Supplementary Material

1

- 2 Frank Keppler^{1,2}*, Mihaly Boros³, Daniela Polag¹
- ¹Institute of Earth Sciences, Heidelberg University, D-69120 Heidelberg, Germany
- ²Heidelberg Center for the Environment (HCE), Heidelberg University, D-69120 Heidelberg,
- 5 Germany
- 6 ³Institute of Surgical Research and Interdisciplinary Excellence Center, University of Szeged,
- 7 Szeged, Hungary
- 8 *Correspondence: frank.keppler@geow.uni-heidelberg.de

9

10

11

12

Time frame of experiments

Table S1: Overview and timeline of isotope labeling experiments.

experimental series	date
oral intake ¹³ C labeled DMSO	06/14/2018
oral intake ² H labeled DMSO	10/12/2020 – 10/13/2020
arm incubation	07/17/2018 - 07/19/2018
blood experiments	07/03/2019 — 07/05/2019

13

14

15

Determination of stable isotope source signatures of CH₄ using keeling plots

- 16 The Keeling plot was first used to estimate the $\delta^{13}C$ value of respired CO_2 in an ecosystem
- 17 from night-time air samples. The basis of the Keeling plot method is conservation of mass.
- 18 Thus, in our case the concentration of CH₄ in breath air and adjacent atmospheric air (inhaled
- 19 air) reflects the combination of background atmospheric concentration and the variable
- amounts of that gas added by sources in the human body.

$$c_a = c_b + c_s (1)$$

- where c_a, c_b, and c_s are, respectively, the breath (exhaled air) CH₄ concentration measured from
- 23 the volunteer (Fig. S1A), the background CH₄ concentration (inhaled air) and the additional

- 24 concentration component produced in the human body which has raised atmospheric CH₄
- 25 concentration above background.
- 26 Given conservation of mass,

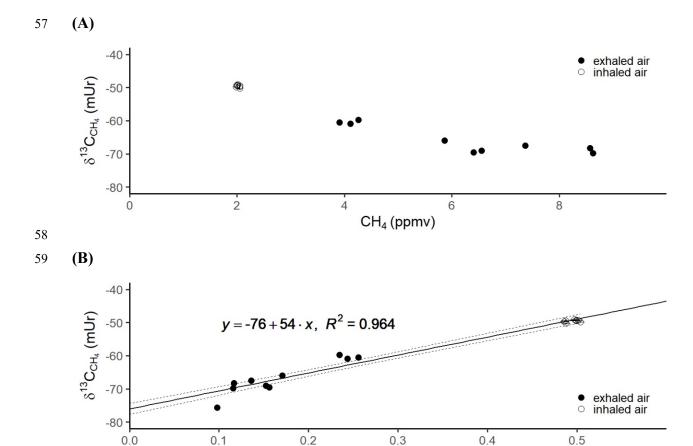
$$\delta^{13}C_{a}c_{a} = \delta^{13}C_{b}c_{b} + \delta^{13}C_{s}c_{s} (2)$$

- where δ^{13} C represents the stable carbon isotope value of each CH₄ component. Combining
- 29 equations (1) and (2),

30
$$\delta^{13}C_a = c_b(\delta^{13}C_b - \delta^{13}C_s)(1/c_a) + \delta^{13}C_s(3)$$

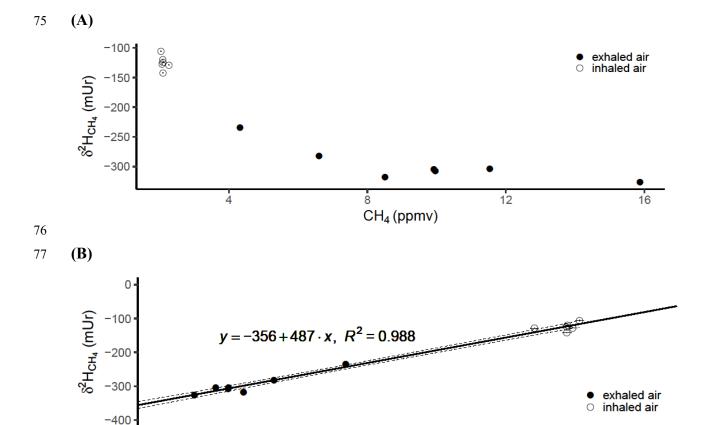
- where $\delta^{13}C_s$ is the integrated value of the CH₄ sources in the human body. This is illustrated
- 32 graphically in Figure S1 with breath samples from the volunteer that were collected over a
- 33 period of four weeks.
- 34 The extrapolated intercept of the straight line in the Keeling plot corresponds to the situation
- when the concentration is very large and dominated by sample CH_4 (1/[CH_4] = 0) and thus
- provides the isotope ratio of the breath CH₄ source. The Keeling plot of isotopic composition
- versus inverse concentration 1/[CH₄] as shown for the volunteer in Figure S1B, yielded a very
- good linear correlation ($R^2 > 0.96$) and the $\delta^{13}C$ source signature of -76 ± 0.93 mUr was derived
- by extrapolating to $CH_{4\rightarrow} \infty$ which corresponds to the y-axis intercept of the linear fit to the
- 40 δ^{13} C values versus 1/[CH₄] data.
- The same principle as explained before for stable carbon isotopes was also applied for
- determining the source signature of stable hydrogen isotopes of breath CH₄ and a δ^2 H source
- signature of -356 ± 5.5 mUr was calculated (Fig. S2).
- It is important to recognize that the model described by equations (1) to (3) involves two basic
- assumptions. Firstly, we assume that a simple mixing of only two gas components is considered
- 46 (a source and the bulk background). Secondly, we assume that the isotope ratio of these two
- components does not change over the course of the observation.

50


51 52

53

54


55

56

Supplementary Figure S1: (A) Relationship between breath CH₄ concentration and stable carbon isotope values of the subject of breath samples collected within the period of July to August 2019. (B) The keeling plot shows the linear regression between $1/\text{CH}_4$ and $\delta^{13}\text{C}_{\text{CH}_4}$ values including the 95% confidence band of the regression line. The standard errors for the linear regression are 0.93 mUr for the intercept and 2.6 mUr for the slope.

1/CH₄ (1/ppmv)

Supplementary Figure S2: (A) Relationship between breath CH₄ concentration and stable hydrogen isotope values of the subject of breath samples collected within the period of July to August 2019. (B) The keeling plot shows the linear regression between $1/\text{CH}_4$ and $\delta^2\text{H}_{\text{CH}4}$ including the 95% confidence band of the regression line. The standard errors for the linear regression are 5.5 mUr for the intercept and 16.2 mUr for the slope.

0.3

1/CH₄ (1/ppmv)

0.4

0.5

0.2

0.1

0.0

78

79

80

81

82

83

84

85

Supplementary photo 1: Arm incubation chamber for online measurements using CRDS

