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Abstract. Symmetry concepts in parametrized dynamical systems may reduce the number of
external parameters by a suitable normalization prescription. If, under the action of a symmetry
group G, parameter space A becomes a (locally) trivial principal bundle, A ∼= A/G×G, then the
normalized dynamics only depends on the quotient A/G. In this way, the dynamics of fractional
variables in homogeneous epidemic SI(R)S models, with standard incidence, absence of R-
susceptibility and compartment independent birth and death rates, turns out to be isomorphic
to (a marginally extended version of) Hethcote’s classic endemic model, first presented in 1973.
The paper studies a 10-parameter master model with constant and I-linear vaccination rates,
vertical transmission and a vaccination rate for susceptible newborns. As recently shown by the
author, all demographic parameters are redundant. After adjusting time scale, the remaining
5-parameter model admits a 3-dimensional abelian scaling symmetry. By normalization we end
up with Hethcote’s extended 2-parameter model. Thus, in view of symmetry concepts, reproving
theorems on endemic bifurcation and stability in such models becomes needless.

1. Introduction

The classic SIR model was introduced by Kermack and McKendrick in 1927 [25] as one of
the first models in mathematical epidemiology. The model divides a population into three com-
partments with fractional sizes S (Susceptibles), I (Infectious) and R (Recovered), such that
S + I + R = 1. The flow diagram between compartments, as given in Figure 1, leads to the
dynamical system

Ṡ = −βSI, İ = βSI − γI, Ṙ = γI. (1.1)

Figure 1. Flow diagram of the SIR model.

Here, γ denotes the recovery rate and β the effective contact rate (i.e., the number of con-
tacts/time leading to infection of a susceptible, given the contacted was infectious). Members
of R are supposed to be immune forever. Due to (1.1), S decreases monotonically, eventually
causing βS < γ and İ < 0. At the end, the disease dies out, I∞ = 0, and one stays with a
nonzero final size S∞ > 0, thus providing a model for Herd immunity.

To construct models also featuring endemic, scenarios one needs enough supply of susceptibles
to keep the incidence βSI ongoing above a positive threshold. The literature discusses three basic
methods to achieve this, see Figure 2.
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2 SYMMETRY AND PARAMETER REDUCTION IN SI(R)S MODELS

• Heathcote’s classic endemic model adds balanced birth and death rates µ to the SIR model
and assumes all newborns are susceptible. This leads to a bifurcation from a stable disease-free
equilibrium point to a stable endemic scenario when raising the basic reproduction number
r0 = β/(γR + µ) above one [19, 21, 23, 22].

• The SIRS model adds an immunity waning flow, αRR from R to S, to the SIR model, leading
to the same result, with r0 = β/γR

• The SIS model considers recovery without immunity, i.e., a recovery flow γSI from I to S,
while putting R = 0. Again, this leads to the same result, with r0 = β/γS .

a) Heathcote’s model

b) SIRS model c) SIS model

Figure 2. Standard models featuring endemic equilibria.

Since the original work by Hethcote the literature on endemic bifurcation in SI(R)S-type mod-
els is vast. For a comprehensive and self-contained overview of the history, methods and results
in mathematical epidemiology see the textbook by M. Martcheva [30], wherein an extensive list
of references to original papers is also given. One should also mention that SIR-type models
always neglect incubation times, so in this paper I will not look at SEIR models taking care of
that.

This paper is based on the idea that, when adding more parameters to standard models, reproving
theorems may become superfluous, if instead there is a symmetry operation “turning parameter
space north”, i.e. mapping the seemingly more complicated model to the simpler one. Obvious
examples would be diagonalizing the matrix A in a linear system ẋ = Ax or rotating a constant
external (say magnetic) force field B = (B1, B2, B3) in a system of radially interacting particles
such that gB = (0, 0, |B|), g ∈ SO(3). In SI(R)S-type models the simplest example has been
proposed in [34], showing that, under quite general conditions, demographic parameters are
explicitly redundant when looking at fractional variables (so, this may be viewed as a translation
symmetry in parameter space). Applying this, for example, to a recent paper on backward
bifurcation in a variable population SIRS model with R-susceptibility by [3], many results of
that paper already follow from earlier results in [28] and [29].

Going one step ahead, in this paper I will analyze parameter symmetries in a homogeneous
10-parameter SI(R)S ≡ combined SIRS/SIS model with standard incidence, four demographic
parameters and a continuous vaccination flow from S to R. Motivated by common observations
in the Covid-19 pandemic, I will additionally consider a vaccination rate being proportional to
I. This models diminishing willingness to get vaccinated when public data indicate decreasing
prevalence. Using redundancy of birth and death rates and three scaling transformations, we
will see that such an elaborated model in fact still boils down to a marginally extended version
of Hethcotes classic endemic model. This generalizes earlier results in [33]. As a particular
consequence, an I-linear vaccination rate may always be transformed to zero. In summary, by
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SYMMETRY AND PARAMETER REDUCTION IN SI(R)S MODELS 3

symmetry arguments reproving theorems on endemic bifurcation and stability in such models
becomes needless.

The plan of this paper is as follows. Section 2 gives a self contained review on Hethcote’s
endemic model, thereby introducing basic terminology and notation. To prepare the setting
for symmetry operations, I will look at a mathematically slightly extended version, by allowing
also negative values of S and possibly negative recovery rates γR > −µ. Standard techniques
for proving endemic bifurcation and stability immediately generalize to this setting. Identifying
γ := γR + µ > 0 as a pure time scale, this model essentially depends on just two parameters.

Section 3 introduces the 10-parameter SI(R)S model. After removing redundant demographic
parameters and performing two more transformation steps, we will see that for a wide range
of parameters a ∈ A⋆, including all epidemiologically interesting scenarios, this model actually
becomes isomorphic to the extended 2-parameter Hethcote model. In absence of immunity
waning and constant vaccination, but still with an I-linear vaccination and two recovery flows
from I to R and S, respectively, the model even becomes isomorphic to the classic SIR model,
see Subsection 3.5.

Section 4 provides a group theoretical approach to explain this scenario. There is a coordinate
free concept of parameter symmetry as a group G acting on phase×parameter space, P × A,
projecting to an action of G on A, and leaving the dynamical system form invariant. In our
SI(R)S model, choosing suitable coordinates in P × A, the group G is easily identified as a
composition of scaling transformations of, respectively, S, I and x− 1, x being the replacement
number. The action of G on A leaves the above sub-range A⋆ ⊂ A invariant and turns A into
a principal G-bundle. Moreover, A⋆ ∼= A⋆/G × G as trivial principal bundles, and any such
trivialization induces an isomorphism mapping the original system with parameter space A⋆ to
an equivalent system with reduced parameter space A⋆/G. In this way, the 2-parameter space
of the extended Hethcote model is identified as the quotient A⋆/G. We also have a “gauge fixing
result” result, showing that any parameter configuration a ∈ A⋆ is G-equivalent to a configuration
a′ ∈ Abio, where Abio ⊂ A denotes the subset of epidemiologically admissible parameters.

Appendix A relates the Korobeinikov-Wake SIRS model in [27] to the present formulation in
Section 3, showing that without additional parameter constraints their model may possibly lead
to non-physical equilibrium states, S∗ > 1. Appendix B provides a Hamiltonian approach to the
”quasi-SIR case" in Section 3.5 and Appendix C shortly describes the exceptional case of a SIS
model with I-linear vaccination not covered within the main setting.

2. Hethcote’s endemic model revisited

In this Section we introduce notation and terminology and shortly review Hethcote’s classic
results [19, 21, 23, 22]. Replacing R = 1 − S − I, Hethcote’s model in Fig. 2 leads to the
dynamical system

Ṡ = −βSI + µ(1− S), İ = βSI − (γR + µ)I

Introducing dimensionless variables
γ := γR + µ r0 := β/γ a := µ/γ

x := r0S y := r0I τ := γt
(2.1)

we get
γ−1ẋ = −xy + a(r0 − x) ,

γ−1ẏ = (x− 1)y .
(2.2)

Here, r0 is the basic reproduction number (also called contact number by Hethcote), i.e. the
average number of new cases produced by one infected in a totally susceptible population, and
x is the effective reproduction number (also called replacement number by Hethcote), i.e. the
average number of new cases produced by one infected at time t. More generally, the replacement
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4 SYMMETRY AND PARAMETER REDUCTION IN SI(R)S MODELS

number x could be defined as the ratio inflow/outflow at the I-compartment, making the second
equation in (2.2) universal by definition. In particular, endemic equilibria always satisfy x = 1.
Looking at domains of definition, Eqs. (2.1) imply

(x, y) ∈ R2
≥0 , x+ y ≤ r0 , 0 ≤ a < 1 , r0 > 0 .

Also, γ > 0 only sets time scale, i.e. without loss one could choose γ = 1 and use τ as a rescaled
time variable. We now slightly extend the above restrictions by using the

Definition 2.1. By the extended Hethcote model we mean the dynamical system (2.2) on phase
space P = {(x, y) ∈ R × R≥0} with parameters γ > 0, a > 0, r0 ∈ R.

Hethcote’s original methods immediately apply to this extended version. First note

Lemma 2.2. For any initial condition p0 ∈ P the forward flow of the system (2.2) stays bounded.

Proof. Let x− ≤ min{0, r0} and x+ ≥ max{0, r0, ar0+(1−a)x−} and denote T (x−, x+) ⊂ P the
triangle with corners p◁ = (x−, 0), p▷ = (x+, 0) and p△ = (x−, x+ − x−). Since given p0 ∈ P
we can always choose x± as above such that p0 ∈ T (x−, x+), it is enough to show that T (x−, x+)
is forward invariant. Since obviously y = 0 ⇒ ẏ = 0 and x = x− ⇒ ẋ ≥ 0 we are left to show
that on the diagonal 0 ≤ y = x+ − x ≤ x+ − x− we have ẋ + ẏ ≤ 0. Assuming a ≤ 1 we get
ẋ+ẏ = a(r0−x+)+(a−1)y ≤ 0. If instead a > 1 then ẋ+ẏ ≤ a(r0−x+)+(a−1)(x+−x−) ≤ 0. □

Next, using y−1 as a Dulac function as in [21, 23], one immediately checks ∂x(ẋ/y)+∂y(ẏ/y) =
−(1+a/y) < 0, and so, by the Bendixson–Dulac theorem, in P there exist no periodic solutions,
homoclinic loops or oriented phase polygons of the dynamical system (2.2). Thus we arrive at

Theorem 2.3 (Hethcote 1973 [19]). For any initial conditon p0 = (x0, y0) ∈ P the forward
orbit ϕt(p0) of the dynamical system (2.2) exists for all t > 0. If r0 ≤ 1 or y0 = 0, then
limt→∞ ϕt(p0) = (r0, 0). Otherwise limt→∞ ϕt(p0) = (1, a(r0 − 1)).

Proof. Existence of ϕt for all t > 0 follows from boundedness. If y0 = 0, then (2.2) can immedi-
ately be integrated yielding ϕt(x0, 0) = (r0 + (x0 − r0)e

−at, 0). If r0 ≤ 1, then the disease free
equilibrium p∗dfe := (r0, 0) is the only equilibrium point (EP) in P and the statement follows by
absence of periodic solutions and the Poincaré-Bendixson Theorem. If r0 > 1, then there also
exists the endemic EP p∗end := (1, a(r0 − 1)) ∈ P and, by the same argument, the omega limit
set of {ϕt(p0)} must consist of one of the two EPs. If y0 > 0 it must be p∗end, either by arguing
that p∗dfe is a saddle point with attractive line {y = 0} (calculate the Jacobian), or by using that

L(x, y) := y exp

[
y + (x− 1)2/2

a(1− r0)

]
provides a Lyapunov function satisfying L(x, 0) = 0, L(x0, y0) > 0 and

γ−1L̇ =
(a+ y)(x− 1)2

r0 − 1
L ≥ 0.

□

To study the asymptotic behavior at these equilibria one has to compute eigenvalues and
slopes of eigenvectors of the Jacobian. For example, as already noted by Hethcote in [21, 23, 22],
see also chapter 3.4-3.5 in the text book by M. Martcheva [30], there is a sub-range a < 1 and
1 < r− < r0 < r+, where the endemic equilibrium becomes spiral and hence this model shows
endemic oscillations. A complete detailed analysis of possible asymptotic scenarios has also been
given in [33].
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SYMMETRY AND PARAMETER REDUCTION IN SI(R)S MODELS 5

3. The 10-parameter SI(R)S model

This section introduces a homogeneous 10-parameter SI(R)S-model (i.e. mixed SIRS/SIS
model) with standard incidence and flow diagram as depicted in Fig. 3. The model describes
the infection dynamics of three compartments with populations P = (S,R, I) ∈ R3

≥0 and total
population N = S + I + R > 0. Members of I are infectious, members of S are susceptible
(not immune) and members of R are immune due to recovery or vaccination. To model widely
experienced social behavior, Fig. 3 introduces the parameter θ to the classic setting. It describes
the willingness to get vaccinated by assuming a vaccination rate θI proportional to the prevalence
I := I/N . As we will see, such an extended model can always be transformed to the standard
case θ = 0 (Corollary 4.3).

Figure 3. Flow diagram of the SI(R)S model. B = νN − pνI denotes the number of
not infected newborns per unit of time.

Parameters in this model are
αS : Constant vaccination rate.
θ : Willingness to get vaccinated given the actual prevalence I = I/N .
αR : Immunity waning rate.
β : Effective contact rate of a susceptible from S.
γS , γR, γ : Recovery rates for I → S and I → R, respectively. γ := γS + γR.
µ : Mortality rate, assumed to be compartment independent.
ν : Rate of newborns, assumed to be compartment independent.

Newborns from S and R are not supposed to be infected.
p : Probability of a newborn from I to be infected.
B : Sum of not infected newborns, B = νN − pνI.
qS , qR : Split ratio of not infected newborns landing in S and R, qS + qR = 1. So,

qR is the vaccinated portion of not infected newborns.
Epidemiologically all parameters are assumed nonnegative. Also, p ≤ 1, qS + qR = 1, β > 0 and
γ > 0. So in total we have 10 parameters, four of which, (ν, µ, p, qR), are purely demographic.
Subcases of this model with constant population and θ = 0 have been analyzed e.g. in [27, 36].
Of course, Hethcote’s classic endemic model is also a special subcase, which has been reinvented
several times, see e.g. [40, 7, 4].

At this place one should mention that there are various models in the literature treating
vaccination and loss of immunity differently. For example, one might introduce a separate com-
partment V to distinguish vaccinated from recovered individuals (see, e.g. [1]). Time dependent
vaccination rates have also been studied in [39] by applying optimal control methods and in [26]
by letting the vaccination activity be functionally dependent on the history of the prevalence
via the Preisach hysteresis operator. Following a similar philosophy, in [12, 10] the authors use
an information variable M to model how information on current and past states of the disease
influences decisions in families whether to vaccinate or not their children.
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6 SYMMETRY AND PARAMETER REDUCTION IN SI(R)S MODELS

Partial and/or waning immunity may also be modeled by introducing a diminished transmis-
sion rate directly from R to I (or V to I). Such models are well known to lead to a so-called
backward bifurcation, see e.g. [15, 16, 28, 1, 3, 2]. In fact, the methods of this paper will generalize
to such a setting, see [35].

I am now going to show that the full 10-parameter model in Fig. 3 in fact boils down to the
extended Hethcote model as defined in Definition 2.1.

3.1. Redundancy of birth and death rates. In a first step, we follow the strategy of [34],
showing that in the dynamics of fractional variables p := N−1P ≡ (S,R, I) the four demographic
parameters (µ, ν, p, qS = 1− qR) become redundant. We have Ṅ = (ν − µ)N and

ṗ = Lp+Mp+Λ(p) + (µ− ν)p , (3.1)

L :=

qSν − µ qSν qS(1− p)ν
qRν qRν − µ qR(1− p)ν
0 0 pν − µ

 (3.2)

M :=

−αS αR γS
αS −αR γR
0 0 −γ

 , Λ(p) :=

−(β + θ)SI
θSI
βSI

 (3.3)

Now, demographic parameters become redundant by putting M̃ij :=Mij + Lij + (µ− ν)δij , i.e.

α̃S := αS + qRν , γ̃S := γS + qS(1− pI)ν ,
α̃R := αR + qSν , γ̃R := γR + qR(1− pI)ν .

(3.4)

In this way, the number of effective parameters reduces from ten to six. So, from now on, we put
without loss µ = ν = 0 and omit the tilde above parameters. Again, it is convenient to introduce
dimensionless parameters. Put γ := γR + γS and

α1 := αS/γ, γ1 := γS/γ, β1 := β/γ,

α2 := αR/γ, γ2 := γR/γ, θ1 := θ/γ.

Note that β1 ≡ r0. The new notation indicates a possible generalization to models where also R
is susceptible [35]. With this notation the dynamics takes the form

γ−1ṗ = Fa(p) :=Mp+Λ(p) (3.5)

M :=

−α1 α2 γ1
α1 −α2 γ2
0 0 −1

 , Λ(p) := SI

−(β1 + θ1)
θ1
β1

 . (3.6)

We start with an extended parameter space by putting a := α1+α2, β+ := β1+θ1 and requiring
a := (α1, α2, γ1, γ2, β1, β+) ∈ A. Here we put

A := {a ∈ R4 × R2
+ | a > 0 ∧ γ1 + γ2 = 1}, (3.7)

Abio := A ∩ {αi ≥ 0 ∧ γi ≥ 0 ∧ β+ ≥ β1}, (3.8)
Abio,0 := Abio ∩ {θ1 = 0}, (3.9)

while γ > 0 is understood throughout. So, Abio denotes the epidemiologically admissible subset
of parameters. Also, we start with defining the system (3.5) on the extended phase space p ∈ P
given by the half plane

P := {p ≡ (S,R, I) ∈ R2 × R≥0 | S +R+ I = 1}. (3.10)

Clearly, P stays invariant under the dynamics (3.5) for all a ∈ A. Epidemiologically the system
is considered for initial conditions in the physical triangle Tphys ⊂ P

Tphys := P ∩ R3
≥0. (3.11)
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SYMMETRY AND PARAMETER REDUCTION IN SI(R)S MODELS 7

It is straightforward to check that for all a ∈ Abio this triangle stays forward invariant under the
dynamics (3.5), i.e. if p ∈ Tphys and pi = 0 then ṗi ≥ 0.1

Remark 3.1. The “quasi-SIR limit” α1 = α2 = 0 becomes an integrable Hamiltonian model, see
Section 3.5 and Appendix B.

3.2. Dynamics of the replacement number. From now on we substitute R = 1−S− I and
drop the variable R. Hence P = {(S, I) ∈ R×R≥0} and Tphys = {(S, I) ∈ R2

≥0 | S + I ≤ 1} ⊂ P.
In a second step we now proceed similar as in [33] and define

x := β1S, y := β+I,

R0 := β1
α2

a
≡ r0

α2

a
, ρ := (α2 − γ1)

β1
β+

.
(3.12)

Then (x, y) ∈ P and the equations of motion (3.5) are equivalent to

γ−1ẋ = −xy − ρy + a(R0 − x),

γ−1ẏ = (x− 1)y.
(3.13)

Here, x is again the replacement number and R0 is the well known vaccination reduced repro-
duction number [13]. Note that for a ∈ Abio the definitions imply 0 ≤ R0 ≤ r0 and −1 ≤ ρ ≤ a.
Also note that choosing the variables (x, y) has further reduced the number of free parameters
from six to four, i.e. the dynamics in Eq. (3.13) is independent of β1 and β+. Instead, these
parameters now fix the image of the physical triangle Tphys in xy-space.

Tphys(β1, β+) := {(x, y) ∈ R2
≥0 | x/β1 + y/β+ ≤ 1}, 0 < β1 ≤ β+. (3.14)

So, given (a,R0, ρ) and the position of Tphys ⊂ P, one recovers a ∈ A. More precisely, we have

Lemma 3.2. Put b := (α2 − γ1)β1 ≡ β+ρ and B := (R+ × R2)× R2
+. The map

f : A ∋ a 7→ (a,R0, b)× (β1, β+) ∈ B

is bijective with inverse f−1 given by

α1 = a− aR0/β1, α2 = aR0/β1, γ1 = (aR0 − b)/β1, γ2 = 1− γ1. (3.15)

Moreover,
f(Abio) = B ∩ {0 ≤ R0 ≤ β1 ≤ β+ ∧ aR0 − β1 ≤ b ≤ aR0}. (3.16)

Proof. Eq. (3.15) is straightforward and the conditions in the r.h.s. of (3.16) are equivalent to,
respectively, 0 ≤ α2 ≤ a, θ1 ≥ 0 and 0 ≤ γ1 ≤ 1. □

Lemma 3.2 motivates the following definition.

Definition 3.3. Let a > 0, 0 ≤ R0 and −1 ≤ ρ ≤ a be given. Then (β1, β+), respectively
triangles Tphys(β1, β+), are called admissible, if (a,R0, β+ρ)× (β1, β+) ∈ f(Abio).

Since for a ∈ Abio physical triangles are forward invariant under the dynamics (3.5), we conclude

Corollary 3.4. Admissible triangles Tphys(β1, β+) are forward invariant under the dynamics
(3.13).

Remark 3.5. I should remark that Eqs. (3.13) have been obtain in equivalent form by Ko-
robeinikov and Wake in [27], with ρ ≥ 0, but without the upper bound ρ ≤ a. This is due to
the fact that the authors consider possibly unbalanced birth and death rates, µ ̸= ν, but still
require the total population to be time independent. With other words, the recovered/immune
compartment is forced to obey Ṙ = −Ṡ − İ anyhow. For µ ̸= ν, this leads to a non-constant and
S- and I-dependent mortality rate in the R-compartment. Nevertheless, this system transforms
to the present setting, with a ∈ A, but possibly with α1 and γ2 negative, so a ̸∈ Abio, see

1More generally it can be shown that Tphys is forward invariant iff a ∈ A ∩ {θ1 ≥ −α1 − γ2 − 2
√
α1γ2}.
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8 SYMMETRY AND PARAMETER REDUCTION IN SI(R)S MODELS

Appendix A for the details. The fact that global stability results as in [27] may also hold outside
of Abio will be covered by Theorem 3.9 below.

3.3. Equilibrium states. From the dynamics (3.13) we immediately read off the solutions of
ẋ = ẏ = 0, yielding a disease free equilibrium (x∗dfe, y

∗
dfe) and an endemic equilibrium (x∗end, y

∗
end),

(x∗dfe, y
∗
dfe) = (R0, 0), (x∗end, y

∗
end) = (1, a(R0 − 1)/(ρ+ 1)), (3.17)

where the endemic equilibrium requires R0 > 1 and ρ > −1. In terms of original variables and
parameters this gives

(S∗
dfe, I

∗
dfe) =

(
R0

r0
, 0

)
=

(
αR

αS + αR
, 0

)
, (3.18)

(S∗
end, I

∗
end) =

(
1

r0
,

αRr0
(αR + γR)r0 + θ

(1− 1

R0
)

)
=

(
1

r0
,
(r0 − 1)αR − αS

(αR + γR)r0 + θ

)
. (3.19)

This generalizes well known results in the literature [19, 21, 23, 22, 27, 36, 40, 7, 4] to the case
of our present 10-parameter model.

Remark 3.6. As already noted, for a ∈ Abio we have −1 ≤ ρ ≡ b/β+ ≤ a, where the boundary
case ρ = −1 is equivalent to α2 = γ2 = θ1 = 0. In particular, it also requires R0 = 0 and
β1 = β+. Epidemiologically, this case is uninteresting and excluded in what follows. It will be
discussed shortly in Appendix C.

Remark 3.7. Typically, vaccination diminishes the reproduction number R0 as in Eq. (3.12),
where ∂R0/∂α1 < 0. This allows quite generally to determine lower bounds on vaccination rates
to achieve herd immunity by requiring R0 ≤ 1, see e.g. the text book [30]. In contrast, here
R0 is independent of the I-linear vaccination rate θ1. In fact, θ1 just diminishes I∗end, see (3.19),
and increases the recovered/immune fraction accordingly. But it doesn’t influence the value of
S∗
end, nor the disease free equilibrium, nor the endemic threshold R0 = 1 ⇔ r0 = 1 + α1/α2. In

fact, as we will see in Corollary 4.3 in Section 4.2, by a scaling transformation (S, I) 7→ (λS, I),
λ = β/(β+θ), the SI(R)S model (3.5) with parameters in a ∈ Abio and θ > 0 maps isomorphically
to a system with appropriately transformed parameters a′ ∈ Abio,0, i.e. θ′ = 0, while keeping R0

invariant.

3.4. Transformation to the extended Hethcote model. In the third step, we now apply a
rescaling transformation of x− 1 as first introduced in [33]. This will show that for ρ > −1 the
system (3.13) is isomorphic to an extended Hethcote model as defined in Definition 2.1. Hence,
to prove stability properties for the above SI(R)S model equilibria, we will just need to quote
Hethcote’s results in the formulation of Theorem 2.3.

Proposition 3.8 (Nill 2022 [33]). Consider the system (3.13) on phase space P and for param-
eters γ > 0, ρ > −1, a ≥ 0 and R0 ∈ R. Define rescaled variables and parameters by

x̄− 1 =
x− 1

ρ+ 1
, ȳ =

y

ρ+ 1
, ā =

a

ρ+ 1
, R̄0 − 1 =

R0 − 1

ρ+ 1
, γ̄ = (ρ+ 1)γ. (3.20)

Then (x̄, ȳ, γ̄, ā, R̄0) ∈ P × R2
+ × R and the system (3.13) is isomorphic to the extended Hethcote

model (2.2).
γ̄−1 ˙̄x = −x̄ȳ + ā(R̄0 − x̄), γ̄−1 ˙̄y = (x̄− 1)ȳ. (3.21)

Proof. By straightforward calculation. □

Since sign(R̄0 − 1) = sign(R0 − 1) and sign(x̄ − 1) = sign(x − 1), the results of Theorem 2.3
now immediately translate to our original model. In doing so, due to the global boundedness
property in Lemma 2.2, we no longer have to restrict ourselves to parameter constraints a ∈ Abio

to guarantee forward invariance of physical triangles. The following more general definition of
A⋆ will do.
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Theorem 3.9. Consider the SI(R)S model (3.5) on phase space P (3.10) with parameters

a ∈ A⋆ := A ∩ {ρ > −1} ≡ A ∩ {θ1/β1 > −α2 − γ2}. (3.22)

i) For any initial conditon p0 = (S0, I0) ∈ P the forward orbit ϕt(p0) exists for all t > 0. If
R0 ≤ 1 or I0 = 0, then limt→∞ ϕt(p0) = (S∗

dfe, I
∗
dfe). Otherwise limt→∞ ϕt(p0) = (S∗

end, I
∗
end).

ii) If a ∈ A⋆ ∩ {αi ≥ 0} then (S∗
dfe, I

∗
dfe) ∈ Tphys.

iii) If a ∈ A⋆ ∩ Abio and R0 > 1, then (S∗
end, I

∗
end) ∈ Tphys.

Proof. Under the transformations (3.12) the equivalence of systems (3.5) and (3.13) holds for all
a ∈ A and the equivalence of (3.13) and (3.21) holds for all ρ > −1 by Proposition 3.8. Part
i) follows from Theorem 2.3, part ii) is obvious from 0 ≤ αi/a ≤ 1 and part iii) follows from
forward invariance of Tphys for a ∈ Abio. □

3.5. The quasi SIR limit. In the limit α1 = α2 = 0, γi ≥ 0 and θ1 ≥ 0 the system (3.5)
becomes a combined SIR/SIS model with absence of immunity waning and just an I-linear
vaccination rate. In this case, we get a = aR0 = 0 and ρ = −γ1β1/β+ ∈ [−1, 0]. For ρ = −1 this
is the pure SIS model, γ2 = θ1 = 0, and for −1 < ρ ≤ 0 the transformation (3.20) reduces to the
classic SIR model, Eq. (3.21) with ā = āR̄0 = 0. Hence, this model also shows herd immunity
and standard results for the classic SIR model [25, 20, 21, 23, 17, 37] now apply, see Appendix B
for more details. Below let W+ : [−1/e,∞) → [−1,∞) denote the upper branch of the so-called
Lambert-W function [38, 8], i.e. the inverse of [−1,∞) ∋ z 7→ zez ∈ [−1/e,∞).

Theorem 3.10. Consider the SI(R)S model (3.5) on the physical triangle Tphys (3.11) for αi = 0,
0 ≤ γi ≤ 1 and θ1 ≥ 0, excluding the case (γ1, θ1) = (1, 0) (pure SIS model). Assume β1 ≡ r0 > 1
and initial conditions (S0, I0) ∈ Tphys, I0 > 0 and S0 > γ1/(β1 + θ1).

i) The limits limt→±∞(S(t), I(t)) = (S±∞, 0) exist and satisfy

γ1/(β1 + θ1) < S∞ < r−1
0 < S−∞ <∞. (3.23)

ii) Put ρ = −r0γ1/(β1 + θ1) and x̄−∞ = (r0S−∞ + ρ)/(ρ + 1). Then the following generalized
final size formula holds

r0S∞ = −(ρ+ 1)W+

(
−x̄−∞e

x̄−∞
)
− ρ. (3.24)

iii) Assume S−∞ ≤ 1. As t → ∞ a fraction θ1/(θ1 + r0γ2)∆R of the total increase ∆R =
S−∞ − S+∞ in the R-compartment is vaccinated.

Remark 3.11. Note that Tphys is not backward invariant, i.e. depending on (S0, I0) one may
possibly get S−∞ > 1. Also note that the case ρ = 0 ⇔ γ1 = 0 reduces to the classic SIR model
for variables (S, I), equipped with an I-linear vaccination rate θ = γθ1. In this case, the final
size (3.24) is independent of θ1. In fact, under the usual assumption S−∞ = 1, it reduces to the
standard final size formula in the classic SIR model, see e.g. [25, 20, 21, 22, 24, 32, 42]. Theorem
3.10 is proven in Appendix B, where also the cases S0 ≤ γ1/(β1 + θ1) and r0 ≤ 1 are discussed.

In summary, in this section we have seen that, for parameters a ∈ A⋆ (3.22), the SI(R)S
model (3.5) is isomorphic to the extended Hethcote model (3.21), and that in the limit αi = 0
and ρ+1 ∈ (0, 1] we get a quasi-SIR model. The equivalences of these models have been obtained
by applying three scaling transformations

S → x = β1S, x− 1 → x̄− 1 = (x− 1)/(ρ+ 1), I → ȳ = β+I/(ρ+ 1). (3.25)

The next section studies these transformations and the relation between A⋆ and Abio more
systematically under group theoretical aspects.
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4. Symmetries and parameter reduction

4.1. Basic concepts. For simplicity, unless stated explicitly, all maps in this section are sup-
posed to be C∞. A model class on some phase space P is a family of dynamical systems
ṗ = F(p,a), where Fa := F(·,a) ∈ Ω1(P) are vector fields on P parametrized by a set of
external parameters a ∈ A. Typically A ⊂ Rm and for a = (a1, · · · , am) ∈ A we have
F = F0 +

∑m
ν=1 aνFν , where Fν ∈ Ω1(P), 1 ≤ ν ≤ m, are linearly independent as vector

fields on P. Given a model class F, it is helpful to consider a ∈ A also as dynamical variables
obeying ȧ = 0. Putting M := P × A, the associated vector field FM ∈ Ω1(M) is given by
FM(p,a) := (F(p,a),0) ∈ TpP ⊕ 0TaA ⊂ T(p,a)M.

Two model classes (P,A,F) and (P̃, Ã, F̃) are said to be isomorphic, if there exists a diffeo-
morphism Φ : M = P × A → M̃ = P̃ × Ã projecting to a diffeomorphism φ : A → Ã (i.e.
πÃ ◦ Φ = φ ◦ πA), such that Φ∗FM = F̃M̃.2

Definition 4.1. A parameter symmetry group G of a model class F is a left G-action on M =
P × A by diffeomorphisms ψg : M → M, g ∈ G, projecting to a G-action on A, denoted by
G × A ∋ (g,a) 7→ g ▷a ∈ A, such that (ψg)∗FM = FM for all g ∈ G.

To understand this definition, let ψg(p,a) = (ψg(p,a), g ▷a). Then DMψg(p,a) ◦ FM(p,a) =
(DPψg(p,a) ◦ Fa(p),0) and G acts as a parameter symmetry group, iff for all g ∈ G and a ∈ A

DPψg(p,a) ◦ Fa(p) = Fg ▷a(ψg(p,a)). (4.1)

In other words, the equations of motion stay invariant under the transformation ψg(·,a) : P → P,
if we transform parameters a ∈ A accordingly. Also note that in most common examples the
G-action on M factorizes, i.e. ψg is independent of a and ψg(p,a) = (ψg(p), g ▷a).

Given a parameter symmetry G, the family of parametrized dynamical systems ṗ = Fa(p)
falls into isomorphy classes labeled by the orbits [a] ≡ G ▷a ∈ A/G. Under some technical
assumptions, this allows to construct equivalent transformed systems with reduced parameter
space A/G. Equivalently, one may “turn parameter space north” by choosing a suitable section
σ : A/G → A and solving the system for a ∈ σ(A/G). A simple example would be P = Rn,
ṗ = Ap, A ∈ A the space of symmetric n× n-matrices, and G = SO(n). In this case parameter
reduction means diagonalizing A. Another example would be the dynamics of mutually interact-
ing classical particles in a constant external (say magnetic) field B = (B1, B2, B3). In this case
A = R3 \ {0} and G = SO(3) and “turning parameter space north” means putting without loss
g ▷B = (0, 0, |B|). As a third example, also quasimonomial transformations to canonical forms
for generalized Lotka-Volterra (GLV) systems can be understood in this way, see [5, 18].

4.2. The SI(R)S symmetry. We now apply this formalism to the 6-parameter SI(R)S model
(3.5) with phase space P ∼= R × R≥0 and parameter space Â := {(γ,a) ∈ R+ × A}, where
A is given in Eq. (3.7). Following the three scaling transformations in (3.25), denote G the
multiplicative abelian group

G = GS ×GI ×GX = R3
+.

Elements of G are denoted g = (λ, η, ξ) ∈ R3
+. By convenient notation, we identify λ ≡ (λ, 1, 1) ∈

GS ⊂ G etc. Put M = P×Â and N = P×B̂, where B̂ = R+×B and where B = (R+×R2)×R2
+

has been defined in Lemma 3.2. To define the action ψg : M → M in the sense of Definition 4.1
we first transform to an isomorphic model class by applying the diffeomorphism

Φ : M ∋ (S, I, γ,a) 7→ (u := β1S − 1, I, γ, f(a)) ∈ N , (4.2)

where f : A → B has been defined in Lemma 3.2. The Φ-transformed dynamical system with
phase space (u, I) ∈ P and parameters (γ, a,R0, b, β1, β+) ∈ B̂ is then obtained by replacing

2Here, πA : M → A denotes the canonical projection and, for diffeomorphisms ψ : M → N , ψ∗ : Ω1(M) →
Ω1(N ) denotes the “push forward” on vector fields, ψ∗F := Dψ ◦ F ◦ ψ−1.
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y = β+I and x = u+ 1 in (3.13).

γ−1u̇ = −β+uI − au− (b+ β+)I + a(R0 − 1)

γ−1İ = uI.
(4.3)

Hence, using (a,R0 − 1, b + β+, β1, β+) as adapted coordinates in B, the scaling symmetry G
operates linearly and factorizing on N .

Theorem 4.2. For g = (λ, η, ξ) ∈ G and b := (a,R0 − 1, b + β+, β1, β+) ∈ B let the G-action
▷B : G × B → B be given by

g ▷B b :=
(
ξa, ξ(R0 − 1), η−1ξ2(b+ β+), λ

−1ξβ1, η
−1ξβ+

)
(4.4)

and put Lg : N → N ,
Lg(u, I, γ,b) :=

(
ξu, ηI, ξ−1γ, g ▷B b

)
. (4.5)

i) Then Lg provides a parameter symmetry of the model class (4.3).
ii) Put ψg := Φ−1 ◦ Lg ◦ Φ : M → M. Then ψg provides a parameter symmetry of the SI(R)S

model (3.5) satisfying

ψg(S, I, γ,a) =
(
λS + λβ−1

1 (ξ−1 − 1), ηI, ξ−1γ, g ▷A a
)
. (4.6)

Here the G-action ▷A : G × A → A is given by g ▷A := f−1 ◦ g ▷B ◦ f .
iii) For a = (α1, α2, γ1, γ2, β1, β+)

T ∈ A and Ca := (a,−a,−a − β+, a + β+ − β1, 0, 0)
T ∈ R6,

a = α1 + α2, we have

g ▷A a =DS(λ)DI(η
−1)

(
ξ1+

ξ − 1

β1
C

)
a, (4.7)

DS(λ) :=



1 1− λ 0 0 0 0
0 λ 0 0 0 0
0 0 λ 0 0 0
0 0 1− λ 1 0 0

0 0 0 0 λ−1 0

0 0 0 0 1− λ−1 1

 , (4.8)

DI(η) :=


1 0 0 0 0 0
0 1 0 0 0 0
0 1− η η 0 0 0
0 η − 1 1− η 1 0 0
0 0 0 0 1 0
0 0 0 0 η − 1 η

 . (4.9)

Proof. Parts i) and ii) are obvious. (Note that invariance under the action of λ ∈ GS in (4.4)
follows trivially, since the dynamics in (4.3) is independent of β1.) To prove part iii), since we
already know that by construction ▷A provides a G-action on A, it suffices to prove the formulas
(4.7)-(4.9) separately for g = λ, g = η and g = ξ. This is a straight forward calculation, which
is left to the reader. □

As a particular consequence we now get, that SI(R)S models with an I-linear vaccination θ
always map isomorphically to models with a constant vaccination, θ′ = 0.

Corollary 4.3. For a = (α1, α2, γ1, γ2, β1, β+) ∈ Abio put λ := β1/β+ ≤ 1 and a′ := DS(λ)a.
Then

a′ = (a− λα2, λα2, λγ1, 1− λγ1, β+, 0) ∈ Abio,0 (4.10)
and the scaling transformation (S, I) 7→ (λS, I) maps the SI(R)S model with parameters a iso-
morphically to the model with parameters a′ while keeping R′

0 = R0. □
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Remark 4.4. While in general ψg(·, γ,a) will not preserve physical triangles and g ▷A will not
preserve Abio, λ ≤ 1 in Corollary 4.3 assures that both statements hold for g = λ.

The fact that the G-action does not preserve the physical triangle also implies that for a ∈
A⋆ \ Abio disease free or endemic equilibria may well lie outside Tphys.

Corollary 4.5. Let (S∗(a), I∗(a)) be a disease free or endemic equilibrium, (3.18)-(3.19). Then

(S∗(g ▷A a), I∗(g ▷A a)) = (λS∗(a) + λβ−1(ξ−1 − 1), ηI∗(a)).

In particular, for all a ∈ A⋆ there exists ã = g ▷A a ∈ A⋆ 3 such that S∗(ã) + I∗(ã) > 1. □

4.3. Parameter reduction. This subsection gives a group theoretical approach to the param-
eter reduction in Proposition 3.8 and Theorem 3.9. First we look at the parameter subspace
A⋆ ⊂ A introduced in Theorem 3.9.

Lemma 4.6. Let A⋆ ⊂ A be given by Eq. (3.22). Then G ▷AA⋆ = A⋆ and A⋆ ∼= A⋆/G × G as
trivial principal G-bundles. A choice of trivialization is given by

ΓA : A⋆ ∋ a 7→ (ā, R̄0)× (
1

β̄1
,
1

β̄+
, ρ+ 1) ∈ (R+ × R)× R3

+
∼= A⋆/G × G, (4.11)

where β̄1 = β1/(ρ+ 1), β̄+ = β+/(ρ+ 1) and where (ā, R̄0) have been defined in (3.20).

Proof. We equivalently prove the statements with (A⋆, ▷A ,ΓA) replaced by (B⋆, ▷B ,ΓB), where

B⋆ := f(A⋆) = {(a,R0, b, β1, β+) ∈ B | b+ β+ > 0}

and where ΓB := ΓA◦f−1. Using (ρ+1)β+ = b+β+, Lemma 3.2 and Eq. (3.20), one immediately
checks that ΓB : B⋆ → (R+ × R)× R3

+ is a diffeomorphism with Γ−1
B given by

(a,R0 − 1, b+ β+, β1, β+) = (ρ+ 1)
(
ā, R̄0 − 1, (ρ+ 1)β̄+, β̄1, β̄+

)
. (4.12)

Moreover, by (4.4), ΓB ◦ g ▷B = (idR+×R × ℓg) ◦ ΓB, where ℓg : G → G denotes left multiplication
by g. Hence B⋆ ∼= B⋆/G × G as principal G-bundles. □

In the obvious way, this structure also lifts to Â⋆ := R+ × A⋆ with G-action g ▷Â (γ,a) :=

(ξ−1γ, g ▷A a) and trivialization

ΓÂ : Â⋆ ∋ (γ,a) 7→ (γ̄,ΓA(a)) ∈ Â⋆/G × G,
where γ̄ := (ρ+ 1)γ, see (3.20).

Given such a setting, parameter reduction as in (3.21) is obtained in general by passing from
a model class (P,A,F) to an isomorphic model class (P,A/G, F̄) as follows. Any trivialization
A ∼= A/G × G is of the form ΓA(a) = ([a], h(a)), where h : A → G satisfies h(g ▷A a) = gh(a).
Putting again M = P × A and denoting M̄ := P × (A/G × G) there is a naturally induced
diffeomorphism Φ̄ : M → M̄,

Φ̄(p,a) :=
(
ψ

h(a)−1(p, a), [a], h(a)
)
.

The Φ̄-transported G-action, ψ̄g := Φ̄◦ψg◦Φ̄−1 : M̄ → M̄, is given by ψ̄g(p, [a], h) = (p, [a], gh).
Since (ψg)∗FM = FM, the transported vector field, F̄M̄ := Φ̄∗FM, is invariant under the
transported G-action, (ψ̄g)∗F̄M̄ = F̄M̄, and hence, using (4.1) andDPψ̄g = 1, F̄([a],h) = F̄([a],gh)

for all g ∈ G. Thus, F̄ only depends on (p, [a]) ∈ P × Â/G.
In our case we have to replace A by Â⋆ and put h(γ,a) = (β̄−1

1 , β̄−1
+ , ρ+ 1). Then

Φ̄(p, γ,a) = (x̄, ȳ)× (γ̄, ā, R̄0)× (β̄−1
1 , β̄−1

+ , ρ+ 1)

and the Φ̄-transported vector field F̄ is given by (3.21) and independent of (β̄1, β̄+, ρ+ 1).

3Here we anticipate G ▷A A⋆ = A⋆, see Lemma 4.6.
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Remark 4.7. Note that, similarly as in (3.14), the G-fiber coordinates (β̄1, β̄+, ρ + 1) are again
precisely determined by the images of physical triangles in (x̄, ȳ)-space.

Tphys(β̄1, β̄+, ρ+ 1) := {p̄ = (x̄, ȳ) ∈ R × R≥0 | 0 ≤ 1

β̄1
(x̄− ρ

ρ+ 1
) +

ȳ

β̄+
≤ 1}.

Geometrically these are the triangles with corners p̄◁ = (ρ/(ρ+ 1), 0), p̄▷ = (ρ/(ρ+ 1) + β̄1, 0)
and p̄△ = (ρ/(ρ+1), β̄+). One may now proceed as in Definition 3.3 and call (β̄1, β̄+, ρ+1) (or the
triangle Tphys(β̄1, β̄+, ρ+1)) admissible with respect to (ā, R̄0), if Γ−1

A (ā, R̄0, β̄1, β̄+, ρ+1) ∈ Abio.
As in Corollary 3.4, this implies, that for given (ā, R̄0) admissible triangles are always forward
invariant w.r.t. the dynamics (3.21). Using Lemma 3.2, it is straight forward to derive conditions
for admissibility of (β̄1, β̄+, ρ+1). Since formulas don’t look enlightening, this is left as an exercise
to the reader.

4.4. Fixing the gauge. In physics terminology, “fixing the gauge” means choosing a represen-
tative from an equivalence class. In our case this may be rephrased by “turning parameter space
north”, i.e. choosing a section σ : A⋆/G → A⋆. We now show that for a ∈ A⋆ a representative of
the equivalence class [a] ∈ A⋆/G can always be chosen in Abio,0 := Abio ∩ {θ1 = 0}.

Proposition 4.8. Let R0 = β1α2/(α1 + α2) be the vaccination reduced reproduction number as
in (3.12) and use (ā, R̄0) ∈ R+ × R as global coordinates in A⋆/G, see Proposition 3.8 and Eq.
(3.21). Pick c > max{0, R̄0, āR̄0} arbitrary.
i) An element a ∈ A⋆ in the equivalence class (ā, R̄0) exists uniquely under the conditions

a) If R̄0 > 0 : θ1 = 0, β1 = c, α2 = γ1.
b) If R̄0 ≤ 0 : θ1 = 0, β1 = c, α2 = 0.

ii) Under these conditions a ∈ Abio,0 \ {ρ = −1} and therefore A⋆ = G ▷A (Abio,0 \ {ρ = −1}).

Proof. In both cases put β+ = β1 = c ⇐⇒ θ1 = 0. In case a) the condition α2 = γ1 implies
ρ = 0 by Eq. (3.12) and hence a = ā > 0 and R0 = R̄0 > 0 by Eq. (3.20). Next, again by Eq.
(3.12), 0 < γ1 = α2 = aR0/c ≤ min{1, a}, γ2 = 1 − γ1 and α1 = a − α2. This proves that a
exists uniquely and a ∈ Abio,0 \ {ρ = −1}.

In case b) α2 = 0 implies R0 = 0 and therefore, by Eq. (3.20), ρ + 1 = (1 − R̄0)
−1 ∈ (0, 1].

Hence, α1 = a = (ρ+ 1)ā > 0 and from β1 = β+ = c and (3.12) we conclude γ1 = α2 − ρ = −ρ
and γ2 = ρ+ 1. So, also here a exists uniquely and a ∈ Abio,0 \ {ρ = −1}. □

Remark 4.9. If in Proposition 4.8 c(ā, R̄0) > max{0, āR̄0, R̄0} is chosen as a smooth function,
then the section σ : A⋆/G → Abio,0 defined by the above conditions is C∞ for R̄0 ̸= 0, but only
continuous at R̄0 = 0.

Remark 4.10. Proposition 4.8 may be reformulated by stating that (β̄1, β̄+, ρ + 1) ∈ R3
+ are

admissible w.r.t. (ā, R̄0), if R̄0 > 0, ρ = 0 and β̄1 = β̄+ = c, or if R̄0 ≤ 0, ρ + 1 = (1 − R̄0)
−1

and β̄1 = β̄+ = c(1− R̄0), where c > max{0, R̄0, āR̄0}.

5. Summary and outlook

In summary, in this paper I have demonstrated that symmetry concepts in parametrized
dynamical systems may help to reduce the number of external parameters by a suitable normal-
ization prescription. If the symmetry group G is an n-dimensional Lie Group and the G-action
on parameter space A admits a trivialization, A ∼= A/G × G as principal G-bundles, then there
is a natural diffeomorphism mapping the original system with parameters in A to an equivalent
system with parameter space A/G × G. For the transformed system, invariance under G simply
means that the dynamics only depends on A/G, thus reducing the number of essential parameters
by n. If, as a principal G-bundle, A is only locally trivial, this procedure still works by covering
A with suitable charts U ∼= U/G ×G. In an obvious way, this algorithm would also generalize to
the case A ∼= A/G × V, where G acts transitively (but possibly not freely) on the fiber V.
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This strategy applies to the fractional dynamics of a general class of epidemic SI(R)S models,
with standard incidence and up to ten parameters, including immunity waning, two recovery flows
and constant and I-linear vaccination rates. Omitting four redundant demographic parameters,
this model admits G ∼= R3

+ as a symmetry group, acting on phase space by rescaling S, I and
x − 1, respectively, x being the replacement number. Thus, identifying the total waiting time
γ−1 in I as a pure time scale, we get a normalized version with essentially just 2 independent
parameters, which turns out to be a marginally extended version of Hethcote’s classic endemic
model first presented in 1973.

To apply this framework, we had to extend phase space P by allowing (S, I) ∈ R × R+, while
keeping R = 1 − S − I. At the same time, the range of parameters had to be enlarged to A⋆,
including possibly non-physical negative values. As it turned out, apart from an uninteresting
boundary case4, A⋆ coincides with the G-orbit of the epidemiologically admissible parameter
subset Abio. Thus, by symmetry arguments, proving endemic bifurcation and stability results in
any of these models becomes needless, it’s all contained in Hethcote’s original work.

Of course, one has to be aware that, for a ∈ A⋆ \ Abio, equilibrium states may possibly
lie outside the physical triangle Tphys = {(S, I,R) ∈ R3

≥0 | S + I + R = 1}. As shown in
Appendix A, although not addressed by the authors, such a scenario may indeed show up in the
Korobeinikov/Wake type of SIRS model [27].

As a special consequence, we have also seen that I-linear vaccination may always be “scaled
to zero”, i.e. without leaving Abio or Tphys there always exists a G-equivalent system with θ = 0.
In particular, since the threshold for endemic bifurcation, R0 = 1, must be G-invariant, I-linear
vaccination doesn’t influence this threshold. This is in contrast to a constant vaccination rate,
which is well known to reduce the reproduction number [13].

Finally, the symmetry also covers the “quasi-SIR limit”, defined by absence of constant vac-
cination and immunity waning. In this limit, we either have a pure SIS model or the model
becomes G-equivalent to a pure classic SIR model. Thus, the Hamiltonian formulation for these
models carries over to the “quasi-SIR” case, see Appendix B.

As an outlook let me mention, that the methods of this paper generalize to SI(R)S-type
models with incomplete immunity, i.e. where also the R-compartment becomes susceptible.
When including a social behavior term, the symmetry enlarges to G = GS×GI ×GX , where now
GS becomes non-abelian and is defined to be the sub-group of real 2× 2-matrices with positive
determinant, acting on (S,R) ∈ R2 and leaving S + R invariant [35]. In combination with
redundancy results for demographic parameters in [34], this covers a whole class of homogeneous
SI(R)S-type models with time dependent total population, excess mortality and possibly also
backward bifurcation [6, 31, 9, 15, 16, 28, 29, 41, 11, 1, 3, 2].

Appendix A. The Korobeinikov-Wake SIRS model

This appendix shortly describes, within the present framework, the type of SIRS model intro-
duced by Korobeinikov and Wake in [27]. It will turn out that in a certain range of seemingly
admissible parameters this model shows non-physical disease free and endemic equilibrium states
satisfying S∗

dfe > 1 and S∗
end > 1.

The SIRS model in [27] introduces compartment dependent mortality rates (µS , µI , µR), keep-
ing µS and µI time independent and postulating a time dependent µR(t), fine-tuned such that
the total population N stays constant. In this way, using the terminology of Fig. 3, the dynamics
of fractional variables becomes

Ṡ = −(β + θ)SI + qSν(S + I +R− pII)− (αS + µS)S + γSI + αRR, (A.1)

İ = βSI − γ̃I, γ̃ := γS + γR + µI − pIν, (A.2)

Ṙ = −Ṡ − İ . (A.3)

4see Appendix C
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Hence, also in this model demographic parameters become redundant, but the formulas (3.4)
have to be replaced by

α̃S := αS + µS − qSν , γ̃S := γS + qS(1− pI)ν ,
α̃R := αR + qSν , γ̃R := γ̃ − γ̃S = γR + µI − (qRpI + qS)ν .

(A.4)

In [27] the authors considered their SIRS model without vaccination and with temporal immunity
after recovery by putting qS = 1 and θ = qR = αS = γS = 0. So, replacing R = 1 − S − I,
this model stays in the setting of Section 3.2, with ã ∈ Abio, provided the birth rate ν is small
enough, ν ≤ min{µS , γR + µI}. However, let’s now consider the case αR + µS > 0 and

0 ≤ µS < ν < (γR + µI)/pI .

Then α̃S < 0, γ̃ > 0, α̃S + α̃R > 0 and, by (3.12),

ρ̃ = (α̃R − γ̃S)β/γ̃
2 = (αR + pIν)β/γ̃

2 ≥ 0.

Hence, we are still in the setting of Section 3.2, but this time with ã ∈ A⋆ \ Abio, due to the
negative “would-be” vaccination rate α̃S . In particular, irrespective of the value of R0, under
these conditions the disease free equilibrium in (3.18) will always be non-physical

S∗
dfe =

α̃R

α̃R + α̃S
=

αR + ν

αR + µS
> 1.

By the same effect, putting r̃0 := β/γ̃, the ”would-be vaccination reduced” reproduction number
actually satisfies R0 = r̃0S

∗
dfe > r̃0, see Eq. (3.12). Hence, we could choose 0 < β < γ̃ such that

αR + µS
αR + ν

< r̃0 < 1

to get R0 > 1 and therefore, by Theorem 3.9 and Eq. (3.19), in this scenario we would have a
globally stable endemic equilibrium as in [27], which, however, would also be non-physical,

S∗
end = 1/r̃0 > 1.

Apparently, these scenarios have not been addressed by the authors in [27].

Appendix B. The quasi-SIR Hamiltonian

To be self contained, this Appendix shortly studies the quasi-SIR limit, α1 = α2 = 0 and
θ1 ≥ 0, of the SI(R)S model (3.5)-(3.6). This also leads to a proof of Theorem 3.10. Again, put
x = β1S and y = β+y as in (3.12) to obtain

γ−1ẋ = −(x+ ρ)y, ρ = −γ1β1/β+ ∈ [−1, 0]

γ−1ẏ = (x− 1)y.
(B.1)

This system factorizes, so we may choose ω = (x + ρ)−1y−1 as integrating factor, such that
ω [(x− 1)ydx+ (x+ ρ)ydy] = dH, with Hamiltonian H and symplectic form ω given by

H = y + x− (ρ+ 1) log |x+ ρ|, (B.2)

ω = −(γ(x+ ρ)y)−1dx ∧ dy (B.3)

Note that ρ = −1 (i.e. γ1 = 1, γ2 = 0 and θ = 0) simplifies to the classic SIS model, H = x+ y,
and ρ = 0 reproduces the classic SIR model Hamiltonian [14]. For 0 ≥ ρ > −1 we can apply the
transformation (3.20) to end up with the system (3.21) with ā = 0, i.e. the classic SIR model in
the variables x̄ = (x + ρ)/(ρ + 1) and ȳ = y/(ρ + 1). In all cases, phase space trajectories are
lines of constant “energy”, H = const.. Hence, they look like in the classic SIR model, extended
to negative values, ρ/(1 + ρ) ≤ x̄ < 0. So, we have a continuum of disease free equilibria,
which are neutrally stable for x < 1 (⇔ x̄ < 1) and unstable for x > 1 (⇔ x̄ > 1). Also, at
x = −ρ (⇔ x̄ = 0) we have an infinite energy barrier, which cannot be reached from either side,
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16 SYMMETRY AND PARAMETER REDUCTION IN SI(R)S MODELS

see Fig. 4. In fact, for initial condition x0 = −ρ the explicit solution is given by the vertical line
(x(t), y(t)) = (−ρ, y0e−γ(ρ+1)t).

Figure 4. Phase diagram of the quasi-SIR model. x(t) increases for x0 < −ρ and
decreases for x0 > −ρ. The vertical line corresponds to initial condition x0 = −ρ.

For initial conditions 0 ≤ x0 < −ρ < 1 and y0 > 0 we have ẋ(t) > 0 and ẏ(t) < 0, for all t ≥ 0,
and limt→∞(x(t), y(t)) = (x∞, 0), where x0 < x∞ < −ρ < 1 solves H(x0, y0) = H(x∞, 0). In
this case, no epidemic arises and S(t) ↑ S∞ ≡ x∞/r0. This is due to the fact that in this region
the recovery flow γSI exceeds the sum of infection + vaccination flow (β + θ)SI.

If x0 > −ρ, solutions qualitatively behave like in the classical SIR model, i.e. x(t) monotoni-
cally decreases with ẏ > 0 for x > 1, ẏ < 0 for x < 1 and y = ymax at x = 1. Again, we have
limt→∞(x(t), y(t)) = (x∞, 0), where H(x0, y0) = H(x∞, 0), but this time −ρ < x∞ < 1. Note
that x0 > 1 necessarily requires r0 > 1, i.e. no epidemic can arise for r0 ≤ 1, as in the classic
SIR model. Also, the inverse function t(x) can be given explicitly, similarly as in [17].

Lemma B.1. Solutions of the dynamical system (B.1) with initial conditions x0 ̸= −ρ, y0 > 0
and “energy” E = H(x0, y0) satisfy

γt = −
∫ x(t)

x0

dx

(x+ ρ)(E − x+ (ρ+ 1) log |x+ ρ|)
, sign(x(t) + ρ) = sign(x0 + ρ).

Proof. This follows immediately from γ−1ẋ = −(x+ρ)y = −(x+ρ)(E−x+(ρ+1) log |x+ρ|) . □

Finally, the final size formula for S∞ as a function of S−∞ in Theorem 3.10 is also obtained
by “energy” conservation.

Proof of Theorem 3.10: Part i) follows from the fact that in variables (x̄, ȳ) the system
becomes a classic SIR model, where the initial conditions I0 > 0 and S0 > γ1/(β1+ θ1) translate
to ȳ0 > 0 and x̄0 > 0. Hence x̄∞ < x̄0 and 0 < x̄∞ < 1 < x̄−∞ <∞. To prove part ii) use

exp

(
H(S∞, 0)

ρ+ 1

)
= exp

(
H(S−∞, 0)

ρ+ 1

)
=⇒ x̄∞e

−x̄∞ = x̄−∞e
−x̄−∞ ,

Eq. (3.24) follows from β1 ≡ r0 and x̄ = (r0S + ρ)/(ρ+ 1). To prove part iii) use∫ ∞

−∞
İdt = 0 =⇒ β

∫ ∞

−∞
SIdt = γ

∫ ∞

−∞
Idt.

Hence we get

∆R =

∫ ∞

−∞
Ṙdt = γ

(
θ1

∫ ∞

−∞
SIdt+ γ2

∫ ∞

−∞
Idt

)
= γθ1

∫ ∞

−∞
SIdt+ γ2β

∫ ∞

−∞
SIdt ,

where the first term gives the fraction of vaccinated people. Part iii) follows from r0 = β/γ. □
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Appendix C. The SIS model with vaccination

The transformation (3.20) from the SI(R)S model to Hethcote’s model becomes ill-defined for
ρ = −1. Epidemiologically, the model with parameters a ∈ Abio ∩{ρ = −1} is uninteresting and
near to trivial. It implies α2 = γ2 = θ1 = 0, whence also R0 = 0, see Remark 3.6. This is a pure
SIS model furnished with a constant vaccination rate from S to R and permanent immunity in
R. So, eventually all people are vaccinated and this model only shows the trivial equilibrium
(S∗, I∗, R∗) = (0, 0, 1). Global stability in Tphys follows from absence of periodic solutions (use
I−1 as a Dulac function as in [21, 23]) and the fact that Tphys is forward invariant.
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