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Simple Summary: Breast cancer causes a lot of cancer death among women. Accurate prediction of 

survival will benefit appropriate medical decision-making. In this study, the breast cancer RNA-Seq 

data in The Cancer Genome Atlas was firstly normalized to transcripts per million (TPM). After 

dimension raising, the differential gene expression data were used for different deep learning 

architectures testing. Among them, GoogLeNet preforms the best performance and was selected to 

build the survival prediction model, SaBrcada. Considering the age effects on prognosis, the 

performance of stratified random sampling by patient’s age was tested. It was shown that adding 

the technique of stratified random sampling by the patient’s age of 61 can increase the accuracy of 

SaBrcada up to 0.798. Further, we established a website tool, same-named as SaBrcada, which 

provides 5 kinds of predicted survival periods information for clinicians’ reference. 

Abstract: (1) Background: Breast cancer is the second leading cause of cancer death among women. 

The accurate prediction of survival intervals will help physicians make informed decisions on 

treatment strategies or the use of palliative care for patients; (2) Methods: The gene expression is 

predictive and correlates to patient prognosis. To establish a reliable prediction tool, we collected 

the RNA-seq data of breast cancer patients, a total of 1187 RNA-seq data (median age 58 years), in 

FPKM format from the TCGA database. Among them, 144 RNA-seq data with date of death 

information was selected to establish the SaBrcada-AD dataset. We first normalized the SaBrcada-

AD dataset to transcripts per million (TPM) to build survival prediction model SaBrcada. After 

normalization and dimension raising, the differential gene expression data were used for testing 

eight different deep learning architectures. Among them, GoogLeNet performed the best. 

Considering the effect of age on prognosis, we examined all ages between the lower and upper 

quartiles of patient age for a stratified random sampling test; (3) Results: Stratifying by age based 

on a cut-off of 61 years of age improved the accuracy of SaBrcada compared to previous findings, 

resulting in an accuracy of 0.798. We also built a free website tool to provide 5 kinds of predicted 

survival period information for clinician reference; (4) Conclusions: We established a breast cancer 

survival analysis prediction model, SaBrcada, and a website tool with the same name. Through this 

highly reliable survival analysis model and website tool, information on survival intervals will be 

provided for clinicians as part of precision medicine. 

Keywords: breast cancer; deep learning; survival analysis; data dimension raising; age stratification 
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1. Introduction 

Breast cancer is the most common cancer in women [1]. In 2020, approximately 2.3 million female 

breast cancer patients were diagnosed, accounting for 11.7% of new cancer cases. Breast cancer has 

not only become the main cause of global cancer but is also the fifth leading cause of cancer deaths 

worldwide, accounting for 1 in 6 cancer deaths [2,3]. To make matters worse, it has been predicted 

that the worldwide incidence of breast cancer is rising and that approximately 3.2 million new cases 

of female breast cancer will be diagnosed per year by 2050. These numbers indicate the urgent need 

for prevention and treatment strategies for breast cancer. Breast cancer commonly occurs in ducts or 

lobules. In addition to invading the original organs (breasts), malignant breast cancer has the ability 

to metastasize to distant organs such as bones, lungs, liver, and brain [4], which can lead to disease 

progression and eventually death in severe cases. Therefore, researchers continue to search for 

breakthroughs in the diagnosis, treatment and palliative care of breast cancer. Especially in palliative 

care, reliable and accurate prognostic prediction plays a key role in decision-making regarding 

medical strategies [5]. 

Medical treatments should be decided based on the patient's goals and expected survival time, 

the potential benefits and risks of treatment, and the effects on quality of life. Therefore, a 

comprehensive consideration of these factors determines treatment choices [6]. To predict patient 

survival time, many features, including pathogenesis, gene mutation, gene expression, clinical data, 

treatment, and general health, are typically considered for prognostic predictions [7,8]. Therefore, 

multiple predictors will be used in the model design and data analysis to determine the important 

features of the prognostic model. To date, researchers have proposed different combinations of 

predictors for survival analysis or death probability scoring or when developing prediction tools or 

analysis platforms for prognosis. These tools are often called prognostic models, predictive models, 

or risk scores [9–16]. Increasing the accuracy of these prognostic models or risk scores can help 

patients in making medical treatment decisions and providing more reliable survival analyses. In the 

postgenomic era, the significant features are not limited to clinical information, and the gene 

expression profiles of patients are also a crucial factor affecting prognosis [17–19]. 

To analyze gene expression, protein-coding RNAs (mRNAs) and noncoding RNAs, including 

long noncoding RNAs (lncRNAs), snRNAs, rRNAs, tRNAs, and microRNAs (miRNAs), were 

considered as candidates [20–23]. With the launch of the Human Genome Project [24] and the 

advancement of next-generation sequencing technologies, more high-throughput RNA-seq data from 

cancer patients has become available for bioinformatics analyses [25]. However, the analysis of such 

large datasets has often previously been limited by hardware capabilities [26]. With advancements of 

hardware and the development of deep learning architecture, more studies have applied deep 

learning from the information domain to bioinformatics [27] and hope to use the characteristics of 

deep learning to learn and extract features from genes or RNA-seq data to train and build models 

[28–30]. Compared with the complexity and diversity of genomic features, the number of samples 

from cancer patients from which RNA-seq data are available is limited. When the number of features 

is larger than the number of samples, model-overfitting tends to occur, which will reduce the 

accuracy of prediction in test data [31]. In addition, limited availability of clinical data also affects the 

effectiveness of deep learning. The hospital’s inability to actively track patients leads to loss to follow-

up and censored death times for some patients. This incomplete clinical information may be the main 

limitation of cancer prognosis prediction [32]. For example, in the TCGA-BRCA database, the most 

common event date recorded is the last follow up date, not the date of death of the patient. This may 

be the key factor affecting the accuracy of previous studies. Therefore, we excluded this kind of data 

to improve the accuracy of the prediction model and then used data dimension raising and age 

stratification strategies to build a breast cancer patient survival analysis model SaBrcada by deep 

learning. 

First, we downloaded the RNA-Seq and clinical data from the TCGA-BRCA database and 

conducted data screening. TCGA-BRCA provides the RNA-Seq data in fragments per kilobase per 

million (FPKM); FPKM is applicable to paired-end RNA-seq experiments only. As third-generation 

sequencing technologies have developed, such as single-molecule real-time sequencing (SMRT) and 
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Oxford Nanopore’s technology, a widely applicable normalization method for different sequencing 

platforms is needed for survival analysis model construction. Transcripts per million (TPM) 

represents the relative expression level of a transcript, and the sum of all TPM values is a million in 

all samples. In principle, TPM should be comparable between samples; thus, we normalized the gene 

expression data from FPKM into TPM. Considering the correlation among gene expression levels, 

deep learning was selected for model construction. To process the data for CNN learning, we used a 

dimension raising strategy to raise the gene expression data into a matrix and then subtracted the 

data in pairs to generate a differential gene expression image (survival analysis image). We 

developed a survival analysis model by using a convolutional neural network with 8 different 

architectures. Among them, GoogLeNet exhibited the best performance. Patient age was also 

reported to be an important feature that affects survival time [3]. To test the effectiveness of the age 

stratification strategy, the data of breast cancer patients were grouped based on quantiles of age, from 𝑄ଵ to 𝑄ଷ. The results showed that the age stratification at 61 years old has the best performance, 

which is in agreement with the median age at the time of breast cancer diagnosis reported by the 

American Cancer Society [33]. For clinicians’ reference, we also established a free website tool 

(http://ncblab.nchu.edu.tw/SaBrcada), named SaBrcada, which provides 5 types of predicted survival 

intervals, including within half a year, between half and one year, between one and three years, 

between three and five years, and more than five years. 

2. Materials and Methods 

2.1. Modeling process 

The SaBrcada modeling process is shown in Figure 1. First, we downloaded the RNA-seq in 

FPKM format and clinical data of patients diagnosed with breast cancer from TCGA-BRCA and then 

excluded records with incomplete RNA-Seq expression data or without recorded clinical data, date 

of death, or age. The remaining RNA-seq data were converted to TPM format. Based on age 

stratification, we further divided the collected data into two datasets based on an age of 61. Seventy 

percent of the patient data in the two datasets were set aside to fit the survival model. To assess the 

goodness of fit of the survival model by the accuracy, survival analysis images were generated 

following dimension raising. The two datasets from the survival analysis images were combined as 

the training set for model building by deep learning architectures. The remaining 30% of the patient 

data were collected and processed using the same procedures to generate the test set to assess model 

performance. 
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Figure 1. SaBrcada modeling process. RNA-seq and clinical data of breast cancer patients from 

downloaded from TCGA-BRCA has first been filtered to exclude records with incomplete RNA-Seq 

expression data or missing clinical data, death dates, or age information. After converting the RNA-

seq data into TPM format, it was split into two subsets based on the age of 61, and 70% of the data in 

each subset was used for training. Through dimension raising, survival analysis images were 

generated and used for deep learning modeling. Finally, the remaining 30% of the data was used as 

test data to verify the accuracy of the model. 

2.2. Data preprocessing 

In this study, We are using TCGA version 27 data. RNA-seq data from breast cancer patients 

were collected in FPKM format. It was noted that the original counts (reads) may be different from 

the true values due to the sampling environment, experimental methods, or length of each RNA [34]. 

Although gene length was considered, FPKM uses pair-end reads as the unit, i.e., fragments, not full 

transcripts. On the other hand, TPM reports the relative expression level of each transcript in the 

sample, providing more complete data. Therefore, we chose TPM format for further study. In 

addition, we also collected clinical data, including information of patient age, survival time, and race, 

from TCGA. 

Before preprocessing, we downloaded a total of 1,187 RNA-seq data to build the SaBrcada-BPP 

dataset. After excluding 96 samples with missing clinical data, we obtained 1,091 data records 

containing clinical data. We further excluded the samples that recorded the same survival time and 

obtained a SaBrcada-APP dataset with 807 breast cancer cases, after preprocessing. To ensure that all 

the samples included actual survival times, we selected 144 RNA-seq data with actual date of death 

information to establish the SaBrcada-AD dataset (Figure 2). Furthermore, SaBrcada-AD was 

classified with stratified random sampling: the samples with a patient age younger than or equal to 

61 years were included in the SaBrcada-AYT61 dataset, and the remaining samples were included in 

the SaBrcada-AOT61 dataset, including the samples with a patient age older than 61 years. The 

dataset SaBrcada-train was created by combining the two training sets of SaBrcada-AYT61 and 

SaBrcada-AOT61. SaBrcada-test was created by combining the testing sets of these two datasets. All 

7 datasets used in this study provide information on age, survival time, and race (Table 1). 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 29 May 2023                   doi:10.20944/preprints202305.1968.v1

https://doi.org/10.20944/preprints202305.1968.v1


 5 

 

 

Figure 2. Data screening flowchart. The flowchart details how much data were deleted at each stage 

and why. From TCGA, 1187 samples were downloaded to construct SaBrcada-BPP, before 

preprocessing. After excluding 96 samples lacking clinical data, and further excluding 284 samples 

with the same survival time as other samples, we then built SaBrcada-APP dataset containing 807 

breast cancer cases after preprocessing. Finally, 663 samples without death date were removed, and 

we obtained 144 samples with actual death date to build the SaBrcada-AD dataset. 

Table 1. List of the datasets used in this study. 

Dataset No. 
Age at index, 

median (range) 

Survival day, 

median (range) 

Race no. (%) 

(W, BAA, A, AIAN, NR) * 

SaBrcada-BPPa 1187 58 (26,90) 912 (-7,8605) 753 (68%), 182 (16%), 61 (5%), 1 (0.09%), 94 (9%) 

SaBrcada-APPb 807 57 (26,90) 1026 (0,8605) 583 (72%), 141 (17%), 34 (4%), 1 (0.1%), 48 (5%) 

SaBrcada-ADc 144 58 (25,90) 1163 (0,7455) 106 (74%), 30 (21%), 2 (1%), 0 (0%), 6 (4%) 

SaBrcada-AYT61d 84 46 (25,58) 1439 (227, 7455) 51 (74%), 15 (22%), 1 (1%), 0 (0%), 2 (3%) 

SaBrcada-AOT61e 60 69 (54,90) 1004 (0,4267) 55 (73%), 15 (18%), 1 (3%), 0 (0%), 4 (5%) 

SaBrcada -trainf 103 58 (25,90) 1032 (0, 7455) 77 (74%), 19 (18%), 2 (2%), 0 (0%), 5 (7%) 

SaBrcada -testg 41 58 (27,85) 1692 (158, 3926) 29 (71%), 11 (27%), 0 (0%), 0 (0%), 1 (2%) 
aBefore preprocessing, incomplete data were included; bAfter preprocessing; cAll data with actual death interval 

recorded; dPatients age younger than 61 years old; ePatients age older than 61 years old; fCombination of AYT61 

and AOT61 training sets; gCombination of AYT61 and AOT61 testing sets. *W, White; BAA, Black or African 

American; A, Asian; AIAN, American Indian or Alaska Native; NR, Not Reported. 

2.3. Age stratification 

To ensure that there was a sufficient amount of data in the two datasets after stratification, 

quantiles 𝑄ଵ  to 𝑄ଷ , that is patients aged 48 to 69 years, were used as the basis for sorting the 

SaBrcada-AD dataset. After stratification, 70% of the patient data were extracted with the shuffle 

algorithm in the Random package of Python for use as the training set for the generation of survival 

analysis images. The other survival analysis images generated by the remaining 30% data were used 

to determine the most suitable age for stratification by accuracy evaluation. For example, there were 

49 cases younger than or equal to 61 years old, which generated 2,352 survival analysis images as the 

training set. The other 20 cases generated 380 survival analysis images as the test set. For patients 

older than 61 years old, 53 cases generated 2756 survival analysis images as the training set, and 22 

cases generated 462 survival analysis images as the test set. 

2.4. Data generation 

Considering the reliability and comparability between different patients, we first normalized the 

60,483 gene expression data from FPKM into TPM by fixing the total gene expression of FPKM to 

1,000,000. To compare the differential gene expression between patients, we arranged the expression 

data of genes in the order provided by TCGA-BRCA RNA-Seq. For survival analysis, we also sorted 

the TPM format data according to the patient’s survival time and then subtracted the data in pairs to 
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generate two survival analysis data types, T௅ௌ (positive) and Tௌ௅ (negative). According to our 

previous study, the difference between genes improves the predictive model of survival analysis, 

especially its sensitivity, compared with the traditional fold change (data not shown). It may be that 

the fold change of gene expression overestimates the effect of gene expression differences that do not 

reach the activation threshold [35], but underestimates the effect of gene expression differences at 

high expression levels, so subtraction was chosen in this study. T௅ௌ is the dataset containing the data 

with shorter survival time subtracted from the data with longer survival time to represent the 

differential gene expression pattern of longer survival time. In contrast, Tௌ௅  is the dataset 

representing a shorter survival time. Taking 5 patients as an example, the data were arranged by the 

length of survival time from long to short as N1 to N5, as shown in Figure 3(a). The data type T௅ௌ is 

generated by subtracting the TPM data of N2, N3, N4 and N5 from that of N1 and then subtracting 

the TPM data of the remaining 3 samples with N2. It will generate n(n-1)/2 survival analysis data as 

seen in Figure 3(b). In contrast, data type Tௌ௅ is generated by subtracting the TPM data of N1, N2, 

N3 and N4 from that of N5 and then subtracting the TPM data of the remaining 3 samples from N4, 

and so on as shown in Figure 3(a). 

 

Figure 3. Survival analysis data generation. (a) The survival analysis data generation method. 𝑇௅ௌ 

(positive) is the data type that was generated by subtracting the TPM data of patients with shorter 

survival times from that of patients with longer survival times. 𝑇ௌ௅  (negative) was generated by 

subtracting the TPM data of patients with longer survival times from that of patients with shorter 

survival times. (b) Schematic diagram of survival analysis data example. N1 and N2 indicate the gene 

expression of patients N1 and N2 in TPM format, respectively. Data Type 𝑇௅ௌ is the survival analysis 

data generated by subtracting the TPM data of patient N2 from that of N1. 
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2.5. Data dimension augmentation 

We obtained 60,483 gene expression data from TCGA-BRCA, this RNA-seq data produces a 

large number of features, which are difficult to directly process by machine learning. CNNs designed 

to process data with a large number of features are therefore considered. However, CNN is more 

suitable for processing two-dimensional data with spatial structure. Therefore, the survival analysis 

data were arranged into a 246 × 246-matrix by dimension raising from one dimension to two 

dimension. Here, the 246 × 246-matrix is the smallest square matrix that can contain 60,483 differential 

gene expressions. All 60,483 differential gene expression levels were filled in the order from left to 

right and top to bottom and then were converted into grayscale pixel values ranging from 0 to 255. 

Zero represented the maximum negative difference in gene expression, and 255 represented the 

maximum positive difference. After filling the remaining 33 positions with 0, the survival analysis 

matrix was generated and finally saved in PNG file format to serve as the survival analysis images. 

The process is shown in Figure 4. 

 

Figure 4. Schematic diagram of survival analysis images. By dimension raising and scaling the 

survival analysis data in the range from 0 to 255, a survival analysis matrix was generated for further 

survival analysis image conversion. 

2.6. Deep learning 

We used CNN, one of the most common deep learning network architectures, implemented in 

PyTorch 1.9 to build a neural network framework and combined it with a Quadro GV100 32G 

graphics card (GPU) for model construction. The convolutional and pooling layers in the neural 

network architecture improve the recognition of pattern identity and the relationship between 

adjacent data and can learn features independently. Based on these characteristics, we used a CNN 

to learn features from survival analysis images. The deep learning frameworks containing 3 

inceptions and 22 convolutional layers were used to learn different features and make comprehensive 

judgments on all features. For hyperparameter selection, we tested 3 different sets of 

hyperparameters by using Adam (optimizer), Cross Entropy (loss function), and a dropout value of 

0.4. 

2.7. Assessment of model performance 

Accuracy is a common method to evaluate the prediction model [36]. Accuracy is calculated 

using equation 1 (1). Where TP, true positive, is the number of positive predictions; TN, true negative, 

is the number of negative predictions, and P and N are the numbers of positive and negative, 

respectively. The accuracy ranges between 0 and 1.0. An accuracy of 0.5 represents a random 

prediction, and a value of 1.0 indicates that the prediction was completely consistent with the actual 

value. 
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Accuracy ൌ 𝑇𝑃 ൅ 𝑇𝑁𝑃 ൅ 𝑁  (1)

3. Results 

3.1. Survival analysis image applicability analysis 

As shown in Figure 5(a) and (b), it is difficult for the naked eye to identify the features in the 

survival analysis images, T௅ௌ  and Tௌ௅ . The corresponding grayscale distributions of the survival 

analysis images are significantly different, as shown in Figure 5(c,d). In the example shown in Figure 

5, the grayscales of most pixels in T௅ௌ are between 30 and 45, while the grayscales of Tௌ௅ are mostly 

between 160 and 180. These two types of images display sufficient differences to be learned from the 

features by a convolutional neural network for further survival interval analysis. 

 

Figure 5. Pixel distribution diagram after image generation. (a) 𝑇௅ௌ  type image; (b) pixel value 

distribution of 𝑇௅ௌ type image; (c) 𝑇ௌ௅ type image; (d) pixel value distribution of 𝑇ௌ௅ type image. 

3.2. Deep learning architecture test 

Based on various features, different learning methods were selected for model construction. To 

detect differences between the 𝑇௅ௌ and 𝑇ௌ௅ images, we adopted a deep learning method and used 

the SaBrcada-AD dataset for architecture testing, in which 70% of the data are used as the training 

set and 30% of the data are used as the test set. To identify the most suitable deep learning 

architecture, a total of 8 deep learning architectures, Resnet18, Resnet50, Resnet101, Resnet152, 

ResNext101, GoogLeNet, DenseNet121, DenseNet161, and 3 different hyperparameter combinations, 

Epoch 50 Batch size 8, Epoch 100 Batch size 16, and Epoch 150 Batch size 32, were tested (Tsble 2). 

Among them, we found that the most suitable architecture was GoogLeNet with a hyperparameter 

combination of a batch size of 32 and 150 epochs, which had the highest accuracy value of 0.6. 

Therefore, SaBrcada uses this condition for model construction. 

Table 2. Comparison among different Convolutional Neural Network Architecture. 

Architecture Accuracy Batch Size Epoch 

Resnet18 

0.50 8 50 

0.49 16 100 

0.50 32 150 

Resnet50 0.50 8 50 
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0.50 16 100 

0.50 32 150 

Resnet101 

0.50 8 50 

0.50 16 100 

0.50 32 150 

Resnet152 

0.50 8 50 

0.49 16 100 

0.50 32 150 

ResNext101 

0.50 8 50 

0.50 16 100 

0.50 32 150 

GoogLeNet* 

0.55 8 50 

0.50 16 100 

0.60 32 150 

DenseNet121 

0.55 8 50 

0.54 16 100 

0.54 32 150 

DenseNet161 

0.55 8 50 

0.55 16 100 

0.53 32 150 

Optimizer: Adam; Loss Function: CrossEntropyLoss. *SaBrcada adopted the architecture of GoogLeNet with 

Epoch 150 and Batch size 32. 

3.3. Stratification by age 

According to the clinical data of breast cancer patients, the survival time of young patients is 

shorter, and the survival interval of older patients is generally longer [3], which indicates that the 

survival days will be affected by age. For this reason, we incorporated the age feature into the model 

to improve the accuracy by using age-stratified random sampling from quartiles 𝑄ଵ and 𝑄ଷ. That is, 

every age between the ages of 48 and 69 is considered as a cut-off for stratification and accuracy 

testing (Figure 6). The results show that the highest accuracy of 0.798 can be obtained by taking the 

age of 61 as the cut-off for stratification. Thus, SaBrcada used 61 years old as the cut-off for stratified 

random sampling to establish a model for subsequent survival analysis. 
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Figure 6. Performance of stratified random sampling by age. The X axis is the age cut-off, and the Y 

axis is the accuracy. 

3.4. Comparison of the previous studies 

Table 3 shows the comparison of the models constructed in this study with those from previous 

studies, including the accuracy, data distribution, data types, and training models. First, the 

SaBrcada-APP data were used to generate the survival analysis image dataset SaBrcada-APP-I for 

SaBrcada-APP-M model construction. SaBrcada-APP-M resulted in an accuracy of 0.5. The survival 

dates of most patients in the SaBrcada-APP dataset are the date of last follow-up days rather than the 

date of death. To improve accuracy, the records with date of death were selected from SaBrcada-APP 

to build the SaBrcada-AD dataset. The SaBrcada-AD data were used to generate the survival analysis 

image dataset SaBrcada-AD-I for SaBrcada-AD-M model construction, and an accuracy of 0.6 was 

obtained. Grouping by age stratification, SaBrcada-AD was divided into two datasets. The dataset 

SaBrcada-ASYT61 included data from patients younger than or equal to 61 years, and the dataset 

SaBrcada-ASOT61 included data from patients older than 61 years. The data of SaBrcada-ASYT61 

and SaBrcada-ASOT61 were used to generate separate survival analysis image datasets SaBrcada-

ASYT61-I and SaBrcada-ASOT61-I for the model building of SaBrcada-ASYT61-M and SaBrcada-

ASOT61-M, respectively. Model accuracy was assessed, resulting in accuracy values of 0.5 and 0.681, 

respectively. We used stratified random sampling to build the SaBrcada model by using the survival 

analysis images and the SaBrcada-I dataset. To make the SaBrcada model applicable to patients of all 

ages for survival analysis, the training set of SaBrcada-I was integrated with the training set of 

SaBrcada-ASYT61-I and SaBrcada-ASOT61-I for modeling. On the other hand, the integration of 

SaBrcada-ASYT61-I and SaBrcada-ASOT61-I was used as the test set of SaBrcada-I. According to the 

above condition, SaBrcada achieved an accuracy of 0.798, which is better than SALMON [37], 

ConcatAE [38], and VAECox architecture [39]. Zhang et al. used the SALMON architecture and 

combined breast cancer patient data, gene set enrichment analysis, and age characteristics to 

construct a survival analysis prediction model with an accuracy of 0.7 [37]. ConcatAE integrated 

DNA methylation and miRNA expression data using principal component analysis features to 

develop a breast cancer overall survival prediction model with an accuracy of 0.641 ± 0.031 [38]. The 

VAECox framework was established by the common features of multiple cancers to conduct transfer 

learning. The average accuracy of survival analysis for 10 cancers was 0.649, and the accuracy of 

prediction on breast cancer was also lower than 0.7 [39]. 

Table 3. Comparison of SaBrcada with other breast cancer survival analyses. 

Model Number of Cancer Type of Data Patient Number Method 
C-index* 

/Accuracy† 

SaBrcada-APP-M 1a mRNA 807c GoogLeNet 0.500† 
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SaBrcada-AD-M 1a mRNA 144c GoogLeNet 0.600† 

SaBrcada-ASYT61-M 1a mRNA 84c GoogLeNet 0.500† 

SaBrcada-ASOT61-M 1a mRNA 60c GoogLeNet 0.681† 

SaBrcada 1a mRNA 144c GoogLeNet 0.798† 

VAECox (2019) 10b mRNA 6127d VAE, Cox 0.649* 

SALMON (2020) 1a 
mRNA, miRNA–

target interactions 
626c Cox 0.700* 

ConcatAE (2020) 1 a 
DNA methylation,

miRNA 
1060e ConcatAE 0.641* 

aOnly one cancer type, breast cancer; b10 cancer types; c70% for training, 30% for testing; d80% for training, 20% 

for testing; e60% for training, 15% for validation, 25% for testing; *the performance was evaluated by C-index; 
†the performance was verified by accuracy. 

3.5. Assessment of accuracy of SaBrcada 

After testing the accuracy of SaBrcada's prediction for all patients with different ages in the 

SaBrcada-AD database, we found that the accuracy was higher than the 0.85 for patient ages of 70, 

89, and 90 years. Among them, the best performance was an accuracy of 0.92 for age of 90 years. 

Patient ages of 63, 84 and 88 years also obtained accuracy values higher than 0.7, with significant 

differences (Figure 7). 

 

Figure 7. The prediction accuracy for breast cancer patients using SaBrcada by age. The X-axis is the 

age of the patient, and the Y-axis is the accuracy. The red dots indicate that the accuracy is greater 

than 0.7. 

3.6. Website tools 

The purpose of developing the SaBrcada tool is to provide users guidelines for the analysis of 

the survival time of breast cancer patients. Combining survival analysis and clinical experience may 

help clinicians choose the most suitable treatment strategies to improve the quality of life of patients. 

The SaBrcada website interface is shown in Figure 8. The website is freely available at 

http://ncblab.nchu.edu.tw/SaBrcada. SaBrcada provides preprocessing tools to transfer TPM format 

RNA-Seq data for survival analysis image generation. After analyzing the survival analysis images 

uploaded by the user, SaBrcada provides the analysis information of the patient's survival period. 

SaBrcada obtains two modules: the first is survival analysis image creation, and the second is survival 

period analysis. For survival analysis image creation, the user first downloads the preprocessing 

program packaged by pyinstaller and then inputs the user’s TPM file with.TXT into the 

corresponding file according to the age of the patient. The tool compares the input data from the user 

and that from 4 default reference patients to generate 4 survival analysis data. The survival analysis 

data are then raised to a two-dimensional matrix, and 4 survival analysis images are generated by 

using the png package provided by Python. For survival period analysis, the user needs to upload 

the 4 survival analysis images generated by the preprocessing for survival analysis by using the 
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established SaBrcada model and then obtain the results. The analysis results will show the predicted 

patient survival period, with possible values of less than six months, six months to one year, one year 

to three years, three to five years, or more than five years, as a reference for clinicians to implement 

treatment strategies. 

 

Figure 8. SaBrcada website tool interface. The tool is freely available at 

http://ncblab.nchu.edu.tw/SaBrcada. It provides a tool for generating survival analysis images and 

online analysis of survival time. The outcome of the analysis is the patient's predicted survival time, 

which can be classified as less than six months, six months to one year, one to three years, three to 

five years, or more than five years. 

4. Discussion 

4.1. Comparison with past research models 

In this study, SaBrcada, a breast cancer survival analysis prediction model, was established by 

using convolutional neural networks. In brief, the SaBrcada-AD dataset was selected from TCGA-

BRCA based on the completeness of RNA-seq and clinical data. The RNA-seq data in SaBrcada-AD 

were converted into a TPM data type to represent the relative transcript level. Using stratified 

random sampling based on age, and a cut-off of 61 years of age, the SaBrcada-I survival analysis 

image dataset was generated for prediction model construction by using GoogLeNet. SaBrcada 

achieved the best performance of all examined frameworks with an accuracy of 0.798. 

In the past, breast cancer survival analysis models typically used deep learning to extract the 

nonlinear characteristics of RNA-seq data and then predicted linear Cox regression survival times 

[37,39]. Recently, researchers began to directly use the fully connected neural network as a survival 

analysis model [38], and we used a similar strategy with SaBrcada. However, we made some 

improvements and greatly increased its accuracy. The major difference between SaBrcada and other 

models is that the one-dimensional RNA-seq is augmented into a two-dimensional survival analysis 

image, which is beneficial to the feature learning by CNN. The second difference is, unlike in past 

research; GoogLeNet was used for construction of the prediction model instead of the Cox method. 

In addition, the SaBrcada website's prediction tool provides information on the survival interval for 

clinicians to refer to determine treatment strategies. 

4.2. Advantages of SaBrcada 

Looking at previous studies, three points were not considered in their prediction model 

construction. The first is the accuracy of the data collection. Whether records include the actual death 

time has a great impact on the accuracy of the model construction. Usually, all TCGA data are used 

directly. However, the last date of follow up was used to impute the time of death in TCGA, which 

may be not be accurate. Not excluding the records missing date of death may affect the learning 
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capability of the model. Therefore, we specifically selected the SaBrcada-AD dataset with date of 

death as the basis for SaBrcada modeling. The second point is the normalization of data. We can 

obtain RNA-seq data in various formats. The number of reads, accounting for raw readings, may be 

influenced by the experimental design. FPKM counts the relative fragments per kilobase of transcript. 

Both may distort the comparison of gene expression between the two patients. The use of TPM, a 

technique based on more sophisticated bioinformatics, can improve the performance of survival 

prediction based on gene expression. Thus, SaBrcada converts the FPKM data provided in TCGA into 

a normalized TPM data type, which can more accurately present the relative expression of each gene. 

The third point is the impact of age on the survival risk of patients. It was reported that breast cancer 

patients younger than 45 years old had a worse prognosis and shorter overall survival time than older 

patients [3]. Young breast cancer patients usually have multiple gene mutations involved in tumor 

development and cancer cell metastasis, resulting in a high cancer cell metastasis rate and lower 

survival rate. More than 70% of breast cancer patients over 45 years old were diagnosed with luminal 

A and luminal B subtypes and with the best prognosis [40]. Thus, age should be considered in 

prognosis predictions to reflect its impact on survival risk. Consequently, SaBrcada uses age to 

perform stratified random sampling of the dataset to assess the effect of different age stratification 

cut-offs and to improve the accuracy of the model. The predictive accuracy indicated that 61 years of 

age is the best criterion for stratification by age, which echoes the median age of breast cancer patients 

reported by the American Cancer Society's Breast Cancer Statistics Report 2017-2018 [33]. 

4.3. Directions for future research  

In the past, doctors analyzed the prognosis of patients by using their clinical experience, 

inevitably causing inconsistency in accuracy due to individual differences. In the postgenomic era, 

precision medicine has become a trend. In this study, we combined gene expression and clinical data 

to establish a reliable survival analysis model, SaBrcada. To enrich the biological information 

provided, we will integrate characteristics and coexpression network analyses. Based on this 

improvement, we may extract the determining factors from the black box of the survival analysis 

tool. This may provide a reliable prediction of survival intervals and an explainable result including 

molecular information for clinicians’ reference to determine the treatment strategy for individual 

patients. 

5. Conclusions 

In this study, we have established a breast cancer survival analysis prediction model, SaBrcada, 

and its same named website http://ncblab.nchu.edu.tw/SaBrcada. We downloaded the gene 

expression and clinical data from TCGA-BRCA. After normalization to TPM and dimension raising, 

survival analysis images generated by differential gene expression were subjected to deep learning 

architectures testing. Based on the performance, GoogLeNet was selected to build the survival 

prediction model, SaBrcada. After screened out the incomplete data, the performance of SaBrcada-

AD-M was increased to accuracy 0.6. By adding the stratified random sampling by patients’ age of 

61, the performance of SaBrcada reached the accuracy of 0.798. That indicated the accuracy of data 

and stratified random sampling by age will improve the performance of survival prediction model. 

We hope this highly reliable survival analysis model and website tool providing the information of 

survival interval periods for clinicians’ reference to precision medicine. 
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