak, and A is another subset, then 

α ∩ A denotes the collection A1 ∩ A, ..., Ak ∩ A. Similarly, we use α \ A as a related notation. Lastly, [B1, 

..., Bp, α] signifies the collection obtained from α by inserting sets B1, ..., Bp into the collection. Note 

that this notation is adopted from reference [22]. 
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2.1. Submodular Partition Functions 

We will explain about submodular partition functions. The definition of a partition function and 

a submodular partition function of separations is provided below: 

Definition 1[21,22]. A partition function is a function that maps the set of all partitions to non-

negative integers, satisfying the condition ψ([∅, α]) = ψ(α) for every partition α. In other words, 

inserting an empty set into a collection does not alter the value of the partition function. A partition 

function ψ is submodular if the following holds for every two partitions [A, α] and [B, β]:  

ψ([A, α]) + ψ([B, β]) ≥ ψ([A ∪ (X\B), α ∩ B]) + ψ([B ∪ (X\A), β ∩ A]). 

We will further assume that ψ([X]) = 0 since shifting all values of a submodular partition function 

by a constant does not break the property. Pk[ψ] denote the set of partitions α of X such that ψ(α) ≤ k.  

The submodular partition function exhibits certain characteristics. Lemma 3 and Lemma 4, in 

particular, are obviously valid, and we provide a proof for clarity. This allows us to establish that the 

submodular partition function possesses a symmetric property. 

Lemma 2[22]. Let ψ be a submodular partition function on X and [A, α] a partition. Then ψ([A, α]) ≥ 

ψ([A, X\A]) . 

Lemma 3. Let ψ be a submodular partition function on X. Then ψ([A, X\A]) = ψ([X\A, A]). 

Proof of Lemma 3: To prove this, we can use the submodular property of the partition function as 

given by the inequality: 

ψ([A, α]) + ψ([B, β]) ≥ ψ([A ∪ (X\B), α ∩ B]) + ψ([B ∪ (X\A), β ∩ A]) 

Let's consider two sets A and B, where B = X\A. We will show that ψ([A, X\A]) = ψ([X\A, A]) 

using the submodular property. 

First, let α = X\A and β = A. Then, α ∩ B = X\A ∩ (X\A) = X\A, and β ∩ A = A ∩ A = A. Plugging 

these values into the inequality, we get: 

ψ([A, X\A]) + ψ([X\A, A]) ≥ ψ([A ∪ (X\(X\A)), X\A]) + ψ([(X\A) ∪ (X\A), A]) 

Since X\(X\A) = A, we have: 

ψ([A, X\A]) + ψ([X\A, A]) ≥ ψ([A, X\A]) + ψ([X\A, A]) 

Thus, the inequality becomes an equality, which means the submodular property holds, and we 

have shown that ψ([A, X\A]) = ψ([X\A, A]). This proof is completed. 

Lemma 4. Let ψ be a submodular partition function on X. Then ψ(∅) = 0. 

Proof of Lemma 4: From the definition of a submodular partition function, we have: 

ψ([∅, α]) = ψ(α) for every partition α. 

Now, let's consider the partition α = X. Then we have: 

ψ([∅, X]) = ψ(X) 

By the assumption of submodular partition functions that ψ([X]) = 0, we get: 

ψ([∅, X]) = 0 

Which gives us the result that: 

ψ(∅) = 0 

This completes the proof of Lemma 4. 

2.2. Loose P-Tangle  

The definition of Loose P-tangle for submodular partition functions is below.  
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Definition 5[22]. Let ψ be a submodular partition function on X. A loose Pk[ψ]-tangle is a family T of 

subsets of a finite set (an underlying set) X closed under taking subsets satisfying the following three 

axioms.  

(P1) ∅ ∈ T, {e} ∈ T, for all e ∈ X such that the partition [{e}, X\{e}] belongs to Pk[ψ].  

(P2) If A1, A2, . . ., Ap ∈ T , Ci ⊆ Ai for i = 1, . . ., p, [C1, . . ., Cp, X\(C1 ∪ . . . ∪ Cp)] ∈ Pk[ψ], then C1 ∪ . . . ∪ 

Cp ∈ T.  

(P3) X ∉ T. 

The loose Pk[ψ]-tangle exhibits the following dual properties. 

Theorem 6 [22]. Let ψ be a submodular partition function on X. There is no decomposition tree 

compatible with Pk[ψ] if and only if there is a loose Pk[ψ]-tangle. 

2.3. Filter of partitions 

This new definition holds an equivalent relationship with Loose Pk[ψ]-Tangle (see section 3). The 

definition of Filter for submodular partition functions is below. 

Definition 7: Let ψ be a submodular partition function on a finite set X. An Pk[ψ]-(non-principal) 

filter of partitions is a family F satisfying the following four axiom: 

(F1) For all e ∈ X, if the partition [{e}, X\{e}] belongs to Pk[ψ], then {e}∉ F, 

(F2) If A1 ∈ F, A1 ⊆ A2, [A2, X\(A2)] ∈ Pk[ψ], then A2 ∈ F, 

(F3) If A1, A2, . . .,Ai ∈ F for i = 1, . . ., p, [X\A1, . . .,X\ Ap, X\(X\A1 ∪ . . . ∪ X\Ap)] ∈ Pk[ψ], then 

A1 ∩ ... ∩ Ap ∈ F, 

(F4) ∅ ∉ F. 

It's important to note that a filter is classified as principal if it encompasses a singleton.  

The axioms that constitute the non-principal Pk[ψ] filter of partitions echo the conceptual 

underpinnings of a Sigma-filter. The Sigma-filter, acting as a selection mechanism for specific subsets 

within a sigma-algebra, plays a pivotal role in the exploration of measure and integration. 

Specifically, axiom (F3) is viewed as a counterpart to one of the axioms inherent in the Sigma-filter 

construct.  

For reference, the definition of a Sigma-filter is provided below. 

Definition 8: Let X be a set and Σ be a sigma-algebra of subsets of X. A sigma filter on X of Σ is a 

collection F of subsets of X that satisfies the following properties: 

(SF2) If A ∈ F, B ∈ Σ, A ⊆ B, then B ∈ F, 

(SF3) If A₁, A₂, A₃, ... ∈ F, then A1 ∩ ... ∩ Ap ∈ F 

(SF4) ∅ ∉ F. 

The non-principal Pk[ψ] filter introduced in this context can be perceived as a distinctive variant 

of the Sigma-filter, integrating conditions of a Submodular partition function and non-principal 

properties into its foundational definition. 

Alongside its counterpart, the Sigma-ideal, both these constructs serve as vital tools in measure 

theory and probability theory, with extensive research dedicated to their understanding and 

application. Given the abundance of research conducted in the field of sigma-algebras, it can be 

considered as one of the crucial areas of study (ex. [23–27]). 

3. Cryptomorphism between Loose tangle of partitions and Filter of partitions 

In this section, we demonstrate the cryptomorphism between Loose P-tangle of partitions and 

Filter of partitions. The main result of this paper is presented below. 
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Theorem 9. Let ψ be a submodular partition function on a finite set X. T is a loose Pk[ψ]-tangle iff F = 

{A | X\A ∈ T } is a Pk[ψ]-(non-principal) filter. 

Proof of Theorem 9: 

We'll prove the theorem in two steps: 

- First, we'll show that if T is a loose Pk[ψ]-tangle, then F = {A | X\A ∈ T } is a Pk[ψ]-(non-

principal) filter. 

- Secondly, we'll show that if F is a Pk[ψ]-( (non-principal) filter, then T = {A | X\A ∈ F} is a 

loose Pk[ψ]-tangle. 

Part 1: 

Assume that T is a loose Pk[ψ]-tangle. We'll show that F = {A | X\A ∈ T } is a Pk[ψ]-(non-

principal) filter. 

Let's show axiom (F1). If [{e}, X\{e}] belongs to Pk[ψ], then by (P1) in the definition of T, we have 

{e} ∈ T. Hence, X\{e} is in F. 

Now, let's show axiom (F2).Suppose A1 ∈ F, A1 ⊆ A2, and [A2, X\A2] ∈ Pk[ψ]. Since X\A1 ∈ 

T and X\A2 ⊆ X\A1, by the closure of T under taking subsets and [X\A2, A2] ∈ Pk[ψ], we have 

X\A1 ∈ T. Hence A1 = X\(X\A2) ∈ F.  

Let's show axiom (F3). Suppose that A1, A2, ...,Ai ∈ F for i = 1, ..., p, and  [X\A1, . . .,X\ Ap, 

X\(X\A1 ∪ . . . ∪ X\Ap)] ∈ Pk[ψ]. By definition of F, X\Ai ∈ T. Thus, by axiom (P2) in the 

definition of T and [X\A1, . . .,X\ Ap, X\(X\A1 ∪ . . . ∪ X\Ap)] ∈ Pk[ψ], (X\A1) ∪ ... ∪ (X\Ap) 

∈ T. Therefore, by definition of F, X\((X\A1) ∪ ... ∪ (X\Ap)) = A1 ∩ ... ∩ Ap is in F. 

Finally, let's show axiom (F4). By axiom (P3) in the definition of T, we have X ∉ T. Therefore, 

X\X = ∅ is in F. 

Thus, if T is a loose Pk[ψ]-tangle, then F = {A | X\A ∈ T } is a Pk[ψ]- (non-principal) filter. 

Part 2: 

Now, assume that F is a Pk[ψ]-(non-principal) filter. We'll show that T = {A | X\A ∈ F} is a loose 

Pk[ψ]-tangle. 

Let's show axiom (P1). If [{e}, X\{e}] belongs to Pk[ψ], then by axiom (F1) in the definition of F, 

we have {e} ∉ F. Hence, X\{e} ∉ T. 

Let's show axiom (P2). Suppose that A1, A2, ..., Ap belong to T, Ci ⊆ Ai for i = 1, ..., p, and [C1, ..., 

Cp, X\(C1 ∪ ... ∪ Cp)] belongs to Pk[ψ]. By definition of T, we have X\Ai ∈ F and X\Ai ⊆ X\Ci. 

Thus, by axiom (F2) in the definition of F and Lemma 2, X\C1, X\C2, …, X\Cp is in F. By axiom (F3) 

in the definition of F, X\C1 ∩ ... ∩ X\Cp = C1 ∪ ... ∪ Cp is in T. So axiom (P2) holds. 

Finally, let's show (P3). By (F4) in the definition of F, we have ∅ ∉ F. Therefore, X\∅ = X ∉ T. 

Thus, if F is a Pk[ψ]- (non-principal) filter, then T = {A | X\A ∈ F} is a loose Pk[ψ]-tangle. 

Hence, based on parts 1 and 2, the theorem is proven, thus concluding the proof. 

4. Future tasks 

We will consider about single ideal [19] and linear tangle [20] using Submodular Partition 

Function. Also we will discuss about ultrafilter [7,11], tangle [10,32] using Submodular Partition 

Function. 

Acknowledgements: I humbly express my sincere gratitude to all those who have extended their invaluable 

support, enabling me to successfully accomplish this paper. 
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