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Abstract: This study presents a new semi-supervised action recognition method via adaptive feature

analysis. We sssume that action videos can be regarded as data-points in embedding manifold

subspace, and their matching problem can be quantified through a specific Grassmannian kernel

function, while integrating feature correlation exploration and data similarity measurement into a

joint framework. By maximising the intra-class compactness based on labeled data, our algorithm

can learn multiple features and leverage unlabeled data to enhance recognition. We introduce the

Grassmannian kernels and Projected Barzilai-Borwein (PBB) method to train a subspace projection

matrix as a classifier. Experiment results show our method has outperformed the compared

approaches when a few labeled training samples are available.

Keywords: non-monotone line search; two-point step size gradient; grassmannian kernels

1. Introduction

Effective feature representation of videos is key to action recognition. Spatiotemporal features

[1,2], subspace features [3,4], and label information [5] have been investigated for action recognition.

Correlations between multiple features may provide distinctive information; hence, feature correlation

mining has been explored to improve the recognition results when labeled data are scarce [4,6].

However, these approaches may have limitations in learning discriminant features, they have

limitations. First, although existing algorithms evaluate the common shared structures among different

actions, they do not take inter-class separability into account. Second, current semi-supervised

approaches solve the nonconvex optimisation problem by impressive derivation, but the global

optimum may not be computed mathematically through alternating least squares (ALS) iterative

method.

To overcome the limitations of using multiple features for training, we propose modelling

intra-class compactness and inter-manifold separability simultaneously, then capturing high-level

semantic patterns via Multiple feature analysis. Considering the optimisation process, we introduce

the PBB algorithm because of its effectiveness in obtaining an optimal solution [7]. The PBB method is

a non-monotone line-search technique considered for the minimisation of differentiable functions on

closed convex sets [8].

Inspired by the research using multiple features [5,6], our framework was extended in a

multiple-feature-based manner to improve recognition. We proposed the characterisation of high-level

semantic patterns through low-level action features using multiple-feature analysis. Multiple features

were extracted from different view of labeled and unlabeled action videos. Based on the constructed

graph model, pseudo information of unlabeled videos can be generated by label propagation and
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feature correlations. For each type of feature, nearby samples preserve the consistency separately,

while unlabeled training data perform the label prediction by jointly global consistency of multiple

features. Thus, an adaptive semi-supervised action classifier was trained. The main contributions can

be summarized as follows:

(1) This work first simultaneously consider manifold learning and Grassmannian kernels in

semi-supervised action recognition, as we assume that action videos samples may be found in

a Grassmannian manifold space. By modelling a embedding manifold subspace, both inter-class

separability and intra-class compactness were considered.

(2) To solve the unconstrained minimisation problem, we incorporate PBB method to avoid matrix

inversion, and apply globalisation strategy via adaptive step sizes to render the objective functions

non-monotonic, leading to improved convergence and accuracy.

(3) Extensive experiments verified that our method is better than other approaches on three

benchmarks in a semi-supervised setting. We believe that this study presents valuable insights in

adaptive feature analysis for semi-supervised action recognition.

2. Related Work

We review the related researches on semisupervised action recognition, multiple feature analysis,

and embedded subspace representation in this section.

2.1. Semisupervised Action Recognition

Unlabeled samples are valuable for learning data correlations in semi-supervised manner [3,

4,9,10]. Although it tends to achieve remarkable performance even with very limited labeled data,

there are still many issues in semi-supervised learning techniques, such as suboptimal due to without

utilizing the temporal dynamics and inherent multimodal attributes, or obtained pseudo-labels using

confident predictions from the model to teach itself [11,12].

Si et al.[13] tackle the challenge of semi-supervised 3D action recognition for effectively learning

motion representations from unlabeled data. Singh et al.[14] maximize the similarity of same video at

two different speeds, and recognize actions by training a two-pathway temporal contrastive model.

Kumar and Rawat[15] detect action video ation via end-to-end semi-supervised learning, which

develop a spatio-temporal consistency based approach with two regularization constraints: temporal

coherency and gradient smoothness.

2.2. Multiple Feature Analysis

Because we can describe an object by different features which provide different discriminative

information, multiple-feature analysis have gained increasing interest in many applications. In the

early and late-fusion strategies, multistage fusion schemes have recently been investigated [4,16–18].

While the correlations of each feature type have not been considered in most late-fusion approaches.

Wang et al.[19] apply shared structural analysis to characterize discriminative information and

preserve data distribution information from each type of feature. Chang and Yang [20] discover shared

knowledge from related multi-tasks, take various correlations into account then select features in a

batch mode. Huynh-The et al.[21] capture multiple high-level features at image-based representation

by fine-tuning pre-trained network, transfer skeleton pose to encoded information and depict an action

through spatial joint correlations and temporal pose dynamics.

2.3. Embedded Subspace Representation

Previous studies have shown that manifold subspace learning can mine geometric structure

information by considering the space of probabilities as a manifold [22–24]. Recent researches focus on

graph embedded subspace or distance metric learning to measure activities similarity [25–29].

Rahimi et al.[30] build neighborhood graphs with geodesic distance instead of euclidean distance,

and project high-dimensional action to low-dimensional space by kernelized Grassmann manifold
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learning. Yu et al.[31] propose an action matching network to recognize open-set actions, construct

an action dictionary and classifies an action via distance metric. Peng et al.[32] alleviate the

over-smoothing issue of graph representation, when multiple GCN layers are stacked by flexible

graph deconvolution technique.

The two aforementioned studies [3,4] are similar to ours. They assumed that the visual words

in different actions shared a common structure in a specific subspace. A transformation matrix is

introduced to characterise the shared structures. They solved the constrained nonconvex optimisation

problem by ALS–like iterative approach and matrix derivation. Nevertheless, the deduced inverse

matrix is poorly scaled during optimisation or close to singular, that may lead to inaccurate results.

To address these problems, we hypothesise that manifold mapping can preserve the local geometry

and maximise discriminatory power. However, we did not aim to mine shared structures. Therefore,

we ignored shared-structure regularisation and modelled the manifold by creating two graphs. As the

optimisation solution in [3,4] may be mathematically imprecise, Karush-Kuhn-Tucker (KKT) conditions

and PBB are introduced to improve algorithm convergence and avoid matrix inversion.

Different from another related research named semisupervised discriminant multimanifold

analysis(SDMM) [10], we try to make modifications in two main aspects: multiple feature analysis

through manifold subspace projection with combined Grassmannian kernels, unconstrained convex

optimisation through non-monotone line search strategy with adaptive step sizes.

3. Proposed Approach

3.1. Formulation

To leverage the multiple feature correlation, n training sample points X = [X1, ..., Xn] ∈ Rd×n are

defined from the underlying Grassmannian manifold, where Xi ∈ Rd×1. We aim to uncover a new

manifold while preserving the local geometry of data points, that is, α : Xi → Fi. Since we should

demonstrate data distribution on manifold, a predicted label matrix F = [F1, ..., Fn] ∈ Rn×n is defined,

where the predicted vector of the i-th datum Xi ∈ X is Fi ∈ Rn×1.

Figure 1. An illustration of our method. (a) Video-sets can be represented in RD. We can use the

principal angles between them, to compare two actions. (b) Data points on the Grassmannian manifold

M can be described as linear subspaces in RD. When points on the manifold having a proper geodesic

distance, the video-set matching problem may be converted to a points distance measurement problem.

(c) By employing proper Grassmannian kernel, data points can be mapped into another Grassmannian

manifold M′ where same actions become closer while different actions are well separated.

We assume that a similarity measurement of data points on manifold subspace is available

through a Grassmannian kernel [22] ki,j = ⟨Xi, Xj⟩. By confining the solution to a linear function, that

is, αi = ∑
n
j=1 aijXj, we define the prediction function f as f (Xi) = Fi = (⟨α1, Xi⟩, ⟨α2, Xi⟩, ..., ⟨αr, Xi⟩)

T .

By denoting Al = (al1, ..., aln)
T and Ki = (ki1, ..., kin)

T , it can be shown that ⟨αl , Xi⟩ = AT
l Ki, and
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thus, f (X) = F = ATK ≈ Y, where A = [A1|A2|...|Ar] and K = [K1|K2|...|Kn]. As mentioned in

[33], the performance of least square loss function is comparable to hinge loss or logistic loss. This

is associated with its diagonal matrix Y = [Y1, ..., Yn] ∈ {0, 1}n×n, where Yi ∈ {0, 1}n×1 is the label

matrix. We employed least squares regression to solve the following optimisation problem, then obtain

the projection matrix A:

min
A

∥AT
K−Y∥2

F + η∥AT∥2
F, (1)

where η is the regularisation parameter. ∥ · ∥2
F denotes Frobenius norm. ∥AT∥2

F controls the model

complexity to prevent overfitting.

3.2. Manifold Learning

In contrast to [4], which utilises a graph model to estimate data distribution on manifold, we

model the local geometrical structure by generating between-class similarity graph Gb and within-class

similarity graph Gw , where Gw(i, j) = 1, if xi ∈ Nw(xj) or xj ∈ Nw(xi), otherwise Gw(i, j) = 0.

Gb(i, j) applies the same method, although it selects xi ∈ Nb(xj) or xj ∈ Nb(xi), where Nb(xi) contains

neighbours with different labels, Nw(xj) is the set of neighbours xj sharing the same label as xi. Notably,

the intra-class and inter-class distances be mapped on a manifold by similarity graphs [24].

Inspired by manifold learning [10,22,24], we maximised inter-class separability and minimised

intra-class compactness simultaneously. An ideal transform pushes the connected points of Ab to the

extent possible while moveing the connected points of Aw closer. The discriminative information can

be represented as follows:

f =
1

2

n

∑
i,j=1

(Fi − Fj)
2Gw(i, j)−

1

2
β

n

∑
i,j=1

(Fi − Fj)
2Gb(i, j)

= tr(FT(Lw − βLb)F),

(2)

where β is a regularisation parameter, which controls the trade-off between inter-class separability and

intra-class compactness. tr(·) denotes the trace operator and Lw = Dw − Gw denotes the Laplacian

matrix. Furthermore, Db is a diagonal matrix with Db(i, i) = ∑
n
j=1 Gb(i, j), and Dw is a diagonal matrix

with Dw(i, i) = ∑
n
j=1 Gw(i, j).

3.3. Multiple Feature Analysis

Multiple features imply combining kernelized embedding features, data-point manifold subspace

learning (1st term in Eq.(4)), label propagation (2nd term in Eq.(4)) with low-level feature correlations

(3rd term in Eq.(4)) for labeled and unlabeled data.

We modify the aforementioned function to leverage both labeled and unlabeled samples. First,

the training dataset is redefined as X = [XT
l ,XT

u ]
T , where Xl = [X1, ..., Xm]T is the labeled data

subset, and Xu = [Xm+1, ..., Xn]T is the unlabeled data subset. The label matrix Y = [YT
l ,YT

u ]
T , where

Yl = [Y1, ..., Ym]T ∈ {1}m×m. The unlabeled matrix Yu = [Ym+1, ..., Yn]T ∈ {0}(n−m)×(n−m). According

to [3,34], diagonal label matrix Y and the similarity graphs Gw, Gb should be consistent with the label

prediction matrix F. We generalised the graph-embedded label consistency as follows:

min
F

tr(FT(Lw − βLb)F) + ∥F−Y∥2
F, (3)

In contrast to previous shared-structure learning algorithms, we did not consider shared-structure

learning within a semi-supervised learning framework. Alternatively, we proposed a novel joint

framework that incorporates the multiple-feature analyses of multiple manifolds. As discussed in
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the problem formulation section, by employing the Frobenius norm regularised loss function, we can

reformulate the objective:

min
F,A

tr(FT(Lw − βLb)F) + ∥F−Y∥2
F

+ µ
(

∥AT
K−Y∥2

F + η∥AT∥2
F

)

,
(4)

where β > 0, µ > 0 and η > 0 are regular parameters.

The presented function (4) is an unconstrained convex optimisation problem, hence, we can obtain

the global optimum by performing ALS or the projected gradient method. Although the correlation

matrix can only be singular under specific circumstances, the projected gradient method can handle

the aforementioned issues without matrix inversion [7], and therefore leads to a better optimum than

ALS. Notably, the convergence conditions in [3,4] merely depend on a monotone decrease, which may

result in mathematically improper convergence; therefore KKT conditions is utilized to consider this

problem.

3.4. Grassmannian Kernels

The similarity between two action sample points Xi and Xj ∈ Rd×1 can be measured by projective

kernel combination:

k
[proj]
i,j =∥ XT

i Xj ∥
2
F . (5)

One attempt to solve the point matching problem was the notion of principal angles [22]. Given Xi

and Xj, we can define the canonical correlation kernel as

k
[cc]
i,j = max

ap∈span(Xi)
max

bq∈span(Xj)
aT

p bq, (6)

subject to aT
p ap = bT

p bp = 1 and aT
p aq = bT

p bq = 0, p ̸= q.

We create a combined Grassmannian kernel through existing Grassmannian kernels [22].

k[A+B] = δ[A]k[A] + δ[B]k[B], (7)

where δ[A], δ[B] ≥ 0. Notably, k[A] + k[B] defines a new kernel based on the theory of reproducing

kernel Hilbert space as described in [22].

3.5. Optimisation

According to [7,8], a general unconstrained minimisation problem can be solved by trace operator

and PBB method. Hence, a new objective function g(F,A) instead of (4) is defined:

g(F,A) = tr(FT(Lw − βLb)F) + tr(F−Y)T(F−Y)

+ µtr(AT
K−Y)T(AT

K−Y) + µηtr(AAT).
(8)

If (F∗,A∗) is an approximate stationary point in (8), it must satisfy the KKT conditions in (8).

Then, we have a iteration-stopping criterion

∥∇gF(F
∗,A∗)∥2 + ∥∇gA(F

∗,A∗)∥2 ≤ ε, (9)

where ε is a non-negative small constant.
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Algorithm 1: Kernel Grassmann Manifold Analysis (KGMA)

Input : Training sample X ∈ Rd×n

Diagonal labels Y ∈ {0, 1}n×n

Semi-supervised parameters β, µ and η.

The PBB parameters M, λmin, λmax, σt, γ, τ, Ct

Output : Optimised A∗ ∈ Rn×n

Grassmann matrix [K]ij for all Xi, Xj
Between-class similarity graph Lb ∈ Rn×n

Within-class similarity graph Lw ∈ Rn×n

Initialise F0 ∈ Rn×n,A0 ∈ Rn×n randomly
Initialise C0 = g(F0,A0)
Initialise t = 0, λ0 = 1, σ0 = 1, γ = 0.1, τ = 0.3
repeat

▷ PBB Method
if (14) is satisfied then

Compute Ft+1,At+1 according to (10)
Compute st

1, st
2, yt

1, yt
2 according to (12)

if ⟨st
1, yt

1⟩+ ⟨st
2, yt

2⟩ ≤ 0 then λt+1 = λmax;
else λt+1 = min{λmax, max{λmin, λt+1

ABB}};
t = t + 1

until Convergence according to (9);
Return A∗

3.6. Projected Barzilai-Borwein

Similar to [7], a sequence of feasible points (Ft,At) are generated by the gradient method:

dFt = −λt∇gF(F
t,At), F

t+1 = F
t + σtdF

t,

dAt = −λt∇gA(F
t,At), A

t+1 = A
t + σtdA

t,
(10)

where σt denotes the non-monotone line search step size and λt = min{λmax, max{λmin, λt
ABB}} > 0

is another step size, that is determined through an appropriate selection rule. Following [8], we have

two choices for step size

λt+1
BB1 =

⟨st
1, st

1⟩+ ⟨st
2, st

2⟩

⟨st
1, yt

1⟩+ ⟨st
2, yt

2⟩
,

λt+1
BB2 =

⟨st
1, yt

1⟩+ ⟨st
2, yt

2⟩

⟨yt
1, yt

1⟩+ ⟨yt
2, yt

2⟩
,

(11)

where

st
1 = F

t+1 − F
t, st

2 = A
t+1 −A

t,

yt
1 = ∇gF(F

t+1,At+1)−∇gF(F
t,At),

yt
2 = ∇gA(F

t+1,At+1)−∇gA(F
t,At),

(12)

The characteristic of the adaptive step sizes (11) can render the objective functions non-monotonic;

hence, g(Ft,At) may increase in some iterations. Alternatively, using (11) is better than merely using

one of them [8]; the step size is expressed by

λt
ABB =

{

λt
BB1, for odd number t

λt
BB2, for even number t

(13)
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To guarantee the convergence of (Ft,At), a globalisation strategy based on the non-monotone

line-search technique is described as [7]

g(Ft+1,At+1) ≤ Ct + γσt{⟨∇gF(F
t,At), dFt⟩

+ ⟨∇gA(F
t,At), dAt⟩}

(14)

where τ ∈ (0, 1], Ct are the parameters of the Armoji line-search method [8]. Following [7], in order

to overcome some drawbacks of non-monotone techniques, the traditional largest function value is

converted by the weighted average function value:

Ct =
τ · min{t − 1, M}Ct−1 + g(Ft,At)

τ · min{t − 1, M}+ 1
, (15)

4. Experiments

The proposed method, called the Kernel Grassmann Manifold Analysis (KGMA), is summarised

in Algorithm 1. The conventional method that uses SPG [10] and ALS method instead of PBB, called

kernel spectral projected gradient analysis (KSPG) and kernel alternating least squares analysis (KALS),

respectively, was also adopted to solve the objective function (8) for comparison in our experiments.

Features. For handcrafted features, we follow [10] to extracted improved dense trajectories (IDT)

and Fisher vector (FV), as shown in Figure 2. For deep-learned features, we retrained the temporal

segment network (TSN) [2] models of 15×c, and then extracted the global pool features of 15×c using

pretrained TSN model, concatenating rgb+flow into 2048 dimensions with power L2-normalisation, as

listed in Table 1.
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Figure 2. Comparison (average accuracy±std) with IDT+FV when different number of training samples

are labeled, gmmSize=16.

We verified the proposed algorithm using three kernels: projection kernel k[proj], canonical

correlation kernel k[CC], and combined kernel k[proj+CC]. In some cases, k[proj] is better than k[CC],

whereas vice versa, suggesting that the kernels combination is more suitable for different data

distributions. For k[proj+CC], the mixing coefficients δ[proj] and δ[CC] were fixed at one. We obtain

better results by combining δ[proj+CC] two kernels.

Datasets. Three datasets were used in the experiments: JHMDB, HMDB51, and UCF101 [1]. The

JHMDB dataset has 21 action categories. The average recognition accuracies over three training–test

splits are reported. The HMDB51 dataset records 51 action categories. We reported the MAP over

three training–test splits. The UCF101 dataset includes 101 action categories, containing 13,320 video

clips. The average accuracy of the first split was reported.

For the JHMDB dataset, we followed the standard data partitioning (three splits) provided by the

authors. For other datasets, we used the first split provided by the authors, and applied the original

testing sets for fair comparison. Because the semi-supervised training set contained unlabeled data,

we performed the following procedure to reform the training set for each individual dataset. the

class number c was denoted for each dataset (c = 21, 51, and 101 for JHMDB, HMDB51, and UCF101,

respectively).

Using JHMDB as an example, we first randomly selected 30 training samples per category to

form a training set ( 30 × c samples) in our experiment. From this training set, we randomly sampled

m videos (m = 3, 5, 10, and 15) per category as labeled samples. Therefore, if m = 10, 10 × c labeled

samples will be available, leaving (30× c− 10× c) videos as unlabeled samples for the semi-supervised

training setting. We used a standard test set as the test set. Owing to the random selected training

samples, the experiments were repeated 10 times to avoid bias.
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To demonstrate the superiority of our approach (KGMA), we adopted 8 methods for comparison:

SVM, SFUS [35], SFCM [3], MFCU [4], KSPG, and KALS. Notably, SFUS, SFCM, MFCU, KSPG, and

KALS are semi-supervised action recognition approaches. Using the available codes, we can facilitate

a fair comparison.

Table 1. Comparison with deep-learned features (average accuracy ± std) when 15 × c training videos

are labeled

JHMDB HMDB51 UCF101

SFUS 0.6942 ± 0.0121 0.5217 ± 0.0114 0.7910 ± 0.0087

SFCM 0.7125 ± 0.0099 0.5394 ± 0.0108 0.8070 ± 0.0101

MFCU 0.7154 ± 0.0088 0.5556 ± 0.0098 0.8429 ± 0.0085

SVM-χ2 0.6931 ± 0.0106 0.5190 ± 0.0095 0.8138 ± 0.0108

SVM-linear 0.7140 ± 0.0086 0.5385 ± 0.0077 0.8450 ± 0.0087

KSPG 0.7287 ± 0.0114 0.5697 ± 0.0833 0.8552 ± 0.0111

KALS 0.7218 ± 0.0087 0.5607 ± 0.0098 0.8411 ± 0.0095

KGMA 0.7361 ± 0.0096 0.5762 ± 0.1040 0.8673 ± 0.0087

For the semi-supervised parameters η, β, µ for SFUS, SFCM, MFCU, KSPG, KALS, and KGMA,

we follow the same settings utilised in [3,4], ranging from

{10−4, 10−3, 10−2, 10−1, 1, 101, 102, 103, 104}. Because the PBB parameters were not sensitive to our

algorithm, we initialised the parameters as in [7], as indicated in Algorithm 1. Notably, since

KGMA applied PBB to solve the optimal value of objective function (8), it resulted in non-monotonic

convergence with oscillating objective function values, as shown in Figure 3. Thus, using only the

absolute error made it difficult to determine when to stop iterating, relative error of objective function

values was better than absolute error, which may be mathematically improper convergence. We chose

constant ε = 10−4 as the iteration-stopping criterion in (9).

Figure 3. The convergence curves of the three optimization methods on the JHMDB dataset, with

the final convergence results shown in Table 2. Due to the larger oscillations of PBB, the data for the

first 29 iterations of SPG and PBB have been omitted here in order to better illustrate the comparative

convergence of ALS, SPG and PBB.

Mathematical Comparisons. The recognition results with handcrafted features on three datasets were

demonstrated in Figure 2. We compared our method with deep-learned features in Table 1.

Regarding the presented objective function 8, Figure 3 summarized the computational results

of the three optimization methods. When we used the 2048-dimensional deep-learned features TSN

on JHMDB dataset, the model was trained with only 15 labeled samples and 15 unlabeled samples

per class, setup the same semi-supervised parameters η, β, µ, then the performance differences during
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the solving of the same objective function could be compared in terms of running time, number of

iterations, absolute error, relative error, and objective function value. Figure 3 shown the convergence

curves of three optimization methods. Since both SPG and PBB were non-monotonic optimization

methods with relatively large fluctuations in objective function values, we omitted the first 29 iterations

of SPG and PBB in Figure 3, and only displayed the data starting from the 30th iteration, so as to better

illustrate the monotonic convergence process of ALS.

As shown in Table 2, for a randomly selected video data sample, ALS exhibited the fewest

iterations, shortest running time and fastest computation speed of 0.1220 seconds after extracting the

deep features by TSN. In contrast, PBB exhibited the most iterations, longest running time and slowest

computation speed of 0.4212 seconds; while SPG’s performance were intermediate between ALS and

PBB. Considering Figure 3 and Table 2, it is evident that despite using the PBB optimization method,

our KGMA algorithm still achieves the highest accuracy on the kernelized Grassmann manifold space.

Nevertheless, the equation 9 using SPG results in marginal improvement over ALS, which likely

attributable to our novel kernelized Grassmann manifold space.

Table 2. Mathematical results on JHMDB using 15 × c labeled training samples, "Obj-Val" means

objective function value.

Methods Features(dim*nSample)Parameters Times(s) Iter. Error Relative Error Obj-Val

ALS TSN
(2048*660)

η = 0.001, β =
0.01, µ = 0.001

0.4880 4 0.5972 2.0691 × 10−4 2.0137

SPG TSN
(2048*660)

η = 0.001, β =
0.01, µ = 0.001

6.1992 49 0.4706 8.1024 × 10−4 32.0130

PBB TSN
(2048*660)

η = 0.001, β =
0.01, µ = 0.001

23.5855 56 0.6146 7.1873 × 10−4 10.0185

Performance on Action Recognition. A linear SVM was utilised as the baseline. Based on the

comparisons, we observe the following:1) KGMA achieved the best performance, our semi-supervised

algorithm was better than linear SVM which is widely-used supervised classifiers; 2) all methods

achieved better performances using more labeled training data, as shown in Figure 2, or enlarging

semi-supervised parameter (i.e., η, β, µ) range such as Figure 4; 3) we averaged an accuracy of 3 × c,

5 × c, 10 × c, and 15 × c cases, and the recognition of KGMA on JHMDB, HMDB51, and UCF101

improved by 2.97%, 2.59%, and 2.40%, respectively. When using TSN features, the recognition of our

KGMA on above-mentioned datasets improved by 2.21%, 3.77%, and 2.23%, respectively. Evidently,

our semi-supervised method can improve recognition by leveraging unlabeled data compared to linear

SVM with labeled data merely. Figure 2 illustrated that our algorithm benefits from the multiple-feature

analysis, kernelized Grassman space and iterative skills of PBB method.

These results can be attributed to several factors. First, our method not only leverages

semi-supervised approaches, but also leverages intra-class action variation and inter-class action

ambiguity simultaneously. Therefore, ours gain more significant performance than other approaches

when there are few labeled samples. Second, we uncover the action feature subspace on Grassmannian

manifold by incorporating Grassmannian kernels, and solve the objective function optimisation by

adaptive line-search strategy and PBB method mathematically. Hence, the proposed algorithm works

well in few labeled case.

Convergence Study. According to the objective function (4), we conducted experiments with the

TSN feature, fixed the semi-supervised parameters η, β, µ, and then executed both the ALS and PBB

methods 10 times. The results of the study are listed in Table 2. Although no oscillation exists in the

convergence of the ALS and it requires fewer iterations, the PBB method can outperform the ALS

for three reasons. First, the PBB method uses a non-monotone line-search strategy to globalise the

process [8], which can obtain the global optimal objective function value rather than being trapped

in local optima using the monotone ALS method. Second, the character of adaptive step sizes is an

essential characteristic that determines efficiency in the projected gradient methodology [8], whereas
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the iteration step skill has not been considered in ALS. Finally, the efficient convergence properties of

the projected gradient method have been demonstrated because the PBB is well defined [8].
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Figure 4. Accuracy on JHMDB using TSN, w.r.t the parameter β with fixed η and µ.

Computation Complexity. In the training stage, we computed the Laplacian matrix L, the complexity

of which was O(n2). To optimise the objective function, we computed the projected gradient and trace

operators of several matrices. Therefore, the complexity of these operations was O(n3).

Parameter Sensitivity Study. We verified that KGMA benefits from the intra-class and inter-class by

manifold discriminant analysis, as shown in Figure 4. We analysis the impact of manifold learning

on JHMDB and HMDB51, set η = 103 and µ = 10−1 at optimal values over split2, for 15 × c-labeled

training data. As β varied from 10−4 to 104, the accuracy oscillated significantly and reached a peak

value when β = 104. Since β controls the proportion of the intra-class local geometric structure and

the inter-class global manifold structure, as shown in Figure 4. when the intra-class local geometric

structure is treated as a constant 1,
β
1 can be considered that the inter-class global manifold structure has

a larger proportion in the objective function, and vice versa. When β = 0, no inter-manifold structure

is utilised; thus, if β → +∞, no intra-class structure is present. When the Grassmann manifold space

leverages an adequate balance of intra-class action variation and inter-class action ambiguity, the

proposed algorithm can further enhance the discriminatory power of the transformation matrix.

5. Conclusion

This study proposed a new approach to categorise human action videos. With Grassmannian

kernels combination and multiple-feature analysis on multiple manifolds, our method can improve

recognition by uncovering the intrinsic features relationships. We evaluated the presented approach

on three benchmark datasets, and experiment results show ours outperformed all competing methods,

particularly when there are few labeled samples.
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