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Abstract: Quantitative polymerase chain reaction (qPCR) has emerged as an important bioanalytical 

method for assessing the pharmacokinetics of human cell-based medicinal products after xenotrans-

plantation into immunodeficient mice. A particular challenge in bioanalytical qPCR studies is that 

the different tissues of the host organism can affect amplification efficiency and amplicon detection 

to varying degrees, and ignoring these matrix effects can easily cause a significant underestimation 

of the true number of target cells in a sample. Here we describe the development and drug regula-

tory-compliant validation of a TaqMan® qPCR assay for quantification of mesenchymal stromal 

cells in the range of 125 to 20,000 cells/200 µl lysate by amplification of a human-specific, highly 

repetitive α-satellite DNA sequence of the chromosome 17 centromere region HSSATA17. Assess-

ment of matrix effects in 14 different mouse tissues and blood revealed a wide range of spike recov-

ery rates across the different tissue types from 11 to 174%. Based on these observations, we propose 

to perform systematic spike-and-recovery experiments during assay validation and to correct for 

the effects of the different tissue matrices on cell quantification in subsequent bioanalytical studies 

by multiplying the back-calculated cell number by tissue-specific factors derived from the inverse 

of the validated percent recovery rate. 
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1. Introduction 

Xenotransplantation of human cells into immunodeficient mice is an essential com-

ponent of cell therapy development [1-3]. By determining the distribution and retention 

of cell products after administration to mice, important questions can be addressed, such 

as whether the delivered cells actually reach the target site(s), whether they engraft in 

sufficient numbers to produce the desired effect, whether they are distributed to un-

wanted non-target tissues, and how long they persist in the host organism. Answering 

these questions is critical to uncovering the underlying mechanism(s) of action, exploring 

interventions to improve cell engraftment ratios and evaluating the biosafety profile of 

cell-based therapy strategies as required by the regulatory authorities [3-5]. 

Bioanalysis studies evaluating the distribution, persistence and clearance of cell ther-

apy products place special demands on the analytical method. First, the method must be 

highly specific and sensitive to detect and quantify very small populations of human cells 
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that are vastly outnumbered by the mouse cells surrounding them. Secondly, because 

transplanted cells can be distributed in an inhomogeneous manner within organs [6,7], 

the method must ensure that its accuracy is not biased by sampling errors due to non-

random cell distribution. Thirdly, the method should ideally not require the cells to be 

pre-labeled, since this may affect their viability and/or functionality [8-10] and would 

therefore require the comparability of the labeled cells to the (unlabeled) cells intended 

for human use to be established [10-12]. Given these requirements, quantitative polymer-

ase chain reaction (qPCR) has evolved as a method of choice in bioanalysis of cell therapy 

products. qPCR assays enable specific and extremely sensitive tracking and absolute 

quantification of the donor cells via detection of species-specific DNA sequences within 

the whole host organ. This makes qPCR suitable for rapid and convenient systematic 

quantification of unlabeled donor cells even at very low cell numbers in a broad range of 

host organs and tissues [4,5,13,14]. 

However, the performance of a qPCR assay depends on a number of parameters, 

including but not limited to tissue sampling and nucleic acid extraction methods, choice 

of primers and probes, selection of reagents and reaction conditions, determination of the 

quantification cycle (Cq) values, and matrix effects [15,16]. Therefore, any qPCR method 

must be validated to ensure the reliability of the data that will be obtained. Remarkably, 

however, despite the growing number of qPCR applications in regulated bioanalysis, and 

even though qPCR is one of the officially recognized methods for determining the phar-

macokinetics of cell therapy products [11], regulatory guidance on the use of qPCR is lim-

ited [17-21]. The International Council for Harmonisation of Technical Requirements for 

Pharmaceuticals for Human Use (ICH) Guideline M10 on Bioanalytical Method Valida-

tion and Study Sample Analysis [22,23], which recently superseded the guidelines on bi-

oanalytical method validation released by the European Medicines Agency (EMA) [24] 

and the US Food and Drug Administration (FDA) [25], focuses on pharmacokinetic meth-

ods that are suitable for classical small-molecule drugs and large-molecule biologics, such 

as chromatographic methods and ligand-binding assays, but do not address the specific 

requirements for proper validation of PCR assays [17-19]. 

Another challenge in bioanalytical qPCR studies is that the different organs and tis-

sues of the host organism can affect amplification efficiency and amplicon detection to 

varying degrees, and ignoring such matrix effects can easily lead to an underestimation 

of the true number of target cells in a sample. Matrix effects have been studied predomi-

nantly in environmental microbiology, microbial food safety and forensic analyses, where 

the amounts of target nucleic acids are often extremely small and the matrices particularly 

diverse and challenging [26-29]. In contrast, with the exception of forensically and micro-

biologically relevant body fluids and secretions as well as food safety-relevant matrices 

such as muscle tissue and milk, the effects of mammalian matrices on qPCR results have 

been assessed and discussed only in a very limited manner and only for a limited number 

of tissue types [13,30-34]. 

With particular attention to these challenges, we describe here the development and 

validation of a qPCR assay for reliable detection and quantification of human cells in 

mouse tissues and blood. The validation included a systematic assessment of the matrix 

effects of 14 different mouse tissues including blood. This assay enabled the generation of 

preclinical biodistribution data acceptable to regulatory authorities [35], which were re-

quired for the approval of a medicinal product based on skin-derived ABCB5+ mesenchy-

mal stromal cells (MSCs) [36,37] to be tested in clinical trials. The insights presented here 

may also be relevant for a range of other scientific contexts and purposes. 

2. Materials and Methods 

2.1. Assay design 

A TaqMan® qPCR assay was developed for detection and quantification of human 

ABCB5+ MSCs in mouse tissues by detection of a DNA sequence of human α-satellite 

DNA [38]. As an internal control of efficient DNA extraction from mouse tissues, in mouse 
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tissue homogenates also a mouse-specific DNA sequence of the prostaglandin E receptor 

2 (PTGER2) gene [39] was detected. The assays were run in a certified GLP-compliant test 

facility (Accelero Bioanalytics, Berlin, Germany). Reporting follows the MIQE (Minimum 

Information for Publication of Quantitative Real-Time PCR Experiments) Guidelines 

where applicable [40]. 

2.2. Primers and Probes 

Human-specific DNA was detected by amplification of a sequence of the α-satellite 

DNA on chromosome 17 (HSSATA17, GenBank Acc. No. M13882), using forward primer 

GGGATAATTTCAGCTGACTAAACAG, reverse primer AAACGTCCACTTGCAGAT-

TCTA and 6-carboxyfluorescein-labeled probe CACGTTTGAAACACTCTTTTTGCA car-

rying the Black Hole Quencher® BHQ®-1. Mouse-specific DNA was detected by amplifi-

cation of a mouse-specific DNA fragment of the PTGER2 gene using forward primer TAC-

CTGCAGCTGTACGCCAC, reverse primer GCCAGGAGAATGAGGTGGTC and car-

boxytetramethylrhodamine-labeled probe CCTGCTGCTTATCGTGGCTG carrying 

BHQ®-2. The specificity of these sequences has been confirmed previously [38,39]. All 

primers and probes were supplied by Microsynth (Balgach, Switzerland). Primer and 

probe lyophilizates were dissolved in DNase-free water to prepare 100-µM stock solu-

tions, from which 18-µM (primers) and 5-µM (probes) working solutions were prepared. 

2.3. Human ABCB5+ MSCs 

Human ABCB5+ MSCs were derived from skin samples taken from human subjects 

undergoing abdominoplasties or other medical interventions providing leftover skin tis-

sue. Skin sampling was performed in accordance with the German Act on Organ and Tis-

sue Donation, Removal and Transplantation after written informed consent was obtained 

from each donor. Cell production was carried out in an EU-GMP grade A cabinet in a 

grade B clean room facility under laminar air flow according to a validated GMP-compli-

ant manufacturing protocol as described previously [36]. In brief, skin tissue was enzy-

matically digested, and cells were expanded as an unsegregated culture by serial passag-

ing upon adherence selection in an in-house MSC-favoring culture medium. From these 

cultures, ABCB5+ MSCs were isolated by antibody-coupled magnetic bead sorting using 

a mouse anti-human monoclonal antibody directed against the extracellular loop 3 of the 

ABCB5 molecule [41] (Maine Biotechnology Services, Portland, Maine; GMP-compliant 

purification: Bibitec, Bielefeld, Germany). After enzymatic detachment of the beads from 

the cell surface, the isolated ABCB5+ MSCs were cryo-preserved in CryoStor® CS10 freeze 

medium (BioLife Solution, Bothell, WA) containing 10% dimethyl sulfoxide and stored in 

the vapor phase of liquid nitrogen. 

For spiking, ABCB5+ MSCs suspensions were thawed at 37 °C in a thermal mixer. To 

remove cell debris and free, degraded DNA, the cell suspension was washed with 1× PBS. 

After centrifugation for 5 min at 500×g, the cell pellet was taken up in PBS to adjust the 

cell concentration to approximately 2000 cells/µl. Effective cell concentration as assessed 

by cell counting under a light microscope using a hemocytometer was 2008 cells/µl. The 

cell suspension was aliquoted and stored at -80 to -60 °C. 

2.4. Mouse tissue sampling 

Animal breeding, care, necropsy and tissue collection were conducted by a special-

ized contract research organization (Preclinics, Potsdam, Germany). SCID/beige mice (21-

23 weeks old, 5 male, 5 female) were anesthetized with isoflurane and whole blood was 

collected by cardiac puncture into EDTA collection tubes. The animals were then sacri-

ficed by an overdose of xylazine and the following tissues were collected: mouse skin 

(neck region), thigh muscle (M. quadriceps femoris), lymph nodes (cervical, axial and in-

guinal lymph nodes pooled), liver, spleen, lung, brain, bone (femur) including marrow, 

kidneys, thymus, thyroid and ovaries/testes. 

To avoid contamination with human DNA and cross-contamination between ani-

mals, necropsy and tissue collection were performed under a laminar airflow workbench. 

All work areas were disinfected before work commenced. Personnel wore disposable lab 
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coats, hoods and face masks, and two pairs of gloves. The gloves were disinfected before 

work commenced and the outer pair of gloves was changed after each animal. A separate 

autoclaved dissection set was used for every four animals (one cage) and was disinfected 

after each animal. Tissue pads for necropsy were changed after each animal. Tissues were 

collected in DNAse-free collection tubes. 

2.5 Preparation of reference standards 

Reference standards were prepared and samples were lysed and DNA extracted us-

ing the NucleoSpin® 96 Tissue kit (Macherey-Nagel, Düren, Germany) according to the 

manufacturer’s instructions, following the protocols described below. 

2.5.1. Calibration standards and quality control standards 

Seven calibration standards (range: 125 to 20,000 ABCB5+ MSCs) and five quality con-

trol standards (range: 125 to 15,000 ABCB5+ MSCs) were prepared by serial dilution of 

ABCB5+ MSC suspension in Tris-EDTA buffer. Tris-EDTA buffer without cells was used 

as blank sample. Twenty microliters of each cell suspension or blank sample was added 

to 180 µl lysis buffer T1, followed by the addition of 25 µl proteinase K. Samples were 

lysed at 56 °C for 15-30 min. The lysates were stored at -80 to -60 °C until DNA was eluted 

using 60 µl of pre-heated (70 °C) elution buffer BE. 

2.5.2. Tissue quality control standards 

Mouse tissues were taken up in lysis buffer T1 (amount as required to adjust the in-

tended tissue concentration, see Table S1) into homogenization tubes filled with ceramic 

beads (for soft tissues) or steel beads (for bone tissue; addition of lysis buffer T1 only after 

two “dry” homogenization cycles without lysis buffer), and homogenized in the Precellys 

Evolution homogenizer (Bertin Technologies, Frankfurt, Germany) at 6000 rpm and room 

temperature for 20 s per cycle with at least 30 s pause between cycles. If more than two 

cycles were required for complete homogenization (see Table S1 for the total number of 

cycles for the different tissues), the samples were cooled between each cycle. Homoge-

nates (225 µl each) were spiked with 25 µl cell suspension containing 0, 125, 625 or 5000 

ABCB5+ MSCs. The spiked homogenates were homogenized for a further cycle, and then 

25 µl proteinase K was added. Samples were lysed at 56 °C for 15-30 min. 

For preparation of blood quality control standards, 100 µl EDTA blood was spiked 

with 20 µl cell suspension (containing 0, 125, 625 or 5000 ABCB5+ MSCs), filled up to 400 

µl with PBS, and then 25 µl (assays 1 and 2) or 50 µl (assay 3) proteinase K and 400 µl 

binding buffer BQ1 was added. The samples were lysed at room temperature for 5 min 

(assays 1 and 2) or 30 min (assay 3) followed by 70 °C for 15 min. 

All lysates were stored at -80 to -60 °C until DNA was eluted using 60 µl of pre-heated 

(70 °C) elution buffer BE. 

All steps related to tissue transfer, cutting, splitting, lysis, DNA extraction and trans-

fer of the eluate to the qPCR plate were performed under a laminar airflow workbench 

using sterile, disposable equipment. Personnel wore two pairs of sterile gloves; the outer 

pair and the tools used to split and transfer the samples were changed between each sam-

ple. Where tissue samples had to be sectioned, sterile DNA-free 24-well culture plates 

were used as a sectioning surface. 

2.5.3. Freeze-thaw stability 

To test for freeze-thaw stability of the extracted DNA, DNA eluted from quality con-

trol standards was divided into two aliquots. One set of aliquots was stored at 2 to 8 °C 

and the other set at -25 to -15 °C for at least 12 hours prior to analysis. 

2.6. Amplification 

The master mix for a singleplex PCR reaction consisted of 5 µl GoTaq Probe qPCR 

Master Mix (Promega, Madison, WI, USA) added with 0.5 µl each of DNase-free water, 

18-µM forward primer, 18-µM reverse primer and 5-µM probe. The master mix (7 µl) was 

mixed with 3 µl of a 10-fold dilution (in DNase-free water) of template DNA, resulting in 

a reaction volume of 10 µl. For no-template control, DNAse-free water was used. 
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Amplifications were run on an Applied BiosystemsTM ViiATM 7 Dx Real-Time PCR instru-

ment (Thermo Fisher Scientific, Langenselbold, Germany). The cycling program consisted 

of an initial denaturation step of 10 min at 95 °C followed by 45 cycles of 15 seconds at 95 

°C and 1 minute at 60 °C. For detection of human DNA, samples were assayed in triplicate; 

except for samples spiked with lower cell numbers (250 and below), which were assayed 

in sextuplicate. For detection of mouse DNA, samples were assayed in monoplicate. 

2.7. Assay validation and acceptance criteria 

The assay was validated in accordance with the general requirements for bioanalyti-

cal method validation set out in the EMA Guideline on Bioanalytical Method Validation 

[24], recently superseded by the ICH guideline M10 on Bioanalytical Method Validation 

and Study Sample Analysis [22], evaluating the parameters linearity, intra-assay and in-

ter-assay accuracy and precision, specificity, freeze-thaw stability and tissue matrix effects 

against predefined acceptance criteria (Table 1). 

2.7.1. Linearity 

Calibration curves were generated by plotting the Cq number against the logarithm 

of the cell numbers in the calibration standards. A linear calibration function: 

Cq = slope(log(cells)) + y-intercept (1) 

was fitted by least-square regression. Linearity was assumed if the correlation coefficient 

r2 was ≥ 0.95. The equation of the best-fit line was used to back-calculate the numbers of 

cell equivalents. Assay efficiency (E) was calculated as: 

E = (10(-1/slope) - 1) × 100. (2) 

2.7.2. Accuracy and precision 

Intra-assay and inter-assay accuracy (expressed as percent bias of the calculated cell 

number from the nominal cell number; acceptance criterium: within ± 40%) and precision 

[expressed as percent coefficient of variation (CV) between a series of measurements of 

the same sample; acceptance criterium: ≤ 40%] were determined on the calibration stand-

ards and quality control standards assayed in triplicate or sextuplicate (as specified 

above). Three independent runs were performed on three different days. For assay vali-

dation, at least 75% of the calibration standard samples and at least 67% of the quality 

control standards had to meet the acceptance criteria for accuracy and precision. 

2.7.3. Specificity 

To demonstrate specificity of the assay, the no-template controls were required to 

give either no amplification signal or a Cq value unequivocally distinguishable from the 

lower limit of quantification (LLOQ). To confirm that the assay specifically quantifies hu-

man cells even in the presence of mouse cells, tissue blanks, i.e. mouse tissue samples not 

spiked with human cells, were also analyzed. 

2.7.4. Tissue matrix effects 

The effects of mouse tissues on the DNA extraction and assay performance were as-

sessed by determining the spike recovery in the tissue quality control standards (mouse 

tissues spiked with ABCB5+ MSCs). Three independent runs were performed on three dif-

ferent days. Spike recovery rates (ratio of measured to the nominal cell counts, expressed 

as a percentage of the nominal cell count) were used to calculate matrix factors (defined 

as the reciprocal of the percent recovery rate) for each tissue analyzed. 

Table 1. Assay validation 

Parameter Acceptance criteria Results 

Linearity r2 ≥ 0.95 0.971 - 0.992 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 29 May 2023                   doi:10.20944/preprints202305.2014.v1

https://doi.org/10.20944/preprints202305.2014.v1


 

 

Accuracy 

Bias of the calculated cell number 

from the nominal cell number 

within ± 40% 

Cals: 

intra-assay: -21% - 25% 

inter-assay: 10% - 13% 

QCs: 

intra-assay: -36% - 36% 

inter-assay: -18% - 8% 

≥ 75% of Cals and ≥ 67% of QCs 

meet the acceptance criterion for in-

ter-assay accuracy 

100% of Cals and 100% of QCs 

met the acceptance criterion for 

inter-assay accuracy 

Precision 

CV between a series of measure-

ments ≤ 40% 

Cals: 

intra-assay: -21% - 25% 

inter-assay: 10% - 13% 

QCs: 

intra-assay: -36% - 36% 

inter-assay: -18% - 8% 

≥ 75% of Cals and ≥ 67% of QCs 

meet the acceptance criterion for in-

ter-assay precision 

100% of Cals and 100% of QCs 

met the acceptance criterion for 

inter-assay precision 

Quantification 

range 

LLOQ = lowest cell concentration 

quantified with acceptable accuracy 

and precision 

LLOQ: 125 human MSCs in 200 

µl lysate 

ULOQ = highest cell concentration 

quantified with acceptable accuracy 

and precision 

ULOQ: 20,000 human MSCs in 

200 µl lysate 

Specificity 

No-template controls give either no 

amplification signal or a Cq value 

unequivocally distinguishable from 

the LLOQ 

Assays 1 and 2: 

Cq value unequivocally distin-

guishable from the LLOQ 

Assay 3: 

No amplification signal 

DNA freeze-thaw 

stability 

Bias of the cell number quantified in 

the frozen aliquot from that in the 

cooled aliquot within ± 40% 

-14% - 14% 

Matrix effects in 

14 mouse tissues 

Tissue-specific recovery rates determined and matrix factors calcu-

lated 

Cal – calibration standard sample; Cq – quantification cycle; CV – coefficient of variation; LLOQ – 

lower limit of quantification; r2 – correlation coefficient; QC – quality control standard sample; 

ULOQ – upper limit of quantification. 

3. Results 

3.1. Linearity and quantification range 

The linear regression parameters of the calibration curves of the three validation as-

says (assays 1–3; Table 2) disclose a linear correlation between the log cell number and the 

Cq value (correlation coefficient r2 = 0.990, 0.971 and 0.992 for the three validation assays) 

over the quantification range from 125 human MSCs/200 µl lysate (= LLOQ) to 20.000 hu-

man MSCs/200 µl lysate (= upper limit of quantification, ULOQ). 

Table 2. Linear regression parameters of the calibration curves 1 

Assay No. Objective Slope y-Intercept Efficiency [%] r2 

1 Method validation -4.8876 45.3621 60.177 0.990 

2 
Method validation, 

matrix effects 

-3.9656 41.0232 78.718 0.971 
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3 
Method validation, 

matrix effects 

-3.5819 39.0348 90.187 0.992 

4 Matrix effects -3.6903 38.9021 86.630 0.993 

5 Freeze-thaw stability -4.6922 45.0217 63.350 0.994 
1 Quantification range 125 to 20.000 human cells/200 µl lysate. r2 – correlation coefficient. 

3.2. Accuracy and precision 

Accuracy and precision were assessed in three independent validation assays on the 

calibration standards and quality control standards run on three different days. 

Of the 81 calibration standard replicates measured, all yielded signals. Four values 

(each two of six replicates of Cal 7 with nominal cell number = 125 in each of assays 1 and 

2) were excluded from calculation to improve curve fitting. In assay 2, two replicates of 

Cal 6 (nominal cell number: 250) showed a bias > 40% (back-calculated cell numbers: 490 

and 448) but were still included in the calculations. This resulted in a high intra-assay CV 

of 41%, which just missed the range of acceptance. Overall, the intra-assay accuracy 

ranged from -21% to 25% bias and the intra-assay precision from 2% to 41% CV. The inter-

assay accuracy ranged from -10% to 13% bias and the inter-assay precision from 9% to 

22% CV, with all values within the range of acceptance (Table 3). 

Table 3. Calibration standard results 

Calibration standard 

Nominal cell number 

Replicates per assay 

Cal 1 Cal 2 Cal 3 Cal 4 Cal 5 Cal 6 Cal 7 Blank 

20,000 10,000 5000 1000 500 250 125 0 

3 3 3 3 3 6 6 6 

Assay 1 

Cq, mean 24.816 25.519 27.238 30.346 32.029 33.610 35.427 1 36.233 

Cell number, 

mean (SD) 
16,009 (1148) 11,478 (236) 5111 (248) 1189 (165) 535 (19) 258 (51) 110 (23) 1 74 (8) 

Bias [%] -20 15 2 19 7 3 -12 
 

CV [%] 7 2 5 14 4 20 21 

Assay 2 

Cq, mean 23.727 25.376 26.594 28.925 30.452 31.244 33.003 1 38.867 2 

Cell number, 

mean (SD) 
23,121 (2970) 8961 (1921) 4486 (1407) 1162 (376) 485 (172) 314 (128) 109 (37) 1 3 2 

Bias [%] 16 -10 -10 16 -3 25 -12 
 

CV [%] 13 21 31 32 36 41 34 

Assay 3 

Cq, mean 23.311 24.711 26.149 28.362 29.592 30.298 31.498 39.735 3 

Cell number, 

mean (SD) 
24,567 (1347) 9994 (710) 3962 (202) 955 (47) 435 (53) 277 (40) 128 (19) 1 (1) 3 

Bias [%] 23 0 -21 -4 -13 11 3 
 

CV [%] 5 7 5 5 12 15 15 

Assays 

1-3 

n (total) 9 9 9 9 9 18 14 

 

Cell number, 

mean (SD) 
21,232 (4581) 10,145 (1265) 4520 (575) 1102 (128) 485 (50) 283 (28) 116 (11) 

Inter-assay bias [%] 6 1 -10 10 -3 13 -7 

Inter-assay CV [%] 22 12 13 12 10 10 9 
1 Two of the six Cq values were excluded from calculation to improve curve fitting. 2 Signal was 

detectable only in one of six replicates. 3 Signal was only detectable in four out of six replicates. Cq 

– quantification cycle; CV – coefficient of variation; SD – standard deviation. 

Of the 54 quality control standard replicates measured, all yielded signals. Six values 

(all three replicates of QC 3 with nominal cell number = 1250 in assay 1, two replicates of 

QC 4 with nominal cell number = 650 in assay 1, and one replicate of QC 1 with nominal 

cell number = 15,000 in assay 2) were excluded because of high bias of the back-calculated 

from the nominal value. Overall, the intra-assay accuracy ranged from -36% to 36% bias 

and the intra-assay precision from 5% to 36% CV, with all values within the range of 
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acceptance. The inter-assay accuracy ranged from -18% to 8% bias and the inter-assay pre-

cision from 11% to 27% CV, with all values also within the range of acceptance (Table 4). 

Table 4. Quality control standard results 

Quality control standard  

Nominal cell number 

Replicates per assay 

QC 1 QC 2 QC 3 QC 4 QC 5 NTC 

15,000 5000 1250 625 125 0 

3 3 3 3 6 3 

Assay 1 

Mean Cq 25.419 27.444 [36.747] 1 33.265 34.826 36.511 3 

Cell number, mean (SD) 12,079 (1288) 4647 (398) [61 (22)] 1 400 2 152 (56) 66 3 

Bias [%] -19 -7 [-95] 1 -36 22 
 

CV [%] 11 9 [37] 1 n.d. 2 36 

Assay 2 

Mean Cq 23.852 25.846 28.558 29.877 32.739 39.978 5 

Cell number, mean (SD) 18,410 (2984) 4 6780 (1139) 1417 (316) 649 (68) 125 (28) 2 5 

Bias [%] 23 36 13 4 0 
 

CV [%] 16 17 22 11 22 

Assay 3 

Mean Cq 24.133 26.096 28.349 29.419 31.536 40.861 6 

Cell number, mean (SD) 14,481 (908) 4112 (437) 965 (90) 484 (26) 126 (24) 0 6 

Bias [%] -3 -18 -23 -23 1 
 

CV [%] 6 11 9 5 19 

Assays 1-3 

n (total) 8 9 6 8 18 

 
Cell number, mean (SD) 14,990 (3196) 5180 (1412) 1191 (320) 511 (127) 135 (15) 

Inter-assay bias [%] 0 4 -5 -18 8 

Inter-assay CV [%] 21 27 27 25 11 
1 Value was excluded from further evaluation due to high bias of all three replicate measurements. 
2 N = 1; two of the three cell number values were excluded from calculation due to high bias. 3 N = 

2; one of the three replicates was excluded due to pipetting error. 4 N = 2; one of the three values 

was excluded from calculation due to high bias. 5 Signal was only detectable in two out of three 

replicates. 6 Signal was only detectable in one out of three replicates. Cq – quantification cycle; CV 

– coefficient of variation; n.d. – not determined; NTC – no-template control; SD – standard deviation. 

3.2. Specificity 

The no-template controls gave either no amplification signal (Cq value > 40, assay 3), 

or their mean Cq value was unequivocally distinguishable from that of the LLOQ (QC 5; 

assays 1 and 2) (Table 4). Of the 251 tissue blank replicates measured in total, 98 (39%) 

gave no amplification signal. The other replicates gave weak signals, with mean back-

calculated cell counts ranging from 0 to 10 cells (corresponding to 0 – 8% of the LLOQ) in 

nearly all tissues, except for liver (21 cells, 17% of the LLOQ) and muscle (22 cells, 18% of 

the LLOQ) (Table S2). 

3.3. Freeze-thaw stability of extracted DNA 

Freeze/thaw stability of extracted DNA for one freeze/thaw cycle was assessed in 

quality control standard lysates stored at -25 to -15 °C. The bias of the cell number meas-

ured in these aliquots from the cell number measured in the aliquots that had been stored 

at 2 to 8 °C ranged between -14% and 14% (Table S3). 

3.4. Tissue matrix effects 

Tissue matrix effects were assessed in three independent assays (assays 2–4) on the 

tissue quality control standards run on three different days (Table S2). Since in assay 4 the 

spike recovery rates for almost all tissues were considerably lower as compared to assays 

2 and 3 (Table 5), inefficient DNA extraction was assumed for assay 4. Therefore, data 

were re-analyzed for assays 2 and 3 only (Table 5). Spike recovery varied between the 

different tissue types, with mean recovery rates (assays 2 & 3) ranging from 11% (blood) 

to 174% (liver) (Table 5). For the most tissues (i.e., all except for muscle, brain and thyroid), 
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the spike recovery rate was highest in the samples spiked with the lowest cell number 

(nominal cell count = 125 cells/200 µl tissue lysate) (Figure 1). 

Table 5. Spike recovery in mouse tissues and blood spiked with human ABCB5+ MSCs 1 

Tissue 2 

Spike recovery rates (%) 
Matrix 

factor 3,4 
Assay 2 

Mean (% CV) 

Assay 3 

Mean (% CV) 

Assay 4 

Mean (% CV) 

Assays 2 - 4 Assays 2 & 3 3 

Mean SD % CV Mean SD % CV 

Skin 144 (45) 147 (22) 29 (28) 107 67 63 146 2 1 0.68 

Muscle 131 (29) 121 (5) 31 (38) 94 55 58 126 7 6 0.79 

Lymph nodes 113 (38) 65 (27) 45 (16) 74 35 47 89 34 38 1.12 

Liver 249 (49) 98 (7) 26 (42) 124 114 92 174 107 62 0.57 

Spleen 37 (94) 45 (36) 12 (38) 31 17 55 41 6 14 2.44 

Lung 28 (94) 48 (56) 10 (23) 29 19 66 38 14 37 2.63 

Brain 19 (11) 48 (38) 11 (70) 26 19 75 34 21 61 2.94 

Bone 38 (23) 81 (26) 13 (21) 44 34 78 60 30 51 1.67 

Kidney 33 (25) 49 (29) 12 (10) 31 19 59 41 11 28 2.44 

Thymus 70 (23) 70 (37) 21 (29) 54 28 53 70 0 0 1.43 

Thyroid 100 (44) 62 (34) 42 (35) 68 29 43 81 27 33 1.23 

Ovaries 49 (14) 28 (24) 23 (11) 33 14 41 39 15 39 2.56 

Testes 18 (39) 39 (43) 17 (59) 25 12 50 29 15 52 3.45 

Blood 10 (80) 11 (20) 3 (22) 8 4 54 11 1 7 9.09 
1 Tissue homogenates/blood from SCID/beige mice were spiked with 5000, 625, 125 and 0 (blank 

samples) human skin-derived ABCB5+ MSCs per 200 µl lysate. Three independent assays (assays 2, 

3 and 4) were performed on three different days. Within each assay, samples spiked with 5000 and 

625 cells were assayed in triplicate, samples spiked with 125 cells and blank samples in sextuplicate. 
2 For tissue concentrations see Table S1. 3 Since spike recovery rates for almost all tissues were con-

siderably lower in assay 4 as compared to assays 2 and 3, possibly indicating inefficient DNA ex-

traction, data were re-analyzed for assays 2 and 3 only. 4 Matrix factor = 100/mean recovery rate. CV 

– coefficient of variation; MSC – mesenchymal stromal cell; SD – standard deviation. 

In an attempt to improve spike recovery from blood samples, modified sample prep-

aration and DNA extraction protocols were tested (Table S4). However, neither increasing 

the amount of proteinase K and extending the incubation time at room temperature (assay 

4) nor various modifications such as reducing the amount of blood, PBS, binding buffer 

BQ1 and/or the time of incubation at room temperature resulted in higher recovery rates 

but tended to further decrease spike recovery. 

4. Discussion 

Although qPCR-based assays have emerged as an important bioanalytical method 

for assessing the pharmacokinetics of human cell-based medicinal products [4,5,13,19], 

the regulatory guidelines on the validation of bioanalytical methods released by the EMA, 

FDA and ICH [22-25] focus on methods suitable for small- and large-molecule drugs such 

as chromatographic and ligand-binding assays. While the basic concepts and parameters 

of method validation described in these guidelines can be adapted to cell quantification 

by qPCR, in the absence of specific regulatory recommendations including definitive ac-

ceptance criteria for a validated qPCR assay, researchers must rely on published evidence 

from bioanalytical scientists as well as recently issued best practice recommendations 

[18,42,43] and white papers from scientific networks [19-21,44]. 
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Figure 1. Spike recovery rates from various mouse tissues and blood spiked with 5000, 625, 125 and 

0 (blank samples) human skin-derived ABCB5+ MSCs per 200 µl lysate, shown for the overall quan-

tification range and by each nominal cell count. Data are means with SD from two independent 

assays (assays 2 and 3; see Table 5) run on two different days. Within each assay, samples spiked 

with 5000 and 625 cells were assayed in triplicate, samples spiked with 125 cells and blank samples 

(not shown) in sextuplicate. 

The validation presented here followed the validation parameters set out in the EMA 

Guideline on Bioanalytical Method Validation [24], recently superseded by the ICH 

Guideline M10 on Bioanalytical Method Validation and Study Sample Analysis [22], using 

predefined acceptance criteria (Table 1). The acceptance criteria for accuracy and preci-

sion, which were set to within ± 40% and ≤ 40%, respectively, are within the range of those 

recently recommended by the European Bioanalysis Forum [20]. The data obtained show 

that human MSCs can be detected and quantified with acceptable linearity, accuracy and 

precision within the range of 125 (LLOQ) and 20,000 (ULOQ) cells/200 µl lysate (Table 1). 

When developing and validating a bioanalytical assay, it is essential to match the 

setup to the actual study in which the assay will be used [22,23]. Besides factors such as 

the intended mouse strain(s) or the amount of available sample material, an important 

aspect of bioanalytical cell detection by qPCR is the fact that many components in biolog-

ical matrices can bias the cell quantification results. Such components include molecules 

that can impair DNA extraction or, after being co-extracted with the DNA, can affect am-

plification by disturbing annealing of the primers or inhibiting the DNA polymerase, or 

interfere with amplicon detection by quenching fluorescence or interacting with the fluor-

ophore [13,16,27,29]. In contrast to environmental, food or forensic qPCR, there is only 

limited information on substances that may interfere with qPCR-based cell detection in 

the field of bioanalysis. Known inhibitory molecules present in bioanalytically relevant 

tissues and body fluids include molecules present in skin, muscle and bone such as mela-

nin, myoglobin, collagen and calcium ions, as well as various blood constituents including 

added anticoagulants (Table 6). However, the issue of matrix effects on cell quantification 

by qPCR must be considered in all tissue types of the body. The yield and quality of ex-

tracted genomic DNA can vary widely depending on the physical and biochemical nature 

of each tissue [13,30], and the tissue from which the DNA was extracted can have a signif-

icant effect on the efficiency, accuracy and precision of the qPCR assay [33]. Therefore, 

current regulatory guidelines [22,23] and best-practice recommendations [18-20,43,44] ad-

vise to assess potential matrix effects by determining the recovery of target DNA spiked 
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into each tissue of interest during assay validation, with recovery rates in a wide range 

between 30% and 100% considered to be expected [18,43]. 

Table 6. Tissue and blood components that have been reported to negatively affect qPCR 

Inhibitor Tissue Mode of action References 

Melanin 

Skin, mela-

noma metas-

tases 

Reversible binding to thermostable DNA poly-

merases 
[45] 

Binding to DNA, thereby limiting the amount 

of available template 
[46,47] 

Myoglobin Muscle Inhibition of Taq DNA polymerase [48] 

Collagen 

Bone 

Inhibition of thermostable DNA polymerases, 

binding to template DNA 
[47,49] 

Calcium ions 

Inhibition of thermostable DNA polymerases, 

likely by competition with the polymerase co-

factor Mg2+ 

[47,49] 

Hemoglobin 

Blood 

Impairment of DNA polymerase activity, fluo-

rescence quenching through binding to or inter-

acting with fluorescent dyes 

[50] 

Immuno-

globulin G 

Binding to single-stranded genomic DNA, 

thereby hindering primer annealing or binding 

of DNA polymerase 

[50,51] 

Lactoferrin Release of iron ions [52] 

EDTA 1 Chelation of the polymerase cofactor Mg2+ [53,54] 

Heparin 1 
Competition with template DNA, chelation of 

the polymerase cofactor Mg2+ 
[52,54] 

1 Used as anticoagulant. 

Our experiments on a wide variety of tissues revealed an even wider range of recov-

ery rates between the various tissue types, with two out of the 14 tissues showing recovery 

rates below 30% (one of which, testes, with a recovery rate of 29% just missing the range) 

and three out of the 14 tissues showing recovery rates above 100% (Figure 1). The lowest 

recovery was achieved in blood samples, where only 11% of spiked cells were detected. 

In this respect, it is important to note that blood is generally considered to be a particularly 

challenging matrix [51,52,55]. PCR mixtures based on Taq DNA polymerases have been 

reported to be inhibited in the presence of 1% [56] or even 0.004% (v/v) EDTA whole blood 

[57], and whole blood components co-extracted with the DNA can cause several negative 

effects such as loss of amplifiable target DNA, reduction of amplification efficiency and 

quenching of fluorescence [50-54]. On the other hand, thorough purification of DNA ex-

tracts can result in significant loss of DNA, which can also reduce recovery rates to as low 

as 10% [29]. Modifications to the extraction protocol, such as increasing the volume of 

proteinase K and the incubation time, have been reported to increase the yield of amplifi-

able DNA from blood samples [58], but did not improve the recovery rates of human 

ABCB5+ MSCs spiked into mouse blood samples in the present study (Table S4). 

Overall, the data from the spike-and-recovery experiments demonstrate that a qPCR 

assay for bioanalytical studies runs the risk of substantially underestimating or even over-

estimating cell numbers, if the potential matrix effects due to physical and biochemical 

differences between the various tissues of the host organisms are not taken into account. 

Interestingly, a trend towards higher recovery rates at lower spiked cell concentrations 

was observed in almost all tissues in our assay (Figure 1). Although we have no causal 

explanation for this observation, this trend suggests that the risk of underestimation de-

creases towards the lower limit of the validated quantification range. 

In any case, while regulatory authorities require the determination of tissue matrix 

effects as part of bioanalytical method validation [22,25], they do not provide guidance on 
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how to handle the results. An ideal, thorough assay optimization to minimize the impact 

of the different tissue matrices on cell quantification results would require an elaborate, 

costly and animal-intensive program to evaluate the amount, integrity and purity of the 

DNA extracted in different ways and/or to assess the amplification efficiency for, e.g., dif-

ferent buffer compositions and/or added facilitators [16,27,29]. Such complex programs, 

which would have to be performed and validated separately for each tissue of interest, 

would be beyond the resources of a research group or cell therapy-developing company, 

especially as bioanalytical studies require the analysis of a wide range of different tissues. 

Instead, for reasons of feasibility in the sense of a fit-for-purpose approach [22,23], we 

suggest correcting for the effects of the different tissue matrices on cell quantification in 

the subsequent actual sample measurements by multiplying the back-calculated cell count 

by a matrix-specific factor, representing the reciprocal of the percent recovery rate (Table 

5). 

An important question in bioanalytical studies is whether the cells that are detected 

are actually alive and, as such, potentially active, or whether they are not [59]. Researchers 

need to note that, unlike other cell detection methods such as flow cytometry and optical 

imaging [4,60], qPCR by itself cannot distinguish between nucleic acids extracted from 

live cells, cell fragments, or cell corpses engulfed by local macrophages [5]. However, in 

vivo, genomic DNA is rapidly degraded upon cell death as an intrinsic part of the apop-

totic program and/or by lysosomal DNAses of cells that have phagocytosed the apoptotic 

or necrotic cell corpses [61,62]. Therefore, it is widely accepted that inadvertent quantifi-

cation of DNA isolated from dead cells is rather unlikely and, in the context of human cell 

xenotransplantation, the presence of dead human cells or residual human genomic DNA 

would not be expected to significantly bias the quantification of live human cells 

[34,59,63,64]. As with the distinction between living and dead cells, qPCR is also not able 

to distinguish between proliferating and non-proliferating cells. For cells that are intended 

for use as cell therapy products, however, any potential for unwanted proliferation must 

be excluded [5,65]. Therefore, in bioanalytical studies assessing the biosafety of a cell-

based therapy, cell quantification by qPCR needs to be complemented by an appropriate 

method to assess the proliferative activity of the detected cells, e.g., immunohistochemical 

double-staining of tissue slides with a human-specific antibody and an antibody against 

a proliferation marker such as Ki67 [35]. 

5. Conclusions 

From the perspective of cell therapy development, the data presented demonstrate 

that the efficacy and safety of stromal cell therapies in xenotransplantation models must 

be evaluated on a tissue-specific basis. Biodistribution and dose-response relationships 

for human cell-based medicinal products obtained in animal models using a validated 

qPCR assay must be considered in a differentiated manner due to different tissue-specific 

matrix interferences, which can affect cell recovery rates to a very different extent. By con-

trasting the results from the different tissues, the present study suggests the use of tissue-

specific matrix factors to correct for the effects of the different tissue matrices on cell quan-

tification in the subsequent actual sample measurements. 
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www.mdpi.com/xxx/s1, Table S1: Validated tissue concentrations and homogenization cycle num-
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