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Abstract: We propose a deep reinforcement learning based manipulator path tracking method to 

solve the computationally difficult and non-unique problem of manipulator path tracking methods 

based on inverse kinematics. By transforming the path tracking task into a sequence decision 

problem, our method adopts an end-to-end learning method for closed-loop control and avoids the 

process of finding the inverse solution. We first explored the feasibility of the deep reinforcement 

learning method in the path tracking of the manipulator. After verifying the feasibility, the path 

tracking of the multi-degree-of-freedom(multi-DOF) manipulator was realized by combining the 

maximum entropy deep reinforcement learning algorithm. The experimental results show that our 

method has a good effect on the path tracking of the manipulator, which not only avoids the process 

of finding the inverse kinematics solution, but also requires no dynamic model. Therefore, we 

believe that our method has great significance in the study of manipulator path tracking. 
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1. Introduction 

A manipulator is a highly integrated mechanical system combined with electromechanical 

control. It is a typical multi-input multi-output nonlinear system, and its dynamics are time-varying 

and strongly coupled. As a complex system, it has many uncertainties, so its control is very 

complicated. In recent decades, researchers have carried out a lot of research on the control methods 

of manipulator. The existing control methods of robots include the computational torque control, 

robust adaptive control[1], adaptive neural network control [2], output feedback control [3-6], dead 

zone nonlinear compensation control [7], virtual decomposition control [8], and so on. 

Path tracking [9] is an important topic in manipulator control. After successfully planning an 

optimal path using the path planning algorithm, how to make the end of the manipulator follow this 

optimal path is a problem that needs to be solved. Cai ZX [10] and Patolia H [11] decompose the 

speed and acceleration of each joint of the manipulator respectively. They adjust the desired speed 

or desired acceleration of each joint through position or speed feedback, and use the error as the 

control input. In the actual control of the manipulator, the end effector often clamps different objects, 

so it is difficult to accurately obtain the dynamic parameters of each link of the manipulator. At the 

same time, the existence of external interference and dynamic modelling errors make the manipulator 

track and control the belt. come difficult. Ma BL [12] proposed an adaptive control method, which 

dynamically adjusts the controller by identifying the system parameters online. In order to improve 

the stability of tracking, Spong MW [13] added a robust term to the control input to compensate for 

the deviation between the estimated model and the real model of the manipulator and limit the 

uncertain factors to a certain range. Purwar S [14] used the Lyapunov stability criterion to optimize 

the parameters of the neural network controller to improve the robustness and stability of the 

tracking in order to compensate for the error caused by the external disturbance and the linearization 

of the dynamic model. 

The above methods all involve the process of precise dynamic modelling and inverse kinematics 

solutions. However, since the increase of the degree of freedom of the manipulator, the difficulty of 
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dynamic modelling and the calculation amount of inverse kinematics solution will increase, and the 

inverse solution will not be unique. They all limit the applicability of methods [15-18]. In recent years, 

with a series of successful applications of reinforcement learning in decision control problems, it does 

not require system dynamics modelling, but only through trial and error learning by interacting with 

the environment, which provides new ideas for path tracking problems. The reinforcement learning 

[19] method can model the manipulator path tracking problem as a Markov decision process (MDP), 

and interact with samples to optimize the control policy. Guo X [20] used the depth value function 

method (DQN) to complete the path tracking of the UR5 manipulator. However, it discretizes the 

action space, and it is difficult to finely control the manipulator. Liu YC [21] realized the tracking 

control of the manipulator in the continuous action space, but its learning process is unstable, and 

the small changes of hyperparameters have a great impact on the performance of the algorithm. In 

the path tracking problem, since the output of the system follows a time-independent geometric path, 

most articles use the inverse kinematics method for path tracking. However, the manipulators 

capable of performing complex tasks usually have a high degree of freedom. As the degrees of 

freedom increase, the solutions of inverse kinematics will not be unique and more difficult, also the 

computational load will be larger. 

In this paper, a reinforcement learning method for multi-DOF manipulator path tracking is 

proposed, which converts the tracking accuracy requirements and energy constraints into cumulative 

rewards obtained by the control strategy to ensure the stability and control accuracy of the tracking 

trajectory. The entropy of policy is used as an auxiliary gain of the agent and introduced into the 

training process of the control strategy, thereby increasing the robustness of the path tracking. We 

first explore the feasibility of deep reinforcement learning methods to solve the path following 

problem on a planar dual-link manipulator. Then, we verified it on the 6-DOF manipulator and 

analysed the effects of different training parameters and different dynamic characteristics on the path 

tracking effect of the manipulator. The results show that our method has good path tracking 

performance. 

2. Problem Statement 

We model the path tracking problem of manipulator as a Markov Decision Process (MDP), 

which represented by < �, �, �, �, � >, where �� ∈ � represents the observations of the agent. The 

policy Π: � → � maps the current environmental state �� to the control input �� ∈ � of each joint of 

the manipulator, �(����|��, ��) represents the dynamic characteristics of the robotic arm, that is, the 

probability that the system transitions from state �� to ���� under the control of ��. The expected 

path �∗ ∈ ℝ�×� of the manipulator can be generated by traditional path planning methods, where N 

is the number of points on the path. The instantaneous reward obtained by the agent at time � is 

represented by �� ∈ � ,which is related to the tracking accuracy of the robot arm on the desired path 

and the energy consumed. The policy continuously interacts with the manipulator system to obtain 

the sampling trajectory � = {��, ��, ⋯ , ��, ��, ⋯ , ��, ��} . The goal of reinforcement learning is to 

optimize the policy so as to maximize the expected cumulative reward obtained by the agent: 
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The framework of the robot arm path tracking model based on deep reinforcement learning is 

shown in Figure 1. The framework consists of four parts: desired path, control strategy, feedback 

controller, and manipulator body. The policy calculates the expected position/velocity of each joint 

at the next moment according to the desired path and the current state of the manipulator as the 

reference signal of the feedback controller. The feedback controller combines the current position and 

speed information of each joint to output the required joint torque to change the position of the end-

point of the manipulator. 
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Figure 1. The framework of the robot arm path tracking model based on deep reinforcement learning 

3. Method 

3.1. Deep Q Network 

The Deep Q-Network (DQN) algorithm [22] is a classic algorithm based on the value function 

method in deep reinforcement learning, which was originally derived from the Q-Learning algorithm 

in classical reinforcement learning. Q-Learning is an algorithm based on the Q value, which is defined 

as the expected future cumulative reward value of action a (action a must be finite and discrete) taken 

according to policy � in state �: 
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The optimal value �∗ is defined as the maximized Q value, and the strategy that can get the optimal 

value is defined as the optimal strategy �∗ . DQN uses a deep neural network ��(�, �; �)  with 

parameters � to replace the Q value ��(�, �), which can make the input The algorithm is still valid 

in the case of high-dimensional and continuous state �. In addition, the experience playback pool 

Replay Buffer and a target Q network with parameters �� are also added to DQN. The Replay buffer 

improves the utilization efficiency of samples, and the use of the target Q network solves the loss in 

the neural network function problem. The target Q network is defined as follows: 
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Therefore, this problem can be transformed into a supervised learning problem to solve, that is 

���
�

∑�� − �(�, �; �)�, where � every τ steps copy their own parameters to ��. 

3.2. Soft Actor Critic 

Although the DQN algorithm, which is a milestone in deep reinforcement learning, solves the 

problem of high-dimensional and continuous input states that cannot be solved by classical 

reinforcement learning, it still cannot solve the situation where the output actions are high-

dimensional and continuous (such as multi-degree-of-freedom manipulator). Although the other 

deep reinforcement learning algorithms (such as DDPG [23], TD3 [24], and other algorithms) can 

handle the case where the output action is high dimensional and continuous, they usually have a 

high sample complexity and weak sample convergence, which lead to some additional 

hyperparameter tuning. 

The Soft Actor-Critic (SAC) algorithm [25] is a reinforcement learning algorithm that introduces 

the maximum entropy theory. In the framework of the algorithm, the strategy not only needs to 

maximize the expected cumulative reward value, but also needs to maximize the expected entropy: 
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where α is the weight of the entropy term, which can determine the relative importance of the 

entropy term relative to the reward term, thereby controlling the randomness of the optimal strategy. 

In order to maximize this goal, a method of alternating policy evaluation and policy 

improvement is used in the maximum entropy framework - Soft Policy Iteration. In an environment 

where the state space is discrete, the method can obtain the soft Q-value from the randomly initialized 

function �: � × � → � and repeatedly apply the modified Bellman backup operator �� : 

 1 1( , ) ( , ) [ ( )]
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�      (6) 
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is the soft state value function used to calculate the policy value in policy evaluation. While in the 

continuous state, a neural network with parameters is first used to replace the soft Q-function 

��(��, ��), and then it is trained to minimize the Bellman residual: 
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which can also be optimized with stochastic gradients: 
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where ���(����) is estimated by the target network of Q and the Monte Carlo estimation of the soft 

state value function sampled from the experience pool. 

Policy improvement is updating the policy in the direction of maximizing its available reward, 

therefore, the policy needs to be updated to the exponential form of the new soft Q-function and 

restricted to some parameterized distribution (such as Gaussian distribution) and then project it back 

into the acceptable policy space using an information projection defined in terms of the Kullback-

Leibler (KL) divergence. 
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where �����(��) can be ignored because it has no effect on the gradient. And parameterize the policy 

��(��|��) with a neural network that can output mean and variance to define a Gaussian distribution, 

and then learn the parameters of the policy by minimizing the expected KL divergence: 
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However, since the Gaussian distribution �~�(�, �) is difficult to find its gradient, it is converted 

into an easy-to-find gradient form � = � + ��, �~�(0, 1), i.e. �� = ��(��, ��), the policy network can 

then be optimized by applying the policy gradient to the expected future reward: 

 
  ~ , ~ log ( ( ; ) | ) ( , ( ; ))

t ts D N t t t t t tJ E f s s Q s f s                (12) 

We can also approximate the gradient of Equation (12) with: 
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4. Experiments and Results 

4.1. Planar two-link manipulator 

The plane two-link manipulator simulation system is shown in Figure 2, and the simulation 

platform adopts V-REP PRO EDU 3.6.0. The settings of the two-link manipulator in the simulation 

environment are as follows. The length of the rods are �� = 1.0�, �� = 0.8�, and the mass of the rods 

are �� = 0.1��, �� = 0.08��. Each joint adopts the incremental control method, that is, the joint 

rotates a fixed angle |��| in the direction given by the control signal a� at any time �; where �� ≔

[���
�, ���

�] ∈ ℝ� ,  �∆��
�� = 0.05°, � = 1, 2 . The state of the entire simulation system �� ≔ ���

�,

��
� , �̇�

� , �̇�
� , �� , �� , ��

∗ , ��
∗� ∈ ℝ�, where ��

�, �̇�
� are the angle and angular velocity of each joint at �th 

time. (��,  ��) is the position of the endpoint of the manipulator at time �, and the desired target 

point position (��
∗,  ��

∗) is set as follows: 
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Figure 2. Simulation system of two-link manipulator 

This experiment is mainly used to verify the feasibility of the reinforcement learning algorithm 

in the field of robotic arm path tracking. Because the experimental environment is simple and the 

output action dimension of the two-link robotic arm is low, it can be approximated as a discrete 

quantity, so the algorithm adopts the classic DQN algorithm. The strategy network structure in the 

DQN algorithm is: the input state is 8-dimensional, the output action is 2-dimensional, the hidden 

layer has two layers and the number of nodes in each layer is 50. The hyperparameters are set as: 

replaybuffer = 1e6, learning-rate = 3e-4, discount-factor = 0.99, batch-size = 64, the update between the 

Q network and the target Q network adopts the soft update method, and its soft parameter tau=0.001. 

In addition, the setting of the reward is: �� = ���(−|��
∗ − ��|), where ��

∗, �� are the target path points 

at time t respectively and the position of the end point of the robot arm. The tracking curve results of 

this experiment are shown in Figure 3: 

 

Figure 3. Path tracking curve of two-link manipulator based on DQN 

The red line is the desired target path, and the blue line is the actual running end path. From the 

tracking results in Figure 3, it can be seen that the method based on deep reinforcement learning 
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perfectly achieves the tracking of the target path. Figure 4 shows the experimental results in the 

simulation environment: 

 

Figure 4. Simulation results of path tracking of two-link manipulator based on DQN 

The experimental results show that it is completely feasible to use the deep reinforcement 

learning algorithm to achieve path tracking on a simple two-link manipulator.  

4.2. UR5 manipulator 

After exploring the application of reinforcement learning in path tracking, and successfully 

applied to the two-link manipulator to achieve the tracking target. We will further explore the 

application of the multi-degree-of-freedom manipulator-UR5 to realize path tracking under 

continuous control. The UR5 simulation system is shown in Figure 5, and the simulation platform 

still uses V-REP PRO EDU 3.6.0. The system is used to realize the path tracking by using the deep 

reinforcement learning algorithm after the path is generated by the traditional path generation 

algorithm when there are obstacles. The system actions � ≔ [��, ��, ��,  ��,  ��,  ��, ] ∈ ℝ�, and states 

set as � ≔ ���, ��, ��, ��, ��, ��, �̇�, �̇�, �̇�, �̇�, �̇�, �̇�, ∆�, ∆�, ∆�� ∈ ℝ�� , where ��, �̇�  is the 

angle and angular velocity of the first joint, ∆�, ∆�, ∆� are the distance between the endpoints p and 

the corresponding desired target points �∗. The initial position of the endpoint: [-0.095, -0.160, 0.892], 

the initial position of the target point: [-0.386, 0.458, 0.495]. The desired path is generated by the 

traditional RRT [26] path generation algorithm with the stride set to 100. 

 

Figure 5. UR5 simulation system 

In addition, this experiment set up 4 additional variables to explore the impact of these factors 

on tracking performance: 

1. The upper control method of the manipulator adopts two control methods, position control or 

velocity control. The position control is the control of the joint angle, and the input action is the 

increment of the joint angle. The range of the increment at each moment is set as [- 0.05, 0.05] 

rad. The velocity control is the control of joint angular velocity. The input action is the increment 

of joint angular velocity. The increment range of each moment is set to [-0.8, 0.8] rad/s in the 

experiment. In addition, the underlying control of the manipulator adopts the traditional PID 

torque control algorithm. 
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2. Adding the noise to the observations: We set up two groups of control experiments, one of which 

adds random noise to the observations, the noise is adopted from the standard normal 

distribution N(0,1), the size is 0.005 *N(0,1). 

3. Setting the time interval distance n. The target path points given by the manipulator at every n 

time are the target path points at the N*n time, where N=1, 2, 3..., and study the effect of different 

interval points on the tracking results. In our experiments, we set the interval distance interval=0, 

5, 10 respectively. 

4. Terminal reward. Setting up a control experiment that during the training process, when the 

distance between the endpoint of the robotic arm and the target point is within 0.05m (the 

termination condition is met), an additional +5 reward is given to study its impact on the tracking 

results. 

The continuous control reinforcement learning algorithm SAC is used in this experiment. All 

network structures are as follows: each network contains two hidden layers, the number of nodes in 

each layer is 200, and the activation function of the hidden layer is set to Relu. The hyperparameters 

are set as: replaybuffer = 1e6, discount-factor = 0.99, batch-size = 128, the update between the Q 

network and the target Q network adopts the soft update method, the soft parameter tau=0.01, and 

the learning rate of Actor and Critic network are both set to learning-rate = 1e-3, the weight coefficient 

of policy entropy during the entire training process �=1e-3. The reward settings for this experiment 

are: 
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where n is the interval distance. In addition, an experiment is terminated when the robot arm runs 

for 100 steps or the distance between the end point of the robot arm and the target point is within 

0.05m. 

The experimental results are shown in the following figures. Figures 6(a) and 6(b) are the path 

tracking results without observation noise and with observation noise in the position control mode, 

respectively. Figures 6(c) and 6(d) are the speed control results, respectively. The path tracking results 

with and without observation noise in the mode. Different time intervals are set in each picture, and 

the upper three curves of each picture are the results of not giving the terminal reward, and the lower 

three curves are the results of giving the terminal reward. 

In addition, this experiment also quantitatively analyzed the tracking results, and calculated the 

average error between the obtained path and the target path under different experimental conditions 

and the average distance between the endpoint of the manipulator and the target point at the last 

moment. The results are shown in Table 1 and Table 2 shows: 

Table 1. Results of position control mode path tracking 

Position Control 

w/o observation noise observation noise 

interval interval 

1 5 10 1 5 10 

Average error between 

tracks (m) 

w/o terminal reward 0.0374 0.0330 0.0592 0.0394 0.0427 0.0784 

terminal reward 0.0335 0.0796 0.0502 0.0335 0.0475 0.0596 

Distance between end-

point (m) 

w/o terminal reward 0.0401 0.0633 0.0420 0.0443 0.0485 0.0292 

terminal reward 0.0316 0.0223 0.0231 0.0111 0.0148 0.0139 
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Table 2. Results of velocity control mode path tracking 

Velocity Control 

w/o observation noise observation noise 

interval interval 

1 5 10 1 5 10 

Average error between 

tracks(m) 

w/o terminal reward 0.0343 0.0359 0.0646 0.0348 0.0318 0.0811 

terminal reward 0.0283 0.0569 0.0616 0.0350 0.0645 0.0605 

Distance between end-

point (m) 

w/o terminal reward 0.0233 0.0224 0.0521 0.0456 0.0365 0.0671 

terminal reward 0.0083 0.0030 0.0337 0.0275 0.0192 0.0197 

 

   
(a)         (b) 

   
(c)          (d) 

Figure 6. Path tracking results of UR5 manipulator based on maximum entropy reinforcement 

learning (a) Tracking results without observation noise in position control mode (b) Tracking results 

with observation noise in position control mode (c) Tracking results without observation noise in 

velocity control mode (d) Tracking results with observation noise in velocity control mode 

The training process curve is shown in Figure 7: 
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(a)        (b) 

   
(c)        (d) 

Figure 7. Training process curve (a)Training process curve without observed noise in position control 

mode (b) Training process curve with observation noise in position control mode (c)Training process 

curve without observed noise in speed control mode (d) Training process curve with observation 

noise in speed control mode 

Through the path tracing results, it can be found that: 

1. In this experimental scenario, the target path generated by the RRT algorithm has obvious non-

smoothness; while the tracking path generated by the reinforcement learning algorithm SAC 

based on the target path is also very smooth under the condition that the tracking accuracy is 

satisfied. 

2. By analyze the influence of the n value on the generated path, it can be found that when the n 

value is too large (n=10), its approaching effect on the target point is better, but its tracking effect 

on the target path is poor. But when n=1, the situation is opposite. Therefore, when selecting the 

value of n, it is necessary to balance the path tracking effect and the final position of the endpoint. 

3. Adding noise to the observations of the system during the simulation training process helps to 

improve the robustness of the control strategy and the anti-interference to noise, so that the 

strategy has better performance. 

4. During the simulation training process, when the endpoint of the manipulator reaches the 

allowable error range of the target point, adding a larger reward to the current strategy can make 

the approaching result of the robotic arm to the target point better, but it will lose some precision 

of path tracking; 

5. Experiments show that the algorithm achieves good results in both position control and velocity 

control, and it can be seen from the curve of the training process that the curve can converge at 

an earlier time. 

In addition, since the system dynamics model is not considered in the path tracking experiment 

based on deep reinforcement learning. In order to verify the advantage of the method based on deep 

reinforcement learning that does not need the dynamic model, we further explore the influence of 

the change of dynamic characteristics on the experimental results. So, we change the quality of the 

end effector, the trained model is tested, and the experimental results are shown in Table 3 and Table 

4. 
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Table 3: Analysis of Dynamic Characteristics of Position Control 

Position Control 0.5kg 1kg 2kg 3kg 5kg 

Average error 

between tracks(m)  

w/o observation noise 
w/o terminal reward 0.03742 0.03743 0.03744 0.03745 0.03746 

terminal reward 0.03354 0.03354 0.03359 0.03355 0.03355 

observation noise 
w/o terminal reward 0.03943 0.03943 0.03943 0.03942 0.03941 

terminal reward 0.03346 0.03346 0.03346 0.03346 0.03345 

Distance between 

end-point(m) 

w/o observation noise 
w/o terminal reward 0.04047 0.04047 0.04048 0.04049 0.04050 

terminal reward 0.03165 0.03166 0.03157 0.03159 0.03161 

observation noise 
w/o terminal reward 0.04430 0.04441 0.04438 0.04430 0.04436 

terminal reward 0.01110 0.01109 0.01109 0.01108 0.01105 

Table 4: Analysis of Dynamic Characteristics of Velocity Control 

Velocity Control 0.5kg 1kg 2kg 3kg 5kg 

Average error 

between tracks(m)  

w/o observation noise 
w/o terminal reward 0.03426 0.03427 0.03425 0.03426 0.03425 

terminal reward 0.02826 0.02825 0.02866 0.02873 0.02882 

observation noise 
w/o terminal reward 0.03478 0.03479 0.03483 0.03486 0.03497 

terminal reward 0.03503 0.03503 0.03503 0.03502 0.03501 

Distance between 

end-point(m) 

w/o observation noise 
w/o terminal reward 0.02326 0.02444 0.02436 0.02430 0.02422 

terminal reward 0.00831 0.01201 0.01395 0.01463 0.01513 

observation noise 
w/o terminal reward 0.04560 0.04562 0.04565 0.04569 0.04578 

terminal reward 0.02748 0.02746 0.02743 0.02741 0.02733 

 

The experimental results show that in the model trained under the condition of fixed load 

quality, the path tracking based on deep reinforcement learning can still ensure sufficient stability 

when the load changes. That is, the change of dynamic characteristics will not affect the algorithm 

effect. 

Furthermore, we also compare the results of the proposed algorithm and the traditional inverse 

kinematics method in terms of energy consumption and trajectory smoothness. The experimental 

results are shown in Tables 5 and 6. Among them, the calculation method of the energy consumption 

of the manipulator during the entire path tracking process is: 
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0 0
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E P t dt P k dt
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 
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     

.

i i iP k k k  
       (18) 

where � is the �th path point in the entire path, � is the �th joint of the manipulator, �, �̇ is the joint 

torque and joint speed, M is the number of path points, �� is the distance between the path-points.  

The smoothness of the trajectory is measured by the angle between the tangent vectors of adjacent 

points of the curve, and the degree of smooth movement of the robotic arm is measured by analyzing 

the mean value of the turning angles in the entire trajectory. 

Table 5. Analysis of Track Smoothness 

Velocity control w/o terminal reward terminal reward 
Jacobian matrix 

Interval 1 5 10 1 5 10 

Smoothness 0.5751 0.3351 0.5925 0.0816 0.5561 0.4442 0.7159 
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Table 6. Analysis of energy consumption 

Energy consumption 0.5kg 1kg 2kg 3kg 5kg 

Position Control 
w/o terminal reward 4.44438 4.71427 5.27507 5.79426 6.92146 

terminal reward 5.01889 5.34258 5.95310 6.55227 7.76305 

Velocity Control 
w/o terminal reward 4.97465 5.38062 6.23886 6.95099 8.33596 

terminal reward 6.03735 6.37981 7.05696 7.75185 9.15828 

Traditional Jacobian matrix 8.95234 9.81593 10.8907 10.9133 13.3241 

 

The experimental results show that the algorithm proposed in this paper is superior to the 

traditional inverse kinematics method in terms of energy consumption and trajectory smoothness. 

4.3. Redundant manipulator 

The algorithm proposed in this paper is experimentally verified and analyzed on the UR5 

manipulator. The experimental results show that the algorithm proposed in this paper can effectively 

solve the path tracking problem of the manipulator. In order to further verify the effectiveness and 

generalization of the algorithm in this paper, we also conduct the verification on a redundant 

manipulator. The 7-DOF redundant manipulator simulation system is shown in Figure 8. The 

simulation platform still uses V-REP PRO EDU 3.6.0, and the simulated manipulator uses the KUKA 

LBR ii wa 7 R800 redundant manipulator. The setting of actions is � ≔ [��, ��, ��,  ��,  ��,  ��,  ��] ∈

ℝ� , and states set as � ≔ ���, ��,  ��,  ��, ��, ��, ��, �̇�, �̇�, �̇�, �̇�, �̇�, �̇�, �̇�, ∆�, ∆�, ∆�� ∈

ℝ��,where ��, �̇� is the angle and angular velocity of the first joint and ∆�, ∆�, ∆� is the distance 

between the end-point � of the manipulator and the corresponding desired target point �∗. The 

initial position of the end-point is [0.0044, 0.0001, 1.1743], and the initial position of the target point 

is [0.0193, 0.4008, 0.6715]. The expected path is an arc trajectory generated by the path generation 

algorithm, and the step size is set to 50. 

 

Figure 8. The redundant manipulator simulation system 

The setup of the redundant manipulator path tracking experiment is exactly the same as that of 

UR5. The experiment still uses the continuous control reinforcement learning algorithm SAC, and all 

network structures are also the same as the UR5 setup. That is, each network contains two hidden 

layers, the number of nodes in each layer is 200, and the activation function of the hidden layer is set 

to Relu. The hyperparameter settings are also: replaybuffer = 1e6, discount-factor = 0.99, batch-size = 

128, the update between the Q network and the target Q network adopts the soft update method, the 

soft parameter tau=0.01, and the learning rate of Actor and Critic network are both set to learning-

rate = 1e-3, the weight coefficient α=1e-3 of policy entropy during the whole training process. 

The reward settings are also the same as before. The only difference is that the redundant 

manipulator path tracking experiment is an experiment to verify the generalization of the algorithm, 

so it does not involve the results when other hyperparameter conditions change. Therefore, the 

default separation distance in the reward setting is n=1. 
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Since this experiment is a verification experiment, this experiment only explores the path 

tracking results in the speed control mode. The path tracking results of the redundant manipulator 

are shown in Figure 9. 

 

Figure 9. Verification results of redundant manipulator path tracking 

In addition, we consider the randomness of the sampling of the deep reinforcement learning 

algorithm. And in order to reflect the stability of our method, we also carried out multiple 

experiments under the setting of multiple random seeds. The training process curve of the 

experimental results is shown in Figure 10. 

 

Figure 10. Redundant manipulator path tracking training process curve 

The experimental results show that our method still has a good tracking effect on the redundant 

manipulator, and the training results under different random seed settings show that our method 

can be guaranteed in terms of generalization and stability 

5. Conclusion 

In this paper, we introduce a method of using a deep reinforcement learning algorithm to realize 

the path tracking of the manipulator. The traditional path planning algorithm is used to generate the 

target path, and the deep reinforcement learning algorithm is used to generate the control signal to 

control the manipulator and realize the tracking of the target path. The experimental results show 

that the method has a good effect on the path tracking of the manipulator, which not only avoids the 

process of seeking the inverse kinematics solution, but also maintains good performance when the 

dynamic characteristics change. In addition, through further verification experiments on the path 

tracking of the redundant manipulator, the generalization and stability of our method are reflected. 

So, we think that our method has great significance for the research of the path tracking of the 

manipulator. 
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