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Abstract: We propose a deep reinforcement learning based manipulator path tracking method to
solve the computationally difficult and non-unique problem of manipulator path tracking methods
based on inverse kinematics. By transforming the path tracking task into a sequence decision
problem, our method adopts an end-to-end learning method for closed-loop control and avoids the
process of finding the inverse solution. We first explored the feasibility of the deep reinforcement
learning method in the path tracking of the manipulator. After verifying the feasibility, the path
tracking of the multi-degree-of-freedom(multi-DOF) manipulator was realized by combining the
maximum entropy deep reinforcement learning algorithm. The experimental results show that our
method has a good effect on the path tracking of the manipulator, which not only avoids the process
of finding the inverse kinematics solution, but also requires no dynamic model. Therefore, we
believe that our method has great significance in the study of manipulator path tracking.
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1. Introduction

A manipulator is a highly integrated mechanical system combined with electromechanical
control. It is a typical multi-input multi-output nonlinear system, and its dynamics are time-varying
and strongly coupled. As a complex system, it has many uncertainties, so its control is very
complicated. In recent decades, researchers have carried out a lot of research on the control methods
of manipulator. The existing control methods of robots include the computational torque control,
robust adaptive control[1], adaptive neural network control [2], output feedback control [3-6], dead
zone nonlinear compensation control [7], virtual decomposition control [8], and so on.

Path tracking [9] is an important topic in manipulator control. After successfully planning an
optimal path using the path planning algorithm, how to make the end of the manipulator follow this
optimal path is a problem that needs to be solved. Cai ZX [10] and Patolia H [11] decompose the
speed and acceleration of each joint of the manipulator respectively. They adjust the desired speed
or desired acceleration of each joint through position or speed feedback, and use the error as the
control input. In the actual control of the manipulator, the end effector often clamps different objects,
so it is difficult to accurately obtain the dynamic parameters of each link of the manipulator. At the
same time, the existence of external interference and dynamic modelling errors make the manipulator
track and control the belt. come difficult. Ma BL [12] proposed an adaptive control method, which
dynamically adjusts the controller by identifying the system parameters online. In order to improve
the stability of tracking, Spong MW [13] added a robust term to the control input to compensate for
the deviation between the estimated model and the real model of the manipulator and limit the
uncertain factors to a certain range. Purwar S [14] used the Lyapunov stability criterion to optimize
the parameters of the neural network controller to improve the robustness and stability of the
tracking in order to compensate for the error caused by the external disturbance and the linearization
of the dynamic model.

The above methods all involve the process of precise dynamic modelling and inverse kinematics
solutions. However, since the increase of the degree of freedom of the manipulator, the difficulty of
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dynamic modelling and the calculation amount of inverse kinematics solution will increase, and the
inverse solution will not be unique. They all limit the applicability of methods [15-18]. In recent years,
with a series of successful applications of reinforcement learning in decision control problems, it does
not require system dynamics modelling, but only through trial and error learning by interacting with
the environment, which provides new ideas for path tracking problems. The reinforcement learning
[19] method can model the manipulator path tracking problem as a Markov decision process (MDP),
and interact with samples to optimize the control policy. Guo X [20] used the depth value function
method (DQN) to complete the path tracking of the UR5 manipulator. However, it discretizes the
action space, and it is difficult to finely control the manipulator. Liu YC [21] realized the tracking
control of the manipulator in the continuous action space, but its learning process is unstable, and
the small changes of hyperparameters have a great impact on the performance of the algorithm. In
the path tracking problem, since the output of the system follows a time-independent geometric path,
most articles use the inverse kinematics method for path tracking. However, the manipulators
capable of performing complex tasks usually have a high degree of freedom. As the degrees of
freedom increase, the solutions of inverse kinematics will not be unique and more difficult, also the
computational load will be larger.

In this paper, a reinforcement learning method for multi-DOF manipulator path tracking is
proposed, which converts the tracking accuracy requirements and energy constraints into cumulative
rewards obtained by the control strategy to ensure the stability and control accuracy of the tracking
trajectory. The entropy of policy is used as an auxiliary gain of the agent and introduced into the
training process of the control strategy, thereby increasing the robustness of the path tracking. We
first explore the feasibility of deep reinforcement learning methods to solve the path following
problem on a planar dual-link manipulator. Then, we verified it on the 6-DOF manipulator and
analysed the effects of different training parameters and different dynamic characteristics on the path
tracking effect of the manipulator. The results show that our method has good path tracking
performance.

2. Problem Statement

We model the path tracking problem of manipulator as a Markov Decision Process (MDP),
which represented by < S, A,R, T,y >, where s; € S represents the observations of the agent. The
policy II:S — A maps the current environmental state s, to the control input a, € A of each joint of
the manipulator, T(s;41|S;, a;) represents the dynamic characteristics of the robotic arm, that is, the
probability that the system transitions from state s; to s, under the control of a,. The expected
path P* € RV*® of the manipulator can be generated by traditional path planning methods, where N
is the number of points on the path. The instantaneous reward obtained by the agent at time t is
represented by r; € R ,which is related to the tracking accuracy of the robot arm on the desired path
and the energy consumed. The policy continuously interacts with the manipulator system to obtain
the sampling trajectory t = {sq,aq,***,S az, -+, S, ar}. The goal of reinforcement learning is to
optimize the policy so as to maximize the expected cumulative reward obtained by the agent:

maximize,_; E {Z 7'r( }

@

T
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@

The framework of the robot arm path tracking model based on deep reinforcement learning is
shown in Figure 1. The framework consists of four parts: desired path, control strategy, feedback
controller, and manipulator body. The policy calculates the expected position/velocity of each joint
at the next moment according to the desired path and the current state of the manipulator as the
reference signal of the feedback controller. The feedback controller combines the current position and
speed information of each joint to output the required joint torque to change the position of the end-
point of the manipulator.
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Figure 1. The framework of the robot arm path tracking model based on deep reinforcement learning
3. Method

3.1. Deep Q Network

The Deep Q-Network (DQN) algorithm [22] is a classic algorithm based on the value function
method in deep reinforcement learning, which was originally derived from the Q-Learning algorithm
in classical reinforcement learning. Q-Learning is an algorithm based on the Q value, which is defined
as the expected future cumulative reward value of action a (action a must be finite and discrete) taken
according to policy m in state S:

0,(s,a)=E, [Z}/’r(s,,a,) |5, =5,a, = a}
=0 ®)

The optimal value Q~ is defined as the maximized Q value, and the strategy that can get the optimal
value is defined as the optimal strategy m*. DQN uses a deep neural network Q.(s,a;8) with
parameters 6 to replace the Q value Q,(s, a), which can make the input The algorithm is still valid
in the case of high-dimensional and continuous state S. In addition, the experience playback pool
Replay Buffer and a target Q network with parameters 6’ are also added to DQN. The Replay buffer
improves the utilization efficiency of samples, and the use of the target Q network solves the loss in
the neural network function problem. The target Q network is defined as follows:

y=r+ymaxQ(s’,a’;0)

“ 4)
Therefore, this problem can be transformed into a supervised learning problem to solve, that is
mainZ(y —Q(s,a;0)), where 6 every t steps copy their own parameters to 6'.

3.2. Soft Actor Critic

Although the DQN algorithm, which is a milestone in deep reinforcement learning, solves the
problem of high-dimensional and continuous input states that cannot be solved by classical
reinforcement learning, it still cannot solve the situation where the output actions are high-
dimensional and continuous (such as multi-degree-of-freedom manipulator). Although the other
deep reinforcement learning algorithms (such as DDPG [23], TD3 [24], and other algorithms) can
handle the case where the output action is high dimensional and continuous, they usually have a
high sample complexity and weak sample convergence, which lead to some additional
hyperparameter tuning.

The Soft Actor-Critic (SAC) algorithm [25] is a reinforcement learning algorithm that introduces
the maximum entropy theory. In the framework of the algorithm, the strategy not only needs to
maximize the expected cumulative reward value, but also needs to maximize the expected entropy:
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where a is the weight of the entropy term, which can determine the relative importance of the
entropy term relative to the reward term, thereby controlling the randomness of the optimal strategy.

In order to maximize this goal, a method of alternating policy evaluation and policy
improvement is used in the maximum entropy framework - Soft Policy Iteration. In an environment
where the state space is discrete, the method can obtain the soft Q-value from the randomly initialized
function Q:S X A - R and repeatedly apply the modified Bellman backup operator T" :

TﬁQ(Stﬂat) = r(stiat)—i_]/Eerp[V(St+1)] (6)

where

Vis)=E, [0(s,qa)—logz(a,|s,)] )
is the soft state value function used to calculate the policy value in policy evaluation. While in the
continuous state, a neural network with parameters is first used to replace the soft Q-function
Qo (s¢, a;), and then it is trained to minimize the Bellman residual:

JQ(G) = E(s,,a,)~D [%(QH(St’at) —(r(st,a,) + }/ESHWP[VH(SH)]))Z} 8)

which can also be optimized with stochastic gradients:

VQJQ (g):VQQg(S; > a;)(Qg (St >4, ) - I"(St > at) - }/Vé(StJrl )) )
where V5(s;41) is estimated by the target network of Q and the Monte Carlo estimation of the soft
state value function sampled from the experience pool.

Policy improvement is updating the policy in the direction of maximizing its available reward,
therefore, the policy needs to be updated to the exponential form of the new soft Q-function and
restricted to some parameterized distribution (such as Gaussian distribution) and then project it back
into the acceptable policy space using an information projection defined in terms of the Kullback-
Leibler (KL) divergence.

exp(Q™ (s,, -))j

7 =argminD,, | 7'(-|s,)0
new gzz’eH KL[ (l ’) Zﬁnld(sl)

(10)
where Z™old(s,) can be ignored because it has no effect on the gradient. And parameterize the policy

mg(acls,) withaneural network that can output mean and variance to define a Gaussian distribution,
and then learn the parameters of the policy by minimizing the expected KL divergence:

J, (¢) = Es,~D |:Ea,~7r¢ [log 77¢(at |5,) =0y (s,, at):ﬂ (11)

However, since the Gaussian distribution a~N(m,s) is difficult to find its gradient, it is converted
into an easy-to-find gradient form a = m + sg, e~N(0,1),i.e. a; = f4 (&, s), the policy network can
then be optimized by applying the policy gradient to the expected future reward:

JA9)=E, v [logm,(fy(e5) |5) =0y s, Sy (8350 ] W)

We can also approximate the gradient of Equation (12) with:

Vo H(9)=V jlogylar|)+{V, loemy(es 150 -V, a1 5)) Ve -
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4. Experiments and Results

4.1. Planar two-link manipulator

The plane two-link manipulator simulation system is shown in Figure 2, and the simulation
platform adopts V-REP PRO EDU 3.6.0. The settings of the two-link manipulator in the simulation
environment are as follows. The length of the rods are [; = 1.0m, [, = 0.8m, and the mass of the rods
are m; = 0.1kg,m, = 0.08kg. Each joint adopts the incremental control method, that is, the joint
rotates a fixed angle |46| in the direction given by the control signal a, at any time t; where a, =
[46%,46%] € R? , |A6}| = 0.05°,i =1,2. The state of the entire simulation system s, := [6¢,
02,0%,02 ,x.,y:,x; ,yi| € R, where 6},8} are the angle and angular velocity of each joint at ith
time. (x;, y;) is the position of the endpoint of the manipulator at time t, and the desired target

point position (x{, y;) is set as follows:

{x: =1, cos(a)lt+a)2t)+ll Cos(a)lt), ®, = w, =1rad/s

y, =l sin(of+w,t)+1 sin () a4)
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Figure 2. Simulation system of two-link manipulator

This experiment is mainly used to verify the feasibility of the reinforcement learning algorithm
in the field of robotic arm path tracking. Because the experimental environment is simple and the
output action dimension of the two-link robotic arm is low, it can be approximated as a discrete
quantity, so the algorithm adopts the classic DQN algorithm. The strategy network structure in the
DOQON algorithm is: the input state is 8-dimensional, the output action is 2-dimensional, the hidden
layer has two layers and the number of nodes in each layer is 50. The hyperparameters are set as:
replaybuffer = 1e6, learning-rate = 3e-4, discount-factor = 0.99, batch-size = 64, the update between the
Qnetwork and the target Q network adopts the soft update method, and its soft parameter tau=0.001.
In addition, the setting of the reward is: 1, = exp(—|p; — p;|), where p{, p; are the target path points
at time t respectively and the position of the end point of the robot arm. The tracking curve results of
this experiment are shown in Figure 3:

Expected e
Real Cupve

Figure 3. Path tracking curve of two-link manipulator based on DQN

The red line is the desired target path, and the blue line is the actual running end path. From the
tracking results in Figure 3, it can be seen that the method based on deep reinforcement learning
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perfectly achieves the tracking of the target path. Figure 4 shows the experimental results in the
simulation environment:

Figure 4. Simulation results of path tracking of two-link manipulator based on DQN

The experimental results show that it is completely feasible to use the deep reinforcement
learning algorithm to achieve path tracking on a simple two-link manipulator.

4.2. UR5 manipulator

After exploring the application of reinforcement learning in path tracking, and successfully
applied to the two-link manipulator to achieve the tracking target. We will further explore the
application of the multi-degree-of-freedom manipulator-UR5 to realize path tracking under
continuous control. The UR5 simulation system is shown in Figure 5, and the simulation platform
still uses V-REP PRO EDU 3.6.0. The system is used to realize the path tracking by using the deep
reinforcement learning algorithm after the path is generated by the traditional path generation
algorithm when there are obstacles. The system actions a = [a;, a,, a3, a4, as, ag, ] € R, and states
set as s:= [0y, 05, O3, 0,4, Os, O, 01, O, 03, 64, Os, 66, Ax, Ay, Az] € RS, where 6;, 6; is the
angle and angular velocity of the first joint, Ax, Ay, Az are the distance between the endpoints p and
the corresponding desired target points p*. The initial position of the endpoint: [-0.095, -0.160, 0.892],
the initial position of the target point: [-0.386, 0.458, 0.495]. The desired path is generated by the
traditional RRT [26] path generation algorithm with the stride set to 100.
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Figure 5. UR5 simulation system

In addition, this experiment set up 4 additional variables to explore the impact of these factors
on tracking performance:

1. The upper control method of the manipulator adopts two control methods, position control or
velocity control. The position control is the control of the joint angle, and the input action is the
increment of the joint angle. The range of the increment at each moment is set as [- 0.05, 0.05]
rad. The velocity control is the control of joint angular velocity. The input action is the increment
of joint angular velocity. The increment range of each moment is set to [-0.8, 0.8] rad/s in the
experiment. In addition, the underlying control of the manipulator adopts the traditional PID
torque control algorithm.
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2. Adding the noise to the observations: We set up two groups of control experiments, one of which
adds random noise to the observations, the noise is adopted from the standard normal
distribution N(0,1), the size is 0.005 *N(0,1).

3.  Setting the time interval distance n. The target path points given by the manipulator at every n
time are the target path points at the N*n time, where N=1, 2, 3..., and study the effect of different
interval points on the tracking results. In our experiments, we set the interval distance interval=0,
5, 10 respectively.

4. Terminal reward. Setting up a control experiment that during the training process, when the
distance between the endpoint of the robotic arm and the target point is within 0.05m (the
termination condition is met), an additional +5 reward is given to study its impact on the tracking
results.

The continuous control reinforcement learning algorithm SAC is used in this experiment. All
network structures are as follows: each network contains two hidden layers, the number of nodes in
each layer is 200, and the activation function of the hidden layer is set to Relu. The hyperparameters
are set as: replaybuffer = 1e6, discount-factor = 0.99, batch-size = 128, the update between the Q
network and the target Q network adopts the soft update method, the soft parameter tau=0.01, and
the learning rate of Actor and Critic network are both set to learning-rate = 1e-3, the weight coefficient
of policy entropy during the entire training process a=1e-3. The reward settings for this experiment
are:

n(ﬂoor(t/n)+1) n>1
t n=1

=]

p:(t,n)_ptu ’ Z'(I,I’l)Z
(15)

where n is the interval distance. In addition, an experiment is terminated when the robot arm runs
for 100 steps or the distance between the end point of the robot arm and the target point is within
0.05m.

The experimental results are shown in the following figures. Figures 6(a) and 6(b) are the path
tracking results without observation noise and with observation noise in the position control mode,
respectively. Figures 6(c) and 6(d) are the speed control results, respectively. The path tracking results
with and without observation noise in the mode. Different time intervals are set in each picture, and
the upper three curves of each picture are the results of not giving the terminal reward, and the lower
three curves are the results of giving the terminal reward.

In addition, this experiment also quantitatively analyzed the tracking results, and calculated the
average error between the obtained path and the target path under different experimental conditions
and the average distance between the endpoint of the manipulator and the target point at the last
moment. The results are shown in Table 1 and Table 2 shows:

Table 1. Results of position control mode path tracking

w/o observation noise observation noise
Position Control interval interval
1 5 10 1 5 10
Average error between w/o terminal reward 0.0374 0.0330 0.0592 0.0394 0.0427 0.0784
tracks (m) terminal reward 0.0335 0.0796 0.0502 0.0335 0.0475 0.0596
Distance between end- w/o terminal reward 0.0401 0.0633 0.0420 0.0443 0.0485  0.0292

point (m) terminal reward 0.0316  0.0223  0.0231 0.0111  0.0148  0.0139
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Table 2. Results of velocity control mode path tracking

w/o observation noise observation noise
Velocity Control interval interval
1 5 10 1 5 10
Average error between w/o terminal reward 0.0343 0.0359 0.0646  0.0348 0.0318  0.0811
tracks(m) terminal reward 0.0283 0.0569  0.0616  0.0350 0.0645  0.0605
Distance between end- w/o terminal reward ~ 0.0233  0.0224  0.0521 0.0456 0.0365 0.0671
point (m) terminal reward 0.0083 0.0030 0.0337 0.0275 0.0192  0.0197
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Figure 6. Path tracking results of UR5 manipulator based on maximum entropy reinforcement
learning (a) Tracking results without observation noise in position control mode (b) Tracking results
with observation noise in position control mode (c) Tracking results without observation noise in
velocity control mode (d) Tracking results with observation noise in velocity control mode

The training process curve is shown in Figure 7:
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Figure 7. Training process curve (a)Training process curve without observed noise in position control
mode (b) Training process curve with observation noise in position control mode (c)Training process
curve without observed noise in speed control mode (d) Training process curve with observation
noise in speed control mode

Through the path tracing results, it can be found that:

1. In this experimental scenario, the target path generated by the RRT algorithm has obvious non-
smoothness; while the tracking path generated by the reinforcement learning algorithm SAC
based on the target path is also very smooth under the condition that the tracking accuracy is
satisfied.

2. By analyze the influence of the n value on the generated path, it can be found that when the n
value is too large (n=10), its approaching effect on the target point is better, but its tracking effect
on the target path is poor. But when n=1, the situation is opposite. Therefore, when selecting the
value of n, it is necessary to balance the path tracking effect and the final position of the endpoint.

3. Adding noise to the observations of the system during the simulation training process helps to
improve the robustness of the control strategy and the anti-interference to noise, so that the
strategy has better performance.

4. During the simulation training process, when the endpoint of the manipulator reaches the
allowable error range of the target point, adding a larger reward to the current strategy can make
the approaching result of the robotic arm to the target point better, but it will lose some precision
of path tracking;

5. Experiments show that the algorithm achieves good results in both position control and velocity
control, and it can be seen from the curve of the training process that the curve can converge at
an earlier time.

In addition, since the system dynamics model is not considered in the path tracking experiment
based on deep reinforcement learning. In order to verify the advantage of the method based on deep
reinforcement learning that does not need the dynamic model, we further explore the influence of
the change of dynamic characteristics on the experimental results. So, we change the quality of the
end effector, the trained model is tested, and the experimental results are shown in Table 3 and Table
4.
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Table 3: Analysis of Dynamic Characteristics of Position Control

Position Control 0.5kg 1kg 2kg 3kg 5kg
w/o terminal reward 0.03742 0.03743 0.03744 0.03745 0.03746
w/o observation noise
Average error terminal reward  0.03354 0.03354 0.03359 0.03355 0.03355
between tracks(m) w/o terminal reward 0.03943 0.03943 0.03943 0.03942 0.03941

observation noise
terminal reward  0.03346 0.03346 0.03346 0.03346 0.03345

w/o terminal reward 0.04047 0.04047 0.04048 0.04049 0.04050
w/0 observation noise
Distance between terminal reward  0.03165 0.03166 0.03157 0.03159 0.03161
end-point(m) w/o terminal reward 0.04430 0.04441 0.04438 0.04430 0.04436
observation noise
terminal reward  0.01110 0.01109 0.01109 0.01108 0.01105

Table 4: Analysis of Dynamic Characteristics of Velocity Control

Velocity Control 0.5kg 1kg 2kg 3kg S5kg
w/o terminal reward 0.03426 0.03427 0.03425 0.03426 0.03425
w/0 observation noise
Average error terminal reward 0.02826 0.02825 0.02866 0.02873 0.02882

between tracks(m) w/o terminal reward 0.03478 0.03479 0.03483 0.03486 0.03497
observation noise

terminal reward  0.03503 0.03503 0.03503 0.03502 0.03501

w/o terminal reward 0.02326 0.02444 0.02436 0.02430 0.02422

w/o observation noise

Distance between terminal reward  0.00831 0.01201 0.01395 0.01463 0.01513

end-point(m) w/o terminal reward 0.04560 0.04562 0.04565 0.04569 0.04578
observation noise

terminal reward  0.02748 0.02746 0.02743 0.02741 0.02733

The experimental results show that in the model trained under the condition of fixed load
quality, the path tracking based on deep reinforcement learning can still ensure sufficient stability
when the load changes. That is, the change of dynamic characteristics will not affect the algorithm
effect.

Furthermore, we also compare the results of the proposed algorithm and the traditional inverse
kinematics method in terms of energy consumption and trajectory smoothness. The experimental
results are shown in Tables 5 and 6. Among them, the calculation method of the energy consumption
of the manipulator during the entire path tracking process is:

ty M
E=|"P(r)dt=Y P(k)-dt
0 k=0

(16)
P(K)= 2R (K) )
P(k)=r,(k)-6,(k) (18)

where k isthe kth path point in the entire path, i is the ithjoint of the manipulator, 7,8 is the joint
torque and joint speed, M is the number of path points, dt is the distance between the path-points.
The smoothness of the trajectory is measured by the angle between the tangent vectors of adjacent
points of the curve, and the degree of smooth movement of the robotic arm is measured by analyzing
the mean value of the turning angles in the entire trajectory.

Table 5. Analysis of Track Smoothness

Velocity control w/o terminal reward terminal reward
Interval 1 5 10 1 5 10

Smoothness 0.5751 0.3351 0.5925 0.0816 0.5561 0.4442 0.7159

Jacobian matrix
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Table 6. Analysis of energy consumption

Energy consumption 0.5kg 1kg 2kg 3kg 5kg
wj/o terminal reward ~ 4.44438 4.71427 527507  5.79426 6.92146
Position Control
terminal reward 5.01889 5.34258 5.95310 6.55227 7.76305
wj/o terminal reward  4.97465 5.38062 6.23886 6.95099 8.33596
Velocity Control
terminal reward 6.03735 6.37981 7.05696 7.75185 9.15828
Traditional Jacobian matrix 8.95234 9.81593 10.8907 10.9133 13.3241

The experimental results show that the algorithm proposed in this paper is superior to the
traditional inverse kinematics method in terms of energy consumption and trajectory smoothness.

4.3. Redundant manipulator

The algorithm proposed in this paper is experimentally verified and analyzed on the UR5
manipulator. The experimental results show that the algorithm proposed in this paper can effectively
solve the path tracking problem of the manipulator. In order to further verify the effectiveness and
generalization of the algorithm in this paper, we also conduct the verification on a redundant
manipulator. The 7-DOF redundant manipulator simulation system is shown in Figure 8. The
simulation platform still uses V-REP PRO EDU 3.6.0, and the simulated manipulator uses the KUKA
LBR ii wa 7 R800 redundant manipulator. The setting of actions is a = [a;, a,, a3, a4, as, a6, a;] €
R’ , and states set as s:=[8y, 6, 03, 64, 05, 06, 05, 01, 8, 03, 64, 05, 66, 0, Ax, Ay, Az] €
RY7,where 6;, 6; is the angle and angular velocity of the first joint and Ax, Ay, Az is the distance
between the end-point p of the manipulator and the corresponding desired target point p*. The
initial position of the end-point is [0.0044, 0.0001, 1.1743], and the initial position of the target point
is [0.0193, 0.4008, 0.6715]. The expected path is an arc trajectory generated by the path generation
algorithm, and the step size is set to 50.

Figure 8. The redundant manipulator simulation system

The setup of the redundant manipulator path tracking experiment is exactly the same as that of
URS. The experiment still uses the continuous control reinforcement learning algorithm SAC, and all
network structures are also the same as the UR5 setup. That is, each network contains two hidden
layers, the number of nodes in each layer is 200, and the activation function of the hidden layer is set
to Relu. The hyperparameter settings are also: replaybuffer = 1e6, discount-factor = 0.99, batch-size =
128, the update between the Q network and the target Q network adopts the soft update method, the
soft parameter tau=0.01, and the learning rate of Actor and Critic network are both set to learning-
rate = le-3, the weight coefficient a=1e-3 of policy entropy during the whole training process.

The reward settings are also the same as before. The only difference is that the redundant
manipulator path tracking experiment is an experiment to verify the generalization of the algorithm,
so it does not involve the results when other hyperparameter conditions change. Therefore, the
default separation distance in the reward setting is n=1.
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Since this experiment is a verification experiment, this experiment only explores the path
tracking results in the speed control mode. The path tracking results of the redundant manipulator
are shown in Figure 9.

—— Desired trajectory

=== Tue trajectory

Figure 9. Verification results of redundant manipulator path tracking

In addition, we consider the randomness of the sampling of the deep reinforcement learning
algorithm. And in order to reflect the stability of our method, we also carried out multiple
experiments under the setting of multiple random seeds. The training process curve of the

experimental results is shown in Figure 10.
o
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Figure 10. Redundant manipulator path tracking training process curve

The experimental results show that our method still has a good tracking effect on the redundant
manipulator, and the training results under different random seed settings show that our method
can be guaranteed in terms of generalization and stability

5. Conclusion

In this paper, we introduce a method of using a deep reinforcement learning algorithm to realize
the path tracking of the manipulator. The traditional path planning algorithm is used to generate the
target path, and the deep reinforcement learning algorithm is used to generate the control signal to
control the manipulator and realize the tracking of the target path. The experimental results show
that the method has a good effect on the path tracking of the manipulator, which not only avoids the
process of seeking the inverse kinematics solution, but also maintains good performance when the
dynamic characteristics change. In addition, through further verification experiments on the path
tracking of the redundant manipulator, the generalization and stability of our method are reflected.
So, we think that our method has great significance for the research of the path tracking of the
manipulator.
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