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Abstract. In this paper, we introduce a way of representing a given mapping as the sum of odd
and even mappings. Then, by using this representation, we investigate the stability of various
forms for the following general nonic functional equation

10
Z 10CH (=D f(x + iy) = 0.
=0
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1 Introduction

The various types of stability for functional equations are very interesting material in the
field of mathematical analysis. The stability problems of functional equations have been
developed by some authors ; see [8, 10, 21, 24]. In paricular, Gilanyi [9] has investigated the
stability of the monomial functional equation in real normed spaces. Subsequent studies
have improved the results of Gilanyi (for example, [6, 11, 13]). Moreover, the hyperstability
of the monomial functional equation can be found in [1, 13, 14]. The hyperstability of
functional equation means that arbitrary mappings satisfying equation approximately (in
some sense) must be really solution to it (refer to [19]).
In this paper, we discuss the general functional equation :

D nCi(—1)" f( +iy) = 0. (1.1)
=0
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This functional equation is called as the general nonic functional equation, specially, for
n = 10. The function f(x) := Z?:_Ol a;x' is a particular solution of (1.1), while the function
f(x) := ax™ is a particular solution of the n-monomial functional equation

chz ) Zf(x +iy) —nlf(z) = 0. (1.2)

1=0

One can find more details in [3]. The functional equation (1.2) is said to be a nonic
functional equation, specially, for n = 10. That is the reason that we call the equation
(1.1) as the general nonic functional equation, specially, for n = 10.

On the other hand, the rest of this paper is organized as follows. In section 2, we study
a way of representing a given mapping as the sum of odd and even mappings. In section
3, we investigate the hyperstability of the general nonic functional equation, that is, (1.1)
for n = 10. And then in section 4, we discuss the stability problem of the general nonic
functional equation.

Not much study has been conducted on the general nonic functional equations. The
big advantage of this paper is the uniqueness of the solution in the stability of the general
nonic functional equation. The uniqueness of the solution in the stability of the monomial
functional equation have been discussed in many researches. But, the uniqueness of the
solution in the stability of the general nonic functional equations is more complicated
problem. Considering the special representation of a given mapping, we then solved this
problem.

In the papers [2, 4, 5, 12, 23], one can see the hyperstability result of the functional
equations. The recent results of the stability of the general functional equation (1.1) can
be found in [7, 15, 16, 17, 18, 20, 22].

Lastly, before going into the content of the paper, readers should recall that X is a
normed space and Y is a Banach space throughout this paper.

2 Representation of a given mapping

In this section, we will introduce a way of representing a given mapping as the sum of odd
and even mappings.
For a given mapping f : X — Y, we denote

folx) := B folz) == W

Let us consider the following system of nonhomogeneous linear equations

filz)  +f3() +f5(x) +f7(x) +fo(x) = fo(z),
2Uf 1 (z) +8'f3(w) +32'f5(x) +128f7(x) +512f9(x) = fo(27),
22f1(x) +82f3(x) +322f5(x) +128%f7(x) +5122f9(x) = f,(4x),
2 fi(x) +8fs(z) +32%f5(z) +128%fr(x) +5123fo(x) = fo(8x)),
24f1(x) +8f3(x) +321f5(x) +128%fr(x) +512%f(x) = fo(16z)
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and

folz)  +fa(z) +fo(z) +fs(z) = fe(z),
At fo(x) +16"fa(x) +641fg(x) +256' fs(z) = fe(22)
42fy(x) +162f4(z) +642f5(x) +256%fs(x) = feo(4x),
43fa(x) +163f4(x) +643fs(x) +2563fs(x) = fo(8x)

for all x € X. Then, we obtain the following lemmas by the uniqueness of solution stated

in Cramer’s rule.

Lemma 2.1 Let f: X — Y be a given mapping and

1 1 1 1 1
2 8 32 128 512
M:=| 22 8 322 1282 5122
23 83 323 128% 5123
24 8% 32¢ 128 5124

Then, we have the mappings f1, f3, f5, f7, fo : X = Y defined by formulas

fol) 1 1 1 1 L folz) 1 1 1
fo(2zx) 8 32 128 512 2 f.(2x) 32 128 512
fo(4z) 8% 322 1282 5122 22 f,(4z) 322 1282 5122
fo(8z) 8 323 1283 5123 23 f,(8z) 323 1283 5123
(1 4324 128* 5124 2+ f,(16x) 32* 128* 512¢
I 1 fo(x) 1 1 11 1 folz) 1
2 8 fo(2z¢) 128 512 2 8 32  fo(2z) 512
22 82 f,(4x) 1282 5122 22 82 322 f,(4x) 512°
23 8% f,(8v) 128 5123 23 8% 323 f,(8z) 5123
24 8% f,(16x) 128* 5124 24 8% 32% f,(16x) b512¢
fole) = 50%) R = - ,

1 1 1 1 fo(z)
2 8 32 128 f,(2x)
22 82 322 128%  f,(4x)
2 8% 323 128%  f,(8x)
24 8t 321 128 f,(16x
fo() _ | (16z)

for all x € X. Furthermore, fo(x) = fi(x) + fa(x) + fs(x) + fr(x) + fo(x) for allx € X.

Lemma 2.2 Let f: X — Y be a given mapping and

1 1 1 1

16 64 256
42 162 642 2562
43 16% 64° 2563

M =
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Then, we have the mappings fo, fa, f6, fs : X = Y defined by formulas

d0i:10.20944/preprints202305.1988.v1

fe(@) 11 1 1 fe(x) 11
fo(2x) 16 64 256 4 f.(2z) 64 256
fe(4z) 162 642 2562 42 fe(4m) 642 2562
fo(8z) 163 643 256° 43 f.(8z) 643 2563
f2($) = M/ I f4($) = M/ 9
11 f(x) 1 1 1 1 fe(n)
4 16  fe(2z) 256 4 16 64 f.(22)
42 16% f.(4x) 2562 42 16% 64% f.(42)
43 163 f.(8z) 2563 43 163 643 f.(8x)
fola) = B B0 ) = g
for all x € X and fe(x) = fa(x) + fa(x) + fo(x) + fo(x) for all x € X.
Remark 2.3 By Lemma 2.1 and Lemma 2.2, we have the following results: For allxz € X,

)

 fo(163) — 6801, (8x) + 91392, (4x) — 2785280 f,(2x) + 16777216 f,(x)
@) = 722925 - 16 ’
 fu(82) — 336f.(4z) — 21504f.(2z) — 262144f, ()
fa(@) = 2835 - 64 ’
 5440(f,(163) — 674f,(8z) + 87360 f,(4z) — 2269184 f,(2x) + 4194304, ()
folz) = 722925 - 65536
_ fu(8x) — 324f.(4x) — 17664, (2z) — 65536 f.(x))
falw) := 135 - 1024 ’
| 1428(f,(162) — 650f,(8z) + T1952f,(4x) — 665600 f,(2z) + 1048576 f,(x)
fs(z) = 722925 - 65536 ’
 fo(8%) — 276f.(4z) — 5184f.(2x) — 16384 f.(x))
folz) = 135 - 4096 ’
_85(f,(163) — 554f,(8x) + 21840, (4x) — 172544, (2x) + 2621441, (z))
frl@) = - 722925 - 65536 ’
 Je(8x) — 84 fc(4x) — 1344 f(22) — 4096 f.(x))
fs(z) == 2835 - 4096 ’
 £o(162) — 170£,(87) + 5712f,(4x) — 43520f,(2x) + 65536 f,()
folw) := 722925 - 65536 '
Moreover,

9

Zfz(:c) for all x € X.

i=1

/()

From now on, we define the mappings needed to prove main theorems.
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Definition 2.4 For a given mapping f : X — Y, we define as

10
Df(z,y) := Z 10C (=17 f(x + iy),
i=0

L' f(x) :=Df,(12z,4x) + 10D f,(8x,4x) + 55D f,(4x, 4x) 4+ 220D f,(10z, 2x)
+ 2200D £, (8, 2) + 9988D f, (6, 2z) + 27280D f, (4z, 2)
+ 45352Df, (22, 22) + 17920Df, (5, ) + 179200D f, (4, z)
4 760320D f, (3, ) + 1689600D f, (2z, ) + 1790976 D, (z, z),
Af(z) :=Df.(6x,2x) + 10D f.(4z,2z) + 55D f.(2x, 2z) + 110D f. (0, 2x)
+ 320D f.(3z, x) + 3200D f,(2z, z) + 12992D f. (z, z) + 12160D f. (0, )
forall x,y € X.

As results of tedious calculation, we obtain the following lemmas :

Lemma 2.5 Let f: X — Y be an arbitrarily given mapping. Then, the equalities

Tf(z) = f,(32x) — 682f,(162) + 92752f,(8x) — 2968064 f,(4z),
+ 22347776 f,(22) — 33554432 (),
Af(z) = f.(162) — 340f.(8z) + 22848 f.(4x) — 348160 f.(2z) + 1048576 f. ()

hold for oll x,y € X.

Lemma 2.6 Let f: X — Y be an arbitrarily given mapping. Then, we have that

; f1(2z Lfo(z ; f2(2z Afe(x
h@) = (2 ) - 72292§3 -)32’ falz) = (4 ) - 2835 -(2;)6’
= f3(22) 5440T f, () ; f1(22) 21Af(z)
fa@) = T8 722925655368’ 1(@) = 16 2835-256- 64’
~ 5(2x 14281 f,(x ~ 6(2x 21A fe(x
) - z(az ) - 722925 - 3£ -(6;536’ fatz) - ((54 = 2835 - 2§6(- 1)024’
Fole) fr22) 85T fo(x) fte) fs2x) _ Afe(w)
128 722925 - 65536 - 128 256 9835 - 256 - 4096
R ThE

fol@) 512 722925 - 65536 - 512
are fulfilled for all x,y € X.
Lemma 2.7 If f : X — Y is a mapping such that Df(z,y) = 0 for all z,y € X with

f(0) = 0, then for each i € {1,2,...,9}, the mappings f;(x) in Remark 2.3 satisfy the
equalities Dfi(x,y) =0 for all x € X and f;(2z) = 2'f;(x) for all z,y € X.
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6
Proof. Since Df(x,y) =0 for all z,y € X, by the definition of f;,I'f and Af, we have
Dfi(x,y) =0, Af(z) =0, ['f(z) = 0.
Applying Lemma 2.6, we arrive at f;(2x) = 2! f;(z). O

3 Hyperstability of the general nonic functional equation

In this section, we will prove the hyperstability of the general nonic functional equation.
To prove main theorem, we will use the functions introduced in previous section.

Theorem 3.1 Let p < 0 be a real number. Suppose that f : X — Y is a mapping such
that

IDf(z, )
2 < 0 for all z,y € X\{0}. (3.1)
][ + [lyl[?

Then, D f(x,y) = 0 is fulfilled for all x,y € X.

Proof. e STEP 1°: Using the definition of f together with

10 ‘
Z 10C(-1)1" =0,
=0

we have that

From the expression (3.1) and the definitions of I'f and Af, we get
ITf(z)| < 47377612800K70|z||?, || Af(x)| < 11612160K 0z (P

for all x € X\{0}, where

220 - 207 + 55 - 167 + 10 - 127 + 17920 - 107 + 45353 - 87 + 27280 - 67

47377612800
L+ 1801030 - 47 + 1689600 - 37 + 847560 - 2P + 4617216

47377612800 ’
I(L7110-10?4—55-8?4—10'6p4—12160-5?-%12993.4P-+3200'3P4—496-2P-+28672
T 11612160 '

K':
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Then, Lemma 2.5 and the definitions of f; (k € {1,2,...,9}) ensure the inequalities

A@z)  AERF)|| || 40967 fo(x) _ 4096K"6)|||”
2 2L || || 47377612800 - 201 || = 2l
L2z)  HERF)|| || 64Af(2) _ 64K 0|

4 4i+1 || 11612160 - 4+1 g+l
f3(2z)  fs2Ha) | 54400 f,(z) _ 5440K"0)| |17
8 8L || T ||47377612800 - 8i+1 || — g+l
fi2z) @) 84Af, () _ B4KOz|)”

160 167+ || |[11612160 - 16i+1 || = 16i+1
f5(2x)  fs2F )|l | 14287 fo(x) _ 1428K70)||)”
320 32i+1 |l || 47377612800 - 32i+1 || —  32i+1 7
fo@x)  fo@Fla)|| || 21Afe(x) _ 21K0|||]”

640 6411 || || 11612160 - 6411 || = 64+l
fr(2x)  f2Ha) | 85T fo() _ 85K 0z|)”
128i 12801 || 7 |147377612800 - 128¢F1 || = 128i+1 7
fs(2w)  fs@a)|| _ Afe(x) < KOl

2561 256i+1 11612160 - 2567 +1 || = 256i+1
fo(2)  fo(2a)|| _ I fo() < K'Ol|z|”
512i 512i+1 47377612800 - 512i+1 || = 512i+1

for all z € X\{0}. Note that

9 =z 9 =z n+m—1 9 7 9 =z
f f 2n+m ) f f 22+1
kzl 2kn kz 9k(n+m) Z ( ka kZ 9k(i+1) ) ’

This implies that

P Fe(2M2) = fe 2n+m) ”*m’l 4096K' 64K  5440K’
Z 2kn Z k(n+m) Z 2i+1 + qi+1 + 8i+1
k=1 k=1 =n

84K  1428K' 21K 85K’ K K’

_|_

. p
+ 16i+1 32i+1 + 647+1 * 128i+1 + 2561+1 + 512"“) Ol (32)

for all x € X\{0} and n,m € NU{0}. Due to p < 0, the sequences {f1(2nm - {fg x)}
and {Zk 1 f’“éinx } are Cauchy for all z € X\{0}. Since Y is complete and f(0) = 0, the
sequences {f (27 m)} {f 929n }and {37_, i ’“;nz } converge for all x € X. Hence, for



https://doi.org/10.20944/preprints202305.1988.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 29 May 2023 d0i:10.20944/preprints202305.1988.v1

each k € {1,2,...,9}, we can define mappings Fj, F': X — Y by

£ o(on 9 n
Fi(z) := lim f’“(an), F(z) = lim Y k(2"2) (z € X).

n—ooo 2k n—o00

e STEP 2°: By (3.1) and the definitions of D f, F} and fy, since Df1(xz,y) = Dfi(z,y),
we then have

D) = i, | PR < i [PREEEE)
16777216 D f,(2"x,2"y)  2785280D f0(2”+1x, 271y
= oo H 11566800 - 2" B 11566800 - 2"
91392fo(2" 22, 2" %y) 680D fo(2" 3z, 2" 3y) N Df, (274, 2nty) H
11566800 - 27 11566800 - 27 11566800 - 27
: 16777216 + 2785280 - 2P 4 91392 - 227 + 680 - 23P + 24P\ 27
< jim ( Lo )+ Sro(isl + o)
—0 (3.3)

for all z,y € X\{0}. On the other hand, from the definition of DF}, we have
DF1 l‘ O 2100 10 ZFl(l' + ZO 2100 10 i = (3.4)

for all z € X. And, in view of (3.3), we obtain
DFy(0,y) = DFy(—10y,y) =0 for all y € X\{0}. (3.5)
Therefore, the relations (3.3), (3.4) and (3.5) yield that DFy(z,y) = 0 for all z,y € X.

Similarly, we can show that DFy(x,y) = 0 for each k € {2,3,---,9} and all z,y € X.
Since DF(z,y) = 22:1 DFy(x,y) for all z,y € X, we get DF(x,y) =0 for all z,y € X.

e STEP 3°: Observe that for all x € X,

Df(z,y) — DF(z,y) ch YO~ (fla +iy) — F(x +1iy)),
DF((1 - n)z,nz) = 0.
Then, we see that
Df((1 —n)z,nz) = f((1 —n)z) — F((1 —n)z) — 10f(z) + 10F(z)

+ Z 10C3(—1)1077 f((l —n)z +inz) — F((1 —n)z + inz))  (3.6)
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for any n € N and = € X\{0}. Moreover, by letting n = 0 and taking the limit m — oo
in (3.2), we get the inequalities

A096K’ | 6AK | SHOK' | SAK
2—-20  4-—20  8§—20P  16—2P
1428K' 21K 85K’ K X
P (3.7
32-2 6420 12820 25620 512_2p> " (3.7)

1f@) - F()] s(

for all z € X.
Since p < 0, by (3.1), (3.6) and (3.7), we are forced to conclude that

10+ f(2) ~ F@)| < lim [DF((1—~n)a,nz)| + lim [|F((1 ~n)z) ~ F((1 —n)a]

10
+3° tim (oG~ D+ D)) — F((— D+ D)
=2

10
< lim ((n— 1P +07) + Mn -1+ 10Ci((i — Dn+ 1)) - 0]|z|”

T n—o0
=2
=0
for all z € X\{0}, where
4096 K’ 64K 5440K’ 84K 1428 K’ 21K 85K’ K K’

M =

2—2p 4—2r 8§ —2p 16 —2p  32—-2P 64 —-2P 128—2P+256—21’+512—2P'

So, we have ||f(z) — F(z)|| = 0 for all z € X\{0}. Since f(0) = 0 = F(0), we have
f(z) = F(z) for all z € X. Therefore, Df(x,y) = DF(x,y) =0 for all z,y € X. From the
fact that D f(z,y) = Df(x,y), we finally have

Df(xvy) :Df(ﬂj,y) :DF(JL‘,y> =0,

which completes the proof. O

4  Stability of the general nonic functional equation

In this section, we will consider the stability of the general nonic functional equation
10
Z 1002'(—1)10_1]0(37 + iy) =0.
i=0

Theorem 4.1 Let p # 1,2,3,4,5,6,7,8,9 be a nonnegative real number. Suppose that
f: X =Y is a mapping such that for all x,y € X,

IDf (@, )l < O(ll=(1” + llyl”).- (4.1)

d0i:10.20944/preprints202305.1988.v1


https://doi.org/10.20944/preprints202305.1988.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 29 May 2023 d0i:10.20944/preprints202305.1988.v1

10

Then, there exists a unique mapping F satisfying DF (z,y) = 0 and

@) Py <( 20 540 s s 1 K0P
v TU=\l2—2 T8 —2v] T32—2¢] " 128 —2¢| ' |512—2¢]) 4096
64 84 21 1 KO|z|?
: 4.2
+<]4—2p|+\16—2P]+]64—2P|+|256—2P|> 6a 42

for all x € X, where K := 6P + 10 - 47 4 320 - 3P + 3431 - 2P 4 41664 and

K’ :=12P + 220 - 107 + 2210 - 87 + 9988 - 6P + 17920 - 5P + 206601 - 47 + 760320 - 3P + 1819992 - 2P + 6228992.

Proof. From the definition of f, we get Df(x,y) = Df(z,y) and f(0) = 0. By (4.1)
and the definition of I'f and A f, we have that

ITf(2)|| =||Dfo(122,42) + 10D fo(8z, 4z) + 55D fo(4x, 4z) + 220D f,(10z, 2z)

+ 2200D f,(8x, 2x) 4+ 9988D f, (62, 2x) + 27280D f,(4x, 2x)

+ 45352D f,(2z, 2x) + 17920D f,(5z, x) + 179200D f,(4z, x)

+ 760320D f, (3, x) + 1689600D f,(2z, x) + 1790976 D f,(x, z)||
<(12P 4+ 4P 41087 + 10 - 47 4+ 110 - 4P + 220 - 107 + 220 - 2°

+ 2200 - 8 + 2200 - 2P + 9988 - 67 4 9988 - 27 + 27280 - 4 + 27280 - 2P

+ 90704 - 2P + 17920 - 5 + 17920 + 179200 - 47 + 179200

+ 760320 - 3 4 760320 + 1689600 - 2° + 1689600 + 3581952) - 4|z ||
<722925 - 16 K'0||z||?, (4.3)
=||Dfe(6x,2x) + 10D fe(4z,22) + 55D f.(2x, 2x) + 110D f.(0, 2x)

+ 320D fe(3x, ) + 3200D fe (22, x) + 12992D fe(x, z) + 12160D f.(0, z) |
<(6P42P +10-47 +10- 27 + 110- 2P + 110 - 27

+ 320 - 37 + 320 + 3200 - 27 + 3200 + 25984 + 12160) - 6||z||?
<2835 - 64K 0||z||P (4.4)

IAf ()|

for all x € X.
Next, for i € {1,2,...,9}, we will find Fj, to make F(z) = 22:1 Fy(z). For each given
p#1,2,3,4,5,6,7,8,9, we will use different approach to find the functions Fy.

e Setting Fj : Let 0 < p < 1. It follows from Lemma 2.6 and (4.3) that

for all x € X. Notice that for all z € X,

Ff(Qix)

f[i(2z)  fi(2a)
‘ 722925 - 32 - 2t

_K6|jx|”
2 2i+1

- 2.2t 7

fi(2"z) _ Fr(2mrma) _ n4§:—1 (fl(Qfx) B f1(2i+1x)>

on oan+m 2 9t+1

1=n
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which implies that

A@re) At I
2n - 2n+m

K270 z||P
-« 2.2

=n

(4.5)

for all x € X and n,m € NU{0}. By (4.5), the sequence {%} is Cauchy for all z € X,
because of the fact that 0 < p < 1. Since Y is complete, the sequence {%} converges.
Hence, we may define a mapping F; : X — Y by

fi(2nz)
21’1

for all x € X.

Fi(z) :== lim

n—oo
Moreover, letting n = 0 and taking the limit m — oo in (4.5), we get the inequality

K'0|[]”

5 op for all x € X.

If1(2) = Fi(2)] <

By the definition of F, we easily get F(2z) = 2F;(z) for all z € X and

IDFy (2, y)|| = lim H2—n’
~ Jim 16777216 D f, (2" x, 2™y) - 2785280D f, (2" 1z, 2nt1y)
ey 11566800 - 2™ 11566800 - 27
91392D f, (2722, 2n+2y) B 680D f, (2" 3z, 27 +3y) - Df, (2", 2nty)
11566800 - 2™ 11566800 - 2™ 11566800 - 2™
.onp P P . 9(n+1)p P P
< lim 16777216 - 2"P0(||z||? + ||ly||?) + lim 2785280 - 2 O(|z]|P + |lylIP)
n—o00 11566800 - 2™ n—00 11566800 - 2™
. 9(n+2)p P P . 9(n+3)p P P
o e 213922052000 7)) 680 - 20970 af + y7))
n—co 11566800 - 2™ n—00 11566800 - 27

ot 2P + lyl)

=0
n—00 11566800 - 2™

for all z,y € X.
Let p > 1. It follows from Lemma 2.6 and (4.3) that

7 (o) g (i 20f(2 ) || _ K26
|2 2 e )| < 72292516 | = 26+
for all x € X. Because of the fact that
_ B n+m—1 o ' ' ~ '
2" f1(27"w) — 2T (2T ) = Y (2’f1(2”x) - (2Z+1f1(2’2*1x)>
for all x € X, we have
n+m—1 :
n g (o—n n+m F fo—n—m K'2'4||z|P
‘2 fi(27 ") =2 + fi(2 x)H < Z Q(HJ)pH (4.6)

1=n
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for all x € X and n,m € NU{0}. Since p > 1, by (4.6), the sequence {2”]?1(?_”33)} is
Cauchy for all x € X. By the completeness of Y, we know that the sequence {2" f1(27"z)}
converges. Hence, we can define a mapping F; : X — Y by

Fi(z) := lim 2"f;(27 ") for all 2 € X.

n—o0

However, letting n = 0 and passing the limit m — oo in (4.6) we get the inequality

K'0|||”

T for all x € X.

1f1(2) = Fi(x)l| <

From the definition of Fi, we easily get Fy(2z) = 2F;(x) for all z € X and DFy(z,y) =0
for all z,y € X.

e Setting F»: Let p < 2. It follows from Lemma 2.6 and (4.4) that

n+m—1

Af.(2iz)
2835 - 256 - 4

f@2"2)  fa(2rtma)
4n 4n+m

K270 z|P
=z 4. 4i

=n

(4.7)

for all z € X and n,m € NU {0}. Since p < 2, we have from (4.7) that the sequence

{%} is Cauchy for all x € X. By the completeness of Y, the sequence {w}
converges. Hence, we can define a mapping F» : X — Y by

f2(2nz)
47’L

Fy(z) := lim

n—o0

for all z € X.

Now, letting n = 0 and passing the limit m — oo in (4.7), we obtain that

KO|]”
4—2p

| fa(z) — Fa(x)|| < for all z € X. (4.8)

From the definition of F5, we then have Fy(2x) = 4F5(x) for all z € X and DFs(z,y) =0
for all z,y € X.
Let p > 2. It follows from Lemma 2.6 and (4.4) that

|

for all z € X and n,m € NU {0}. Since p > 2, we have by (4.9) that the sequence
4" fo(27"x) is Cauchy for all x € X. Since Y is complete, the sequence {4"f5(27"x)}
converges. Then, we can define a mapping Fs : X — Y by

n+m—1

47 o (27 ) — 4T ﬁ(r”*%)H <y

K40||z||P

2(i+1)p (4.9)

=n

Fy(z) := lim 4"f5(27"z) for all z € X.

n—oo
In (4.9), puting n = 0 and passing the limit m — oo, one obtains that

K0 ||P

5 — 4 for all x € X.

I1f2(2) = Fy(2)] <
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According the definition of Fy, we arrive at F5(2z) = 4F5(z) for all x € X and DFy(z,y) =
0 for all z,y € X.

e Setting F3 : Let p < 3. It follows by Lemma 2.6 and (4.3) that

54401 f(2x)
722925 - 524288 - &

f3(2"x) f3(2n+m93)

8n 8n+m

4.1
32768 - & (4.10)

" i 5440K'270)||z||P

for all x € X and n,m € NU{0}. Since p < 3, we see by (4.10) that the sequence {f?’(Q%)}

is Cauchy for all z € X. From the completeness of Y, the sequence {]c 2 } converges.
So, we may define a mapping F3: X — Y by

£ (on
F3(z) := lim fg(;nx) for all z € X.
n—oo

Taking n = 0 and sending the limit m — oo in (4.10), we find that

1) - Bl < ool

for all z € X. Based on the definition of Fj, we yield that F3(2z) = 8F3(x) for all z € X
and DF3(xz,y) =0 for all z,y € X.

Let p > 3. The lemma 2.6 and (4.3) guarantee that

|

for all x € X and n,m € NU {0}. Since p > 3, we have from (4.11) that {8”f3(~2*"x)} is
a Cauchy sequence for all x € X. So, because Y is complete, the sequence {8" f3(27"x)}
converges. Then, we may define a mapping F3: X — Y by

n+m—1

8" f3(27 ") — gntm fg(z—"—mx)H < Z

5440K'80||z||P

2096 . 26+ Dp (4.11)

Fy(z) := lim 8"f3(27"z) for all = € X.

n—oo

Let n = 0 and take the limit m — oo in (4.11) and then

5440K"0||||?

for all X.
1096(27 — 8) or all x €

1f3(2) = Fs(2)] <

The definition of F3 gives that F3(2x) = 8F3(z) for all x € X and DF3(x,y) = 0 for all
z,y € X.

e Setting Fy : Let p < 4. It follows from Lemma 2.6 and (4.4) that

n+m—1 ip P

256 - 16

1A fo(20)
2835 - 16384 - 167

f4(2nx) B f4(2n+m$)
16™ 16n+m

(4.12)
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for all z € X and n,m € NU{0}. Considering p < 4 and (4.12), the sequence {f4gzx)

is Cauchy for all x € X. Since Y is complete, the sequence {M} converges. Thereby,

167
we can define a mapping Fy: X — Y by

fa(2n)
16m

for all z € X.

Fy(z) :== lim

n—oo
Now, by letting n = 0 and passing the limit m — oo in (4.12), we obtain the inequality

21 K0)||”

———~ forall X.
16(16 — 27) or all z €

Ifa(z) = Fu(z)|| <

We have from the definition of Fy that Fy(2x) = 16Fy(x) for all x € X and DFy(z,y) =0
for all z,y € X.

Let p > 4. Lemma 2.6 and (4.4) imply that

n+m—1 ;
< < 21K16%0||z||”
n n n+m n—m
H16 fa(27") — 167 ™ £y (2 x)H< 2_: TR (4.13)

for all z € X and n,m € NU {0}. Since p > 4, we have by (4.13) that 16”f4(2*”x)
is a Cauchy sequence for all z € X. Since Y is complete, the sequence {16" f4(27"z)}
converges. Thus, we can define a mapping Fy : X — Y by

Fy(z) = 71113;0 16" f4(27"z) for all z € X,

Meanwhile, in (4.13), letting n = 0 and passing the limit m — oo we then have the
inequality

21 K0|z|”

for all X.
16(2F — 16) or all z €

Ifa(a) = Fu(x)|| <

From the definition of Fy, we see that Fy(2z) = 16F4(z) for all x € X and DFy(z,y) =0
for all z,y € X.

e Setting F5: Let p < 5. It follows from Lemma 2.6 and (4.3) that

n+m—1 Ioip p
<y 1428 K'2/70)||z

131072 - 32¢

14287 f(2'z)
722925 - 2097152 - 32

f5(2nx) B f5(2n+mx)
32n 32n+m

(4.14)

for all z € X and n,m € NU{0}. We have assume that p < 5. So, we have by (4.14) that

{%} is a Cauchy sequence for all x € X. Since Y is complete, the sequence {%}

converges. Hence, we can define a mapping F5 : X — Y by

- (on
F5(x) := lim f5£())2nx) for all x € X.

n—o0
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Moreover, letting n = 0 and passing the limit m — oo in (4.14), we get the inequality

1428 K6 z||?

ORI o all € X
2006(32 —27) TS

1f5(x) = Fs(2)] <
With the help of the definition of F5, we obtain that F5(2x) = 32F5(x) for all z € X and
DFs(z,y) =0 for all z,y € X.
Let p > 5. In view of Lemma 2.6 and (4.3), we have that
n+m—1

|32 fs(27ma) = s 27| < Y2

1428 - 32°K'0)|z||P
4096 - 2(i+1)p

(4.15)

for all z € X and n,m € NU{0}. It follows from p > 5 and (4.15) that the sequence
{32" ]i5(2_"x)} is Cauchy for all x € X. Since Y is complete, we see that the sequence
{32" f5(27™x)} converges. So, one can define a mapping F5 : X — Y by

F5(z) = 711;11010 32" f5(27"x) for all z € X.

Furthermore, setting n = 0 and sending the limit m — oo in (4.15), we lead to

1428 K76 ||”

22O U for all = € X
200620 —32) M TE

1f5(2) — Fs(x)ll <

By virtue of the definition of F5, we find that F5(2z) = 32F5(z) for all z € X and
DF5(z,y) =0 for all z,y € X.

e Setting Iy : Let p < 6. Combine Lemma 2.6 and (4.4) to find that

for all z € X and n,m € NU{0}. Then, since p < 6, it follows by (4.16) that {%} is a

Cauchy sequence for all x € X. The completeness of Y ensures that the sequence {%}
converges, so that, we define a mapping Fg: X — Y by

n+m—1 ip p

4096 - 64°

A fo(20x)
2835 - 262144 - 647

fNG (2n$) B f~6 (2n+mx)
64" 64n+m

(4.16)

Fs(x) := lim fo(2"2)

n—oo O

for all z € X.

But then, let n = 0 and take the limit as m — oo in (4.16) to get

21 K0 z||?

for all X.
64(64 — 27) orall =€

1fs(2) — Fo(2)]| <

According to the definition of Fg, we have shown that Fg(2z) = 64F(z) for all x € X and
DFs(z,y) =0 for all z,y € X.
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Let p > 6. It follows from Lemma 2.6 and (4.4) that

H64nf6(2_n$) - 64n+mf6(2_n_mx)H < ”+§m:_1

21 - 64°K0||z||P

TR (4.17)

for all z € X and n,m € NU {0}. Since p > 6, we see from (4.17) that the sequence
{64" f¢(27"z)} is Cauchy for all x € X. Thus, by the completeness of Y, we find that the
sequence {64" fg(27"x)} converges. Hence, we can define a mapping Fg : X — Y by

Fg(z) := lim 64" fs(27"x) for all z € X.

n—oo
In addition, put n = 0 and then let m — oo in (4.17) to have

21K ||z

S BOIEE porall z e X
Ga(r —6d) T TE

1fs(2) — Fo(2)]| <

From the definition of Fg, we get Fs(2z) = 64Fg(z) for all z € X and DFg(z,y) = 0 for
all z,y € X.

e Setting I : Let p < 7. We know by Lemma 2.6 and (4.3) that

for all z € X and n,m € NU {0}. Based on the fact that p < 7 and (4.18), the sequence

n+m—1 Ioyip p

524504 - 128?

85T f(2'x)
722925 - 8388608 - 128

f7 (an) B f7 (2n+mx)
128" 128ntm

(4.18)

{f 71(22;?)} is Cauchy for all x € X. Since Y is complete, the sequence {f 71(22;f)} converges.
So, one can define a mapping F7 : X — Y by
(o
Fr(x) := lim fi(2"x) for all =z € X.
n—oo 128™

Moreover, letting n = 0 and passing the limit m — oo in (4.18), we yield that

o) ~ @) < on el

RO gorall € X
096(128 — 27y oM TE

By the definition of F7, we have that F7(2x) = 128F;(x) for all z € X and DF;(z,y) =0
for all z,y € X.
Let p > 7. Note that, by Lemma 2.6 and (4.3), we have

85 - 128'K'0)||z||P
4096 - 2(i+1p

for all x € X and n,m € NU {0}. On the basis of the assumption p > 7 and (4.19), we
see that {128”]?7(2*”:5)} is a Cauchy sequence for all + € X. Since Y is complete, the
sequence {128" f7(2_":1:)} converges for all x € X. Therefore, we can define a mapping
Fr:X->Y by

H128"f7(2*"x) — 19gntm ﬁ(z*”*%;)” < (4.19)

Fr(z) := lim 128" f;(27"z) for all z € X.

n—oo

d0i:10.20944/preprints202305.1988.v1
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In (4.19), set n = 0 and then let m — oo to find

- K’ P
() — Fr(x)|| < or all =z € X.
7 j2 ; KO 2IP o we x

096(2° — 128)

By the definition of F7, it is shown that F7(2x) = 128 F7(x) for all z € X and DF;(z,y) =0
for all x,y € X.

e Setting Fyg: Let p < 8. It follows from Lemma 2.6 and (4.4) that

Afe(Qil‘)
2835 - 256 - 4096 - 256¢

fs@rz)  fs(2rtma)
256™ 256n+m

n+m—1 ip p

: 4.20
16384 - 256° ( )

for all z € X and n,m € NU {0}. By the assumption p < 8 and (4.20), the sequence
{fs(Q"w) fs(2"z)

} is Cauchy for all z € X. Since Y is complete, the sequence {

} converges.

2567 2567
Hence, we can define a mapping Fg : X — Y by
; (o
Fg(x) := lim fo(2"z) for all =z € X.
n—oo 25067

Letting n = 0 and passing the limit m — oo in (4.20), we then have the following inequality

K0[||P

< SOE_ pran we X
I'= Gaam6 — 2oy forall w€

1 fs(2) — Fy(x)
From the definition of Fg, we are forced to conclude that Fg(2x) = 256Fg(x) for all z € X
and DFg(x,y) =0 for all x,y € X.
Let p > 8. Observe that, by Lemma 2.6 and (4.4), we obtain that

n+m-—1
H256” Fe(27z) — 2567t ™ f8(2—"—mx)H < ¥

=n

256 K 0|z |?
1 g (4.21)

for all z € X and n,m € NU{0}. It follows from the assumption p > 8 and (4.21) that
{256™ fs(27"x)} is a Cauchy sequence for all z € X. The completeness of Y implies that
the sequence {256" fs(27"x)} converges, so that, we can define a mapping Fg : X — Y by

Fy(z) == lim 256" fs(27"z) for all z € X.

Put n = 0 and then take m — oo in (4.21) to get

K0 ||P

< BT all ze X.
I'= Gar — 250y ferall v €

1 fs(2) — Fy()

According to the definition of Fg, we find that Fg(2z) = 256Fg(z) for all z € X and
DFg(z,y) =0 for all z,y € X.
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e Setting Fy: Let p < 9. It follows from Lemma 2.6 and (4.3) that

for all z € X and n,m € NU {0}. We then have by the assumption p <9 and (4.22) that

Ff”(2zx) n+m 1
722925 - 33554432 - 512¢

fg(znx) f‘g(2n+mx)
512n 512n+m

Z KIQ/LPHHZ'HP
2 2097152 - 512

(4.22)

{f 95(122f } is a Cauchy sequence for all x € X. Since Y is complete, the sequence {f 951227?)}
converges. Then, one can define a mapping Fy : X — Y by
L fg(?"az)
Fy(z) :== 7}1_)120 “Eion for all z € X.

On the other hand, letting n = 0 and passing the limit m — oo in (4.22), we deduce that

K'0||]”

2T forall z e X
< 00612 —or) forall @€

1 o) — Fo ()

We have from the definition of Fy that Fy(2z) = 512Fy(z) for all x € X and DFy(z,y) =0
for all z,y € X.

Let p > 9. Using Lemma 2.6 and (4.3), we have

_ BL2KG||z|?

< 1096 - 206+0p (423)

H512“ fo(27 ) — 5127t f9(2_”_m33)‘

for all z € X and n,m € NU{0}. From p > 9 and (4.23), it follows that the se-
quence {512" fg(27"x)} is Cauchy for all z € X. By the completeness of Y, the sequence
{512" fo(27™x)} converges. Thereby, we can define a mapping Fy: X — Y by

Fy(z) := lim 512" fo(2 ") for all z € X.

n—oo
In particular, put n = 0 and then let m — oo in (4.23) to have

K'0|[]”

Hf9(x) ( )H >~ m for all z= c X.

With the aid of the definition of Fy, one obtains that Fy(2x) = 512Fy(x) for all x € X
and DFy(xz,y) =0 for all z,y € X.
Finally, we set a mapping F' as

9
F(z) = ZFk(iU) for all z € X.
k=1

Since DFy(xz,y) =0 for all k € {1,2,...,9}, we have

9
DF(z,y) = ZDFk(l‘,y) =0 forallz,ye X.
k=1
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Next, we are in the position to prove that the mapping satisfies the inequality (4.2)
Since f(x) = 22:1 fr(x), we have

If(z) = F(a)] < Zka

and so we obtain the desired result (4.2).

(x)]| forall z e X.

It remains to prove that F' is unique: Suppose that F’ : V — Y be another mapping
with F/(0) = 0 satisfying the relation DF’(x,y) = 0 and the inequality (4.2). We have by
Lemma 2.7 that for each k € {1 ,9}, the mappings F] : X — Y satisfy

F'(x) =

NE

Fy(z), Fj(2z) = 2"F()

(x € X).
k=1

To verify the uniqueness of F, we want to prove it only if 2 < p < 3. This is because other
cases of p can be showed in a similar fashion. Therefore, let us assume that 2 < p < 3
Then, we see that for 2 < p < 3

ni [T ni [T n x
]4 £ (35) — Bala) =‘4 B(5) —4F (5 H

I X
:181440H262144fe (3v) — 215047, ( > + 336 <2n> fe (2n>
— 262144F, (57 ) + 21504F] () — 336F ( ) +F (8x> '
262144 - 47

2n
x 21504 - 4™ || - [ 2x 2
— || fe —F’ o —fel 5, ) = Fe | 5
181440 J <2n> ¢ 2n H+ 131440 || (2n> <2n>H
4n
336 - i o 8 o 8z
181440 on 181440 n on
262144+21504 2P + 336 - 4 +8P 4n MO,
181440 ognpUIE
and
’ Fi2's) _ (‘”H fa(2'x)  Fj(2"a)
8" 8" 8n
B 5440 4194304((F! — f,)(2"x)) — 2269184 ((F!. — f,)(2"'x))
722925 - 65536 8gn
n 8T360((Fy — fo)(2""22)) — 6T4((Fy — fo)(2"T32)) + ((Fy — fo)(2"a)) ‘
8n
o (4194304 + 2269184 - 27 + 87360 - 220 + 674 - 237 + 24P\ 5440 - 2"P MO z||P
- 722925 - 65536 8"
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for all x € X and all positive integer n, where

o :_< 4096 5440 1428 85 1 ) K
2—20| T8 —2v| " |32 —2¢| " 128 —2¢| ' [512—2¢|) 4096

64 84 21 1 K

* <y4—2p| Tie—2 Tjea—ar t |256—2P|> 64

Taking the limit in the above relations as n — oo, we obtain the equality

/ T an oz i / T f3(2nx)
Fye) = lim I"f (5), Fila) = lim 252 (2 e X),
which means that Fy(x) = Fy(z) and F3(z) = F4(x) for all € X. Employing the similar
way, it is easily shown that for each k € {1,4,5,6,7,8,9}, the equalities F}, = F} hold.
Note that

©

9
F(z) =) Fy(z) =Y Fi(z)=F().
k=1

k=1
This completes the proof of the uniqueness of F' for 2 < p < 3.
For other p cases, the uniqueness proof of F' can be proved very same to the proof for
2<p<3. Il
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