

1 Cosmetics MDPI

2 Supporting information for

Production of resveratrol glucosides and its cosmetic activities

4 Samir Bahadur Thapa¹, Juhee Jeon³, Byung Gyu Park³, Dabin Shim⁴, Chang Seok Lee⁴, Jae
5 Kyung Sohng^{1,2}

6 1. *Department of Life Science and Biochemical Engineering, Sun Moon University, 70*

7 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam 31460, Korea

8 2. *Department of Pharmaceutical Engineering and Biotechnology, Sun Moon University,*
9 *70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam 31460, Korea*

10 3. *ACTIVON Co., Ltd, 46-5, Dureungyuri-ro, Ochang-eup, Cheongwon-gu, Cheongju-si,*
11 *Chungcheongbuk-do, 28104, Korea*

12 4. *Department of Beauty and Cosmetic Science, Eulji University, 553 Sanseong-daero,*
13 5. *Sujeong-gu, Seongnam, Gyeonggi-do, 13135, Korea*

14

15

16

17 *Corresponding author:

18 Prof. Jae Kyung Sohng

19 Tel: +82(41)530-2246

20 Fax: +82(41)530-8229

21 Email: sohng@sunmoon.ac.krk

23 **Contents**

24 **Figure S1.** Vector map of recombinant construct used in this study.

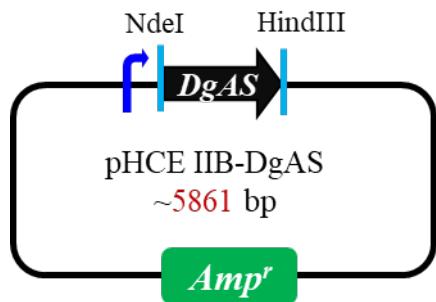
25 **Figure S2.** SDS-PAGE of protein DgAS. M: marker; Lane 1: Control BL-21(DE3); Lane 2: crude
26 enzyme produced in *E. coli* BL-21(DE3); Lane 3: purified enzyme.

27 **Figure S3.** Conversion percentage of resveratrol glucosides at different time interval.

28 **Figure S4.** HPLC analysis of resveratrol reaction mixtures in different concentrations of
29 resveratrol.

30 **Figure S5.** Conversion of resveratrol to its glucosides with different sugar donors and commercial
31 tansglycosylation enzyme, CGTase.

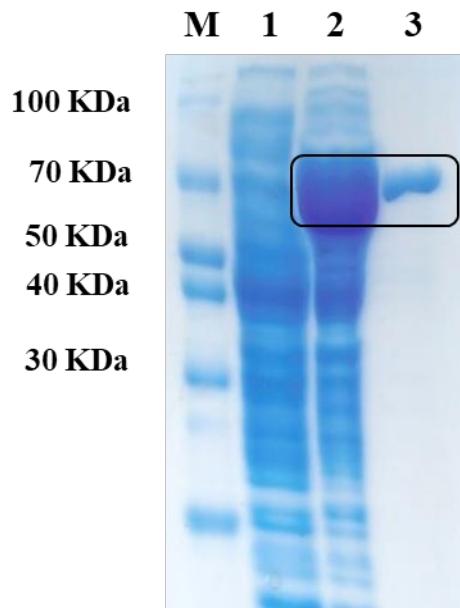
32 **Figure S6.** HPLC analysis of large scale in vitro resveratrol reaction mixture at different time
33 points;- (i) 3 h, (ii) 4 h, (iii) 5 h, and (iv) Standard resveratrol.

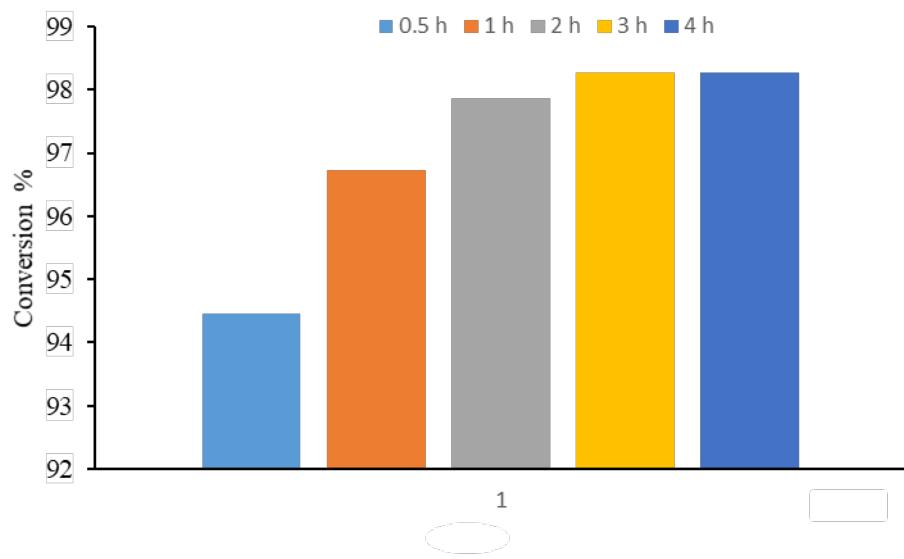

34 **Figure S7.** Structural Elucidation of resveratrol-*O*-glucosides products

35 **Table 1.**¹H-NMR analysis of resveratrol glucosides

36 **Table 2.**¹³C-NMR analysis of resveratrol glucosides

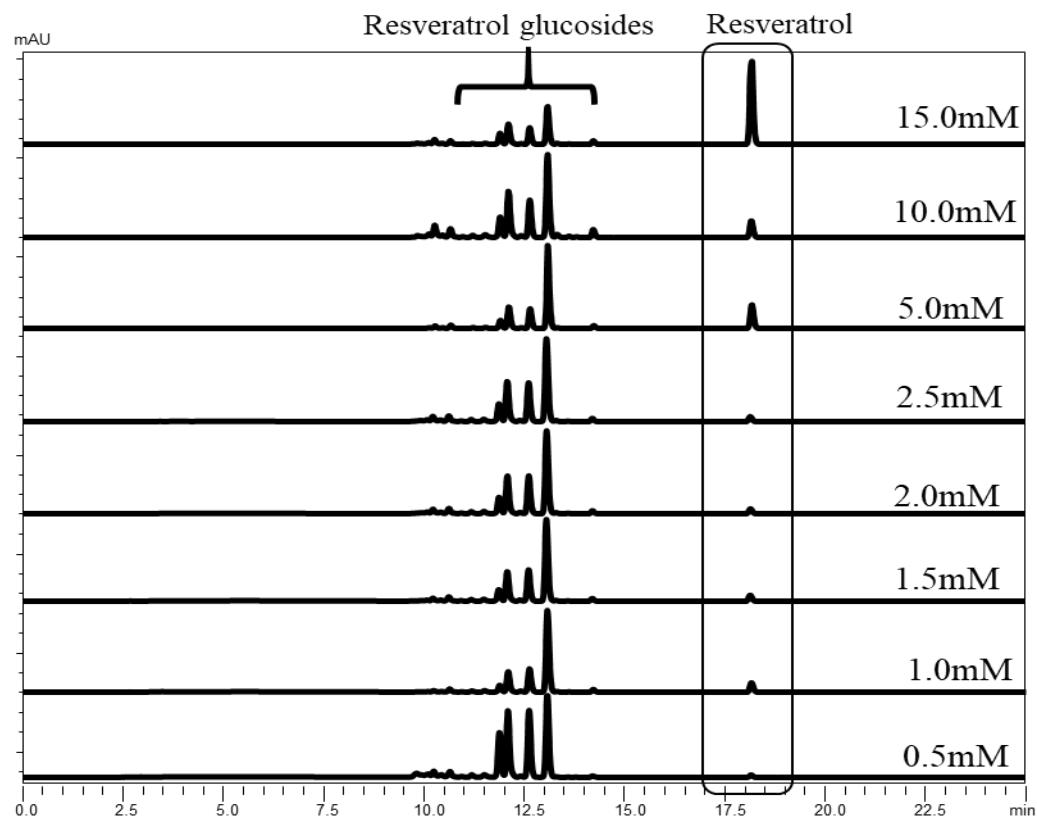
37


38 **Figure S1.** Vector map of recombinant construct used in this study.


39

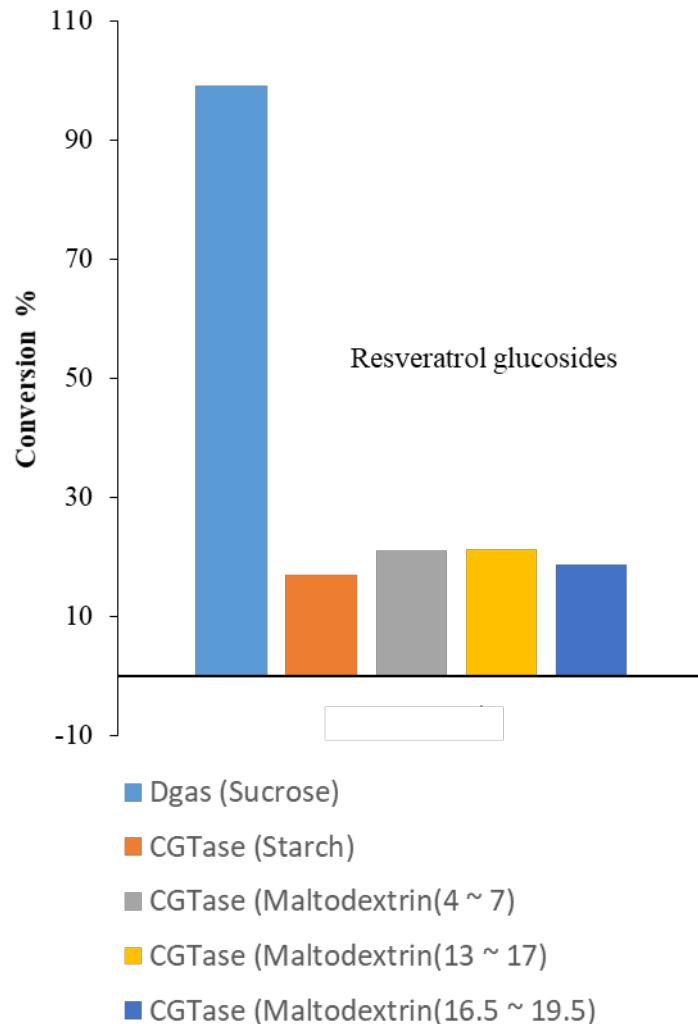
40

41 **Figure S2.** SDS-PAGE of protein DgAS. M: marker; Lane 1: Control BL-21(DE3); Lane 2: crude
42 enzyme produced in BL-21(DE3); Lane 3: purified enzyme.

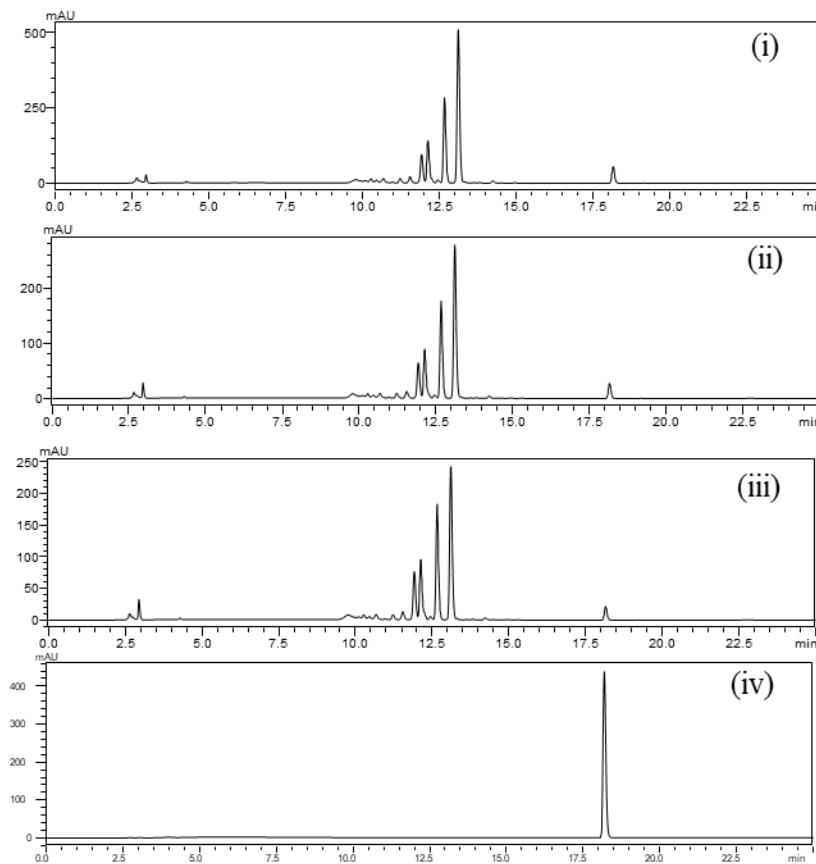

47 **Figure S3.** Conversion percentage of resveratrol glucosides at different time interval.

48

49

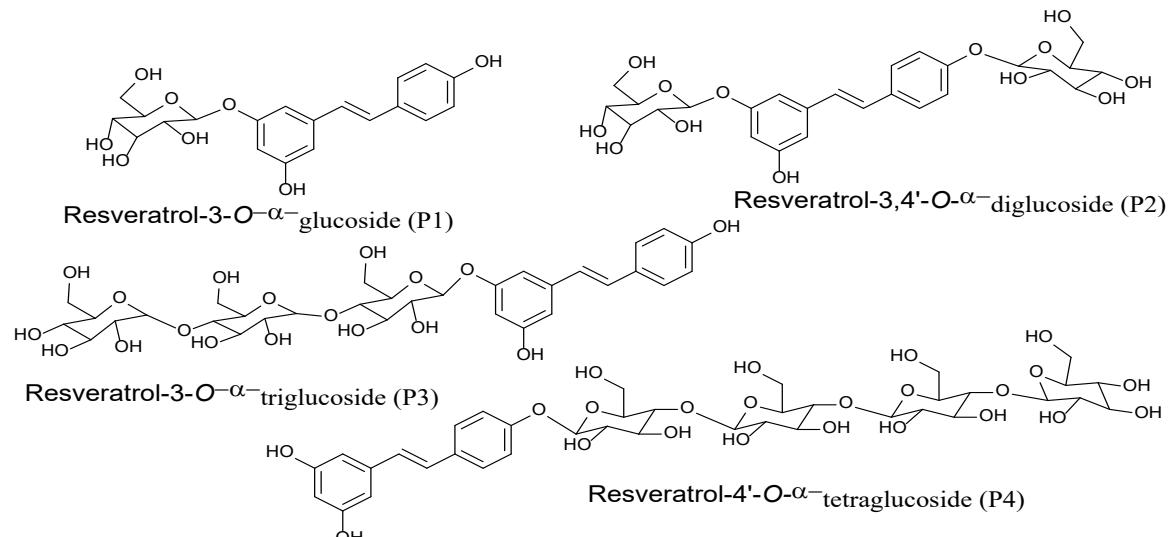

50 **Figure S4.** HPLC analysis of resveratrol reaction mixtures in different concentrations of
51 resveratrol.

52


53

54 **Figure S5.** Conversion of resveratrol to its glucosides with different sugar donors and commercial
55 tansglycosylation enzyme, CGTase.

56
57
58
59
60
61
62


63 **Figure S6.** HPLC analysis of large scale in vitro resveratrol reaction mixture at different time
64 points;- (i) 3 h, (ii) 4 h, (iii) 5 h, and (iv) Standard resveratrol.

65

66

67 **Figure S7.** Structural Elucidation of resveratrol-*O*-glucosides products

68

69

70 **Table 1.**¹H-NMR analysis of resveratrol glucosides

Proton/ δppm	Resveratrol	P1	P2	P3	P4
1	-	-	-	-	-
2	6.46	5.4	6.49	5.30	5.08
3	-	-	-	-	-
4	6.15	-	6.39	-	-
5	-	-	--	-	-
6	6.46	6.13	6.56	6.14	5.47
7	6.86	7.07	6.74	6.42	6.93
8	6.96	7.51	7.40	7.14	7.14
1'	-	-	-	-	-
2'	7.34	7.51	7.66	7.54	7.53
3'	6.81	6.40	6.87	6.97	7.13
4'	-	-	7.01	-	-
5'	6.82	6.93	6.76	6.94	7.00
6'	7.36	7.51	7.40	7.52	7.51
7-OH	8.18	-	-	-	9.23
5-OH	8.18	9.23	9.04	9.25	9.23
4'-OH	6.94	7.49	-	7.12	-
1''	-	5.34(d, J=3.7Hz)	5.34(d, J=3.7Hz)	4.85(d, J=3.6Hz)	4.72(d, J=3.6Hz)
Sugar protons	-	3.15-3.62	3.20-3.36	3.13-3.71	3.20-3.36

71

72

73

74

75

76

77

78 **Table 2.** ^{13}C -NMR analysis of resveratrol glucosides

C position/ppm	Resveratrol	P1	P2	P3	P4
1	140.47	139.34	139.35	139.35	138.91
2	105.73	103.26	-	103.26	101.92
3	159.21	158.36	158.37	158.37	158.35
4	102.41	97.83	97.84	97.84	99.91
5	159.21	158.51	158.53	158.53	158.40
6	105.73	105.61	103.26	105.60	104.37
7	126.97	-	118.79	118.75	127.18
8	128.73	125.22	125.24	125.24	127.40
1'	129.41	128.45	128.46	128.46	131.06
2'	128.73	127.88	127.89	127.89	127.50
3'	116.07	115.51	115.51	115.51	117.62
4'	158.36	157.29	157.29	157.29	156.87
5'	116.07	107.08	107.08	107.08	117.08
6'	128.73	127.95	127.96	127.96	127.64
1''	-	97.77	97.76	98.34	98.45
Sugar carbon	-	73.62-59.25	73.64-59.25	73.64-59.25	73.64-60.78

79

80