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Abstract: This paper proposed a time two-mesh (TT-M) finite difference numerical scheme to improve 1

the efficiency of solving the symmetric regularized long wave (SRLW) equation. The TT-M Crank- 2

Nicolson discretization and finite difference method are employed in time and space approximation 3

respectively. The scheme involves three main steps: firstly, the time interval is divided into coarse 4

and fine time meshes, then the nonlinear system is solved on the coarse time mesh; secondly, coarse 5

numerical solutions on the fine time mesh are computed using an interpolation formula based on the 6

solutions derived in the step one; lastly, the TT-M finite difference numerical solutions can be obtained 7

through constructing the linearized fine time mesh system using Taylor’s formula. Compared to 8

the currently existing TT-M numerical methods, the novelty of this study is that the nonlinear term 9

including derivatives is linearized by Taylor’s formula for a function with three variables, whose 10

error analysis is more complex. Finally, some numerical examples, including computational time 11

and accuracy, preservation of conservation laws, are given to verify the efficiency of the scheme. By 12

comparing it with the standard nonlinear finite difference scheme, this method can reduce CPU time 13

without sacrificing accuracy. 14

Keywords: SRLW equation; finite difference; time two-mesh; convergence analysis; conservation law 15

1. Introduction 16

The regularized long wave (RLW) equation [1,2] is a nonlinear partial differential 17

equation that mainly describes the evolution of waves in shallow water channels and ion 18

acoustic etc. It is a simplified version of the more complex Korteweg-de Vries (KdV) equa- 19

tion [3], which includes higher-order nonlinearities and dispersion effects. The symmetric 20

regularized long wave (SRLW) equation [4] is a modified version of the RLW equation that 21

includes a symmetry-breaking term. This term allows for the formation of asymmetric 22

solutions, making the SRLW equation a more realistic model for waves in shallow water 23

channels. 24

In this paper, the following initial boundary value problem of the SRLW equation is 25

considered: 26
ut + ρx + uux − uxxt = 0, xL ≤ x ≤ xR, 0 < t ≤ T,

ρt + ux = 0, xL ≤ x ≤ xR, 0 < t ≤ T,

u(xL, t) = u(xR, t) = 0, ρ(xL, t) = ρ(xR, t) = 0, 0 < t ≤ T,

u(x, 0) = u0(x), ρ(x, 0) = ρ0(x), xL ≤ x ≤ xR.

(1)

The SRLW equation has attracted significant attention and has been extensively studied 27

in the literatures. Numerous methods have been developed for obtaining numerical 28

solutions to the SRLW equation, ranging from conservative finite difference schemes to 29

mixed finite element methods. Wang et al. [5] proposed three conservative finite difference 30

schemes that are all of second-order accuracy in both space and time. They also proved 31

that the energy is preserved for all schemes while the mass is preserved only for the 32

first scheme. Yimnet et al. [6] presented a novel finite difference method for the SRLW 33
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equation that utilizes a four-level average difference technique for solving the fluid velocity 34

independently from the density. Hu et al. [7] developed a coupled conservative three-level 35

implicit scheme that achieves a fourth–order rate of convergence. Li [8] considered a 36

weighted and compact conservative difference scheme that is decoupled and linearized in 37

practical computation, thus requiring only the solution of two tridiagonal systems of linear 38

algebraic equations at each time step. Bai et al. [9] investigated a two-layer conservative 39

finite difference scheme for the SRLW equation with homogeneous boundary conditions 40

and analyzed the scheme’s convergence and stability using a discrete functional analysis 41

method. Xu et al. [10] applied a mixed finite element method to solve the dissipative 42

SRLW equations with damping term. He et al. [11] developed a fourth-order accurate 43

compact difference scheme for the SRLW equation for a single nonlinear velocity form and 44

conducted theoretical analysis using the discrete energy method. 45

From the view of numerical calculation, the time two-mesh (TT-M) method combined 46

with finite element method or finite difference method can also solve plenty of nonlinear 47

partial differential equation with better computational efficiency. For instance, Liu et al. 48

[12] proposed the fast TT-M finite element method to solve the fractional water wave model, 49

which has also been applied to other fractional models. Yin et al. [13] developed the TT-M 50

finite element algorithm to solve a space fractional Allen–Cahn model and discussed in 51

detail the problem of parameter selection. The TT-M finite element method was utilized 52

by Liu et al. [14] to numerically solve the two-dimensional Gray–Scott model with space 53

fractional derivatives. Wen et al. [15] used the TT-M algorithm in combination with the H1- 54

Galerkin mixed finite element method to numerically solve the nonlinear distributed order 55

diffusion model. The computational efficiency of the algorithm was demonstrated, and the 56

theoretical results were verified by numerical examples with both smooth and non-smooth 57

solutions. Tian et al. [16] developed the finite element method combined with the TT-M 58

technique to solve the coupled Schrödinger–Boussinesq equations. In recent years, there 59

has been a amount of research on using the combined TT-M and finite difference methods 60

to solve partial differential equations. Qiu and Xu et al. [17,18] developed and analyzed a 61

TT-M algorithm based on finite difference (FD) methods for solving nonlinear fractional 62

partial differential equations. Similarly, Niu et al. [19] used the TT-M technique to propose 63

a fast high-order compact difference scheme for the nonlinear distributed order fractional 64

Sobolev model appearing in porous media. He et al. [20] further extended the application of 65

the TT-M method by studying a time two-mesh high-order compact difference scheme for 66

solving the nonlinear Schrödinger equation and the scheme of second-order convergence 67

rate in time as well as fourth-order in space. Despite the extensive research on the TT-M 68

method in various fields, to the best of our knowledge, no study on the application of the 69

TT-M method combined with finite difference to the SRLW equation has been discovered. 70

Hence, investigations on the TT-M finite difference method’s performance when applied to 71

the SRLW equation are still required. 72

The main contributions of this paper are as follows: (i) A novel TT-M finite difference 73

numerical approach, incorporating a TT-M Crank-Nicolson algorithm for time discretiza- 74

tion and finite difference method for space approximation, has been proposed to solve the 75

SRLW equation. (ii) The TT-M finite difference method is used for the first time to solve par- 76

tial differential equation with nonlinear term including derivatives. (iii) The detailed proofs 77

of convergence analysis of the scheme are given, which are more complicated than existing 78

methods. (iv) Numerical examples have been provided to demonstrate the computational 79

speed and accuracy of the proposed method, which outperforms standard nonlinear finite 80

difference method. 81

The remaining part of this article is organized as follows. In Section 2, some notations 82

and useful lemmas are given. In Section 3, the TT-M finite difference numerical scheme 83

is presented. In Section 4, the convergence of the scheme is analyzed. In Section 5, some 84

numerical results are provided to test the theoretical results, computational efficiency of 85

the scheme. Finally, in Section 6, we provide a brief conclusion. 86
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2. Notations and Some Lemmas 87

As usual, the time interval (0, T] and spatial interval [xL, xR] are divided into N and J 88

uniform partitions. The following notations will be used in this paper: 89

(
un

j

)
x
=

un
j+1 − un

j

h
,
(

un
j

)
x̄
=

un
j − un

j−1

h
,

(
un

j

)
x̂
=

un
j+1 − un

j−1

2h
,

(
un

j

)
t
=

un+1
j − un

j

τ
, un+ 1

2
j =

1
2
(un+1

j + un
j ),

(
un

j

)
xx̄

=
un

j+1 − 2un
j + un

j−1

h2 ,

where τ, h denote the uniform time and spatial step length respectively, xj = xL + jh, j = 90

0, 1, 2, · · · , J, tn = nτ, n = 1, 2, · · · , [T/τ] = N, superscript n denotes a quantity associated 91

with the time level tn, subscript j denotes a quantity associated with space mesh point xj. In 92

this paper, M denotes general constant, which may have different value in different place. 93

Since u → 0 for x → +∞ or x → −∞, we may assume u−1 = uJ+1 = 0, 1 ≤ n ≤ N 94

for simplicity, where j = −1 and J + 1 are ghost points. Let Hh,0 denote the set of mesh 95

functions un defined on Ih with boundary conditions un
−1 = un

0 = un
J = un

J+1 = 0. For 96

any two mesh functions un, wn ∈ Hh,0, we define the discrete inner product and norms as 97

follows: 98

(un, wn) = h
J−1

∑
j=1

un
j wn

j , ∥un∥ =
√
(un, un), ∥un∥∞ = max

1≤j≤J−1

∣∣∣un
j

∣∣∣.
Next, we presented some useful lemmas. 99

Lemma 1. (See [11]). For any mesh functions un, wn ∈ Hh,0, we have 100

(a)(un
x , wn) = −(un, wn

x̄) = −(un, wn
x), (b)(un

xx̄, wn) = −(un
x , wn

x), (c)(un
x̂ , wn) = −(un, wn

x̂).

Lemma 2. (See [20,21]). Assume that a sequence of nonnegative real numbers
{

aj
}∞

j=0 satisfying 101

an+1 ≤ α + β
n

∑
j=0

ajτ, n ≥ 0,

then there has the inequality an+1 ≤ (α + τβa0)eβ(n+1)τ , where α ≥ 0, β and τ are positive 102

constants. 103

Lemma 3. (See [9,21]). For any discrete mesh function un ∈ Hh,0, there exists constants C1 and 104

C2, such that 105

∥un∥∞ ≤ C1∥un∥+ C2∥un
x∥.

3. The TT-M Finite Difference Scheme 106

In this paper, we studied a TT-M finite difference fast numerical method for the SRLW 107

equation (1). In order to give the TT-M finite difference scheme, firstly, the time interval 108

(0, T] is partitioned uniformly into P coarse time intervals and then each coarse time interval 109

is divided into s(2 ≤ s ∈ Z+) fine time intervals. The coarse time mesh with the nodes 110

tks = kτC(k = 1, . . . , P) satisfying 0 = t0 < ts < t2s < · · · < tPs = T and the fine time mesh 111

with the nodes tn = nτF(n = 1, 2, . . . , Ps = N) satisfying 0 = t0 < t1 < t2 < · · · < tPs = T, 112

where τC = sτF and τF are the coarse time and the fine time step size, respectively. 113

Secondly, the truncation errors of the problem (1) is considered, let vn
j = u

(
xj, tn

)
, φn

j = 114

ρ
(
xj, tn

)
be the exact solutions of u(x, t) and ρ(x, t) in term of the point

(
xj, tn

)
, then we 115

have 116
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Ern
j = (vn

j )t + (φn+1
j )x̂ − (vn

j )xx̄t +
1
3

{
vn+ 1

2
j (vn+ 1

2
j )x̂ +

[
(vn+ 1

2
j )2

]
x̂

}
, (2)

117

Esn
j = (φn

j )t + (vn
j )x̂, (3)

vn
0 = vn

J = 0, φn
0 = φn

J = 0,

v0
j = v0(xL + jh), φ0

j = φ0(xL + jh).

By Taylor series expansion, we have 118

Ern
j = (ut + ρx − uxxt + uux)(xj ,tn) = O(h2 + τ),

Esn
j = (ρt + ux)(xj ,tn) = O(h2 + τ).

Next, based on equations (2) and (3), a TT-M finite difference scheme for problem (1) 119

is constructed with three steps. 120

Step 1: On the coarse time mesh, let uks
C,j = u

(
xj, tks

)
, ρks

C,j = ρ
(
xj, tks

)
be the numerical 121

solutions of of u(x, t) and ρ(x, t) in term of the point
(
xj, tks

)
, then coarse time nonlinear 122

finite difference scheme is given as 123

(uks
C,j)t + (ρ

(k+1)s
C,j )x̂ − (uks

C,j)xx̄t +
1
3

{
uks+ 1

2
C,j (uks+ 1

2
C,j )x̂ +

[
(uks+ 1

2
C,j )2

]
x̂

}
= 0, (4)

(ρks
C,j)t + (uks

C,j)x̂ = 0, (5)

uks
C,0 = uks

C,J = 0, ρks
C,0 = ρks

C,J = 0, k = 0, 1, . . . , P,
u0

C,j = u0(xL + jh), ρ0
C,j = ρ0(xL + jh), j = 1, 2, . . . , J − 1,

where uks+ 1
2

C,j = 1
2 (u

(k+1)s
C,j + uks

C,j). 124

Step 2: Based on the solutions uks
C , ρks

C at time levels tks obtained from step 1, we 125

apply the Lagrange’s linear interpolation formula to compute uks−l
C , ρks−l

C at time levels 126

tks−l(l = 1, 2, . . . , s − 1 and k = 1, 2, . . . , P, ks − l = n), we have 127

uks−l
C =

tks−l − tks
t(k−1)s − tks

u(k−1)s
C +

tks−l − t(k−1)s

tks − t(k−1)s
uks

C =
l
s

u(k−1)s
C + (1 − l

s
)uks

C , (6)

128

ρks−l
C =

tks−1 − tks
t(k−1)s − tks

ρ
(k−1)s
C +

tks−1 − t(k−1)s

tks − t(k−1)s
ρks

C =
l
s

ρ
(k−1)s
C + (1 − l

s
)ρks

C . (7)

Remark 1. The equation (7) is only employed for theoretical analysis of the scheme. In numerical 129

simulation, the coarse numerical solutions ρks−l
C are no need to compute since it does not used in 130

step 3. 131

Step 3: Based on all the coarse numerical solutions un
C,j(n = 0, 1, 2, . . . , Ps = N, j = 132

1, 2, . . . , J − 1) obtained in the first two steps, Taylor’s formula is used to construct a 133

linearized system on the fine time mesh, which is expressed as follows. Let un
F,j = 134

u
(
xj, tn

)
, ρn

F,j = ρ
(
xj, tn

)
be the numerical solutions of u(x, t) and ρ(x, t) in term of the 135

point
(
xj, tn

)
on the fine time mesh, then 136
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(un
F,j)t + (ρn+1

F,j )x̂ − (un
F,j)xx̄t +

1
6h

[
f (un+ 1

2
C,j−1, un+ 1

2
C,j , un+ 1

2
C,j+1)

+ fx(u
n+ 1

2
C,j−1, un+ 1

2
C,j , un+ 1

2
C,j+1)(u

n+ 1
2

F,j−1 − un+ 1
2

C,j−1)

+ fy(u
n+ 1

2
C,j+1, un+ 1

2
C,j , un+ 1

2
C,j+1)(u

n+ 1
2

F,j − un+ 1
2

C,j )

+ fz(u
n+ 1

2
C,j−1, un+ 1

2
C,j , un+ 1

2
C,j+1)(u

n+ 1
2

F,j+1 − un+ 1
2

C,j+1)

]
= 0,

(8)

137

(ρn
F,j)t + (un

F,j)x̂ = 0, (9)

un
F,0 = un

F,J = 0, ρn
F,0 = ρn

F,J = 0,

u0
F,j = u0(xL + jh), ρ0

F,j = ρ0(xL + jh),

j = 1, . . . , J − 1, n = 0, 1, 2, . . . , N,

where f (x, y, z) = (z − x)y + z2 − x2 and

fx(x, y, z) = −y − 2x, fy(x, y, z) = z − x, fz(x, y, z) = y + 2z

are the three partial derivatives of f (x, y, z) with respect to x, y, z. 138

Remark 2. Similar to the Gauss-Seidel method applied to linear systems, we have modified our 139

method to improve the accuracy of fine mesh solutions un+1
F by using un

F in calculation. 140

4. Convergence Analysis of the TT-M Finite Difference Scheme 141

The focus of this section is on performing convergence analysis of the nonlinear system 142

specifically on the coarse time mesh. 143

Theorem 1. Suppose that the exact solutions vn, φn to the initial boundary value problem equation
(1) is sufficiently smooth and let un

C, ρn
C be the numerical solutions on the coarse time mesh. Then,

∥vn − un
C∥∞ ≤ O(h2 + τC), ∥φn − ρn

C∥ ≤ O(h2 + τC).

Proof. Denote eks
C,j = vks

j − uks
C,j, ηks

C,j = φks
j − ρks

C,j, 1 ≤ j ≤ J − 1, 0 ≤ k ≤ P. Subtracting 144

equation (4) from equation (2) and equation (5) from equation (3), we obtain 145

Erks
C,j =(eks

C,j)t + (η
(k+1)s
C,j )x̂ − (eks

C,j)xx̄t

+
1
3

{
vks+ 1

2
j (vks+ 1

2
j )x̂ +

[
(vks+ 1

2
j )2

]
x̂

}
− 1

3

{
uks+ 1

2
C,j (uks+ 1

2
C,j )x̂ +

[
(uks+ 1

2
C,j )2

]
x̂

}
,

(10)

146

Esks
C,j = (ηks

C,j)t + (eks
C,j)x̂. (11)

The proof contains two cases. Firstly, we consider the case of n = ks(k = 0, 1, 2, . . . , P),
then n + 1 = (k + 1)s. The initial and boundary condition satisfies

e0
C,j = 0, η0

C,j = 0,

un
C,0 = un

C,J = 0, ρn
C,0 = ρn

C,J = 0.
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Taking the inner product (·, ·) on both sides of equation (10) with en+1
C + en

C, we have 147

(Ern
C, en+1

C + en
C) = ((en+1

C )t, en
C + en

C) + ((ηn+1
C )x̂, en+1

C + en
C)

− ((en
C)xx̄t, eks+1

C + en
C) + h

J−1

∑
j=1

(I + II)(en+1
C,j + en

C,j),
(12)

where

I =
1
3

[
vn+ 1

2
j (vn+ 1

2
j )x̂ − un+ 1

2
C,j (un+ 1

2
C,j )x̂

]
, II =

1
3

{[
(vn+ 1

2
j )2

]
x̂
−
[
(un+ 1

2
C,j )2

]
x̂

}
.

Notice that 148

((en
C)t, en+1

C + en
C) =

1
τC

(∥en+1
C ∥2 − ∥en

C∥2), (13)

149

((ηn+1
C )x̂, en+1

C + en
C) = −h

J−1

∑
j=1

[
ηn+1

C,j (en+1
C,j + en

C,j)x̂

]
, (14)

150

−((en
C)xx̄t, en+1

C + en
C) =

1
τC

(∥en+1
C,x ∥2 − ∥en

C,x∥2), (15)

151

h
J−1

∑
j=1

I · (en+1
C,j + en

C,j) =− 2
3

h
J−1

∑
j=1

(en+ 1
2

C,j · vn+ 1
2

j )x̂en+ 1
2

C,j

− 2
3

h
J−1

∑
j=1

(en+ 1
2

C,j )x̂(e
n+ 1

2
C,j+1 + en+ 1

2
C,j−1)u

n+ 1
2

C,j ,

(16)

152

h
J−1

∑
j=1

II · (en+1
C,j + en

C,j) =
2
3

h
J−1

∑
j=1

(vn+ 1
2

j · en+ 1
2

C,j )x̂en+ 1
2

C,j

− 2
3

h
J−1

∑
j=1

un+ 1
2

C,j en+ 1
2

C,j (en+ 1
2

C,j )x̂,

(17)

then substituting equations (13)-(17) into (12), we have 153

∥en+1
C ∥2 + ∥en+1

C,x ∥2 = ∥en
C∥2 + ∥en

C,x∥2 + τCh
J−1

∑
j=1

[
ηn+1

C,j (en+1
C,j + en

C,j)x̂

]

+
2
3

τCh
J−1

∑
j=1

[
(en+ 1

2
C,j )x̂(e

n+ 1
2

C,j+1 + en+ 1
2

C,j−1)u
n+ 1

2
C,j + un+ 1

2
C,j en+ 1

2
C,j (en+ 1

2
C,j )x̂

]
+ τC(Ern

C, en+1
C + en

C).

(18)

From Cauchy–Schwarz inequality, we obtain

(Ern
C, en+1

C + en
C) ≤ ∥Ern

C∥2 +
1
2
(∥en+1

C ∥2 + ∥en
C∥2).

Using Lemma 1, the equation (18) can be rewritten as 154

∥en+1
C ∥2 + ∥en+1

C,x ∥2 ≤ ∥en
C∥2 + ∥en

C,x∥2

+ MτC(∥ηn+1
C ∥2 + ∥en+1

C ∥2 + ∥en
C∥2 + ∥en+1

C,x ∥2 + ∥en
C,x∥2) + τC∥Ern

C∥2.
(19)
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Similarly, taking the inner product (·, ·) on both sides of equation (11) with ηn+1
C + ηn

C, we 155

obtain 156

∥ηn+1
C ∥2 = ∥ηn

C∥2 − τCh
J−1

∑
j=1

(en
C,j)x̂(η

n+1
C,j + ηn

C,j) + τC(Esn
C, ηn+1

C + ηn
C). (20)

From Cauchy–Schwarz inequality, we have

(Esn
C, ηn+1

C + ηn
C) ≤ ∥Esn

C∥2 +
1
2
(∥ηn+1

C ∥2 + ∥ηn
C∥2).

Using Lemma 1, the equation (20) can be rewritten as 157

∥ηn+1
C ∥2 ≤ ∥ηn

C∥2 + MτC(∥en
C,x∥2 + ∥ηn+1

C ∥2 + ∥ηn
C∥2) + τC∥Esn

C∥2. (21)

Add equations (19) and (21), we get 158

∥en+1
C ∥2 + ∥en+1

C,x ∥2 + ∥ηn+1
C ∥2 ≤ ∥en

C∥2 + ∥en
C,x∥2 + ∥ηn

C∥2

+ MτC(∥ηn+1
C ∥2 + ∥ηn

C∥2 + ∥en+1
C ∥2 + ∥en

C∥2 + ∥en+1
C,x ∥2 + ∥en

C,x∥2)

+ τC∥Ern
C∥2 + τC∥Esn

C∥2.

(22)

Let Bn
C = ∥en

C∥2 + ∥en
C,x∥2 + ∥ηn

C∥2, then equation (22) becomes

Bn+1
C − Bn

C ≤ MτC(Bn+1
C + Bn

C) + MτC(h2 + τC)
2,

and obtain
(1 − MτC)(Bn+1

C − Bn
C) ≤ 2MτCBn

C + MτC(h2 + τC)
2.

By taking τC small enough so that (1 − MτC) > λ > 0, then 159

Bn+1
C − Bn

C ≤ MτCBn
C + MτC(h2 + τC)

2. (23)

Summing from 0 to P − 1 inequalities in equation (23), we have

BP
C − B0

C ≤ MτC

P−1

∑
n=1

Bn
C + MτC(h2 + τC)

2,

and using Lemma 2, get 160

BP
C ≤ [B0

C + M(h2 + τC)
2]eMPτC . (24)

From equation (24) and the initial and boundary condition, we have 161

∥en
C∥ < O(h2 + τC), ∥en

C,x∥ < O(h2 + τC), ∥ηn
C∥ < O(h2 + τC). (25)

Then using Lemma 3, we obtain 162

∥en
C∥∞ < O(h2 + τC). (26)

Secondly, we consider the case of n = ks− l, (l = 1, 2, . . . , s− 1 and k = 1, 2, . . . , P, ks− 163

l = n). Based on the Lagrange’s interpolation formula, we get 164

vks−l =
tks−l − tks

t(k−1)s − tks
v(k−1)s +

tks−l − t(k−1)s

tks − t(k−1)s
vks

=
l
s

v(k−1)s + (1 − l
s
)vks +

v′′(θ1)

2
(t − t(k−1)s)(t − tks), θ1 ∈ (t(k−1)s, tks),

(27)
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165

φks−l =
tks−l − tks

t(k−1)s − tks
φ(k−1)s +

tks−l − t(k−1)s

tks − t(k−1)s
φks

=
l
s

φ(k−1)s + (1 − l
s
)φks +

φ′′(θ2)

2
(t − t(k−1)s)(t − tks), θ2 ∈ (t(k−1)s, tks).

(28)

Subtracting equation (27) from (6), we have

vks−l − uks−l
C =

l
s
(v(k−1)s − u(k−1)s

C ) + (1 − l
s
)(vks − uks

C )

+
v′′(θ1)

2
(t − t(k−1)s)(t − tks).

Subtracting equation (28) from (7), we obtain

φks−l − ρks−l
C =

l
s
(φ(k−1)s − ρ

(k−1)s
C ) + (1 − l

s
)(φks − ρks

C )

+
φ′′(θ2)

2
(t − t(k−1)s)(t − tks).

Using (25), (26) and triangle inequality, we conclude

∥eks−l
C ∥∞ ≤ O(h2 + τC), ∥ηks−l

C ∥ ≤ O(h2 + τC).

We obtain the result of Theorem 1 by synthesizing the aforementioned two cases. Next, we 166

give the convergence analysis of the scheme on the fine time mesh. 167

Theorem 2. Suppose that the exact solutions vn, φn to the initial boundary value problem equation
(1) is sufficiently smooth and let un

F, ρn
F be the numerical solutions on the fine time mesh. Then,

∥vn − un
F∥∞ ≤ O(h2 + τ2

C + τF), ∥φn − ρn
F∥ ≤ O(h2 + τ2

C + τF).

proof. Assume en
F,j = vn

j − un
F,j, ηn

F,j = φn
j − ρn

F,j, 1 ≤ j ≤ J − 1, 0 ≤ n ≤ N, Subtracting 168

equation (8) from equation (2) and equation (9) from equation (3), we obtain 169

Ern
F,j = (en

F,j)t + (ηn+1
F,j )x̂ − (en

F,j)xx̄t +
1

6h
[( fxen+ 1

2
F,j−1 + fyen+ 1

2
F,j + fzen+ 1

2
F,j+1) + Q], (29)

170

Esn
F,j = (ηn

F,j)t + (en
F,j)x̂, (30)

where
Q =

1
2
[( fxx(e

n+ 1
2

C,j−1)
2 + fyy(e

n+ 1
2

C,j )2 + fzz(e
n+ 1

2
C,j+1)

2]

+ [ fxyen+ 1
2

C,j−1en+ 1
2

C,j + fxzen+ 1
2

C,j−1en+ 1
2

C,j+1 + fyzen+ 1
2

C,j en+ 1
2

C,j+1],

and fxx = fxx(ξ, ε, δ), fyy = fyy(ξ, ε, δ), fzz = fzz(ξ, ε, δ), fxy = fxy(ξ, ε, δ), fxz = fxz(ξ, ε, δ), 171

fyz = fyz(ξ, ε, δ) are the second order partial derivatives of f (x, y, z), ξ ∈ (vn
j−1, un

C,j−1), ε ∈ 172

(vn
j , un

C,j), δ ∈ (vn
j+1, un

C,j+1). 173

Taking the inner product (·, ·) on both sides of equation (29) with en+1
F + en

F, we have 174

∥en+1
F ∥2 + ∥en+1

F,x ∥2 = ∥en
F∥2 + ∥en

F,x∥2 + τFh
J−1

∑
j=1

{
ηn+1

F,j

[
(en+1

F,j )x̂ + (en
F,j)x̂

]}

− τF
3

J−1

∑
j=1

( fxen+ 1
2

F,j−1 + fyen+ 1
2

F,j + fzen+ 1
2

F,j+1)e
n+ 1

2
F,j − τF

3

J−1

∑
j=1

Qen+ 1
2

F,j + 2τF(Ern
F, en+ 1

2
F ).

(31)
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Using fy = 1
2 ( fx + fz) and fxx = −2, fyy = 0, fzz = 2, fxy = −1, fxz = 0, fyz = 1, we obtain 175

J−1

∑
j=1

( fxen+ 1
2

F,j−1 + fyen+ 1
2

F,j + fzen+ 1
2

F,j+1)e
n+ 1

2
F,j

= −( fxen+ 1
2

F,x̄ , en+ 1
2

F ) +
3
h
( fyen+ 1

2
F , en+ 1

2
F ) + ( fzen+ 1

2
F,x , en+ 1

2
F ),

(32)

176

J−1

∑
j=1

Qen+ 1
2

F,j =
1
2

J−1

∑
j=1

[ fxx(e
n+ 1

2
C,j−1)

2 + fyy(e
n+ 1

2
C,j )2 + fzz(e

n+ 1
2

C,j+1)
2]en+ 1

2
F,j

+
J−1

∑
j=1

[ fxyen+ 1
2

C,j−1en+ 1
2

C,j + fxzen+ 1
2

C,j−1en+ 1
2

C,j+1 + fyzen+ 1
2

C,j en+ 1
2

C,j+1]e
n+ 1

2
F,j

= ((en+ 1
2

C )2
x, en+ 1

2
F )− ((en+ 1

2
C )2, en+ 1

2
F,x ) + (en+ 1

2
C,x , en+ 1

2
C en+ 1

2
F )− (en+ 1

2
C , (en+ 1

2
C en+ 1

2
F )x).

(33)

Using Lemma 1 and Cauchy–Schwarz inequality, we have 177

τF
3
( fxen+ 1

2
F,x̄ , en+ 1

2
F )− τF

h
( fyen+ 1

2
F , en+ 1

2
F )− τF

3
( fzen+ 1

2
F,x , en+ 1

2
F )

≤ MτF(∥en+ 1
2

F,x ∥2 + ∥en+ 1
2

F ∥2),
(34)

178

− τF
3
((en+ 1

2
C )2

x, en+ 1
2

F ) +
τF
3
((en+ 1

2
C )2, en+ 1

2
F,x )

− τF
3
(en+ 1

2
C,x , en+ 1

2
C en+ 1

2
F ) +

τF
3
(en+ 1

2
C , (en+ 1

2
C en+ 1

2
F )x)

≤ MτF(∥en+ 1
2

C ∥2
∞∥en+ 1

2
C ∥2 + ∥en+ 1

2
C ∥2

∞∥en+ 1
2

C,x ∥2 + ∥en+ 1
2

F ∥2 + ∥en+ 1
2

F,x ∥2),

(35)

179

2τF(Ern
F, en+ 1

2
F ) ≤ τF∥Ern

F∥2 + MτF∥en+ 1
2

F ∥2. (36)

Substituting equations (34)-(35) into (31), then 180

∥en+1
F ∥2 + ∥en+1

F,x ∥2

≤ ∥en
F∥2 + ∥en

F,x∥2 + MτF(∥ηn+1
F ∥2 + ∥en+1

F ∥2 + ∥en
F∥2 + ∥en+1

F,x ∥2 + ∥en
F,x∥2)

+ MτF(∥en+ 1
2

C ∥2
∞∥en+ 1

2
C ∥2 + ∥en+ 1

2
C ∥2

∞∥en+ 1
2

C,x ∥2) + τF∥Ern
F∥2.

(37)

Taking the inner product (·, ·) on both sides of equation (30) with ηn+1
F + ηn

F , we obtain 181

∥ηn+1
F ∥2 ≤ ∥ηn

F∥2 + MτF(∥en
F,x∥2 + ∥ηn+1

F ∥2 + ∥ηn
F∥2) + τF∥Esn

F∥2. (38)

Add equations (37) and (38), we have 182

∥en+1
F ∥2 + ∥en+1

F,x ∥2 + ∥ηn+1
F ∥2 ≤ ∥en

F∥2 + ∥en
F,x∥2 + ∥ηn

F∥2

+ MτF(∥ηn+1
F ∥2 + ∥ηn

F∥2 + ∥en+1
F ∥2 + ∥en

F∥2 + ∥en+1
F,x ∥2 + ∥en

F,x∥2)

+ MτF(∥en+ 1
2

C ∥2
∞∥en+ 1

2
C ∥2 + ∥en+ 1

2
C ∥2

∞∥en+ 1
2

C,x ∥2)

+ τF∥Ern
F∥2 + τF∥Esn

F∥2.

(39)

Let Bn
F = ∥en

F∥2 + ∥en
F,x∥2 + ∥ηn

F∥2, then

Bn+1
F − Bn

F ≤ MτF(Bn+1
F + Bn

F) + MτF(∥en+ 1
2

C ∥2
∞∥en+ 1

2
C ∥2 + ∥en+ 1

2
C ∥2

∞∥en+ 1
2

C,x ∥2)

+τF∥Ern
F∥2 + τF∥Esn

F∥2,
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and obtain
(1 − MτF)(Bn+1

F − Bn
F) ≤ 2MτFBn

F + MτF(h4 + τ4
C + τ2

F).

By taking τF small enough so that (1 − MτF) > λ > 0, then 183

Bn+1
F − Bn

F ≤ MτF(h4 + τ4
C + τ2

F) + MτFBn
F. (40)

Summing from 0 to N − 1 inequalities in equation (40), we obtain 184

BN
F ≤ B0

F + MτF(h4 + τ4
C + τ2

F) + MτF

N−1

∑
n=0

Bn
F. (41)

Using Lemma 2, we get 185

BN
F ≤ [B0

F + MτF(h4 + τ4
C + τ2

F)]e
MNτF . (42)

From equation (42) and the initial and boundary condition, we have 186

∥en
F∥ ≤ O(h2 + τ2

C + τF), ∥en
F,x∥ ≤ O(h2 + τ2

C + τF), ∥ηn
F∥ < O(h2 + τ2

C + τF). (43)

Using Lemma 3, it lead to 187

∥en
F∥∞ ≤ O(h2 + τ2

C + τF). (44)

This completes the proof of Theorem 2. 188

5. Numerical Results 189

This section provides some numerical examples aimed at demonstrating the accuracy
and computational time of the TT-M finite difference scheme that was discussed in Section
3. We consider the SRLW equation as the following form:

ut + ρx + uux − uxxt = 0, −40 ≤ x ≤ 40, 0 < t ≤ 4,
ρt + ux = 0, −40 ≤ x ≤ 40, 0 < t ≤ 4,
u(xL, t) = u(xR, t) = 0, ρ(xL, t) = ρ(xR, t) = 0, 0 < t ≤ 4,
u(x, 0) = u0(x), ρ(x, 0) = ρ0(x), −40 ≤ x ≤ 40.

The exact solitary wave solution [4] of the SRLW equation (1) has the following form 190

u(x, t) =
3
(
v2 − 1

)
v

sech2

(√
v2 − 1

4v2 (x − vt)

)

ρ(x, t) =
3
(
v2 − 1

)
v2 sech2

(√
v2 − 1

4v2 (x − vt)

)
.

In this section, we chose v = 1.5 associated with this equation, which takes the form 191

u(x, t) =
5
2

sech2
√

5
6

(
x − 3

2
t
)

, ρ(x, t) =
5
3

sech2
√

5
6

(
x − 3

2
t
)

,

and consider the following initial conditions 192

u0(x) =
5
2

sech2
√

5
6

x, ρ0(x) =
5
3

sech2
√

5
6

x.
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5.1. Error and convergence rate 193

We define the error and convergence rate by the following formula:

em(h, τ) = ∥vn − un
m∥∞, ηm(h, τ) = ∥φn − ρn

m∥,

uRatex
m = log2

(
em(2h, 4τ)

em(h, τ)

)
, ρRatex

m = log2

(
ηm(2h, 4τ)

ηm(h, τ)

)
,

uRatet
m = log2

(
em(2h, 2τ)

em(h, τ)

)
, ρRatet

m = log2

(
ηm(2h, 2τ)

ηm(h, τ)

)
,

where m represents the TT-M finite difference scheme or the standard nonlinear finite 194

difference (SNFD) scheme. We set τC = 4τF in the entire numerical illustration process. 195

Tables 1 and 2 present discrete norm errors, convergence rates, and the time cost 196

for both the TT-M finite difference scheme and the SNFD scheme. To demonstrate the 197

accuracy of the proposed method, we computed the error of TT-M finite difference scheme 198

at the final time t = 4 for various mesh steps and compare it to the errors obtained by the 199

SNFD scheme. The results from the new scheme show nearly identical significant digits as 200

those obtained by the SNFD scheme. In term of the convergence rate, the results indicate 201

that both the SNFD scheme and the TT-M finite difference scheme achieve approximately 202

second-order convergence in space when τF = h2 and first-order in time when h = τF, 203

which confirming the theoretical results. 204

Figures 1 illustrates the exact and numerical solutions of u(x, t) and ρ(x, t) at t = 4 205

obtained by the TT-M finite difference scheme. The results indicate the excellent correspon- 206

dence between our numerical solution and the exact solution. Furthermore, the CPU times 207

of the two schemes are plotted in Figure 2 under τF = h2 and h = τF, respectively. It is 208

worth noting that the TT-M finite difference scheme can significantly decrease computation 209

time. To sum up, the computational performance of the new scheme is obviously better 210

than that of the SNFD scheme. 211

Table 1. The errors and convergence rates with τF = h2.

SNFD scheme

(h, τF) eSNFD(h, τF) uRatex
SNFD ηSNFD(h, τF) ρRatex

SNFD CPU(s)(
1
2 , 1

4

)
8.2798 × 10−2 — 2.9797 × 10−1 — 0.14(

1
4 , 1

16

)
2.0361 × 10−2 2.02 7.3503 × 10−2 2.02 0.51(

1
8 , 1

64

)
5.0629 × 10−3 2.01 1.8306 × 10−2 2.01 12.30(

1
16 , 1

256

)
1.2641 × 10−3 2.00 4.5719 × 10−3 2.00 136.31(

1
32 , 1

1024

)
3.1597 × 10−4 2.00 1.1427 × 10−3 2.00 1943.47

TT-M finite difference scheme

(h, τF) eTT−M(h, τF) uRatex
TT−M ηTT−M(h, τF) ρRatex

TT−M CPU(s)(
1
2 , 1

4

)
8.3934 × 10−2 — 3.0015 × 10−1 — 0.10(

1
4 , 1

16

)
2.0360 × 10−2 2.04 7.3555 × 10−2 2.03 0.30(

1
8 , 1

64

)
5.0616 × 10−3 2.01 1.8308 × 10−2 2.01 7.53(

1
16 , 1

256

)
1.2639 × 10−3 2.00 4.5721 × 10−3 2.00 76.99(

1
32 , 1

1024

)
3.1596 × 10−4 2.00 1.1427 × 10−3 2.00 1297.88
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Table 2. The errors and convergence rates with h = τF .

SNFD scheme

(h, τF) eSNFD(h, τF) uRatet
SNFD ηSNFD(h, τF) ρRatet

SNFD CPU(s)(
1
8 , 1

8

)
3.1920 × 10−2 — 1.1381 × 10−1 — 2.47(

1
16 , 1

16

)
1.5552 × 10−2 1.04 5.5256 × 10−2 1.04 14.09(

1
32 , 1

32

)
7.6748 × 10−3 1.02 2.7221 × 10−2 1.02 109.20(

1
64 , 1

64

)
3.8121 × 10−3 1.01 1.3509 × 10−2 1.01 770.01(

1
128 , 1

128

)
1.8997 × 10−3 1.00 6.7298 × 10−3 1.00 5792.53

TT-M finite difference scheme

(h, τF) eTT−M(h, τF) uRatet
TT−M ηTT−M(h, τF) ρRatet

TT−M CPU(s)(
1
8 , 1

8

)
3.1962 × 10−2 — 1.1414 × 10−1 — 1.49(

1
16 , 1

16

)
1.5540 × 10−2 1.04 5.5323 × 10−2 1.04 7.10(

1
32 , 1

32

)
7.6694 × 10−3 1.02 2.7237 × 10−2 1.02 51.40(

1
64 , 1

64

)
3.8102 × 10−3 1.01 1.3513 × 10−2 1.01 414.33(

1
128 , 1

128

)
1.8991 × 10−3 1.00 6.7308 × 10−3 1.01 3289.71

(a) (b)

Figure 1. Exact and numerical solution of u(x, t) (a) and ρ(x, t) (b) at t = 4.

(a) (b)

Figure 2. Comparison of CPU times with τF = h2 (a) and h = τF (b) based on the data in Table 1-2.
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5.2. Conservative approximations 212

To further verify the accuracy of the new scheme, we calculate four conservation laws
of the SRLW equation (1), such as:

Q1 =
1
2

∫ ∞

−∞
ρdx, Q2 =

1
2

∫ ∞

−∞
udx,

Q3 =
1
2

∫ ∞

−∞
(u2 + u2

x + ρ2)dx, Q4 =
1
2

∫ ∞

−∞
(ρu +

1
6

u3)dx.

Afterwards, employing discrete forms, we are able to compute four approximate conserva-
tive quantities which can be represented as

Q1 =
h
2

J−1

∑
j=0

ρn
j ,

Q2 =
h
2

J−1

∑
j=0

un
j ,

Q3 =
h
2

J−1

∑
j=0

(un
j )

2 +
1

2h

J−1

∑
j=0

(un
j+1 − un

j )
2 +

h
2

J−1

∑
j=0

(ρn
j )

2,

Q4 =
h
2

J−1

∑
j=0

ρn
j un

j +
h

12

J−1

∑
j=0

(un
j )

3.

The quantities values are recorded in Tables 3-6. In Tables 3 and 4, regardless of the time 213

step and grid spacing, the quantities Q1 and Q2 remain well-preserved at various times. In 214

Table 5, for the case h = 1/2 and τF = 1/4, one can see that the quantity Q3 experiences a 215

slight increase as time increases, however, as the spatial and temporal step sizes decrease, 216

the variation of Q3 becomes extremely small. In Table 6, it has been found that for quantity 217

Q4, there was a minor decline under different mesh steps, but it gradually rebounded over 218

time. Meanwhile, as the spatial and temporal step sizes decrease, the Q4 increases slightly. 219

Figure 3 plots the variation curves of four quantities for the case h = 1/8 and τF = 1/64, 220

which visually demonstrate that our scheme preserves the four conservation laws. 221

Table 3. Quantities Q1 under different mesh steps h and τF at various times.

TT-M finite difference scheme

( 1
2 , 1

4 ) ( 1
4 , 1

16 ) ( 1
8 , 1

64 ) ( 1
16 , 1

256 )

t = 0.0 4.4721359549 4.4721359549 4.4721359549 4.4721359549
t = 0.5 4.4721359549 4.4721359549 4.4721359549 4.4721359549
t = 1.0 4.4721359549 4.4721359549 4.4721359549 4.4721359549
t = 1.5 4.4721359549 4.4721359549 4.4721359549 4.4721359549
t = 2.0 4.4721359549 4.4721359549 4.4721359549 4.4721359549
t = 2.5 4.4721359549 4.4721359549 4.4721359549 4.4721359549
t = 3.0 4.4721359549 4.4721359549 4.4721359549 4.4721359549
t = 3.5 4.4721359549 4.4721359549 4.4721359549 4.4721359549
t = 4.0 4.4721359549 4.4721359549 4.4721359549 4.4721359549
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Table 4. Quantities Q2 under different mesh steps h and τF at various times.

TT-M finite difference scheme

( 1
2 , 1

4 ) ( 1
4 , 1

16 ) ( 1
8 , 1

64 ) ( 1
16 , 1

256 )

t = 0.0 6.7082039324 6.7082039324 6.7082039324 6.7082039324
t = 0.5 6.7082039324 6.7082039324 6.7082039324 6.7082039324
t = 1.0 6.7082039324 6.7082039324 6.7082039324 6.7082039324
t = 1.5 6.7082039324 6.7082039324 6.7082039324 6.7082039324
t = 2.0 6.7082039324 6.7082039324 6.7082039324 6.7082039324
t = 2.5 6.7082039324 6.7082039324 6.7082039324 6.7082039324
t = 3.0 6.7082039324 6.7082039324 6.7082039324 6.7082039324
t = 3.5 6.7082039324 6.7082039324 6.7082039324 6.7082039324
t = 4.0 6.7082039323 6.7082039323 6.7082039323 6.7082039323

Table 5. Quantities Q3 under different mesh steps h and τF at various times.

TT-M finite difference scheme

( 1
2 , 1

4 ) ( 1
4 , 1

16 ) ( 1
8 , 1

64 ) ( 1
16 , 1

256 )

t = 0.0 17.3814360100 17.3890764778 17.3909982095 17.3914793723
t = 0.5 17.3879364459 17.3894925427 17.3910247524 17.3914810404
t = 1.0 17.4021575260 17.3904434452 17.3910850544 17.3914848239
t = 1.5 17.4178948195 17.3914089843 17.3911453660 17.3914885933
t = 2.0 17.4279575149 17.3919924045 17.3911803618 17.3914907570
t = 2.5 17.4320624736 17.3921089940 17.3911854445 17.3914910387
t = 3.0 17.4298852213 17.3919072419 17.3911710024 17.3914901056
t = 3.5 17.4257242289 17.3915916231 17.3911504036 17.3914888028
t = 4.0 17.4208004460 17.3913048704 17.3911324701 17.3914876800

Table 6. Quantities Q4 under different mesh steps h and τF at various times.

TT-M finite difference scheme

( 1
2 , 1

4 ) ( 1
4 , 1

16 ) ( 1
8 , 1

64 ) ( 1
16 , 1

256 )

t = 0.0 29.8645685095 29.8270800111 29.8174683777 29.8150480627
t = 0.5 29.5194998279 29.7377964805 29.7949677954 29.8094115019
t = 1.0 29.2953094352 29.6804305056 29.7805099425 29.8057894879
t = 1.5 29.2373157339 29.6665651150 29.7770997278 29.8049405034
t = 2.0 29.3052034101 29.6864373371 29.7822468973 29.8062391542
t = 2.5 29.4333002603 29.7204018949 29.7909264484 29.8084218678
t = 3.0 29.5520897511 29.7519209103 29.7989376025 29.8104338587
t = 3.5 29.6355327196 29.7733189521 29.8043614200 29.8117950932
t = 4.0 29.6765644108 29.7843463859 29.8071613054 29.8124980105
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(a) (b)

(c) (d)

Figure 3. Quantities Q1 (a), Q2 (b), Q3 (c) and Q4 (d) under mesh steps h = 1/8, τF = 1/64.

6. Conclusions 222

The paper presents a new time two-mesh finite difference scheme for the nonlinear 223

symmetric regularized long wave equation with a nonlinear term including derivatives. The 224

time interval is divied into coarse and fine meshes, then the Lagrange’s linear interpolation 225

formula and Taylor’s formula are utilized to construct the three steps time two-mesh finite 226

difference scheme. The convergence of the new scheme are also analyzed and theoretical 227

results are verified by some numerical examples. Compared to the standard nonlinear 228

finite difference scheme, our scheme not only maintains accuracy but also reduces CPU 229

time. Therefore, the TT-M finite difference scheme is a promising method for solving the 230

SRLW equation. 231
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