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Abstract: This paper proposed a time two-mesh (TT-M) finite difference numerical scheme to improve 1
the efficiency of solving the symmetric regularized long wave (SRLW) equation. The TT-M Crank- =
Nicolson discretization and finite difference method are employed in time and space approximation s
respectively. The scheme involves three main steps: firstly, the time interval is divided into coarse 4
and fine time meshes, then the nonlinear system is solved on the coarse time mesh; secondly, coarse s
numerical solutions on the fine time mesh are computed using an interpolation formula based on the
solutions derived in the step one; lastly, the TT-M finite difference numerical solutions can be obtained 7
through constructing the linearized fine time mesh system using Taylor’s formula. Compared to s
the currently existing TT-M numerical methods, the novelty of this study is that the nonlinear term
including derivatives is linearized by Taylor’s formula for a function with three variables, whose 10
error analysis is more complex. Finally, some numerical examples, including computational time 11
and accuracy, preservation of conservation laws, are given to verify the efficiency of the scheme. By 12
comparing it with the standard nonlinear finite difference scheme, this method can reduce CPU time 13
without sacrificing accuracy. 14

Keywords: SRLW equation; finite difference; time two-mesh; convergence analysis; conservation law  1s

1. Introduction 16

The regularized long wave (RLW) equation [1,2] is a nonlinear partial differential 17
equation that mainly describes the evolution of waves in shallow water channels and ion s
acoustic etc. It is a simplified version of the more complex Korteweg-de Vries (KdV) equa- 1o
tion [3], which includes higher-order nonlinearities and dispersion effects. The symmetric 2o
regularized long wave (SRLW) equation [4] is a modified version of the RLW equation that 2
includes a symmetry-breaking term. This term allows for the formation of asymmetric 22
solutions, making the SRLW equation a more realistic model for waves in shallow water =3

channels. 24
In this paper, the following initial boundary value problem of the SRLW equationis s
considered: 26

U+ px Funy — Uy =0, xp <x<xg, 0<t<T,

or+uy =0 xp<x<xg 0<t<T,

u(xp, t) =u(xg,t) =0, p(xp,t)=p(xg,t)=0 0<t<T,
u(x,0) =up(x), p(x,0)=po(x), xp <x<uxg.

)

The SRLW equation has attracted significant attention and has been extensively studied 27
in the literatures. Numerous methods have been developed for obtaining numerical 2.
solutions to the SRLW equation, ranging from conservative finite difference schemes to 2o
mixed finite element methods. Wang et al. [5] proposed three conservative finite difference 1o
schemes that are all of second-order accuracy in both space and time. They also proved s
that the energy is preserved for all schemes while the mass is preserved only for the s
first scheme. Yimnet et al. [6] presented a novel finite difference method for the SRLW s
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equation that utilizes a four-level average difference technique for solving the fluid velocity s
independently from the density. Hu et al. [7] developed a coupled conservative three-level s
implicit scheme that achieves a fourth—order rate of convergence. Li [8] considered a 36
weighted and compact conservative difference scheme that is decoupled and linearized in s
practical computation, thus requiring only the solution of two tridiagonal systems of linear  ss
algebraic equations at each time step. Bai et al. [9] investigated a two-layer conservative 3o
finite difference scheme for the SRLW equation with homogeneous boundary conditions 4o
and analyzed the scheme’s convergence and stability using a discrete functional analysis 4
method. Xu et al. [10] applied a mixed finite element method to solve the dissipative 4
SRLW equations with damping term. He et al. [11] developed a fourth-order accurate 43
compact difference scheme for the SRLW equation for a single nonlinear velocity form and  «s
conducted theoretical analysis using the discrete energy method. a5

From the view of numerical calculation, the time two-mesh (TT-M) method combined 46
with finite element method or finite difference method can also solve plenty of nonlinear &
partial differential equation with better computational efficiency. For instance, Liu et al. s
[12] proposed the fast TT-M finite element method to solve the fractional water wave model, s
which has also been applied to other fractional models. Yin et al. [13] developed the TT-M =0
finite element algorithm to solve a space fractional Allen—-Cahn model and discussed in s
detail the problem of parameter selection. The TT-M finite element method was utilized s
by Liu et al. [14] to numerically solve the two-dimensional Gray-Scott model with space s
fractional derivatives. Wen et al. [15] used the TT-M algorithm in combination with the Hi- s
Galerkin mixed finite element method to numerically solve the nonlinear distributed order s
diffusion model. The computational efficiency of the algorithm was demonstrated, and the  se
theoretical results were verified by numerical examples with both smooth and non-smooth s
solutions. Tian et al. [16] developed the finite element method combined with the TT-M s
technique to solve the coupled Schrédinger-Boussinesq equations. In recent years, there  so
has been a amount of research on using the combined TT-M and finite difference methods o
to solve partial differential equations. Qiu and Xu et al. [17,18] developed and analyzeda e
TT-M algorithm based on finite difference (FD) methods for solving nonlinear fractional 2
partial differential equations. Similarly, Niu et al. [19] used the TT-M technique to propose s
a fast high-order compact difference scheme for the nonlinear distributed order fractional s
Sobolev model appearing in porous media. He et al. [20] further extended the application of s
the TT-M method by studying a time two-mesh high-order compact difference scheme for s
solving the nonlinear Schrodinger equation and the scheme of second-order convergence e
rate in time as well as fourth-order in space. Despite the extensive research on the TT-M s
method in various fields, to the best of our knowledge, no study on the application of the s
TT-M method combined with finite difference to the SRLW equation has been discovered. 7o
Hence, investigations on the TT-M finite difference method’s performance when applied to =
the SRLW equation are still required. 72

The main contributions of this paper are as follows: (i) A novel TT-M finite difference 7
numerical approach, incorporating a TT-M Crank-Nicolson algorithm for time discretiza- 7
tion and finite difference method for space approximation, has been proposed to solve the 7
SRLW equation. (ii) The TT-M finite difference method is used for the first time to solve par- 7
tial differential equation with nonlinear term including derivatives. (iii) The detailed proofs =
of convergence analysis of the scheme are given, which are more complicated than existing s
methods. (iv) Numerical examples have been provided to demonstrate the computational 7
speed and accuracy of the proposed method, which outperforms standard nonlinear finite o
difference method. 81

The remaining part of this article is organized as follows. In Section 2, some notations =
and useful lemmas are given. In Section 3, the TT-M finite difference numerical scheme s
is presented. In Section 4, the convergence of the scheme is analyzed. In Section 5, some &
numerical results are provided to test the theoretical results, computational efficiency of s
the scheme. Finally, in Section 6, we provide a brief conclusion. a6
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2. Notations and Some Lemmas 87

As usual, the time interval (0, T] and spatial interval [x], xg] are divided into N and | s
uniform partitions. The following notations will be used in this paper: 89

noo_ oy n__yn noo_yn
() i e | () e () B B e
1) x h ! 1) % h ! 1)% 2h !

ntl _yn no oyl oyl
(u’?) e R s l(ur.”rl +ull) (u”) _ i 21+t
1)t T 2\ i i)z 2 ‘
where 7, h denote the uniform time and spatial step length respectively, x; = x; +jh,j = o

0,12,---,],ty=nt,n=12,---,[T/7] = N, superscript n denotes a quantity associated o
with the time level ¢, subscript j denotes a quantity associated with space mesh point x;. In = »2
this paper, M denotes general constant, which may have different value in different place. o3

Since u — 0 for x — +ocoorx — —oo, wemayassume t_1 =ty 1 = 0,1 <n <N o
for simplicity, where j = —1 and | + 1 are ghost points. Let Hj, (, denote the set of mesh s
functions u" defined on I, with boundary conditions u"; = ug = u}j = uj,,; = 0. For
any two mesh functions u", w" € Hj, 3, we define the discrete inner product and norms as o7

follows: o8
J-1
™y =hY " ulw! = /(un un |, = n|.
() = p i, V), e = max
Next, we presented some useful lemmas. %
Lemma 1. (See [11]). For any mesh functions u”,w" € Hy,, we have 100
(@) (u, w") = —(u",wz) = = (", wk),  (b)(uyz,w") = —(uk, wk), (c)(ug, w") = —(u", w}).

Lemma 2. (See [20,21]). Assume that a sequence of nonnegative real numbers {a]-};ozo satisfying 1o

n
ayy1 < Oé—l-ﬁlejT, n >0,
j=0

then there has the inequality a, 1 < («x + TBag)eP"+V)T, where & > 0, f and T are positive 102
constants. 103

Lemma 3. (See [9,21]). For any discrete mesh function u” € Hy,, there exists constants C1 and  10a
C,, such that 108

[ oo < Call" || + Coflu]]-

3. The TT-M Finite Difference Scheme 106

In this paper, we studied a TT-M finite difference fast numerical method for the SRLW 107
equation (1). In order to give the TT-M finite difference scheme, firstly, the time interval 1os
(0, T] is partitioned uniformly into P coarse time intervals and then each coarse time interval 100
is divided into s(2 < s € Z™) fine time intervals. The coarse time mesh with the nodes 110
ts = ktc(k=1,...,P) satisfying 0 = ty < t5; < tps < --- < tps = T and the fine time mesh 11
with the nodes t, = ntp(n =1,2,...,Ps = N) satisfying 0 = tp <t < tp < --- <tps =T, 12
where Tc = 57 and 7 are the coarse time and the fine time step size, respectively. 113

Secondly, the truncation errors of the problem (1) is considered, let 177 =u (x i tn) , (p}1 = 11

p(xj, tn) be the exact solutions of u(x,t) and p(x, t) in term of the point (x;,t,), then we s
have 116
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n n n+1 n 1f n+g, n+} nt342
Erj = (Uj)t+ (9"]' )z — (v]- )xzt + 31Y (U]' )z + (U]' ) o 2
X
= (¢])t + (v])z, ©)
vy = 0] =0, 408:4)}’:0,
v? =vo(xp + jh), (p = @o(xr +jh).
By Taylor series expansion, we have 118

Er]r‘l = (ut + 0x — Uxxt + uux)(xj,tn) = O(hz + ’l’),
= (ot + ”x)(xj,t,,) =O0(h* +1).

Next, based on equations (2) and (3), a TT-M finite difference scheme for problem (1) 19

is constructed with three steps. 120

Step 1: On the coarse time mesh, let u’és =u (xj, tks), plg = (xj, txs) be the numerical 122

solutions of of u(x,t) and p(x, t) in term of the point (x;, t), then coarse time nonlinear 122
finite difference scheme is given as 123

k 1 ks ks+1 ks+1
(”C,])t + (ngjﬂ) )z — (u]((;slj)xxt + 3{ CTZ (ucfz);e + [(ucfz)z] } =0, 4)
X
(0E€))e + (u&j)z =0, ®)

o=l =00y =g =0 k=01.P

”c] = up(xp +]h),pcrj =po(xp+jh), j=12,...,]—1,

where ulé;rz = %( (kH) + uks i) 124
Step 2: Based on the solutlons uc pc at time levels tj; obtained from step 1, we 125
apply the Lagrange’s linear interpolation formula to compute uks L plg Iat time levels 1
he1(1=1,2,...,s—1landk=1,2,...,P,ks — | = n), we have 127
et = Bromt =t Ges  Bort Tl e Lgens g D)
¢ be—1)s — tks © ts —bgeys © S C s ¢
t t l 128
frs—1 — ¢ - ks—1 = F(k—
ks—1 _ tks—1 = tks (k-1)s (k=1)s ks _ b (k=1)s ks
+—F——pc = +(1--)oc- (7)
Pe Be—1)s — ths' © tks — tk—1)s fc pc ( S)pc

Remark 1. The equation (7) is only employed for theoretical analysis of the scheme. In numerical 120

simulation, the coarse numerical solutions pkS " are no need to compute since it does not used in 130
step 3. 131
Step 3: Based on all the coarse numerical solutions u j(n =0,1,2,...,Ps=N,j = 1

1,2,...,] — 1) obtained in the first two steps, Taylor’s formula is used to construct a 1ss
linearized system on the fine time mesh, which is expressed as follows. Let uf; = 1

u(xj, tn),p?]- = p(xj, tn) be the numerical solutions of u(x,t) and p(x,t) in term of the s
point (xj, ;) on the fine time mesh, then 136
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1 1 1 1
1 n+d on+l on+
(0 (B ) = o e+ g | P2 )
ntl n+l ontd n+i ntd
+fX(uC,jEl’uC,jz'uC,szrl)(uF,jzl - uC,jil (8)
n+i n+l n+% n—',—l n—',—l
+ fyluc iy e e i) (g * —uc;?)
n+i  on+d on+d o ont3 nl
R R iﬁ] _0,
137
(pE )t + (up )z =0, )
upg =ug; =0, pgo=pF; =0,
up ;= uo(x +jh), pp; = polxr + jh),
j=1,...,]—-1, n=0,12,...,N,
where f(x,y,z) = (z — x)y + 2> — x? and
Frl5,y,2) = =y 2%, fy(x,y,2) =2 x, folx,y,2) = y + 22
are the three partial derivatives of f(x,y,z) with respect to x, y, z. 138

Remark 2. Similar to the Gauss-Seidel method applied to linear systems, we have modified our 13
method to improve the accuracy of fine mesh solutions u}*l by using u't in calculation. 140

4. Convergence Analysis of the TT-M Finite Difference Scheme 141

The focus of this section is on performing convergence analysis of the nonlinear system 12
specifically on the coarse time mesh. 143

Theorem 1. Suppose that the exact solutions v", ¢" to the initial boundary value problem equation
(1) is sufficiently smooth and let ul, ¢ be the numerical solutions on the coarse time mesh. Then,

10" — ui[lo < O(H* +10), l9" — P&l < O + ).
ks _ .k k ks _ _k k. : :
Proof. Denote ecfj = U],S — ”Cs,j"7cs,j = gojs —péj,l <j<J]—-1,0 <k < P. Subtracting 14

equation (4) from equation (2) and equation (5) from equation (3), we obtain 145

k k+1 k
ETCS,]' :(elg’,}')t + (Wé,]' )S)a? —( cs,j)xa?t

1 ke+d kel ks+1.0 1 ks+3, ks+l kst+%\2 (10)
+ 3{0]- Hoj Pt [(vj 2) L} — 3{14(:,]. Huc; ?)e+ [(uc,j 2) I
146

Eslccjs,j = (Wés,j)t + (e’({js,j)f' (11)

The proof contains two cases. Firstly, we consider the case of n = ks(k =0,1,2,...,P),
then n + 1 = (k+ 1)s. The initial and boundary condition satisfies
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Taking the inner product (-, -) on both sides of equation (10) with e”Jrl +ef, we have

(Erg, el +el) = (e et +el) + (g et +e)
n s+1 = +1 (12)
—((ec)xxt,ec +ef) —|—h2 (T4 1I)( eC] —l—eC])
]_

where

1 n+ n+3 n+ n+ 1 n+ s 2 n+i 2
=3[ e he b n= o] -ute] )

Notice that
((e)e et +et) = - (||6’”+1||2 — lle¢11?), (13)
(¢ )z e +el) = Z [t (et + et ) (14)
—((e)xst et +e) = (Ilec P = llet L 11%), (15)
J-1 o -1 1 1
+1 o n+ ntdy nti
h ;I eé] —|—eg,]) = — gh ;(ECJ2 .'()j Z)XECJZ

: (16)

2 = nts n+ 3 n+ 3 n+l
—3h Y (ec; )slec iy +ec;2y)uc,”,

= 2 = nt+l  nti n+3
hZII-(eZ#—I—eEj) :§h Z(v]. 2 ecjz)xec,j2
=1 =1
7 17)
+3 + n+1
hz n 2 n 2 EC’]‘Z)Q’
then substituting equations (13)-(17) into (12), we have
et 1P+ e P = e 2 [nzétl et el )]
41 n+ nt+d o\ on+l n+ nt+i o ntl (18)
- TChZ (eci®)electa+ecii)uc;® +uc,’ c;z(ec,jz)f}
+ TC(}ErC,eC+1 +el).
From Cauchy-Schwarz inequality, we obtain
(Erg, et +eg) < |[Ere| + (He"“||2+ e 1%)-
Using Lemma 1, the equation (18) can be rewritten as
eI + lleg i 1% < lleg
Cx C (19)

+ M ([l 2 + fleg ™ + ||€c||2 + eI %) + e[ Erg||?.

148

149

151

152

153

154
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Similarly, taking the inner product (-, -) on both sides of equation (11) with 772+1 +nt, we
obtain

J—1
It 1? = 1nd 1 —wch Y (e& s (s +nd ;) + e (Esg, et + ). (20)
=1

From Cauchy—Schwarz inequality, we have
1
(Es¢,ng™ +n¢) < EsEI® + 5 (e 112 + lnell®)-
Using Lemma 1, the equation (20) can be rewritten as

e HI2 < 12 + M (lled ol + e HI2 + 1 l?) + el Ese 1> (21)

Add equations (19) and (21), we get
e 112 + e i I + eI < lleg I + e 1% + lln 1
+ M (g2 + gl + e 12 + e 1 + lleg 1% + lle 1) (22)

+Tcl|Erg || + | Esg 1%

Let B! = ||el||* + ¢ 2+ ||7&||%, then equation (22) becomes

B! — BE < Mtc(BE! + BE) + Mtc(h* + 1¢)?,

and obtain
(1— Mrc) (B! — BE) < 2MT1cBE + Mtc(h* + 1)

By taking 7c small enough so that (1 — M1c) > A > 0, then
BEH — B < M1cBE + Mtc(h* + )% (23)
Summing from 0 to P — 1 inequalities in equation (23), we have
P-1
Bg — BOC S MTC Z Bé + MTc(hz + Tc)z,
n=1
and using Lemma 2, get
BE < [BY + M(W? + 1¢)?|eMPTc, (24)
From equation (24) and the initial and boundary condition, we have
legll < O +7c), lleg .|l < O(h* +7c), Inell < O(h* + c).- (25)
Then using Lemma 3, we obtain
letlleo < O +7c). (26)

Secondly, we consider the caseof n = ks —1,(I =1,2,...,s —landk=1,2,..., P, ks —
I = n). Based on the Lagrange’s interpolation formula, we get

S5l — trs—1 — tis ok=1)s n trs—1 — t(k—l)s ok

Ee—1)s — s tks = t—1)s 27)
! 0" (61)

I
= ;U(k Vs 41— g)vks (= b)) (E— ), 61 € (Baoyr ths),

156

159

160

161

162

163

164
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q)ksfl _ bks—1 = tis (k—1)s bes—1 — t(k*1)5 ks
tk—1)s — ths tes — E(k—1)s (28)

<P”( 90

l —1)s
= gq’(k V51— )4’ + (k=1)s) (t — tks), 02 € (F_1)sr ths)-

Subtracting equation (27) from (6), we have

o5y :é(v(k—l)s B u(ckfl)s> a- é)(vks k)

0" (0
PO G-,

Subtracting equation (28) from (7), we obtain

_ k-1 !
gl p’é”— (9 — %) + (1= ) (¢ —

S
//
0
+ ;2)<t—t<k,1>s>(t—tks>.

Using (25), (26) and triangle inequality, we conclude
e lleo < O + 1), 7¢I < O(h* + 1c).

We obtain the result of Theorem 1 by synthesizing the aforementioned two cases. Next, we 166
give the convergence analysis of the scheme on the fine time mesh. [ 167

Theorem 2. Suppose that the exact solutions v", ¢" to the initial boundary value problem equation
(1) is sufficiently smooth and let u}, o} be the numerical solutions on the fine time mesh. Then,

[o" — uklleo < O(* + 72 +17), |9" — o}l < O(W + & + 7).

proof. Assume efj = v;? — ugj, 171'_3]- = q);? —pgj,l <j<J-1,0<n <N, Subtracting 1es
equation (8) from equation (2) and equation (9) from equation (3), we obtain 160

+3 +3 +
Erky = (ek)e+ (np )e = (e )en + o [(fx Z]_zl—l-fyeg].z+fzezjj1)+Q], (29)

170

ESF] (’7P]>t + (EF]) (30)
where ,
n+3 n+i n+
E[(fmc(ec]zﬂ +fyy(ec]2) +f22(6c]42r1)2]
ntd on+i n+l ntl 3 nty
+[fxyeC]zleC] + frze C;zle(t]jﬁ‘fyz Te C]erl]

and fyx = fxx(§r€r5)rfyy = fyy(érer‘s)rfzz = fzz(C,S,(s),fxy = fxy@/e/‘s)/fxz = fxz(8,8,0),

fyz = fyz(G, €, 0) are the second order partial derivatives of f(x,y,z), ¢ € (v]’.‘fl,ug j—l)'g € 1
('U;'/l ug]) é€ ( ?+1,Méj+1) 173
Taking the inner product (-, -) on both sides of equation (29) with el{'r1 +ef, wehave 17

e P+ llep 1> = Nl {n;f[ et h)e+ (e s }

(31)

J-1 1
_Tr ntd o\ nti n+1 n+3
3 Z(fxeP] 1+fyeF]2+fz€F]Jil F]Z_ ZQEF 2+ZTF ET’?,@F 2).
]_
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Using f, = %(fx +fz)and fux = =2, fyy =0, foz = 2, fry = =1, fxz = 0, fyz = 1, we obtain 17

J-1 1
n+ ntl | ontl
foxep] 1+fyeF]2+fZeF]+21) Ej
j=1 32)

ntl o ontl nt+d ntl nt+l o ontl
—(frepstrep 2) + (fy Lep P+ (faep e 2),
176

n 1 n ; :
Z Qe sz 2 Z[fxx(ecJ]r )2 +fyy(ec; % JFfzz(ecﬁl)2]61;;2
2j=

]_
n+ n+t o on+d n+l ontl oonyl (33)
+ g[fxyeC]zleC]z +foeC]zleC]j1 +fyz CjzeC]JZrl]eF]2
]:
ntiio n+l n+lio n+l R n+3 o onty ontg
= ((ec 2)32c/eF 2)_((ec 2)2/ep,x2)+(ecx2r C Zep 2)_(3c Zr(ec 231: ?)x)-
Using Lemma 1 and Cauchy-Schwarz inequality, we have 177
TF nt+s o ontl n+l ntl n+l n+l
3 ( X FxZ’eP 2) (fy 2/ er 2) (fz szr r 2)
(34)

+
< MTP(||eFx2||2+ lek 2 11%),

178
TF ,, n+i n+i T, n+lo ntld
= 5 ((ec )€ 2>+§<<ec )2er2)
nti n+i ntl TF , n+% , n+d n+l
_3( sz’ C 26F 2)“"?(6(3 Zz(ec zep Z)x) (35)

+3 + n+3
< Mrp(lleg" 2 R llee™ 2 P + el 2 2

+
||er2||2+||eF 2||2+||€p |P),
179

1
27p(Erl, e ) < tp|[ B2 + Mg et 2|2 (36)

Substituting equations (34)-(35) into (31), then 180

e 1% + H€§ ||2

< [lek|I? (IIU?+1II2+||61’5“||2+||€p||2+||62 e SN
n4-1 n+ nt-1
+ MTE([lec 2|| el 212 4+ 21, IIECxZII ?) + el ErE.
Taking the inner product (-, -) on both sides of equation (30) with 7 FH + 17§, we obtain 181
1% < e l? + Mre(llep |2 + g2 + g l1?) + 2l EsE 1> (38)
Add equations (37) and (38), we have 182
e M2 + llep 2 12+ 12 < llefl? + llef,
+ M ([l P + ) + e % + Hepll2 + eI + llek 1) )

n+3 + +1
+ M (e 2 2 2+ e 2 1 e chl )

+Te || Erf ) + || EsE|*.

Let B = [l¢f2 + [lef |12 + (7] then

nt-1 n+ nt-1
BEH! — BE < Mrp(B + BE) + Mep(lleg 2 [ [lee™ 2 P + el 2 2 IICxZII)

+rl[Erg||? + el EsE1%,
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and obtain
(1 — M) (BE — BY) < 2MreBE + Mrp(h* + 12 + 18).
By taking 7r small enough so that (1 — M1¢) > A > 0, then 183
B — BE < Mrp(h* + ¢ + 1) + MteBY. (40)
Summing from 0 to N — 1 inequalities in equation (40), we obtain 184
N-1
BY < B) + Mrp(h* +1¢ + 1) + Mt Y B (41)
n=0
Using Lemma 2, we get 185
BN < [BY + Mrp(h* + & + ©3)]eMNT, (42)
From equation (42) and the initial and boundary condition, we have 186

lef]l < O(W* + & + 1F), [lef || < O + & + ), |l < O + & +1¢).  (43)

Using Lemma 3, it lead to 167
leflleo < O + & + 7). (44)

This completes the proof of Theorem 2. [] 188

5. Numerical Results 180

This section provides some numerical examples aimed at demonstrating the accuracy
and computational time of the TT-M finite difference scheme that was discussed in Section
3. We consider the SRLW equation as the following form:

Ut + Px + Uty — Uyt =0, —40<x<40, 0<t<4,
or+ux =0, —40 < x <40, 0 <t <4,
u(xp,t) =u(xg,t) =0, p(xp,t) =p(xg,t) =0, 0<t <4,

u(x,0) = up(x), p(x,0) = po(x), —40 < x < 40.

The exact solitary wave solution [4] of the SRLW equation (1) has the following form s

u(x, t) = 3(020_1) sech2< w1 (x — vt))

492

p(x,t) = 3(0;_1) sech? < o1 (x — vt)).

49?

In this section, we chose v = 1.5 associated with this equation, which takes the form 1
5,45 3 5,45 3
u(x,t)—Esech 6(x—2t>, p(x,t)—gsech < x—it ,

and consider the following initial conditions 102

5 V5

up(x) = 5 sech? ?x, po(x) = gsech2 - X
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5.1. Error and convergence rate 103

We define the error and convergence rate by the following formula:

en(h, T) = [|0" = lleo, 7 (B, T) = [l9" =i,
v em(2h,47) v Nm(2h,47)
uRatey, = log, (em(h, 0 ) pRatey, = log, ST )’

em(2h,2T 2h, 2T
uRate!, = log, (T;’E(hl_))) pRate!, = log, (17;1"(1(;”))),

where m represents the TT-M finite difference scheme or the standard nonlinear finite 104
difference (SNFD) scheme. We set 7 = 41r in the entire numerical illustration process. 105

Tables 1 and 2 present discrete norm errors, convergence rates, and the time cost 106
for both the TT-M finite difference scheme and the SNFD scheme. To demonstrate the 1o7
accuracy of the proposed method, we computed the error of TT-M finite difference scheme 108
at the final time f = 4 for various mesh steps and compare it to the errors obtained by the 100
SNFD scheme. The results from the new scheme show nearly identical significant digits as 200
those obtained by the SNFD scheme. In term of the convergence rate, the results indicate 2o
that both the SNFD scheme and the TT-M finite difference scheme achieve approximately  zo:
second-order convergence in space when 1 = h? and first-order in time when i = T, 20
which confirming the theoretical results. 204

Figures 1 illustrates the exact and numerical solutions of u(x, t) and p(x,t) att =4 2o
obtained by the TT-M finite difference scheme. The results indicate the excellent correspon- 206
dence between our numerical solution and the exact solution. Furthermore, the CPU times 207
of the two schemes are plotted in Figure 2 under tr = h* and h = TF, respectively. Itis o
worth noting that the TT-M finite difference scheme can significantly decrease computation =
time. To sum up, the computational performance of the new scheme is obviously better 210
than that of the SNFD scheme. 211

Table 1. The errors and convergence rates with tp = h?.

SNFD scheme

(h, ) esnep(h, Tr)  uRatelyr,  ysnep(h,Tr)  pRatelypp CPU(s)
(%, %) 8.2798 x 102 — 29797 x 1071 — 0.14
s 2.0361 x 102 2.02 7.3503 x 102 2.02 0.51
E;, & 5.0629 x 103 2.01 1.8306 x 102 2.01 12.30
(%, ﬁ) 1.2641 x 1073 2.00 45719 x 1072 2.00 136.31
(317, 10%) 3.1597 x 10~ 2.00 1.1427 x 1073 2.00 1943.47
TT-M finite difference scheme
(h, TF) err—m(h, tr) uRatefr_,,  nrr—m(h, ) pRatelr_ CPU(s)
(%, %) 8.3934 x 1072 — 3.0015 x 10! — 0.10
E}l' 1163 2.0360 x 102 2.04 7.3555 x 102 2.03 0.30
L& 5.0616 x 1073 2.01 1.8308 x 102 2.01 7.53
(%, ﬁ) 1.2639 x 1073 2.00 45721 x 1073 2.00 76.99
3.1596 x 1074 2.00 1.1427 x 1073 2.00 1297.88

S
=
N
=
g
N
N———
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Table 2. The errors and convergence rates with h = 1r .
SNFD scheme
(h, TF) esnep(h,te)  uRately ., nsnep(h,Te)  pRatelyrp CPU(s)
(%, %) 3.1920 x 102 — 1.1381 x 107! — 2.47
L x 1.5552 x 102 1.04 5.5256 x 1072 1.04 14.09
R 7.6748 x 1073 1.02 2.7221 x 1072 1.02 109.20
aH 3.8121 x 1073 1.01 1.3509 x 102 1.01 770.01
(ﬁ, ﬁ) 1.8997 x 1073 1.00 6.7298 x 1073 1.00 5792.53
TT-M finite difference scheme
(h, TF) err—m(h,t¢) uRatehr_\  nrr—m(h,tr) pRatelr_,, CPU(s)
(%, %) 3.1962 x 102 — 1.1414 x 10! — 1.49
R 1.5540 x 1072 1.04 55323 x 1072 1.04 7.10
5 7.6694 x 1073 1.02 2.7237 x 1072 1.02 51.40
aH 3.8102 x 1073 1.01 1.3513 x 1072 1.01 414.33
Lo 1 1.8991 x 1073 1.00 6.7308 x 1073 1.01 3289.71

/
=
N
[oc]

~
U
N
[os]
~——

3.0 20

—— Exact solution Exact solution
*__Numerical solution *__Numerical solution
25
16 I
20 |
12
I 151 =
Rad =
] = osf
10 -
04|
05|
0.0 1 L 0.0 fl L
-40 30 20 10 0 10 20 30 40 -40 30 20 10 0 10 20 30 40
X X
(a) (b)

2200 6000

2000

1800 5000

1600
1400 4000

1200
3000
1000

800

CPU time(s)
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2000
600
400 1000

200

(@) (b)

Figure 2. Comparison of CPU times with 17 = 2 (a) and i = 1 (b) based on the data in Table 1-2.
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5.2. Conservative approximations 212

To further verify the accuracy of the new scheme, we calculate four conservation laws
of the SRLW equation (1), such as:

1 [ 1 [
Q1:§[wpdx, QZZELdeX,

L f® o 2, 2 1 e 13
Q= [ (F+id+pdr, Q= [ (pu+ ju)dx.

Afterwards, employing discrete forms, we are able to compute four approximate conserva-
tive quantities which can be represented as

h’l

Zp,f

h“

Zu]f

hf—l

Q3 = 7 Z(“7)2

1'20

1 = n 1n\2 h]_l n\2
+ﬁ§(”j+l_”> +§;(Pj)
= j=0
J-1

h 2(u7)3.
=0

Z pnun +

The quantities values are recorded in Tables 3-6. In Tables 3 and 4, regardless of the time 21
step and grid spacing, the quantities Q1 and Q; remain well-preserved at various times. In 214
Table 5, for the case h = 1/2 and tr = 1/4, one can see that the quantity Q3 experiencesa z1s
slight increase as time increases, however, as the spatial and temporal step sizes decrease, =16
the variation of Q3 becomes extremely small. In Table 6, it has been found that for quantity 2i-
Q4, there was a minor decline under different mesh steps, but it gradually rebounded over =
time. Meanwhile, as the spatial and temporal step sizes decrease, the Q4 increases slightly. 210
Figure 3 plots the variation curves of four quantities for the case h = 1/8 and 1 = 1/64, =220
which visually demonstrate that our scheme preserves the four conservation laws. a2

Table 3. Quantities Q1 under different mesh steps i and 7r at various times.

TT-M finite difference scheme

(3.1) (i 36) (5 51) (46 758
t=20.0 4.4721359549 4.4721359549 4.4721359549 4.4721359549
t=0.5 4.4721359549 4.4721359549 4.4721359549 4.4721359549
t=1.0 4.4721359549 4.4721359549 4.4721359549 4.4721359549
t=15 4.4721359549 4.4721359549 4.4721359549 4.4721359549
t=20 4.4721359549 4.4721359549 4.4721359549 4.4721359549
t=25 4.4721359549 4.4721359549 4.4721359549 4.4721359549
t=23.0 4.4721359549 4.4721359549 4.4721359549 4.4721359549
t=23.5 4.4721359549 4.4721359549 4.4721359549 4.4721359549
t=4.0 4.4721359549 4.4721359549 4.4721359549 4.4721359549
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Table 4. Quantities Q, under different mesh steps i and 7r at various times.

TT-M finite difference scheme

(3.1) (3 16) (5 51) (46 75)
t=0.0 6.7082039324 6.7082039324 6.7082039324 6.7082039324
t=0.5 6.7082039324 6.7082039324 6.7082039324 6.7082039324
t=1.0 6.7082039324 6.7082039324 6.7082039324 6.7082039324
t=15 6.7082039324 6.7082039324 6.7082039324 6.7082039324
t=20 6.7082039324 6.7082039324 6.7082039324 6.7082039324
t=25 6.7082039324 6.7082039324 6.7082039324 6.7082039324
t=3.0 6.7082039324 6.7082039324 6.7082039324 6.7082039324
t=23.5 6.7082039324 6.7082039324 6.7082039324 6.7082039324
t=40 6.7082039323 6.7082039323 6.7082039323 6.7082039323

Table 5. Quantities Q3 under different mesh steps h and 7r at various times.

TT-M finite difference scheme

(3.1) (i 1) (5 51) (46 758)
t=0.0 17.3814360100 17.3890764778 17.3909982095 17.3914793723
t=205 17.3879364459 17.3894925427 17.3910247524 17.3914810404
t=1.0 17.4021575260 17.3904434452 17.3910850544 17.3914848239
t=15 17.4178948195 17.3914089843 17.3911453660 17.3914885933
t=20 17.4279575149 17.3919924045 17.3911803618 17.3914907570
t=25 17.4320624736 17.3921089940 17.3911854445 17.3914910387
t=3.0 17.4298852213 17.3919072419 17.3911710024 17.3914901056
t=235 17.4257242289 17.3915916231 17.3911504036 17.3914888028
t=4.0 17.4208004460 17.3913048704 17.3911324701 17.3914876800

Table 6. Quantities Q4 under different mesh steps i and 7r at various times.

TT-M finite difference scheme

(3.1) (3 16) (5 51) (46 75)
t=20.0 29.8645685095 29.8270800111 29.8174683777 29.8150480627
t=0.5 29.5194998279 29.7377964805 29.7949677954 29.8094115019
t=1.0 29.2953094352 29.6804305056 29.7805099425 29.8057894879
t=15 29.2373157339 29.6665651150 29.7770997278 29.8049405034
t=20 29.3052034101 29.6864373371 29.7822468973 29.8062391542
t=25 29.4333002603 29.7204018949 29.7909264484 29.8084218678
t=3.0 29.5520897511 29.7519209103 29.7989376025 29.8104338587
t=3.5 29.6355327196 29.7733189521 29.8043614200 29.8117950932
t=4.0 29.6765644108 29.7843463859 29.8071613054 29.8124980105
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Figure 3. Quantities Q; (a), Qp (b), Qs (¢) and Q4 (d) under mesh steps h = 1/8, 7 = 1/64.

6. Conclusions

The paper presents a new time two-mesh finite difference scheme for the nonlinear
symmetric regularized long wave equation with a nonlinear term including derivatives. The
time interval is divied into coarse and fine meshes, then the Lagrange’s linear interpolation
formula and Taylor’s formula are utilized to construct the three steps time two-mesh finite
difference scheme. The convergence of the new scheme are also analyzed and theoretical
results are verified by some numerical examples. Compared to the standard nonlinear
finite difference scheme, our scheme not only maintains accuracy but also reduces CPU
time. Therefore, the TT-M finite difference scheme is a promising method for solving the
SRLW equation.
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