

Article

A Research on Manipulator Path Tracking based on
Deep Reinforcement Learning

Pengyu Zhang1, Jie Zhang1 and Jiangming Kan1,*

1 Key Laboratory of State Forestry Administration on Forestry Equipment and Automation, College of

Engineering, Beijing Forestry University, People’s Republic of China

* Correspondence: kanjm@bjfu.edu.cn; Tel.: +86-10-62338155

Abstract: We propose a deep reinforcement learning based manipulator path tracking method to

solve the computationally difficult and non-unique problem of manipulator path tracking methods

based on inverse kinematics. By transforming the path tracking task into a sequence decision

problem, our method adopts an end-to-end learning method for closed-loop control and avoids the

process of finding the inverse solution. We first explored the feasibility of the deep reinforcement

learning method in the path tracking of the manipulator. After verifying the feasibility, the path

tracking of the multi-degree-of-freedom(multi-DOF) manipulator was realized by combining the

maximum entropy deep reinforcement learning algorithm. The experimental results show that our

method has a good effect on the path tracking of the manipulator, which not only avoids the process

of finding the inverse kinematics solution, but also requires no dynamic model. Therefore, we

believe that our method has great significance in the study of manipulator path tracking.

Keywords: path tracking; deep reinforcement learning; maximum entropy; inverse kinematics

1. Introduction

A manipulator is a highly integrated mechanical system combined with electromechanical

control. It is a typical multi-input multi-output nonlinear system, and its dynamics are time-varying

and strongly coupled. As a complex system, it has many uncertainties, so its control is very

complicated. In recent decades, researchers have carried out a lot of research on the control methods

of manipulator. The existing control methods of robots include the computational torque control,

robust adaptive control[1], adaptive neural network control [2], output feedback control [3-6], dead

zone nonlinear compensation control [7], virtual decomposition control [8], and so on.

Path tracking [9] is an important topic in manipulator control. After successfully planning an

optimal path using the path planning algorithm, how to make the end of the manipulator follow this

optimal path is a problem that needs to be solved. Cai ZX [10] and Patolia H [11] decompose the

speed and acceleration of each joint of the manipulator respectively. They adjust the desired speed

or desired acceleration of each joint through position or speed feedback, and use the error as the

control input. In the actual control of the manipulator, the end effector often clamps different objects,

so it is difficult to accurately obtain the dynamic parameters of each link of the manipulator. At the

same time, the existence of external interference and dynamic modelling errors make the manipulator

track and control the belt. come difficult. Ma BL [12] proposed an adaptive control method, which

dynamically adjusts the controller by identifying the system parameters online. In order to improve

the stability of tracking, Spong MW [13] added a robust term to the control input to compensate for

the deviation between the estimated model and the real model of the manipulator and limit the

uncertain factors to a certain range. Purwar S [14] used the Lyapunov stability criterion to optimize

the parameters of the neural network controller to improve the robustness and stability of the

tracking in order to compensate for the error caused by the external disturbance and the linearization

of the dynamic model.

The above methods all involve the process of precise dynamic modelling and inverse kinematics

solutions. However, since the increase of the degree of freedom of the manipulator, the difficulty of

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 May 2023 doi:10.20944/preprints202305.1862.v1

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202305.1862.v1
http://creativecommons.org/licenses/by/4.0/

dynamic modelling and the calculation amount of inverse kinematics solution will increase, and the

inverse solution will not be unique. They all limit the applicability of methods [15-18]. In recent years,

with a series of successful applications of reinforcement learning in decision control problems, it does

not require system dynamics modelling, but only through trial and error learning by interacting with

the environment, which provides new ideas for path tracking problems. The reinforcement learning

[19] method can model the manipulator path tracking problem as a Markov decision process (MDP),

and interact with samples to optimize the control policy. Guo X [20] used the depth value function

method (DQN) to complete the path tracking of the UR5 manipulator. However, it discretizes the

action space, and it is difficult to finely control the manipulator. Liu YC [21] realized the tracking

control of the manipulator in the continuous action space, but its learning process is unstable, and

the small changes of hyperparameters have a great impact on the performance of the algorithm. In

the path tracking problem, since the output of the system follows a time-independent geometric path,

most articles use the inverse kinematics method for path tracking. However, the manipulators

capable of performing complex tasks usually have a high degree of freedom. As the degrees of

freedom increase, the solutions of inverse kinematics will not be unique and more difficult, also the

computational load will be larger.

In this paper, a reinforcement learning method for multi-DOF manipulator path tracking is

proposed, which converts the tracking accuracy requirements and energy constraints into cumulative

rewards obtained by the control strategy to ensure the stability and control accuracy of the tracking

trajectory. The entropy of policy is used as an auxiliary gain of the agent and introduced into the

training process of the control strategy, thereby increasing the robustness of the path tracking. We

first explore the feasibility of deep reinforcement learning methods to solve the path following

problem on a planar dual-link manipulator. Then, we verified it on the 6-DOF manipulator and

analysed the effects of different training parameters and different dynamic characteristics on the path

tracking effect of the manipulator. The results show that our method has good path tracking

performance.

2. Problem Statement

We model the path tracking problem of manipulator as a Markov Decision Process (MDP),

which represented by < �, �, �, �, � >, where �� ∈ � represents the observations of the agent. The

policy Π: � → � maps the current environmental state �� to the control input �� ∈ � of each joint of

the manipulator, �(����|��, ��) represents the dynamic characteristics of the robotic arm, that is, the

probability that the system transitions from state �� to ���� under the control of ��. The expected

path �∗ ∈ ℝ�×� of the manipulator can be generated by traditional path planning methods, where N

is the number of points on the path. The instantaneous reward obtained by the agent at time � is

represented by �� ∈ � ,which is related to the tracking accuracy of the robot arm on the desired path

and the energy consumed. The policy continuously interacts with the manipulator system to obtain

the sampling trajectory � = {��, ��, ⋯ , ��, ��, ⋯ , ��, ��} . The goal of reinforcement learning is to

optimize the policy so as to maximize the expected cumulative reward obtained by the agent:

   ~
0

maximize ,
T

t
t tp

t

r s a  




 
  

 


 (1)

       0 1

0

| | ,
T

t t t t t
t

p p s a s T s s a  


 
 (2)

The framework of the robot arm path tracking model based on deep reinforcement learning is

shown in Figure 1. The framework consists of four parts: desired path, control strategy, feedback

controller, and manipulator body. The policy calculates the expected position/velocity of each joint

at the next moment according to the desired path and the current state of the manipulator as the

reference signal of the feedback controller. The feedback controller combines the current position and

speed information of each joint to output the required joint torque to change the position of the end-

point of the manipulator.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 May 2023 doi:10.20944/preprints202305.1862.v1

https://doi.org/10.20944/preprints202305.1862.v1

Figure 1. The framework of the robot arm path tracking model based on deep reinforcement learning

3. Method

3.1. Deep Q Network

The Deep Q-Network (DQN) algorithm [22] is a classic algorithm based on the value function

method in deep reinforcement learning, which was originally derived from the Q-Learning algorithm

in classical reinforcement learning. Q-Learning is an algorithm based on the Q value, which is defined

as the expected future cumulative reward value of action a (action a must be finite and discrete) taken

according to policy � in state �:

    0 0
0

, , | ,t
t t

t

Q s a r s a s s a a  


 
    

 


 (3)

The optimal value �∗ is defined as the maximized Q value, and the strategy that can get the optimal

value is defined as the optimal strategy �∗ . DQN uses a deep neural network ��(�, �; �) with

parameters � to replace the Q value ��(�, �), which can make the input The algorithm is still valid

in the case of high-dimensional and continuous state �. In addition, the experience playback pool

Replay Buffer and a target Q network with parameters �� are also added to DQN. The Replay buffer

improves the utilization efficiency of samples, and the use of the target Q network solves the loss in

the neural network function problem. The target Q network is defined as follows:

 max , ;

a
y r Q s a 


   

 (4)

Therefore, this problem can be transformed into a supervised learning problem to solve, that is

���
�

∑�� − �(�, �; �)�, where � every τ steps copy their own parameters to ��.

3.2. Soft Actor Critic

Although the DQN algorithm, which is a milestone in deep reinforcement learning, solves the

problem of high-dimensional and continuous input states that cannot be solved by classical

reinforcement learning, it still cannot solve the situation where the output actions are high-

dimensional and continuous (such as multi-degree-of-freedom manipulator). Although the other

deep reinforcement learning algorithms (such as DDPG [23], TD3 [24], and other algorithms) can

handle the case where the output action is high dimensional and continuous, they usually have a

high sample complexity and weak sample convergence, which lead to some additional

hyperparameter tuning.

The Soft Actor-Critic (SAC) algorithm [25] is a reinforcement learning algorithm that introduces

the maximum entropy theory. In the framework of the algorithm, the strategy not only needs to

maximize the expected cumulative reward value, but also needs to maximize the expected entropy:

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 May 2023 doi:10.20944/preprints202305.1862.v1

https://doi.org/10.20944/preprints202305.1862.v1

*
(,)~

0

max [(,) ((|))]
t t

T

s a p t t t
t

E r s a H s


  


  
 (5)

where α is the weight of the entropy term, which can determine the relative importance of the

entropy term relative to the reward term, thereby controlling the randomness of the optimal strategy.

In order to maximize this goal, a method of alternating policy evaluation and policy

improvement is used in the maximum entropy framework - Soft Policy Iteration. In an environment

where the state space is discrete, the method can obtain the soft Q-value from the randomly initialized

function �: � × � → � and repeatedly apply the modified Bellman backup operator �� :

 1 1(,) (,) [()]
t pt t t t s tT Q s a r s a E V s 
  
� (6)

where

 ~() [(,) log (|)]
tt a t t t tV s E Q s a a s  

 (7)

is the soft state value function used to calculate the policy value in policy evaluation. While in the

continuous state, a neural network with parameters is first used to replace the soft Q-function

��(��, ��), and then it is trained to minimize the Bellman residual:

  

1

2

(,)~ ~ 1

1
() (,) (,) [()]

2t t tQ s a D t t t t s p tJ E Q s a r s a E V s 
 

 

 
     (8)

which can also be optimized with stochastic gradients:

 1()= (,) (,) (,) ()Q t t t t t t tJ s a s a r s a sQ Q V    



  
 (9)

where ���(����) is estimated by the target network of Q and the Monte Carlo estimation of the soft

state value function sampled from the experience pool.

Policy improvement is updating the policy in the direction of maximizing its available reward,

therefore, the policy needs to be updated to the exponential form of the new soft Q-function and

restricted to some parameterized distribution (such as Gaussian distribution) and then project it back

into the acceptable policy space using an information projection defined in terms of the Kullback-

Leibler (KL) divergence.

exp((,))
arg min (|)

()

old

old

t
new KL t

t

Q s
D s

Z s




 



 
  

 
�

 (10)

where �����(��) can be ignored because it has no effect on the gradient. And parameterize the policy

��(��|��) with a neural network that can output mean and variance to define a Gaussian distribution,

and then learn the parameters of the policy by minimizing the expected KL divergence:

  ~ ~ log (|) (,)

t ts D a t t t tJ E E a s Q s a
          (11)

However, since the Gaussian distribution �~�(�, �) is difficult to find its gradient, it is converted

into an easy-to-find gradient form � = � + ��, �~�(0, 1), i.e. �� = ��(��, ��), the policy network can

then be optimized by applying the policy gradient to the expected future reward:

  ~ , ~ log ((;) |) (, (;))

t ts D N t t t t t tJ E f s s Q s f s            (12)

We can also approximate the gradient of Equation (12) with:

 (13)
   log (|) log (|) (|) (;)

t t
t t t t t t t ta a
a s a s Q a s f sJ      

   


      

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 May 2023 doi:10.20944/preprints202305.1862.v1

https://doi.org/10.20944/preprints202305.1862.v1

4. Experiments and Results

4.1. Planar two-link manipulator

The plane two-link manipulator simulation system is shown in Figure 2, and the simulation

platform adopts V-REP PRO EDU 3.6.0. The settings of the two-link manipulator in the simulation

environment are as follows. The length of the rods are �� = 1.0�, �� = 0.8�, and the mass of the rods

are �� = 0.1��, �� = 0.08��. Each joint adopts the incremental control method, that is, the joint

rotates a fixed angle |��| in the direction given by the control signal a� at any time �; where �� ≔

[���
�, ���

�] ∈ ℝ� , �∆��
�� = 0.05°, � = 1, 2 . The state of the entire simulation system �� ≔ ���

�,

��
� , �̇�

� , �̇�
� , �� , �� , ��

∗ , ��
∗� ∈ ℝ�, where ��

�, �̇�
� are the angle and angular velocity of each joint at �th

time. (��, ��) is the position of the endpoint of the manipulator at time �, and the desired target

point position (��
∗, ��

∗) is set as follows:

   
   

*
2 1 2 1 1

1 2*
2 1 2 1 1

cos cos
, 1 rad/s

sin sin
t

t

x l t t l t

y l t t l t

  
 

  

   
 

   (14)

Figure 2. Simulation system of two-link manipulator

This experiment is mainly used to verify the feasibility of the reinforcement learning algorithm

in the field of robotic arm path tracking. Because the experimental environment is simple and the

output action dimension of the two-link robotic arm is low, it can be approximated as a discrete

quantity, so the algorithm adopts the classic DQN algorithm. The strategy network structure in the

DQN algorithm is: the input state is 8-dimensional, the output action is 2-dimensional, the hidden

layer has two layers and the number of nodes in each layer is 50. The hyperparameters are set as:

replaybuffer = 1e6, learning-rate = 3e-4, discount-factor = 0.99, batch-size = 64, the update between the

Q network and the target Q network adopts the soft update method, and its soft parameter tau=0.001.

In addition, the setting of the reward is: �� = ���(−|��
∗ − ��|), where ��

∗, �� are the target path points

at time t respectively and the position of the end point of the robot arm. The tracking curve results of

this experiment are shown in Figure 3:

Figure 3. Path tracking curve of two-link manipulator based on DQN

The red line is the desired target path, and the blue line is the actual running end path. From the

tracking results in Figure 3, it can be seen that the method based on deep reinforcement learning

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 May 2023 doi:10.20944/preprints202305.1862.v1

https://doi.org/10.20944/preprints202305.1862.v1

perfectly achieves the tracking of the target path. Figure 4 shows the experimental results in the

simulation environment:

Figure 4. Simulation results of path tracking of two-link manipulator based on DQN

The experimental results show that it is completely feasible to use the deep reinforcement

learning algorithm to achieve path tracking on a simple two-link manipulator.

4.2. UR5 manipulator

After exploring the application of reinforcement learning in path tracking, and successfully

applied to the two-link manipulator to achieve the tracking target. We will further explore the

application of the multi-degree-of-freedom manipulator-UR5 to realize path tracking under

continuous control. The UR5 simulation system is shown in Figure 5, and the simulation platform

still uses V-REP PRO EDU 3.6.0. The system is used to realize the path tracking by using the deep

reinforcement learning algorithm after the path is generated by the traditional path generation

algorithm when there are obstacles. The system actions � ≔ [��, ��, ��, ��, ��, ��,] ∈ ℝ�, and states

set as � ≔ ���, ��, ��, ��, ��, ��, �̇�, �̇�, �̇�, �̇�, �̇�, �̇�, ∆�, ∆�, ∆�� ∈ ℝ�� , where ��, �̇� is the

angle and angular velocity of the first joint, ∆�, ∆�, ∆� are the distance between the endpoints p and

the corresponding desired target points �∗. The initial position of the endpoint: [-0.095, -0.160, 0.892],

the initial position of the target point: [-0.386, 0.458, 0.495]. The desired path is generated by the

traditional RRT [26] path generation algorithm with the stride set to 100.

Figure 5. UR5 simulation system

In addition, this experiment set up 4 additional variables to explore the impact of these factors

on tracking performance:

1. The upper control method of the manipulator adopts two control methods, position control or

velocity control. The position control is the control of the joint angle, and the input action is the

increment of the joint angle. The range of the increment at each moment is set as [- 0.05, 0.05]

rad. The velocity control is the control of joint angular velocity. The input action is the increment

of joint angular velocity. The increment range of each moment is set to [-0.8, 0.8] rad/s in the

experiment. In addition, the underlying control of the manipulator adopts the traditional PID

torque control algorithm.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 May 2023 doi:10.20944/preprints202305.1862.v1

https://doi.org/10.20944/preprints202305.1862.v1

2. Adding the noise to the observations: We set up two groups of control experiments, one of which

adds random noise to the observations, the noise is adopted from the standard normal

distribution N(0,1), the size is 0.005 *N(0,1).

3. Setting the time interval distance n. The target path points given by the manipulator at every n

time are the target path points at the N*n time, where N=1, 2, 3..., and study the effect of different

interval points on the tracking results. In our experiments, we set the interval distance interval=0,

5, 10 respectively.

4. Terminal reward. Setting up a control experiment that during the training process, when the

distance between the endpoint of the robotic arm and the target point is within 0.05m (the

termination condition is met), an additional +5 reward is given to study its impact on the tracking

results.

The continuous control reinforcement learning algorithm SAC is used in this experiment. All

network structures are as follows: each network contains two hidden layers, the number of nodes in

each layer is 200, and the activation function of the hidden layer is set to Relu. The hyperparameters

are set as: replaybuffer = 1e6, discount-factor = 0.99, batch-size = 128, the update between the Q

network and the target Q network adopts the soft update method, the soft parameter tau=0.01, and

the learning rate of Actor and Critic network are both set to learning-rate = 1e-3, the weight coefficient

of policy entropy during the entire training process �=1e-3. The reward settings for this experiment

are:

   

  *

,

floor / 1 1
, ,

1
t tt n

n t n n
r p p t n

t n



  

    
 (15)

where n is the interval distance. In addition, an experiment is terminated when the robot arm runs

for 100 steps or the distance between the end point of the robot arm and the target point is within

0.05m.

The experimental results are shown in the following figures. Figures 6(a) and 6(b) are the path

tracking results without observation noise and with observation noise in the position control mode,

respectively. Figures 6(c) and 6(d) are the speed control results, respectively. The path tracking results

with and without observation noise in the mode. Different time intervals are set in each picture, and

the upper three curves of each picture are the results of not giving the terminal reward, and the lower

three curves are the results of giving the terminal reward.

In addition, this experiment also quantitatively analyzed the tracking results, and calculated the

average error between the obtained path and the target path under different experimental conditions

and the average distance between the endpoint of the manipulator and the target point at the last

moment. The results are shown in Table 1 and Table 2 shows:

Table 1. Results of position control mode path tracking

Position Control

w/o observation noise observation noise

interval interval

1 5 10 1 5 10

Average error between

tracks (m)

w/o terminal reward 0.0374 0.0330 0.0592 0.0394 0.0427 0.0784

terminal reward 0.0335 0.0796 0.0502 0.0335 0.0475 0.0596

Distance between end-

point (m)

w/o terminal reward 0.0401 0.0633 0.0420 0.0443 0.0485 0.0292

terminal reward 0.0316 0.0223 0.0231 0.0111 0.0148 0.0139

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 May 2023 doi:10.20944/preprints202305.1862.v1

https://doi.org/10.20944/preprints202305.1862.v1

Table 2. Results of velocity control mode path tracking

Velocity Control

w/o observation noise observation noise

interval interval

1 5 10 1 5 10

Average error between

tracks(m)

w/o terminal reward 0.0343 0.0359 0.0646 0.0348 0.0318 0.0811

terminal reward 0.0283 0.0569 0.0616 0.0350 0.0645 0.0605

Distance between end-

point (m)

w/o terminal reward 0.0233 0.0224 0.0521 0.0456 0.0365 0.0671

terminal reward 0.0083 0.0030 0.0337 0.0275 0.0192 0.0197

(a) (b)

(c) (d)

Figure 6. Path tracking results of UR5 manipulator based on maximum entropy reinforcement

learning (a) Tracking results without observation noise in position control mode (b) Tracking results

with observation noise in position control mode (c) Tracking results without observation noise in

velocity control mode (d) Tracking results with observation noise in velocity control mode

The training process curve is shown in Figure 7:

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 May 2023 doi:10.20944/preprints202305.1862.v1

https://doi.org/10.20944/preprints202305.1862.v1

(a) (b)

(c) (d)

Figure 7. Training process curve (a)Training process curve without observed noise in position control

mode (b) Training process curve with observation noise in position control mode (c)Training process

curve without observed noise in speed control mode (d) Training process curve with observation

noise in speed control mode

Through the path tracing results, it can be found that:

1. In this experimental scenario, the target path generated by the RRT algorithm has obvious non-

smoothness; while the tracking path generated by the reinforcement learning algorithm SAC

based on the target path is also very smooth under the condition that the tracking accuracy is

satisfied.

2. By analyze the influence of the n value on the generated path, it can be found that when the n

value is too large (n=10), its approaching effect on the target point is better, but its tracking effect

on the target path is poor. But when n=1, the situation is opposite. Therefore, when selecting the

value of n, it is necessary to balance the path tracking effect and the final position of the endpoint.

3. Adding noise to the observations of the system during the simulation training process helps to

improve the robustness of the control strategy and the anti-interference to noise, so that the

strategy has better performance.

4. During the simulation training process, when the endpoint of the manipulator reaches the

allowable error range of the target point, adding a larger reward to the current strategy can make

the approaching result of the robotic arm to the target point better, but it will lose some precision

of path tracking;

5. Experiments show that the algorithm achieves good results in both position control and velocity

control, and it can be seen from the curve of the training process that the curve can converge at

an earlier time.

In addition, since the system dynamics model is not considered in the path tracking experiment

based on deep reinforcement learning. In order to verify the advantage of the method based on deep

reinforcement learning that does not need the dynamic model, we further explore the influence of

the change of dynamic characteristics on the experimental results. So, we change the quality of the

end effector, the trained model is tested, and the experimental results are shown in Table 3 and Table

4.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 May 2023 doi:10.20944/preprints202305.1862.v1

https://doi.org/10.20944/preprints202305.1862.v1

Table 3: Analysis of Dynamic Characteristics of Position Control

Position Control 0.5kg 1kg 2kg 3kg 5kg

Average error

between tracks(m)

w/o observation noise
w/o terminal reward 0.03742 0.03743 0.03744 0.03745 0.03746

terminal reward 0.03354 0.03354 0.03359 0.03355 0.03355

observation noise
w/o terminal reward 0.03943 0.03943 0.03943 0.03942 0.03941

terminal reward 0.03346 0.03346 0.03346 0.03346 0.03345

Distance between

end-point(m)

w/o observation noise
w/o terminal reward 0.04047 0.04047 0.04048 0.04049 0.04050

terminal reward 0.03165 0.03166 0.03157 0.03159 0.03161

observation noise
w/o terminal reward 0.04430 0.04441 0.04438 0.04430 0.04436

terminal reward 0.01110 0.01109 0.01109 0.01108 0.01105

Table 4: Analysis of Dynamic Characteristics of Velocity Control

Velocity Control 0.5kg 1kg 2kg 3kg 5kg

Average error

between tracks(m)

w/o observation noise
w/o terminal reward 0.03426 0.03427 0.03425 0.03426 0.03425

terminal reward 0.02826 0.02825 0.02866 0.02873 0.02882

observation noise
w/o terminal reward 0.03478 0.03479 0.03483 0.03486 0.03497

terminal reward 0.03503 0.03503 0.03503 0.03502 0.03501

Distance between

end-point(m)

w/o observation noise
w/o terminal reward 0.02326 0.02444 0.02436 0.02430 0.02422

terminal reward 0.00831 0.01201 0.01395 0.01463 0.01513

observation noise
w/o terminal reward 0.04560 0.04562 0.04565 0.04569 0.04578

terminal reward 0.02748 0.02746 0.02743 0.02741 0.02733

The experimental results show that in the model trained under the condition of fixed load

quality, the path tracking based on deep reinforcement learning can still ensure sufficient stability

when the load changes. That is, the change of dynamic characteristics will not affect the algorithm

effect.

Furthermore, we also compare the results of the proposed algorithm and the traditional inverse

kinematics method in terms of energy consumption and trajectory smoothness. The experimental

results are shown in Tables 5 and 6. Among them, the calculation method of the energy consumption

of the manipulator during the entire path tracking process is:

   

0 0

M
Mt

t
k

E P t dt P k dt


  
 (16)

   

1

n

i
i

P k P k


 
 (17)

     

.

i i iP k k k  
 (18)

where � is the �th path point in the entire path, � is the �th joint of the manipulator, �, �̇ is the joint

torque and joint speed, M is the number of path points, �� is the distance between the path-points.

The smoothness of the trajectory is measured by the angle between the tangent vectors of adjacent

points of the curve, and the degree of smooth movement of the robotic arm is measured by analyzing

the mean value of the turning angles in the entire trajectory.

Table 5. Analysis of Track Smoothness

Velocity control w/o terminal reward terminal reward
Jacobian matrix

Interval 1 5 10 1 5 10

Smoothness 0.5751 0.3351 0.5925 0.0816 0.5561 0.4442 0.7159

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 May 2023 doi:10.20944/preprints202305.1862.v1

https://doi.org/10.20944/preprints202305.1862.v1

Table 6. Analysis of energy consumption

Energy consumption 0.5kg 1kg 2kg 3kg 5kg

Position Control
w/o terminal reward 4.44438 4.71427 5.27507 5.79426 6.92146

terminal reward 5.01889 5.34258 5.95310 6.55227 7.76305

Velocity Control
w/o terminal reward 4.97465 5.38062 6.23886 6.95099 8.33596

terminal reward 6.03735 6.37981 7.05696 7.75185 9.15828

Traditional Jacobian matrix 8.95234 9.81593 10.8907 10.9133 13.3241

The experimental results show that the algorithm proposed in this paper is superior to the

traditional inverse kinematics method in terms of energy consumption and trajectory smoothness.

4.3. Redundant manipulator

The algorithm proposed in this paper is experimentally verified and analyzed on the UR5

manipulator. The experimental results show that the algorithm proposed in this paper can effectively

solve the path tracking problem of the manipulator. In order to further verify the effectiveness and

generalization of the algorithm in this paper, we also conduct the verification on a redundant

manipulator. The 7-DOF redundant manipulator simulation system is shown in Figure 8. The

simulation platform still uses V-REP PRO EDU 3.6.0, and the simulated manipulator uses the KUKA

LBR ii wa 7 R800 redundant manipulator. The setting of actions is � ≔ [��, ��, ��, ��, ��, ��, ��] ∈

ℝ� , and states set as � ≔ ���, ��, ��, ��, ��, ��, ��, �̇�, �̇�, �̇�, �̇�, �̇�, �̇�, �̇�, ∆�, ∆�, ∆�� ∈

ℝ��,where ��, �̇� is the angle and angular velocity of the first joint and ∆�, ∆�, ∆� is the distance

between the end-point � of the manipulator and the corresponding desired target point �∗. The

initial position of the end-point is [0.0044, 0.0001, 1.1743], and the initial position of the target point

is [0.0193, 0.4008, 0.6715]. The expected path is an arc trajectory generated by the path generation

algorithm, and the step size is set to 50.

Figure 8. The redundant manipulator simulation system

The setup of the redundant manipulator path tracking experiment is exactly the same as that of

UR5. The experiment still uses the continuous control reinforcement learning algorithm SAC, and all

network structures are also the same as the UR5 setup. That is, each network contains two hidden

layers, the number of nodes in each layer is 200, and the activation function of the hidden layer is set

to Relu. The hyperparameter settings are also: replaybuffer = 1e6, discount-factor = 0.99, batch-size =

128, the update between the Q network and the target Q network adopts the soft update method, the

soft parameter tau=0.01, and the learning rate of Actor and Critic network are both set to learning-

rate = 1e-3, the weight coefficient α=1e-3 of policy entropy during the whole training process.

The reward settings are also the same as before. The only difference is that the redundant

manipulator path tracking experiment is an experiment to verify the generalization of the algorithm,

so it does not involve the results when other hyperparameter conditions change. Therefore, the

default separation distance in the reward setting is n=1.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 May 2023 doi:10.20944/preprints202305.1862.v1

https://doi.org/10.20944/preprints202305.1862.v1

Since this experiment is a verification experiment, this experiment only explores the path

tracking results in the speed control mode. The path tracking results of the redundant manipulator

are shown in Figure 9.

Figure 9. Verification results of redundant manipulator path tracking

In addition, we consider the randomness of the sampling of the deep reinforcement learning

algorithm. And in order to reflect the stability of our method, we also carried out multiple

experiments under the setting of multiple random seeds. The training process curve of the

experimental results is shown in Figure 10.

Figure 10. Redundant manipulator path tracking training process curve

The experimental results show that our method still has a good tracking effect on the redundant

manipulator, and the training results under different random seed settings show that our method

can be guaranteed in terms of generalization and stability

5. Conclusion

In this paper, we introduce a method of using a deep reinforcement learning algorithm to realize

the path tracking of the manipulator. The traditional path planning algorithm is used to generate the

target path, and the deep reinforcement learning algorithm is used to generate the control signal to

control the manipulator and realize the tracking of the target path. The experimental results show

that the method has a good effect on the path tracking of the manipulator, which not only avoids the

process of seeking the inverse kinematics solution, but also maintains good performance when the

dynamic characteristics change. In addition, through further verification experiments on the path

tracking of the redundant manipulator, the generalization and stability of our method are reflected.

So, we think that our method has great significance for the research of the path tracking of the

manipulator.

Author Contributions: Conceptualization, P.Z. and J.Z.; methodology, P.Z. and J.K. ; software, P.Z. and J.Z.;

resources, J.K.; data curation, J.Z.; writing—original draft preparation, P.Z.; writing—review and editing, P.Z.;

funding acquisition, J.K. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Key-Area Research and Development Program of Guangdong

Province, grant number No.2019B020223003; and Guangdong Basic and Applied Basic Research Foundation,

grant number No.2022A1515140013.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 May 2023 doi:10.20944/preprints202305.1862.v1

https://doi.org/10.20944/preprints202305.1862.v1

Data Availability Statement: The data that support the findings of this study are available from the

corresponding author only for reasonable requests.

Acknowledgments: We are very grateful to the anonymous reviewers for their constructive comments on

improving this paper.

Conflicts of Interest: The authors report there are no competing interests to declare.

References

1. Parlaktuna, O.; Ozkan, M. Adaptive control of free-floating space robots in Cartesian coordinates. Adv

Robotics 2004, 18(9), 943–959.

2. Guo, Y.; Chen, L. Adaptive neural network control for coordinated motion of a dual-arm space robot

system with uncertain parameters. Appl Math Mech 2008, 29(9), 1131–1140.

3. Canudas, W.C.; Fixot, N. Robot control via robust estimated state feedback. IEEE T Automat Contr 1991,

36(12), 1497–1501.

4. Kim, E.; Output feedback tracking control of robot manipulators with model uncertainty via adaptive fuzzy

logic. IEEE T Fuzzy Syst 2004, 12(3), 368–378.

5. Abdollahi, F.; Talebi, H.A, Patel RV. A stable neural network-based observer with application to flexible-

joint manipulators. IEEE Trans Neural Netw 2006, 17(1), 118-129.

6. Kim, Y.H.; Lewis, F.L. Neural network output feedback control of robot manipulators. IEEE Trans Rob

Autom 1999, 15(2), 301–309.

7. Selmic, R.R.; Lewis, F.L. Dead zone compensation in motion control systems using neural networks. IEEE

Trans Automat Contr. 2000, 45(4), 602–613.

8. Zhu, W.H.; Lamarche, T. Dupuis, E. et al. Networked embedded control of modular robot manipulators

using VDC. IFAC Proc 2014, 47(3), 8481–8486.

9. Cao, S.; Jin, Y.; Trautmann, T.; Liu, K. Design and Experiments of Autonomous Path Tracking Based on

Dead Reckoning. Appl. Sci. 2023, 13, 317. https://doi.org/10.3390/app13010317

10. Cai, Z.X.; Robotics. Tsinghua university press: Beijing (BJ), China, 2000.

11. Patolia, H.; Pathak, P.M.; Jain, S.C. Force control in single DOF dual arm cooperative space robot. P 2010

Spr Simul Multicon 2010, 1–8.

12. Ma, B.L.; Huo, W. Adaptive Control of Space Robot System. Iet Control Theory A 1996, 13(2), 191–197.

13. Spong, M.W.;On the robust control of robot manipulators. Ieee T Automat Contr 1992, 37(11), 1782–1786.

14. Purwar, S.; Kar, I.N.; Jha, A.N. Adaptive output feedback tracking control of robot manipulators using

position measurements only. Expert Syst Appl 2008, 34(4), 2789–2798.

15. Annusewicz-Mistal, A.; Pietrala, D.S.; Laski, P.A.; Zwierzchowski, J.; Borkowski, K.; Bracha, G.; Borycki,

K.; Kostecki, S.; Wlodarczyk, D. Autonomous Manipulator of a Mobile Robot Based on a Vision System.

Appl. Sci. 2023, 13, 439.

16. Zhang, T.; Song, Y.; Kong, Z.; Guo, T.; Lopez-Benitez, M.; Lim, E.; Ma, F.; Yu, L. Mobile Robot Tracking

with Deep Learning Models under the Specific Environments. Appl. Sci. 2023, 13, 273.

17. Tappe, S.; Pohlmann, J.; Kotlarski, J. et al. Towards a follow-the-leader control for a binary actuated hyper-

redundant manipulator. 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

Hamburg, Germany, Sept 28 - Oct 2 2015, 3195–3201.

18. Palmer, D.; Cobos-Guzman, S.; Axinte, D. Real-time method for tip following navigation of continuum

snake arm robots. Robot Auton Syst 2014, 62(10), 1478–1485.

19. Sutton, R.S.; Barto, A.G. Reinforcement learning: An introduction. MIT press: Cambridge (MA), Britain, 2018.

20. Guo, X. Research on the control strategy of manipulator based on DQN. master’s thesis. Beijing Jiaotong

University, Beijing(BJ), China, 2018.

21. Liu, Y.C.; Huang, C.Y. DDPG-Based Adaptive Robust Tracking Control for Aerial Manipulators With

Decoupling Approach. IEEE Trans Cybern 2022, 52(8), 8258-8271.

22. Mnih, V.; Kavukcuoglu, K.; Silver, D. et al. Human-level control through deep reinforcement learning.

Nature 2015, 518(7540), 529-533.

23. Lillicrap, T.P.; Hunt, J.J.; Pritzel, A. et al. Continuous control with deep reinforcement learning. ArXiv

[Preprint]. 2015; arXiv:1509.02971.

24. Fujimoto, S.; Hoof, H.; Meger, D. Addressing function approximation error in actor-critic methods.

International conference on machine learning 2018, PMLR, 1587–1596.

25. Haarnoja, T.; Zhou, A.; Abbeel, P. et al. Soft actor-critic: Off-policy maximum entropy deep reinforcement

learning with a stochastic actor. International conference on machine learning. 2018; PMLR, 1861–1870.

26. LaValle SM. Rapidly-exploring random trees: A new tool for path planning. 1999, Research Report.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 May 2023 doi:10.20944/preprints202305.1862.v1

https://doi.org/10.20944/preprints202305.1862.v1

