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Abstract: Lubricated tribosystems such as main-shaft bearings in gas turbines have been successfully
diagnosed by oil sampling for many years. In practice, the interpretation of wear debris analysis
results can pose a challenge due to the intricate structure of power transmission systems and the
varying degrees of sensitivity among test methods. In this work, oil samples acquired from the fleet
of M601T turboprop engines were tested with optical emission spectrometry. Two-way analysis of
variance (ANOVA) with interaction analysis and post hoc tests were carried out to study the impact
of aluminum and zinc concentration on iron concentration. Finally, the developed model was used to
evaluate the oil testing results for two specific engines of this type. Thanks to ANOVA, the assessment
of engine health is based on a statistically proven correlation between the values of the dependent
variable and the classifying factors.

Keywords: wear debris; oil analysis; emission spectroscopy; turboprop; propeller governor; ANOVA;
interaction analysis; condition indicator

1. Introduction

Oil debris monitoring aims to detect wear particles whose characteristics and numbers differ
from those generated during normal operation of the tribological system. It has been successfully used
for the health assessment of tribological systems for several decades [1–3]. There are many examples
when bearing, transmission or hydraulic system failures were detected in time. The development
of specialized spectrometers [4] made it possible to measure element concentrations with growing
precision and process them statistically to set alarm thresholds. However, no oil testing method is
universal, and thus various analytic techniques are usually used side by side. In a traditional offline
approach, oil samples are taken from the engine at regular intervals and sent to a laboratory for
analysis. Recently, online oil debris monitoring [5–7] has become more and more common. It involves
installing magnetic [8–10], capacitive [11,12], optical [13–15] or acoustic sensors [16] in the engine.
These sensors can count particles or measure their diameters but most of them are unable to identify
material or detect fine wear debris. Therefore, used oil is still laboratory tested despite the considerable
workload and cost related to taking, shipping and testing samples.

The measured concentrations of elements and other oil parameters are processed statistically to
establish alarm thresholds. The traditional approach is based on the normal distribution, and assumes
triple standard deviation (3σ) to be the warning limit (yellow) and 4σ to be the alarm level (red). If
the distribution is not normal, the cumulative distribution is alternatively used to set the warning
and alarm limits [17]. In the common data interpretation procedure, level and trend status data from
individual test methods are fused to evaluate an overall risk of failure and make maintenance decisions
[18,19]. The failure mode matrices are used to link the various concentration level and trend statuses
with the specific condition indicator (Normal, Alert, Urgent, Hazard, Danger) and potential cause.

Pair-wise analytical techniques such as correlation [20–22] or regression are widespread in oil
analysis because relying on a single parameter may not provide reliable solutions, and may also
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overlook significant diagnostic information. Correlation describes a statistical relationship between
two random variables. When both variables follow a normal distribution, the Pearson correlation
coefficient is used. Otherwise, the Spearman correlation should be employed since it is more general
and robust to outliers [23,24]. Other multivariate statistics such as cluster analysis, principal component
analysis or factor analysis are common as well.

According to the review by Wakiru et al. [25], statistical methods account for 31% of publications
on oil analysis, artificial-intelligence (AI) approaches for 37%, model-based for 13%, and hybrid for
19%. Even if AI is the main tool, statistical methods are useful to understand the data, select features
and validate the results. For example, Rodrigues et al. used Artificial Neural Networks (ANN) and
Principal Component Analysis to classify the oil condition in a fleet of bus diesel engines [26]. Gajewski
and Valis proposed multilayer perceptron and radial basis function neural networks to evaluate oil
samples from diesel engines of heavy crawlers [27]. Zhao et al. fused vibration based-features with
relative kurtosis and skewness of the ferrous particle size distribution to feed three machine learning
classifiers i.e. support vector machines (SVM), k-nearest neighbors, and decision tree [28].

The presented efforts are focused on finding relations and patterns in oil testing results, essential
for supporting maintenance decisions in gas turbines, helicopters, diesel engines and wind turbines.
However, the interpretation of oil analysis results still poses a challenge when the trends are erratic or
individual evaluation methods provide contradictory indications. More efficient oil analysis methods
are still being sought to ensure the reliable and safe operation of aircraft engines.

In this work, analysis of variance is used to model the impact of aluminum and zinc concentration
on iron concentration. These elements make up materials used in the rotating and stationary engine
components i.e. steel and aluminum alloys. It will be shown that the number of iron particles produced
in friction pairs is correlated to aluminum and zinc production. This correlation will provide a basis to
set alarm thresholds and detect accelerated wear.

2. Materials and Methods

2.1. M601T Turboprop

Walter M601 was developed in the early 1970s for the L-410 Turbolet aircraft as an alternative
to the PT6 turboprop [29,30]. The engine variant M601T, designed later for aerobatic applications,
required some design changes, such as the reinforced drive shaft and compressor casing, modified
lubrication system and others. The engine was produced by Walter Aircraft Engines (now GE Aviation
Czech s.r.o.) for the Polish PZL company to power its PZL-130 Orlik TC-I trainer. Its nominal power
was 490 kW.

The M601T turboprop pulls the aircraft, so its internal flow is reversed and the air intake is located
in its rear part while there are two elbow exhaust outlets in the front [31,32]. The turboprop consists of
two basic sections - a gas generator and a drive unit (Figure 1). The gas generator includes an inlet
and a combined compressor – two axial and one centrifugal stage with a total compression of 6.55, an
annular combustor, a single-stage generator turbine, an accessory gear box with a fuel control unit
and an electric starter. The drive part of the engine consists of a power (free) single-stage turbine, a
two-stage, pseudoplanetary reduction unit and exhaust outlets. The reduction unit drives the propeller
and its governor, and it also supplies the propeller unit with pressurized oil.

The engine oil system includes gear pumps and an integrated oil tank with a capacity of 7 liters,
and a minimum oil level of 5.5 liters. The overall amount of oil in the system is 11 liters. The nominal
oil consumption is 0.1 liters per hour [31].

The time between overhaul (TBO) of M601T operated at PZL-130 Orlik was only 500 flight hours
(FH). In service, the propeller governor (LUN 7816) turned out to be the weakest part of the M601T
engine and, in the 1990s and early 2000s, its accelerated wear contributed to some air accidents
and incidents of the trainer [33]. Consequently, LUN 7816 had to be serviced every 140 FH by the
manufacturer. Oil testing and vibration measurement were carried out for engine health monitoring
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[34,35]. A magnetic plug in the reduction unit was a primary tool to detect oil debris. Additionally,
oil was sampled every 10 FH from the tank, reduction unit and AGB and tested in an accredited
laboratory [36]. Samples were taken after the flight, at the appointed time after engine shutdown to
ensure sample homogeneity and eliminate the error caused by the sedimentation of wear products.
The applied methodology followed the JOAP procedures [37].

Figure 1. M601 turboprop: 1. propeller shaft 2. reduction unit 3. connecting shaft 4. free turbine rotor 5.
gas generator 6. gearbox drive shaft.

2.2. Atomic Emission Spectrometry

Spectrometric oil analysis is a diagnostic maintenance tool used to determine the type and
amount of wear metals in lubricating fluid samples [37–39]. In rotating disc electrode atomic emission
spectroscopy (RDE-AES), the wear products contained in the tested oil are excited by an electric arc
between graphite electrodes, and the obtained spectral lines are analyzed. The emitted radiation, after
splitting on a prism, falls on a plate that transmits radiation with the wavelengths characteristic of the
chemical elements under study [40,41]. The measurement is performed on the emission spectrometer
simultaneously for several metallic elements. Concentration is measured in parts per million (ppm) i.e.
milligrams per kilogram.

The used spectrometer was SpectrOil M by AMETEK Spectro Scientific [42]. It consists of three
main components: excitation source, optical system and readout system. It has the range of 0-1000
mg/kg for iron, aluminum and zinc. The measurement uncertainty is 10%. Data evaluation criteria
and corresponding concentration limits are defined for several military engines by Volume III of the
US Joint Oil Analysis Program (JOAP) manual [43]. For M601T and other engines not covered by the
standard, alarm thresholds have to be set individually.

The application of RDE-AES in oil analysis is limited by particle size [44–46]. It is assumed that it
is effective in analyzing debris no greater than 8-10 µm. Therefore, the indication of abnormal wear by
spectrometry should be verified by alternative analytic methods e.g. ferrography.

There are well-known guidelines for the analysis of spectrometry results [37,47,48]. Detected
metal debris can be divided into wear products, oil contaminants or additives. Certain metallic
elements can provide clues concerning the parts being worn, but others only offer a general indication
of accelerated degradation. Sometimes even the slightest increase or presence of a specific element can
be cause for alarm.

In the engine, there are many sources of particles containing iron and aluminum because they
are present in many components. Aluminum is mainly a wear product but it can also come from the
environment with silicon as dirt contamination. Iron is the most common metal, so its concentration is
higher than other elements even without excessive degradation [49]. The concentration of wear metals
slowly grows at a constant rate during normal operation. Zinc is used with copper in brass fittings
and galvanized surfaces. Regrettably, the origin of the wear could not be determined for the M601T
engine since information about the materials was scarce.
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2.3. Analysis of Variance

The Analysis of Variance (ANOVA) method, initiated by Fisher in the 1920s, is a statistical tool to
analyze the differences among means [50]. It assesses the impact of the independent classifying factor
xj (j=1....,m) on the distribution of the dependent (explained) variable y. The levels of the classifying
factor (groups) can be binned values or categories. The method analyzes the significance of differences
between the means calculated from observations coming from individual groups. The following
assumptions of ANOVA have to be met:

1. Distribution of the dependent variable is normal for each group,
2. Variance between groups is similar.

ANOVA is resistant to minor deviations from the normality of the distributions and to small
differences in variances between individual groups. To verify the assumption about the normal
distribution of the dependent variable, the following statistical tests were used: Shapiro-Wilk,
Jarque-Bera and Lilliefors. To verify the assumption about the homogeneity of variance, Bartlett’s,
Levene’s or Cochran’s tests were used.

There are numerous applications of ANOVA in various disciplines, including wear or oil condition
analysis. Holland et al. applied Fourier transform infrared (FT-IR) spectroscopy and ANOVA to assess
water contamination in oil [51,52]. Liu et al. used optical measurement to monitor oil debris and
viscosity while ANOVA was utilized to assess the significance of the model equation [53]. Cetin et al.
studied the concentration rate and aggregation behavior of nano-silver added colloidal suspensions on
the wear behavior of metallic materials [54]. Tian et al. investigated the degeneration of synovial joints
and used ANOVA to evaluate the significance of 32 wear parameters obtained by 3D optical surface
characterization [55]. Mason et al. evaluated the bearing spall propagation results with ANOVA
[56]. Woma analyzed the wear performance of vegetable oils used as lubricants [57]. Azcarate et al.
evaluated D-optimal mixture designs for microwave-induced plasma optical emission spectrometer.
ANOVA is also frequently used to analyze metal contaminants in food, drugs or water with atomic
emission spectrometry. However, we could not find any publications in which ANOVA was employed
in oil analysis for modeling wear metal concentration.

This study aims to determine whether the concentrations of aluminum and zinc affect the
concentration of iron. Therefore, the concentrations of aluminum and zinc are classifying factors, while
the dependent (explained) variable is iron concentration.

The following tasks were performed to implement ANOVA for wear debris analysis:

1. Conduct Exploratory Data Analysis to study concentration distributions and understand the data.
2. Run tests for the homogeneity of variance to select the best variant of binning aluminum and zinc

data into concentration levels.
3. Bin the data into four Al and Zn levels and remove outliers.
4. Transform iron concentration to normal distribution.
5. Tests the normality of transformed iron distributions in individual groups.
6. Calculate two-way ANOVA.
7. Run post hoc tests.
8. Analyze Interaction Plots.
9. Use the model to set the individual limits of iron concentration for each factor level.
10. Compare the sample testing results with the defined limits to make a maintenance decision.

3. Results

3.1. Dataset

The oil samples acquired from the fleet of 29 M601T engines operated over five years were tested
using optical emission spectrometry with a rotating electrode. The dataset included 1250 samples with
the measured concentrations of 19 elements: Ag, Al, B, Ba, Ca, Cr, Cu, Fe, Mg, Mo, Na, Ni, P, Pb, Si, Sn,
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Ti, V and Zn. The elements whose concentration exceeded the threshold of 1 ppm were selected for
statistical analysis. In this case, only aluminum, iron and zinc met this condition while other elements
generally produced negligible values. The observed iron concentrations were the highest because
this element is contained in many alloys used in the engine. For this reason, iron was selected as a
dependent variable and its values were used to classify engine health.

The following plots present the distribution of iron (Figure 2), aluminum and zinc (Figure 3). Iron
distribution is close to normal but has a positive skew of 1.68. Scatter plots (Figure 4) confirm that
there is some positive correlation between elements, higher for aluminum than for zinc. The Pearson
correlation coefficients are presented in Table 1.

0

20

40

60

80

100

120

140

Co
un

t

0 1 2 3 4 5 6 7
Fe [ppm]

Figure 2. Distribution of iron concentration.
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Figure 3. Distributions of aluminum and zinc concentration.
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Figure 4. Iron concentration vs aluminum and zinc.

Table 1. Pearson correlation coefficients.

Fe [ppm] Al [ppm] Zn [ppm]

Fe [ppm] 1.00 0.46 0.25
Al [ppm] 0.46 1.00 0.53
Zn [ppm] 0.25 0.53 1.00

3.2. Binning Al and Zn Concentrations

To perform ANOVA, Al and Zn concentrations have to be binned into some groups. Therefore,
the range of their observations was divided into a number of equal bins, with the right endpoint
chosen to include 99.7% of observations (three-sigma rule). Several binning variants were tested for
ANOVA’s assumptions to be met. Therefore, Bartlett’s and Levene’s tests were used to evaluate iron
variance homogeneity between individual Al and Zn levels. Outliers (with values greater than Q3 +
1.5 IRQ) were removed before the tests.

Table 2 presents the probability values produced by Bartlett’s and Levene’s tests for the increasing
number of aluminum and zinc levels. Probabilities exceeding 0.5 are marked in green. The case of two
Al and Zn levels was analyzed further, but it was found that iron concentration in some of these groups
did not pass distribution normality tests (Lilliefors, Jarque-Bera or χ

2, Table 3) and consequently,
ANOVA could not be performed.

Table 2. Bartlett’s and Levene’s probabilities for the increasing number of groups.

Number of groups
Test 2 3 4 5 6 7 8 9 10
Al Bartlett 0.6068 0.0030 0.4883 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000
Al Levene 0.5458 0.0009 0.4244 0.0000 0.0000 0.0001 0.0000 0.0004 0.0000
Zn Bartlett 0.9254 0.4547 0.6357 0.1212 0.0024 0.0000 0.0017 0.0000 0.0000
Zn Levene 0.9871 0.4159 0.5858 0.0536 0.0001 0.0000 0.0004 0.0000 0.0000
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Table 3. Distribution normality tests for two aluminum and zinc levels.

Group Test Result Significance

Lillieforsa 1 0.001
Al 1 Jarque-Bera 1 0.001

χ
2 1 0

Lillieforsa 0 0.062
Al 2 Jarque-Bera 0 0.1341

χ
2 0 0.0554

Lillieforsa 1 0.001
Zn 1 Jarque-Bera 1 0.001

χ
2 1 0

Lillieforsa 1 0.0122
Zn 2 Jarque-Bera 0 0.0655

χ
2 0 0.1512

3.3. Transforming Data to Normal Distribution

Since iron concentration did not meet ANOVA assumptions in any tested binning variant, data
transformation was applied using the natural logarithm function:

f (y) = ln(y + b) (1)

A similar testing procedure was carried out for the transformed data to check the homogeneity
of variances between groups and find the best binning variant. The value of parameter b was sought
iteratively (Figure 5).

Table 4 shows the estimated probability values of Bartlett’s and Levene’s tests for different
numbers of classification factors (ranges of aluminum and zinc concentrations) after the logarithmic
transformation of the data. The table shows the value of factor b, for which the highest probability
values for both aluminum and zinc levels were obtained. Green indicates the probability that exceeds
the limit of 0.5. The case of four groups and parameter b=9 achieved the highest probability both for
aluminum and zinc, so it was selected for further analysis of variance.

(a) Aluminum (b) Zinc

Figure 5. Probability of variance homogeneity as a function of b parameter for four groups.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 30 May 2023                   doi:10.20944/preprints202305.2042.v1

https://doi.org/10.20944/preprints202305.2042.v1


8 of 20

Table 4. Bartlett’s and Levene’s probabilities for transformed data.

Number of groups
Test 2 3 4 5 6 7 8 9 10
Al Bartlett 0.5621 0.5785 0.9791 0.2841 0.4005 0.4583 0.5724 0.0168 0.0542
Al Levene 0.5005 0.4648 0.9563 0.1432 0.2624 0.3440 0.3065 0.2847 0.0012
Zn Bartlett 0.9582 0.5488 0.9132 0.8641 0.0227 0.0069 0.0608 0.0006 0.0010
Zn Levene 0.9758 0.4472 0.8814 0.8177 0.0082 0.0061 0.0293 0.0005 0.0001
b parameter 170.0 3.5 9.0 5.0 2.0 1.5 1.5 1.5 1.0

The aluminum and zinc concentration levels chosen for binning into four groups are specified in
Table 5. The corresponding iron distributions are presented in Figure 6. These box plots show some
outliers (with values greater than Q3 + 1.5 IRQ), which were removed from each group before further
analysis. Then, the group means and standard deviations (Std) of transformed iron concentration were
calculated (Table 5).

Table 5. Defined aluminum and zinc levels and corresponding transformed iron values.

Boundaries [ppm] Observations Transformed Fe
Group Left Right Count Outliers Mean Std

Al 1 0.0000 1.0704 90 5 2.29693 0.0468
Al 2 1.0704 2.1408 741 48 2.35268 0.0492
Al 3 2.1408 3.2112 348 24 2.40928 0.0513
Al 4 3.2112 4.2816 64 1 2.47459 0.0625

Zn 1 0.0000 2.6856 779 48 2.35518 0.0591
Zn 2 2.6856 5.3712 321 14 2.38994 0.0654
Zn 3 5.3712 8.0569 108 5 2.41880 0.0621
Zn 4 8.0569 10.7425 31 1 2.41990 0.0590
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(a) Aluminum (b) Zinc

Figure 6. Distributions of iron concentration for individual aluminum and zinc levels before removing
outliers and logarithmic transformation.

Then, the distributions of transformed iron for four levels of aluminum and zinc concentration
were tested for normality (Table 6. At least one of three tests suggested accepting the null hypothesis
in each case, so the distributions could be considered normal and the assumptions of ANOVA were
satisfied (at the 5% significance level).
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Table 6. Tests for distribution normality of transformed iron data for individual Al and Zn levels.

Test Group Result Significance Group Result Significance

Lillieforsa 1 0.0010 0 0.0520
Jarque-Bera Al 1 0 0.0708 Zn 1 1 0.0068

χ
2 1 0.0023 1 0.0003

Lillieforsa 1 0.0010 1 0.0451
Jarque-Bera Al 2 0 0.0511 Zn 2 1 0.0425

χ
2 1 0.0005 0 0.0641

Lillieforsa 0 0.1665 0 0.3512
Jarque-Bera Al 3 0 0.0793 Zn 3 0 0.2220

χ
2 0 0.3232 0 0.3341

Lillieforsa 0 0.3315 0 0.2529
Jarque-Bera Al 4 0 0.4094 Zn 4 0 0.1572

χ
2 0 0.3141 1 0.0110

3.4. Two-Way ANOVA

A two-factor analysis of the variance of transformed iron was performed for four levels of
aluminum and zinc concentration. The ANOVA table (Table 7) shows the effect of these factors on iron
concentration, without testing interactions.

In both cases, comparing the determined values of F (165.42 and 9.91) with its critical values, we
decide to reject the null hypothesis about the equality of means in all groups in favor of the alternative
hypothesis that there is an impact of both aluminum and zinc on iron.

There is a significant difference in the sum of the squares between aluminum (1.063) and zinc
(0.056). This indicates that aluminum has a greater impact on iron concentration (27.9%) than zinc
(1.5%). This can be confirmed by comparing the mean values of the different groups of aluminum and
zinc. The means of aluminum groups varies more from each other than zinc groups (Table 5).

Table 7. Two-way ANOVA without interaction effects.

Source Sum Sq. d.f. F Prob>F Effect Size

Al 1.063465 3 149.088665 1.885264e-81 0.278545
Zn 0.055779 3 7.819726 3.615759e-05 0.014610
Residual 2.698691 1135

The attempt to perform ANOVA with testing interaction effects failed due to incomplete data
representation, i.e. there were no observations belonging to the paired groups Al 1 Zn 3 and Al 1 Zn 4.
This is illustrated by a grouped boxplot in Figure 7. The issue was solved by removing the data from
group Al 1 and then ANOVA with interactions was smoothly completed (Table 8). Removing Al 1 did
not affect the diagnostic reasoning, since it contained only 85 data points with the lowest concentration.

Table 8. Two-way ANOVA with interactions after removing Al 1 level.

Source Sum Sq. d.f. F Prob>F Effect size

Al 0.734975 2 153.271682 4.261817e-59 0.226810
Zn 0.052767 3 7.335961 7.214323e-05 0.020626
Al*Zn 0.012550 6 0.872404 5.145026e-01 0.004984
Residual 2.505514 1045
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Figure 7. Grouped boxplot of transformed iron concentration.

Based on the F test result (Prob>F), the null hypothesis that there are no differences between means
in individual groups should be rejected. The table shows that both the concentration of aluminum and
zinc, but also interaction between these concentrations affect the results of iron. Effect size shows that
the greatest impact has aluminum concentration (22.7%), then zinc concentration (2.1%) and the least
interaction between aluminum and zinc (0.5%).

3.5. Post Hoc Tests

After receiving ANOVA results confirming statistically significant differences between the means
of individual groups, the next step is to perform post hoc tests. Since ANOVA verified only that
means in some groups are not equal, these tests are necessary to determine which groups’ means are
significantly different. There are several post hoc tests which use different approaches and some of
them are considered conservative. In this work, the least significant differences test (LSD), Bonferroni’s,
Scheffé’s and Tukey’s tests were used.

The results of post hoc tests for aluminum concentration levels are presented in Tables 9 and 10.
All the performed tests confirmed that the means in all groups significantly differ from each other
at the 95% confidence level. Their confidence intervals did not include zero for any pair of means
analyzed.

Table 9. LSD and Bonferroni’s test results and their confidence intervals (CI) for Al concentration levels.

Compared CI left LSD test CI right CI left Bonferroni CI right
groups boundary result boundary boundary result boundary

Al 1 Al 2 -0.0690 -0.0588 -0.0486 -0.0725 -0.0588 -0.0451
Al 1 Al 3 -0.1239 -0.1130 -0.1022 -0.1276 -0.1130 -0.0984
Al 1 Al 4 -0.1790 -0.1623 -0.1457 -0.1848 -0.1623 -0.1399
Al 2 Al 3 -0.0604 -0.0542 -0.0481 -0.0625 -0.0542 -0.0459
Al 2 Al 4 -0.1176 -0.1035 -0.0895 -0.1225 -0.1035 -0.0846
Al 3 Al 4 -0.0639 -0.0493 -0.0348 -0.0689 -0.0493 -0.0297
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Table 10. Scheffe’s and Tukey’s test results and their confidence intervals (CI) for Al concentration
levels.

Compared CI left Scheffe CI right CI left Tukey CI right
groups boundary result boundary boundary result boundary

Al 1 Al 2 -0.0733 -0.0588 -0.0443 -0.0721 -0.0588 -0.0455
Al 1 Al 3 -0.1285 -0.1130 -0.0975 -0.1272 -0.1130 -0.0988
Al 1 Al 4 -0.1861 -0.1623 -0.1386 -0.1841 -0.1623 -0.1405
Al 2 Al 3 -0.0630 -0.0542 -0.0454 -0.0623 -0.0542 -0.0461
Al 2 Al 4 -0.1236 -0.1035 -0.0835 -0.1219 -0.1035 -0.0851
Al 3 Al 4 -0.0701 -0.0493 -0.0286 -0.0684 -0.0493 -0.0303

The results of LSD, Bonferroni’s, Scheffé’s, Tukey’s tests for zinc concentration levels are presented
in Tables 11 and 12. All the post hoc tests showed that the mean values for Zn concentration levels
are significantly different at the 95% confidence level, except the Zn 3 and Zn 4 groups. Since the
confidence interval of this pair of levels includes zero (marked in yellow), it can be concluded that
the averages of these groups do not differ significantly. This is also confirmed by Figure 6 where
overlapping of Zn 3 and Zn 4 intervals is visible.

For all the performed tests, zinc compared to aluminum was characterized by the lower absolute
values of differences of group means, which is in line with the effect sizes calculated by ANOVA.

Table 11. LSD and Bonferroni’s test results and their confidence intervals (CI) for Zn concentration
levels.

Compared CI left LSD test CI right CI left Bonferroni CI right
groups boundary result boundary boundary result boundary

Zn 1 Zn 2 -0.0380 -0.0305 -0.0231 -0.0406 -0.0305 -0.0205
Zn 1 Zn 3 -0.0706 -0.0590 -0.0474 -0.0746 -0.0590 -0.0434
Zn 1 Zn 4 -0.0868 -0.0667 -0.0465 -0.0937 -0.0667 -0.0396
Zn 2 Zn 3 -0.0410 -0.0285 -0.0159 -0.0454 -0.0285 -0.0115
Zn 2 Zn 4 -0.0568 -0.0361 -0.0154 -0.0640 -0.0361 -0.0082
Zn 3 Zn 4 -0.0302 -0.0076 0.0149 -0.0380 -0.0076 0.0227

Table 12. Scheffe’s andTukey’s test results and their confidence intervals (CI) for Zn concentration
levels.

Compared CI left Scheffé CI right CI left Tukey CI right
groups boundary result boundary boundary result boundary

Zn 1 Zn 2 -0.0412 -0.0305 -0.0199 -0.0403 -0.0305 -0.0208
Zn 1 Zn 3 -0.0756 -0.0590 -0.0425 -0.0742 -0.0590 -0.0438
Zn 1 Zn 4 -0.0954 -0.0667 -0.0380 -0.0930 -0.0667 -0.0403
Zn 2 Zn 3 -0.0464 -0.0285 -0.0105 -0.0449 -0.0285 -0.0120
Zn 2 Zn 4 -0.0656 -0.0361 -0.0066 -0.0632 -0.0361 -0.0090
Zn 3 Zn 4 -0.0398 -0.0076 0.0245 -0.0371 -0.0076 0.0218

3.6. Interaction Effects

Interaction plots are a convenient way to illustrate how factors influence iron concentration and
further analyze their interactions. These plots have the group means of the dependent variable on the
ordinate and the level of one of the factors on the abscissa. The levels of the second factor correspond
to individual data series in the plot. The shape of the polylines – their crossing, curving and parallelism
– inform about the effects of interaction.

Figure 8a shows iron as a function of aluminum levels 2-4. The lines are almost parallel with a
deviation at Al 3 for Zn 4 line. Small distances between the lines indicate that there is a small effect of
zinc while the high slope of the curves confirms a clear effect of aluminum.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 30 May 2023                   doi:10.20944/preprints202305.2042.v1

https://doi.org/10.20944/preprints202305.2042.v1


12 of 20

Similarly, Figure 8b with iron versus Zn levels shows roughly parallel lines with deviations at Zn 4
for Al 3 line. The low slope of the curves confirms that there is a small effect of zinc while considerable
distances between the lines indicate a clear effect from aluminum. The disturbance from parallelism at
two points suggests the existence of interaction, i.e. at different levels of aluminum concentration, zinc
concentration affects the concentration of iron differently. Interaction plots are in line with effect sizes
produced by ANOVA (Table 8), which suggested a significantly higher impact of aluminum than zinc
or their interactions.
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Figure 8. Interaction plot - the concentration of iron vs aluminum and zinc level.

3.7. Setting Condition Indicators

Based on the presented ANOVA results, it can be assumed that for the average M601T engine,
during normal operation, iron concentration for individual aluminum and zinc levels should remain
within limits defined by the statistical model (Table 13). These limits corresponded to two-sigma
intervals in these groups.

Table 13. Concentration of aluminum and zinc and the corresponding iron concentration limits.

Lower limit Upper limit Fe lower limit Fe upper limit
Interval (ppm) (ppm) (ppm) (ppm)

AL 1 0.0000 1.0704 0.0559 1.9183
AL 2 1.0704 2.1408 0.5279 2.6015
AL 3 2.1408 3.2112 1.0416 3.3275
AL 4 3.2112 4.2816 1.4807 4.4589

ZN 1 0.0000 2.6856 0.365 2.8625
ZN 2 2.6856 5.3712 0.5748 3.4378
ZN 3 5.3712 8.0569 0.9207 3.7174
ZN 4 8.0569 10.7425 0.9933 3.6528

3.8. Engine 1

The obtained ANOVA model was used to evaluate the wear of two engines.
For engine 1, oil samples were collected from the tank every 10±2 FH between it accumulated

697.6 and 1254 FH (in total 57 samples). The scatter plot (Figure 9) presents the iron results as a
function of the aluminum or zinc concentration along with the boundaries of their four levels and the
corresponding iron limits. The measurement uncertainty of 10% must be taken into account when
classifying the results.

It is noticeable that one iron data point exceeded the upper limit of iron concentration at AL 3. In
contrast, as a function of zinc concentration, four iron concentration values exceeded the upper limit of
iron concentration at ZN 1.
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Figure 9. Engine 1 - iron concentration vs aluminum or zinc concentration with the upper limit of iron
for individual groups.

Figure 10 shows the time series of iron, aluminum and zinc concentration along with their level
number. The moments when the upper limit of iron concentration was exceeded are marked with a
cross mark symbol. When iron concentration exceeded the Al-related limit, the zinc-related limit was
also exceeded. Three other Zn 1 exceedances are located nearby.
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Figure 10. Engine 1 - concentration time series.

From the maintenance records of the aircraft, it was found that the oil sample taken at 753.33 FH
was the first sample taken after the overhaul. In addition, after sampling the oil at 780.9 FH, the oil
was changed. Before the overhaul, the upper limit of iron concentration value had not been exceeded.
Therefore, the above results indicate that the contamination of the lubrication system after the overhaul
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distorted the statistically proven correlation between the discussed elements. After the oil change, no
further deviations from the calculated correlation were found during the next 450 FH.

3.9. Engine 2

Engine 2 accumulated 808.08 FH when the first oil sample was taken. Before reaching 1114.38 FH,
the 33 oil samples were collected and analyzed. Figure 11 shows the obtained iron results as a function
of aluminum or zinc concentration. The plots show that iron concentration exceeded the upper limit
for some aluminum and zinc levels.
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Figure 11. Iron concentration as a function of aluminum concentration with marked values of the
upper limits of the levels and the upper values of iron for individual levels.

Figure 12 shows the time series of iron, aluminum and zinc concentration with their level number.
The moments when the upper limit of iron concentration was exceeded are marked with a cross mark
symbol. In the first 80 FH, iron concentration did not cross the limit but later numerous exceedances
were observed. Several oil changes combined with the flushing of the system led to a temporary
reduction in particle concentration and getting some observations that were within the limits. However,
these actions did not reverse the overall trend of growing iron production.

The traditional analytic approach (3σ) classified the observed iron results 5.5-7.5 ppm as acceptable
in the four-point scale: 1) white - undamaged or new, 2) green - acceptable wear, 3) yellow - increased
wear, 4) red - significant deterioration. It can be concluded that although iron concentration was
only at the yellow level, the ANOVA-based model indicated accelerated wear of the system. Already
215 FH before detecting unacceptable particles at the magnetic chip detector, symptoms of damage
appeared in the form of a distorted correlation between the concentration of the discussed elements.
Even repeated oil changes and other maintenance actions such as replacing the propeller governor did
not result in a permanent return to the correct correlation of results.

The process of accelerated wear distorted the statistical dependence between the elements because
it triggered the generation of particles in larger quantities and with an unusual distribution. Since iron
concentration persistently exceeded the limits for some Al an Zn levels, the engine was subjected to
supervised maintenance which involved more frequent check-ups. This procedure made it possible
to continue engine operation safely and avoid the costs of a premature overhaul. However, upon
reaching 1114 FH, hairy chips up to 3 cm long were found on the filter of the propeller reduction unit
along with numerous metallic particles on the magnetic plug of AGB (Figure 13). The engine was
grounded and sent to the repair shop.
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Figure 12. Iron concentration as a function of flight hours.

(a) (b)

Figure 13. Engine 2: a) numerous metallic particles on the magnetic plug of AGB, b) hairy chips up to
3 cm long on the filter of the propeller reduction unit.
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4. Discussion

ANOVA was employed here to prove the statistical dependence between iron and aluminum or
zinc, and to calculate the effect size for each factor. Its results led us to rejecting the null hypothesis
of mean equality in individual groups. This confirms that with the increase in the concentration of
aluminum and zinc, higher average values of iron concentration are obtained (except Zn 4 level).
Therefore, their concentrations should be analyzed jointly in this tribological system (the M601T
turboprop) since their individual monitoring is less effective. For example, an increase in the
concentration of aluminum without an increase in the concentration of iron, or vice versa, exceeding
the established group limits may indicate a change in the wear process leading to damage. These
correlations can be interpreted as footprints of the alloys containing the analyzed elements, forming
friction pairs in the engine. However, without the material map of the engine, the only way to find the
root cause of accelerated wear is to tear it down and inspect the components in a material laboratory.

It should be noted that although the impact of zinc concentration and interaction between
aluminum and zinc on iron concentration were found to be weaker than the impact of aluminum,
their effect was considered statistically significant by ANOVA and should be taken into account. It is
likely that in other systems, the influence of other elements can be neglected, and it will be sufficient to
monitor only the pair of iron and aluminum. However, it cannot be excluded that in some cases there
will be more than two elements that significantly affect iron concentration but the proposed approach
can be still used then.

Binning aluminum and zinc concentration into four levels simplified the classification problem
since it converted continuous variables into categorical ones. This allowed fixed alarm limits to be
found for each group. When compared to other more advanced methods, these thresholds are more
convenient to use in practice. Also, they are based on individual group means, and thus describe the
system better than linear regression, where the model relies on a single mean. However, selecting the
right number of levels and their boundaries to meet ANOVA conditions can sometimes be challenging.
By employing factor variables, this work expands on prior research based on pair-wise analysis of oil
parameters [15,24,58].

Obviously, ANOVA is a linear model and has its limitations. Some issues, related to skewed data
distribution, were overcome here by removing outliers and logarithmic transformation. Undoubtedly,
this dataset and similar oil analysis results can be processed with more advanced statistical or machine
learning models such as quantile regression, decision trees [59,60], SVM [61,62], artificial neural
networks [63] or their assemblies [64,65]. There is enough training data and computational cost is
moderate but the main challenge is to properly formulate the prediction problem when engine wear
and its remaining useful life is not a priori known. Consequently, classical statistical methods, due to
their convenience, remain important in maintenance decision making.

5. Conclusions

It was shown that an ANOVA-based model can be used in practice to model the wear products
in oil samples. It provided valuable diagnostic information for data that, analyzed with traditional
single-parameter analysis, did not exhibit significant deviations from normal wear. Deviations of iron
concentration from the limits determined by the statistical model may indicate accelerated wear of the
engine long before the occurrence of critical damage or high oil contamination by wear products.

The most important finding of the work was that the strong correlation of iron and aluminum,
and also the weaker but still statistically significant correlation of iron and zinc were confirmed. These
correlations are most likely related to the composition of alloys that form friction pairs in the engine.

Future work should concentrate on integrating the data from other analytic methods. Also, it
would be interesting to employ the proposed approach to other tribological systems such as the main,
intermediate and rear gearboxes of helicopters.
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Abbreviations

The following abbreviations are used in this manuscript:

AI artificial intelligence
Al aluminum
AGB accessory gear box
ANN Artificial Neural Networks
ANOVA analysis of variance
CI confidence interval
d.f. degree of freedom
Fe iron
FH flight hour
FT-IR Fourier transform infrared spectroscopy
IRQ interquartile range
ITWL Air Force Institute of Technology in Warsaw
JOAP Joint Oil Analysis Program
LSD Least Significant Difference Test
ODM oil debris monitoring
ppm parts per million (mg/kg)
RDE-AES rotating disc electrode atomic emission spectroscopy
Std standard deviation
SVM support vector machine
TBO time between overhaul
Zn zinc
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30. Bolčeková, S. Reliability Analysis of Mechanical and Lubrication System of an Aircraft Engine. PhD thesis,
Czech Technical University in Prague, 2019.

31. Maintenance manual turboprop engine models Walter M601E, Walter M601E-21 manual part no. 0982055 fourth

revised edition; Walter a.s.: Prague, 2003.
32. Novák, M.; Šlofar, J. Practical Training for WALTER M601 Engine. MAD - Magazine of Aviation Development

2013, 1, 23. doi:10.14311/MAD.2013.03.05.
33. Klich, E.; Feja, S. Trudna decyzja (Difficult decision). Przegla̧d WLiOP 2002.
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