

Article

Not peer-reviewed version

DGK ζ Depletion Attenuates BRCA1-Mediated DNA Repair Mechanism

[Toshiaki Tanaka](#) ^{*}, [Mitsuyoshi Iino](#) , [Kaoru Goto](#) ^{*}

Posted Date: 26 May 2023

doi: [10.20944/preprints202305.1857.v1](https://doi.org/10.20944/preprints202305.1857.v1)

Keywords: γ H2AX; Actinomycin D; Akt; DNA damage response; DNA double-strand break; DNA-PK; Etoposide; p95/NBS1

Preprints.org is a free multidiscipline platform providing preprint service that is dedicated to making early versions of research outputs permanently available and citable. Preprints posted at Preprints.org appear in Web of Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Disclaimer/Publisher's Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions, or products referred to in the content.

Article

DGK ζ Depletion Attenuates BRCA1-Mediated DNA Repair Mechanism

Toshiaki Tanaka ^{1,3,*}, Mitsuyoshi Iino ² and Kaoru Goto ^{1,*}

¹ Department of Anatomy and Cell Biology;

² Department of Dentistry, Oral and Maxillofacial Plastic and Reconstructive Surgery, Yamagata University School of Medicine, Yamagata 990-9585, Japan

³ Oyumino Central Hospital Mobera Clinic, Department of Dentistry and Maxillofacial surgery, Chiba 297-0012, Japan

* Correspondence: ttanaka@med.id.yamagata-u.ac.jp; kgoto@med.id.yamagata-u.ac.jp; Tel.: +81-23-23-628-5207; FAX: +81-23-23-628-5210

Simple Summary: DNA double-strand breakage activates cellular DNA damage response pathways, including DNA damage sensing, control of cell cycle arrest and apoptosis, and DNA repair. These pathways are regulated by complex signaling machineries, in which the diacylglycerol kinase (DGK) family regulates the lipidic second messenger system by phosphorylating diacylglycerol to phosphatidic acid. Of DGKs, DGK ζ modifies the regulation of stress responses. Reportedly, DGK ζ depletion renders cells and mice vulnerable to various stressors such as chemotherapeutic agents and ionizing irradiation. This study uncovers effects of DGK ζ depletion on DNA repair mechanism, a crucially important event for survival from DNA damage. DGK ζ depletion attenuates Akt activation and DNA-PK protein expression upon DNA damage, which might engender downregulation of BRCA1 protein synthesis and stability. We demonstrate that DGK ζ depletion attenuates the Akt-regulated, BRCA1-mediated DNA repair mechanism.

Abstract: DNA double-strand breakage is the most lethal damage to chromosomal DNA. It activates a series of cellular DNA damage response pathways, including DNA damage sensing, control of cell cycle arrest and apoptosis, and DNA repair. DNA damage response pathways are regulated by complex signaling machineries. Of the intracellular signaling cascades, diacylglycerol kinase (DGK) phosphorylates diacylglycerol (DG) to generate phosphatidic acid (PA). Because both DG and PA serve as second messengers, DGK activity induces a shift of signaling pathways from DG-mediated to PA-mediated cascades, thereby implicating DGK in the regulation of widely various functions. Reportedly, one member of the DGK family, DGK ζ , is intimately involved in the regulation of stress responses through p53 and NF- κ B. Stresses such as ischemia and infarction cause DGK ζ downregulation. Experimental DGK ζ depletion renders cells and mice vulnerable to various stressors such as chemotherapeutic agents and ionizing irradiation. Nevertheless, how DGK ζ is involved in DNA repair, a critical event of DNA damage response for survival remains unknown. For this study, we examined how DGK ζ depletion affects DNA repair mechanisms. We demonstrated that DGK ζ depletion causes attenuation of Akt activation and DNA-PK protein expression upon DNA damage, which might engender downregulated BRCA1 protein synthesis and stability. Results suggest that DGK ζ depletion attenuates BRCA1-mediated DNA repair machinery, thereby conferring vulnerability to DNA damage.

Keywords: γ H2AX; Actinomycin D; Akt; DNA damage response; DNA double-strand break; DNA-PK; Etoposide; p95/NBS1

1. Introduction

Ionizing radiation and chemotherapeutic agents can cause a DNA double-strand break (DSB), which represents the most lethal type of DNA damage and which can trigger a series of cellular DNA damage response pathways, including transcription factors such as p53 and NF- κ B [1]. p53 induction activates an apoptotic program, whereas NF- κ B prevents apoptosis [2]. Of the intracellular signaling cascades, diacylglycerol kinase (DGK) phosphorylates a second messenger diacylglycerol (DG) to generate another second messenger phosphatidic acid (PA), thereby regulating distinct downstream

cascades and different cellular responses [3–6]. Therefore, DGK activity induces a phase transition of signaling pathways. Reports of some earlier studies have described one member of the DGK family, DGK ζ , as closely involved in stress responses through p53 and NF- κ B regulation [7].

DGK ζ localizes predominantly to the nucleus and shuttles between the nucleus and the cytoplasm [8,9]. It is particularly interesting that DGK ζ exerts distinct effects on these transcription factors in these cellular compartments, catalytic activity-dependently and activity-independently. At the cellular level, DGK ζ promotes nuclear p53 transcriptional activity in a catalytic activity-dependent manner and its degradation in the cytoplasm via the ubiquitin–proteasome system (UPS) independently of catalytic activity [7,10,11]. It is particularly interesting that DGK ζ itself is subject to degradative breakdown by UPS [12]. Therefore, decreasing DGK ζ results in accumulation of p53, which induces cytotoxicity in the cytoplasm because cytoplasmic p53 associates with the proapoptotic protein Bak at the mitochondria to trigger apoptosis in a transcription-independent manner [13,14].

The regulatory mechanism of p53 by DGK ζ observed in cell-based experiments is also functional at the animal level. Whole body ionizing radiation strongly induces p53 protein in DGK ζ -deficient spleen tissues and renders those mice vulnerable to X-ray irradiation [15]. In this regard, X-ray irradiation-induced DSB is regulated by p53; it represents an initiator of radiation-induced genomic instability [16,17]. DSB is recognized by ataxia telangiectasia mutated kinase (ATM)[18], which promotes the accumulation and activation of p53, CHK2/Cds1, BRCA1, p95/NBS1, and histone H2X. Especially, p53 induces transactivation of various downstream genes such as p21, GAD45, Bax, and p53AIP1, thereby leading to cell cycle arrest, apoptosis, and DNA repair in a context-dependent manner [19].

Regarding the NF- κ B system, DGK ζ depletion facilitates I κ B degradation through specific IKK β activation, thereby accelerating nuclear translocation of NF- κ B p65 subunit [20]. Because DGK ζ deficiency also enhances p65 subunit phosphorylation, DGK ζ depletion altogether upregulates NF- κ B transcription activity. Reportedly, NF- κ B activation is favorable to cell survival after DNA damaging agents and ionizing irradiation treatment, although the function of NF- κ B can be either pro-apoptotic or anti-apoptotic depending on characteristics of the initial genotoxic signals and the cell type [21].

Reportedly, the cellular responses to DSB are finely tuned by numerous cascades. The cell fate depends on a delicate balance between pro-apoptotic and anti-apoptotic signals [21]. In this sense, DGK ζ depletion engenders attenuated p53 transcriptional activity together with enhanced NF- κ B activity, the total effects of which confer stress-vulnerability to the cells. However, functional implication of DGK ζ in DNA repair, a critical event of DNA damage response, remains unclear. This study was conducted to investigate how the regulatory mechanism of DNA repair is affected by DGK ζ depletion.

Results show that depletion of DGK ζ engenders decreased Akt activation, together with an attenuated DNA-PKcs protein level, upon DNA damage, those phenomena might downregulate the induction of protein synthesis and stability of BRCA1. Results suggest that BRCA1-mediated DNA repair mechanism is attenuated in DGK ζ -depleted cells. Additionally, DGK ζ depletion apparently suppresses functional DNA repair protein complex formation in the nucleus.

2. Materials and Methods

2.1. Reagents

Cell culture reagents were obtained from Wako Pure Chemical Industries. DNA damage reagents including Actinomycin D (Act D) and Etoposide (Eto) were purchased from Sigma.

2.2. Cell lines and cell culture

U2OS (p53 wild-type) human osteosarcoma cells and mouse embryonic fibroblasts (MEFs) were used in this study. MEFs obtained from wild-type (C57BL6) and DGK ζ -KO mice were immortalized by transfection of SV40 plasmid DNA [20]. Cells were cultured in Dulbecco's modified Eagle's

medium (DMEM) with 10% heat-inactivated fetal bovine serum, penicillin (100 U/ml) and streptomycin (100 U/ml). Cells were incubated at 37 °C in a humidified atmosphere of 95% air and 5% CO₂.

2.3. RNAi and transfection

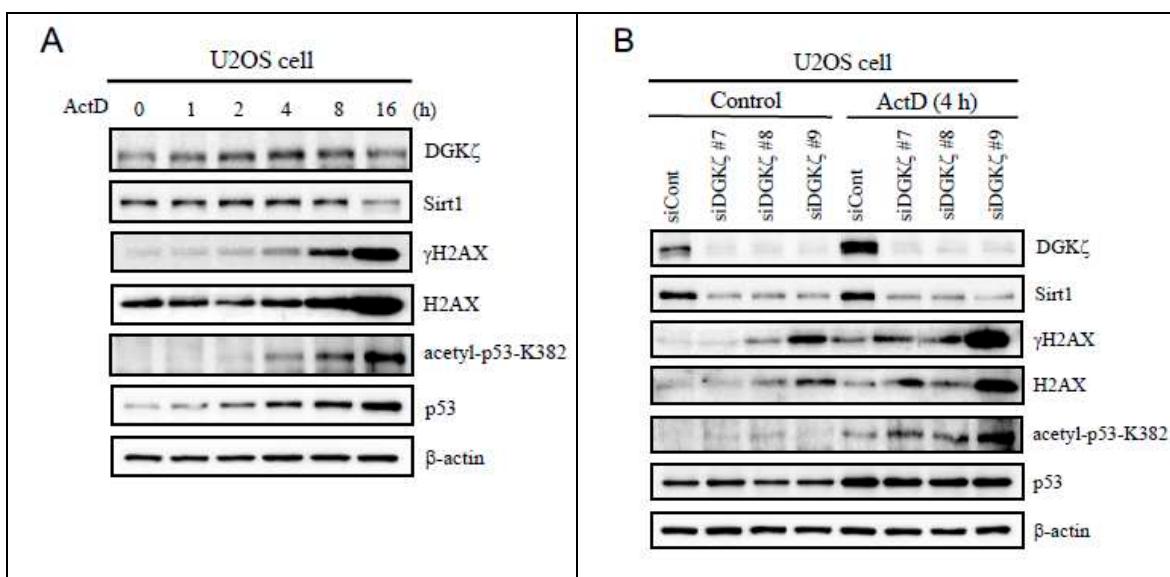
Human DGK ζ -specific small interfering RNAs (siRNAs) including siDGK ζ #7 (HSS112447), siDGK ζ #8 (HSS122448), and siDGK ζ #9 (HSS122449) were purchased from Life technology. Control siRNA (siCont, All stars negative control) were from Qiagen. Cells were transfected with siRNAs using LipofectAMINE RNAiMAX reagent (Invitrogen) according to the manufacturer's instructions.

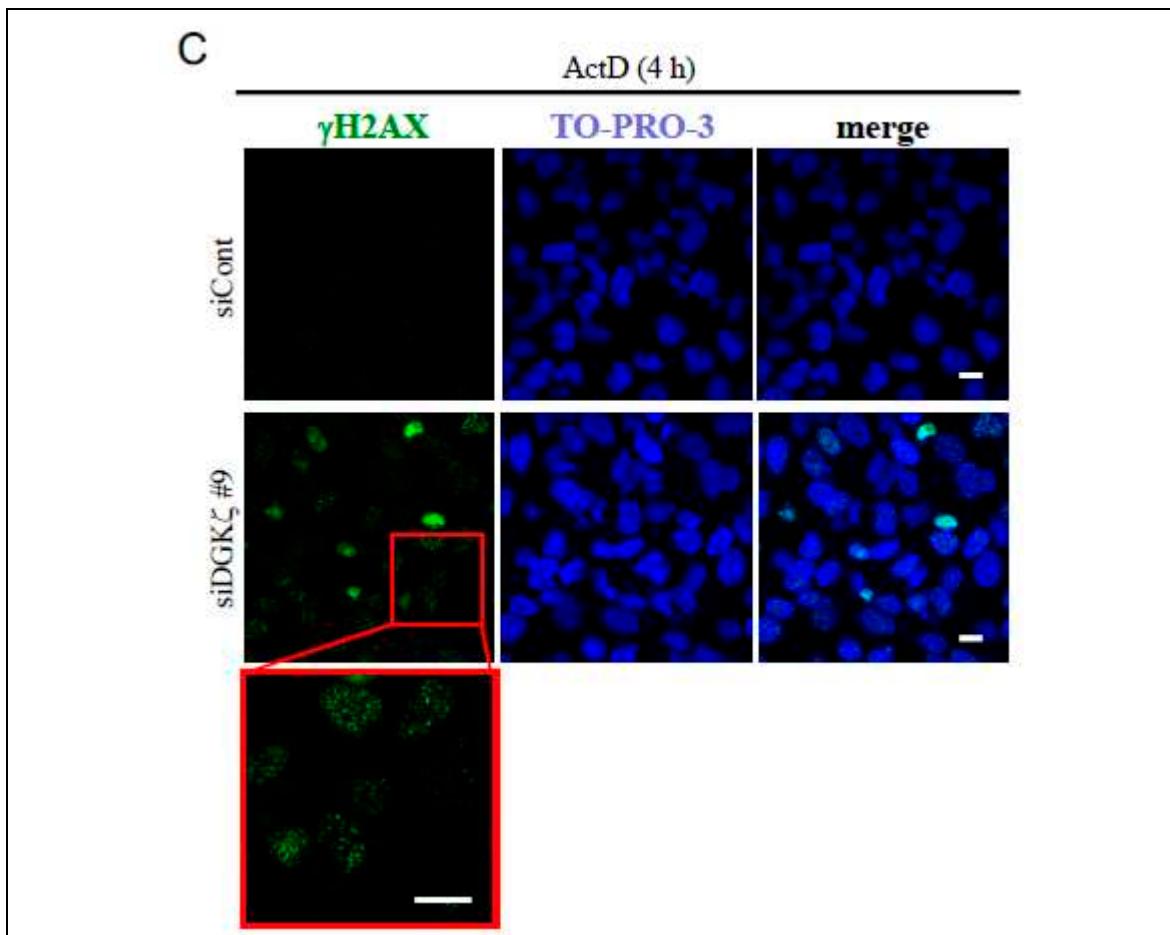
2.4. Immunoblotting and antibodies

Cells treated with or without reagents were lysed in lysis buffer consisting 20 mM Tris-HCl (pH 7.4), 50 mM NaCl, 1 mM Na₃VO₄, 50 mM NaF, 1% Triton X-100, and protease inhibitors cocktail (Sigma). Protein concentration was determined using BCA Protein Assay Reagent (Pierce, Rockford, IL) according to the instruction manual. Equal amounts of protein lysate were applied in SDS-PAGE and electrophoretically transferred on PVDF membrane (Millipore). After blocking with 5% skim milk in PBS-T, the membrane were immunoblotted with primary antibodies against DGK ζ (1:1000; rabbit [9], guinea pig [22]), β -actin (1:10000; #3700; Cell Signaling), Sirt1 (1:1000; #9475; Cell Signaling), p53 (1:1000; DO-1; Santa Cruz), acetyl-p53 Lys382 (human protein) or Lys379 (mouse protein), (1:1000; #2570; Cell Signaling), H2AX (1:1000; #2595; Cell Signaling), γ H2AX (1:1000; #9718; Cell Signaling), Akt (1:1000; #9272; Cell Signaling), phospho-Akt Ser473 (1:1000; #4060; Cell Signaling), BRCA1 (1:1000; #9019; Cell Signaling), phospho-BRCA1 Ser1524 (1:1000; #9009; Cell Signaling), DNA-PKcs (1:1000; #4602; Cell Signaling), phospho-DNA-PKcs Ser2056 (1:1000; #68716; Cell Signaling), p95/NBS1 (1:1000; #14956; Cell Signaling), Rad50 (1:1000; #3427; Cell Signaling), Ku80 (1:1000; #2180; Cell Signaling), MERIT40 (1:1000; #12711; Cell Signaling), BRE (1:1000; #12457; Cell Signaling), BRCC36 (1:1000; #18215; Cell Signaling), XLF (1:1000; #2854; Cell Signaling). Immunoreactive complexes were visualized using the chemiluminescent HRP Substrate ImmobilonTM Western (Millipore).

2.5. Immunofluorescence microscopy

Cells seeded on the coverslip were transfected with negative control siRNA or siDGK ζ . Forty-eight hours after transfection, cells were fixed with 4% paraformaldehyde, washed with PBS three times, and permeabilized with 0.1% Triton/PBS. Cells were incubated with 10% normal donkey serum for blocking and incubated with primary antibody overnight at room temperature in a moist chamber. For immunofluorescence examination, cells were washed with PBS three times and incubated with fluorescence-conjugated secondary antibody for 1 h. TO-PRO-3 was used for nuclear staining. The images were observed under a confocal laser scanning microscope (LSM510META, Carl Zeiss, Jena, Germany).


2.6. Immunoprecipitation analysis

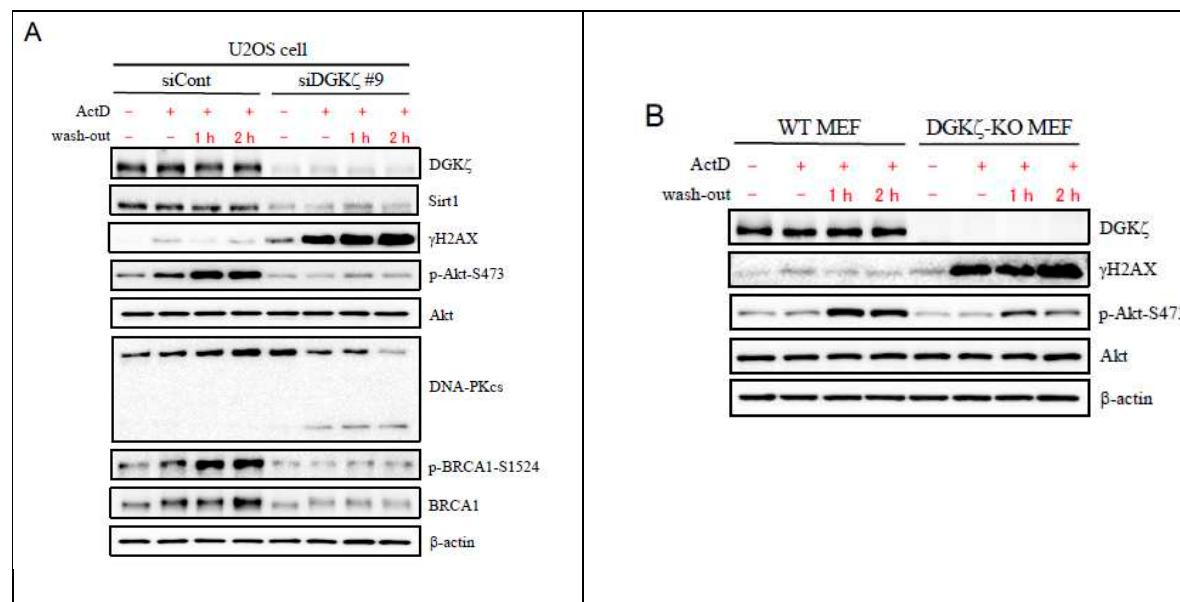

All cells were dissolved in lysis buffer (20 mM Tris-HCl, pH 7.4, 50 mM NaCl, 1 mM Na₃VO₄, 50 mM NaF, 1% Triton X-100, protease inhibitors cocktail). Each 8,000 μ g of cell lysates was precleaned with protein A Sepharose beads (GE Healthcare, Piscataway, NJ, USA) for 2 h at 4 °C, incubated with antibodies (anti-DGK ζ , anti-Akt, anti-p95/NBS1) in U2OS cells overnight at 4 °C, and reacted with protein A Sepharose beads for 6 h. After the immunoprecipitated complexes were washed four times with lysis buffer, they were boiled for 15 min in SDS sample buffer (New England Biolabs, Inc. Beverly, MA, USA). Immunoprecipitated complexes were subjected to SDS-PAGE, transferred to PVDF membranes (Millipore), and analyzed with immunoblotting.

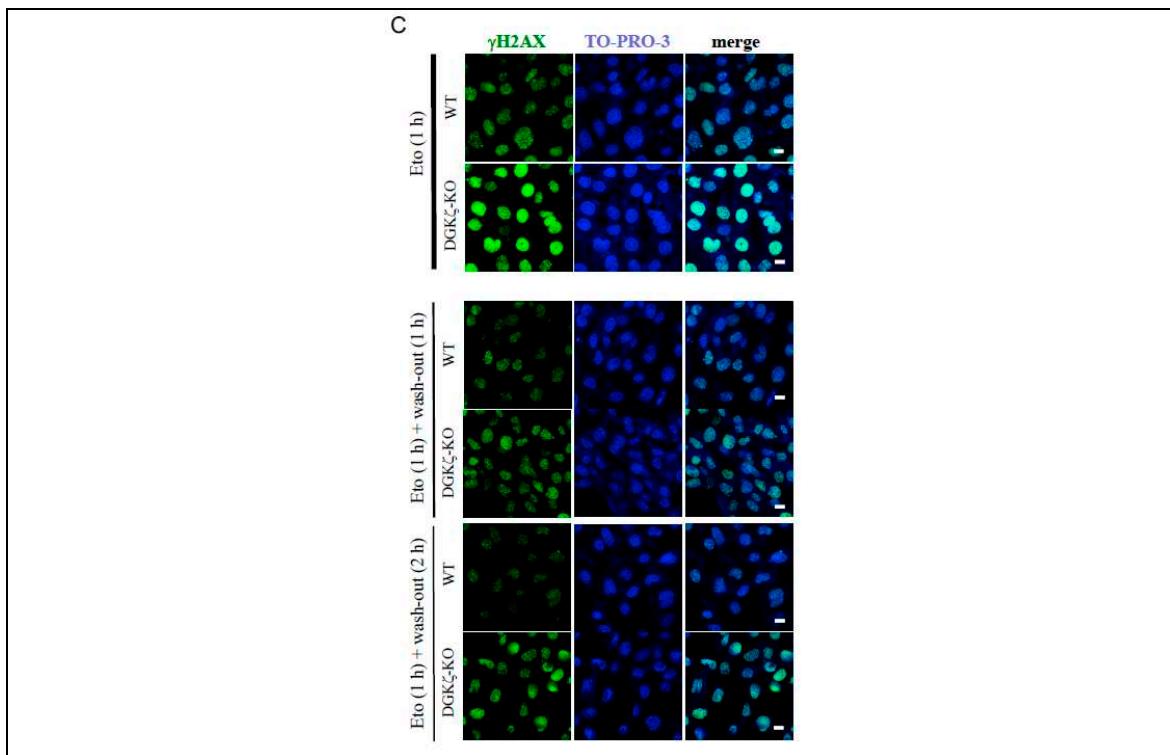
3. Results

3.1. Depletion of DGK ζ enhances DNA double strand break

Earlier reports have described that DSB is induced by higher concentrations of chemical agents such as DNA-intercalating actinomycin D (ActD) and topoisomerase II inhibitor etoposide (Eto), as well as X-ray irradiation [23–25]. Because p53 is induced strongly upon DSB, we first used U2OS cells that express wild-type p53 and examined the time course of cellular response to ActD. The phosphorylated form of H2AX, designated γ H2AX, is well known to serve as a marker for DSB and to accumulate at DSB sites [26]. Immunoblot analysis showed that γ H2AX level is increased gradually after 4 h of treatment (Figure 1A). The increased γ H2AX level coincided with increased p53 protein level. Furthermore, acetylation level of p53 at Lys382 was increased, which is consistent with previous findings [27]. Through the time course of increasing levels of these DNA damage markers, we found that protein levels of DGK ζ and histone deacetylase Sirt1 are inversely decreased, especially at 16 h of treatment. In this regard, we earlier reported that DGK ζ knockdown leads to a decreased Sirt1 level [28].

Figure 1. Depletion of DGK ζ promotes DNA double strand break upon ActD treatment (A) U2OS cells were treated with ActD (400 nM) for varying times (~16 h) and subjected to immunoblotting using antibodies against DGK ζ , Sirt1, H2AX, γ H2AX, p53, and acetyl-p53 K382. (B) U2OS cells were transfected with siRNA for control (siCont), siDGK #7, siDGK ζ #8, or siDGK ζ #9. After 48 h of transfection, cells were treated with ActD (400 nM) for 4 h and subjected to immunoblotting using indicated antibodies. Anti- β -actin antibody was used as a loading control. (C) Cells transfected with siCont or siDGK ζ were treated with ActD (400 nM) for 4 h. After fixation with 4% paraformaldehyde, cells were stained with anti- γ H2AX antibody followed by anti-rabbit IgG-conjugated Alexa 488 (green). TO-PRO-3 (blue) was used for nuclear staining. Scale bars = 20 μ m.


Because an earlier report showed that DGK ζ -KO mice are vulnerable to DNA damage inflicted by whole-body irradiation [15], we next checked whether depletion of DGK ζ promotes DNA damage response upon ActD treatment. To examine the causal relation between the degree of DNA damage and DGK ζ level, we performed experimental downregulation of DGK ζ via siRNA. Figure 1B shows that DGK ζ knockdown caused increased γ H2AX level upon ActD treatment. Similar results were obtained using Eto treatment (data not shown). Furthermore, p53-Lys382 acetylation level was significantly enhanced in siDGK ζ -transfected cells. Since Sirt1 is shown to deacetylate p53-Lys382 [29], decreased Sirt1 level may lead to enhanced p53 acetylation at this site. This finding suggests that DGK ζ depletion enhances DSB and DNA damage signaling.


Results of an earlier study indicated that the quantities of γ H2AX foci in the nucleus are comparable to the quantities of induced DSB [30]. Therefore we next performed immunofluorescence staining of U2OS cells transfected with siCont or siDGK ζ . Figure 1C shows immunofluorescence analysis results: γ H2AX foci abound in the nucleus of siDGK ζ -transfected cells after treatment with ActD compared with the controls. Similar results were obtained using Eto treatment (data not shown). These morphological data confirm that depletion of DGK ζ facilitates DSB upon DNA damage.

3.2. DNA repair is delayed in DGK α -depleted cells

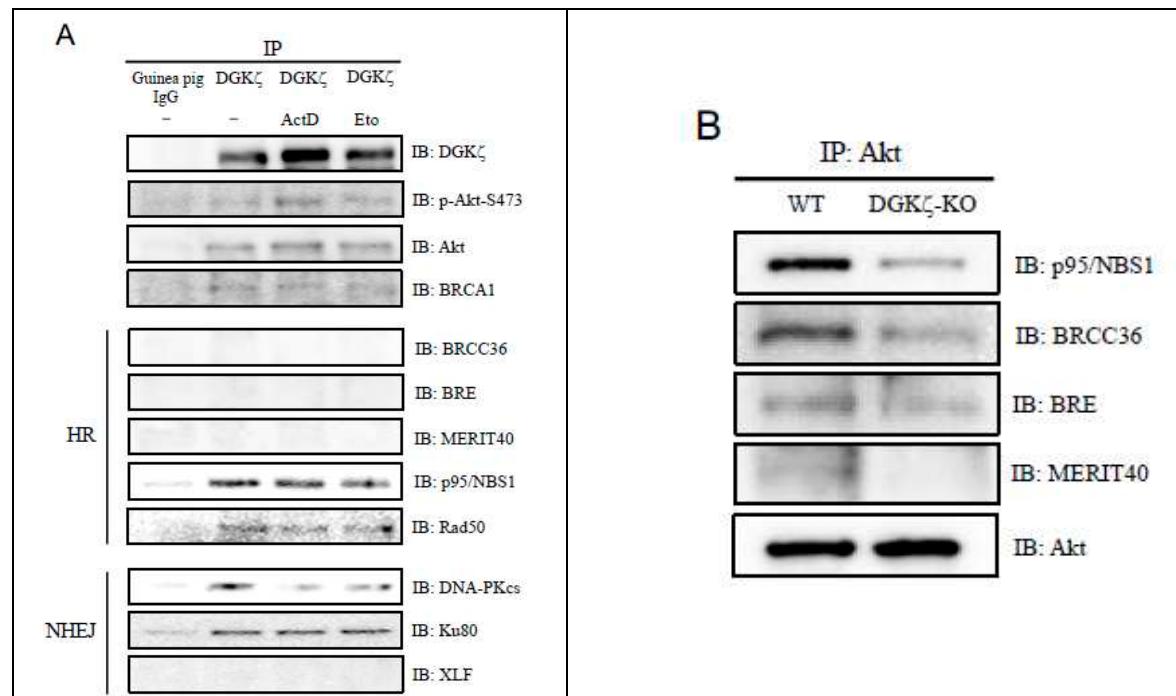
As a universal process in living cells, DNA repair maintains the structural integrity of chromosomal DNA upon damage arising from environmental insult, and from normal metabolic processes [1,31]. Nonhomologous end-joining (NHEJ) and homologous recombination (HR) are the two primary processes used to repair DSB [32].

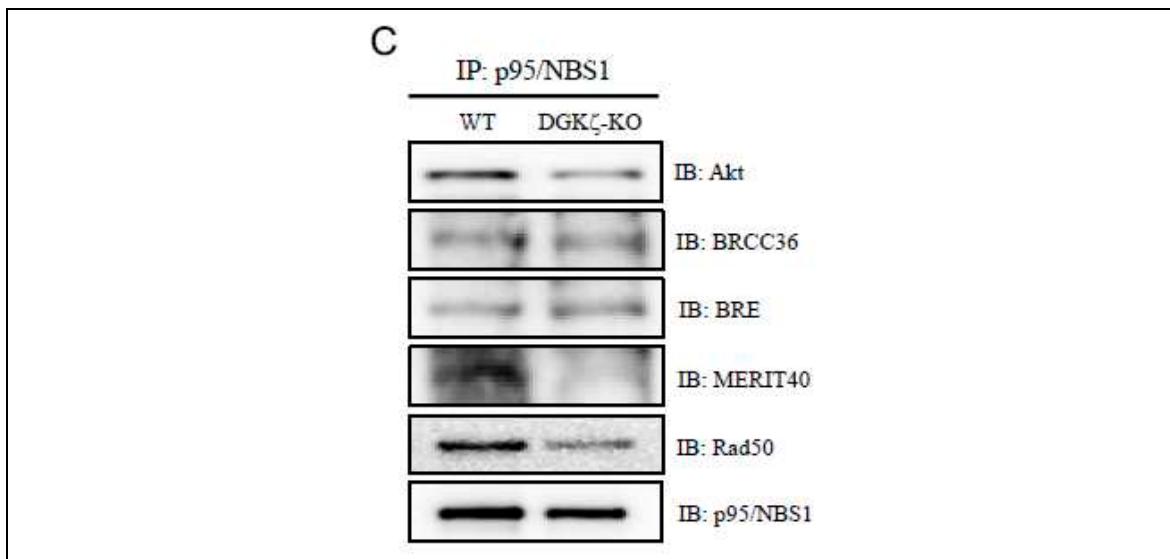
To investigate the role of DGK ζ in DNA repair, we next examined how the γ H2AX expression level is changed in DGK ζ -depleted cells after washing out DNA-damaging agents. As presented in Figure 2A, in siCont-transfected U2OS cells, the γ H2AX level was slightly increased on ActD treatment, but it returned to the basal level after washing out. By contrast, in siDGK ζ -transfected U2OS cells, the γ H2AX level was robustly increased on ActD treatment. Moreover, it remained high, even after washing out. Similar results were obtained for WT and DGK ζ MEFs (Figure 2B). Immunofluorescence analysis confirmed the results obtained from immunoblot analysis: In the nucleus of WT MEFs, γ H2AX-immunofluorescence returned to the basal level 2 h after washing out ActD (Figure 2C). In the nucleus of DGK ζ -KO MEFs, however, γ H2AX-immunofluorescence remained high at this time point of washing out. Together, results suggest that DGK ζ depletion leads not only to facilitated DSB but also to delayed DNA repair, thereby enhancing vulnerability to DNA damage.

Figure 2. DNA repair is delayed in DGK ζ -depleted cells. Because of the most effective induction of acetyl-p53 K382 and γ H2AX on ActD treatment in Figure 1B, siDGK ζ #9 was used for the subsequent knockdown experiments. U2OS cells transfected with siCont or siDGK ζ #9 (A) were treated with or without ActD (400 nM) for 4 h. WT and DGK ζ -KO MEFs (B) were also treated similarly. After thoroughly washing out ActD, cells were further incubated with the regular DMEM and subjected to immunoblotting using antibodies against DGK ζ , γ H2AX, Sirt1, Akt, phospho-Akt S473, DNA-PKcs, BRCA1, and phospho-BRCA1 S1524. Anti- β -actin antibody was used as a loading control. (C) WT and DGK ζ -KO MEFs were treated with Eto (10 μ M) for 1 h. After thoroughly washing out Eto, cells were fixed with 4% paraformaldehyde and stained with anti- γ H2AX antibody followed by anti-rabbit IgG-conjugated Alexa 488 (green). TO-PRO-3 (blue) was used for nuclear staining. Scale bars = 20 μ m.

Earlier reports have described that Akt is involved in the NHEJ repair pathway of DNA damage [32]. Akt activated by phosphorylation facilitates ionizing radiation-induced DNA-PK complex formation and accumulation of the catalytic subunit of DNA-PK (DNA-PKcs) to DNA damage sites [33]. In this regard, reagent-induced DSB also promotes the phosphorylation of Akt at Ser473 [34,35]. Therefore, we next checked whether depletion of DGK ζ affects the phosphorylation status of Akt-Ser473 after washing out DNA damaging agents. As presented in Figure 2A, the phosphorylation level of Akt at Ser473 was increased in siCont-transfected U2OS cells upon ActD treatment and was further upregulated after washing out. However, it remained mostly unchanged or was increased slightly in siDGK ζ -transfected U2OS cells before and upon ActD treatment, and after washing out. Similar results were obtained for WT and DGK ζ MEFs (Figure 2B). Results suggest that the Akt-regulated DNA repair mechanism upon DNA damage is suppressed in DGK ζ -depleted cells.

One of the enzymes responsible for Akt phosphorylation at Ser473 upon DNA damage is DNA-PK [34]. Because DNA-PK consists of the DNA-PKcs and Ku antigen complex (Ku70/80) [36], we next examined the DNA-PKcs level upon ActD treatment. As presented in Figure 2A, DNA-PKcs level was decreased in siDGK ζ -transfected U2OS cells at 1 or 2 h after washing out.

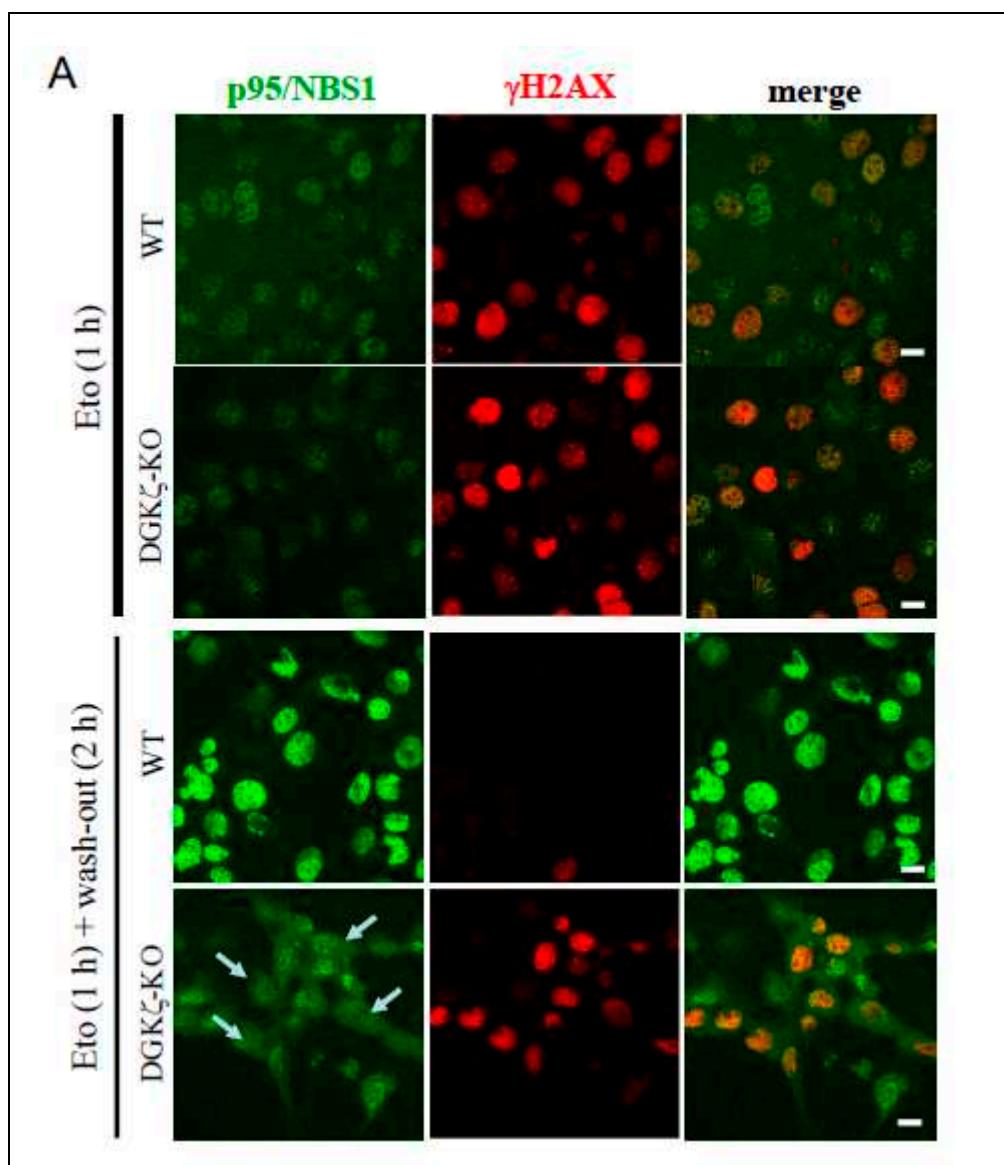

3.3. DGK ζ depletion attenuates BRCA1-mediated DNA repair mechanism.

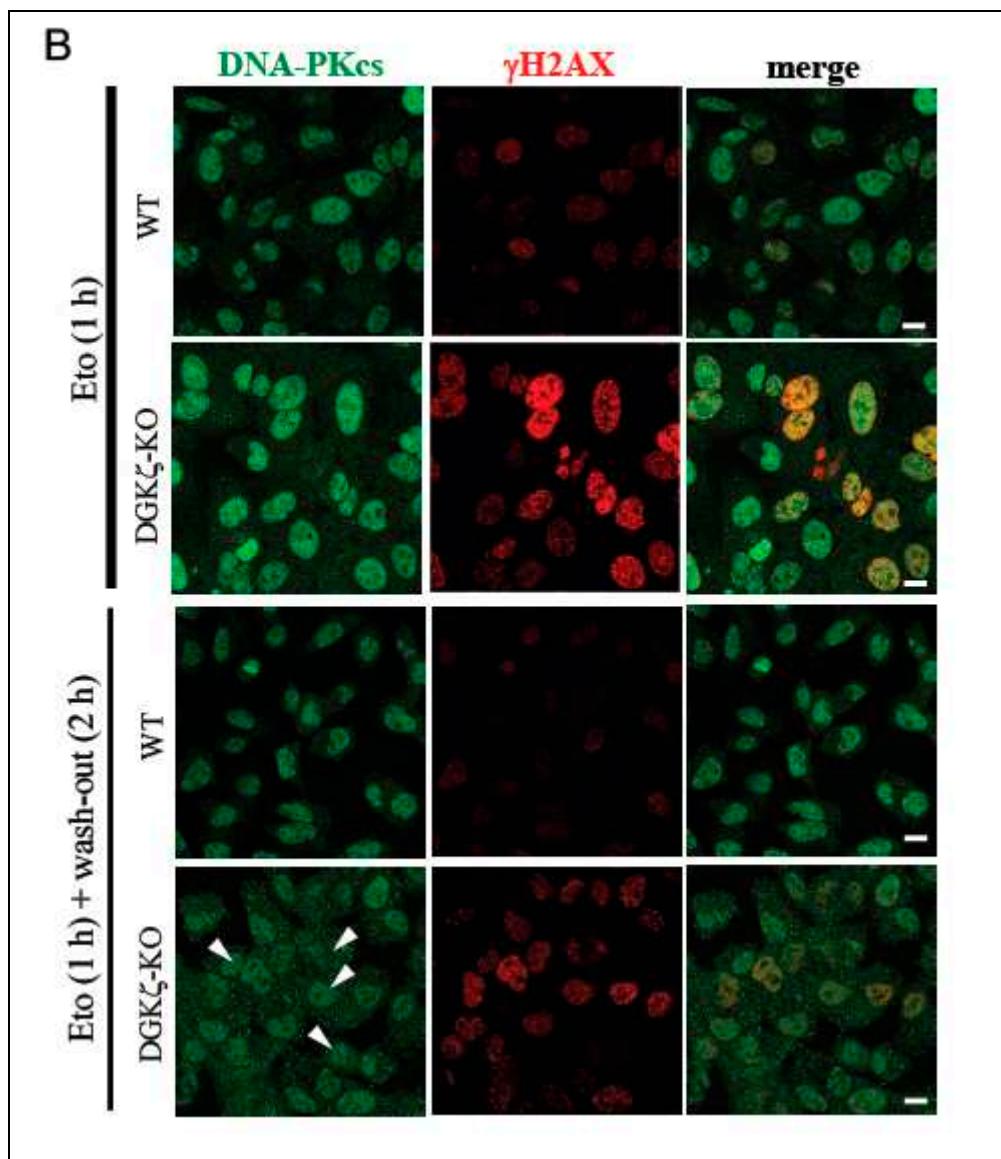

BRCA1 plays pivotal roles in the maintenance of genome stability. Reportedly, Akt regulates BRCA1 protein stability and function through direct phosphorylation of BRCA1; also, the phosphorylation status of Akt-Ser473 consistently correlates with the BRCA1 protein stability [37].

Therefore, we further investigated whether depletion of DGK ζ affects the total and phosphorylated levels of BRCA1 after washing out DNA damaging agents. Immunoblot analysis revealed that total and phosphorylated (Ser1524) levels of BRCA1 are increased in siCont-transfected U2OS cells upon ActD treatment; furthermore, those levels remained high after washing out (Figure 2A). In siDGK ζ -transfected U2OS cells, however, the BRCA1 level remained at the basal level during the course of ActD treatment and washing out. Results suggest that phosphorylation of BRCA1 at S1542 is necessary for DNA repair. This inference is supported by results obtained from an earlier study showing that phosphorylation of BRCA1 at this site is crucially important in the radioresistant cell phenotype [38].

3.4. DGK ζ co-immunoprecipitates with DNA damage-repair proteins.

Having demonstrated that depletion of DGK ζ attenuates the phosphorylation level of Akt at Ser473 and protein levels of DNA-PKcs and BRCA1 (Figure 2A,B), we next examined whether DGK ζ interacts with Akt and DNA damage-repair proteins (Figure 3A). Results showed that DGK ζ interacts with total Akt and phospho-Akt (Ser473). It is particularly interesting that DGK ζ was found to interact with BRCA1, p95/NBS1, and Rad50 of HR-related proteins, and Ku80 and DNA-PKcs of NHEJ-related proteins, but not with MERIT40, BRE, BRCC36, and XLF. Results indicate that DGK ζ participates in the DNA repair complexes of both HR and NHEJ.


Figure 3. DGKζ co-immunoprecipitates with DNA damage-repair proteins. (A) U2OS cells were treated with ActD (400 nM) for 4 h or Eto (10 μ M) for 1 h. Cell lysates were immunoprecipitated using control guinea pig IgG or anti-DGKζ antibody. The immunoprecipitates were subjected to immunoblotting using antibodies against several DNA damage-repair proteins for homologous recombination (HR) and for non-homologous end-joining (NHEJ) mechanisms. (B, C) The effects of DGKζ depletion on the binding affinities of Akt (B) and of p95/NBS1 (C) with DNA damage-repair proteins. Cell lysates of WT or DGKζ-KO MEFs were immunoprecipitated using anti-Akt or anti-p95/NBS1 antibody. The immunoprecipitates were subjected to immunoblotting using indicated antibodies.


Therefore, we next investigated whether DGKζ depletion affects the binding affinities between proteins in DNA repair protein complexes. Results demonstrated that the binding affinities of Akt with p95/NBS1, BRCC36, BRE, or MERIT40 are decreased in DGKζ-KO MEFs (Figure 3B). Furthermore, the binding affinities of p95/NBS1 with Akt, MERIT40, or Rad50 were decreased in the absence of DGKζ (Figure 3C). These results suggest that DGKζ serves as a scaffold protein that tethers the DNA repair protein complex together. Consequently, DGKζ depletion might loosen DNA repair protein complex binding affinity, thereby attenuating effective DNA repair mechanism.

3.5. Depletion of DGK induces cytoplasmic retention of p95/NBS1 and DNA-PKcs during DNA repair

Repair of radiation-induced DSB is dependent on the multifunctional MRN complex containing Mre11, Rad50, and the NBS1 gene product p95/NBS1 [39]. Of those, p95/NBS1 is necessary for proper G2/M DNA-damage checkpoint function [40] and is crucially important for HR following DSB.

Because DNA repair was delayed in DGK -depleted cells (Figure 2), we next investigated whether depletion of DGKζ exerts some effects on p95/NBS1 and DNA-PKcs. These proteins represent the major components of HR and NHEJ repair mechanisms, respectively. Because DNA repair proteins accumulate to the nucleus upon DNA damage, we specifically examined subcellular localization of these molecules upon DNA damage (Figure 4). Immunofluorescence analysis revealed that, in WT MEFs, p95/NBS1 and DNA-PKcs clearly accumulate to the nucleus 2 h upon Eto treatment and after washing out Eto, whereas in DGKζ-KO MEFs, p95/NBS1 (arrows in Figure 4A) and DNA-PKcs (arrowheads in Figure 4B) partially localize to the cytoplasm. This finding suggests that DGKζ depletion partially induces cytoplasmic retention of p95/NBS1 and DNA-PKcs, thereby attenuating functional DNA repair complex formation in the nucleus.

Figure 4. Depletion of DGK ζ induces cytoplasmic retention of DNA damage-repair proteins. WT and DGK ζ -KO MEFs were treated with Eto (10 μ M) for 1 h. After thoroughly washing out Eto, cells were further incubated with the regular DMEM for 2 h. Cells were fixed with 4% paraformaldehyde and stained with anti-p95/NBS1 (A) or anti-DNA-PKcs (B) antibody followed by anti-rabbit IgG-conjugated Alexa 488 (green). Cells were co-stained and anti- γ H2AX antibody followed by anti-mouse IgG-conjugated Alexa 594 (red). The immunoreactivity for γ H2AX almost disappears in WT MEFs after washing out for 2 h. Note that the immunoreactivities for p95/NBS1 (arrows in A) and DNA-PKcs (arrowheads in B) are partially recognized to the cytoplasm in DGK ζ -KO MEFs after washing out for 2 h.

4. Discussion

Our earlier studies show that DGK ζ deficiency renders cells and mice vulnerable to various stressors such as doxorubicin, hypoxia, and X-ray irradiation [15]. Of those, ionizing radiation and chemotherapeutic agents cause DSB, the severest type of DNA damage [1]. Actually, DSB activates a series of cellular DNA damage response pathways, in which tumor suppressor p53 plays a considerably important role. The DNA damage response pathways regulate multiple processes, including DNA damage sensing, control of cell cycle arrest and apoptosis, and DNA repair [41,42]. In this regard, DGK ζ depletion leads to an increased level of p53 protein, but attenuates p53 transactivation activity. However, increased p53 proteins cause cytotoxicity in the cytoplasm independently of DGK catalytic activity [7]. The present study specifically addressed DNA repair, a

critical event of recovery from DNA damage, in DGK ζ -depleted cells. Results demonstrated that DGK ζ depletion attenuates the BRCA1-mediated DNA repair mechanism. In light of findings of the earlier and present studies together, vulnerability of DGK ζ -depleted cells to DSB can be ascribed to enhanced p53 cytotoxicity and attenuated DNA repair mechanism.

How does DGK ζ depletion affect the DNA damage response pathways? First, we found that in DGK ζ -depleted cells DSB marker γ H2AX expression is increased on DNA damaging agent treatment and that it remains high after washing out. This finding suggests that DGK ζ depletion results in facilitated DSB and delayed DNA repair, thereby enhancing vulnerability to DNA damage.

DSB is a life threatening lesion, the repair of which is promoted by an intricate network of multiple DNA repair pathways [41]. It includes NHEJ and HR. Also, NHEJ promotes the potentially inaccurate re-ligation of DSBs, whereas HR precisely restores the genomic sequence of the broken DNA ends using sister chromatids as a template for repair [43]. Also, DSB is bound rapidly by the Ku70/Ku80 heterodimer, which activates the catalytic subunit of DNA-PK to initiated NHEJ [43]. Reportedly, Sirt1 interacts with distinct DNA damage repair proteins including Ku70, which is deacetylated and activated by Sirt1 upon DNA damage [44]. Thus, decreased level of Sirt1 should result in dysregulated Ku70-mediated NHEJ repair pathway under DGK ζ -depleted conditions. In addition, Akt, through an immediate complex formation with DNA-PKcs, stimulates the accumulation of DNA-PKcs at DSB sites and promotes DNA-PKcs activity for efficient NHEJ DSB repair. [33].

In this regard, the phosphorylation level of Akt at Ser473 is increased in control U2OS cells upon ActD treatment. Moreover, it is further upregulated after washing out, suggesting that a proper DNA repair mechanism functions. However, Akt phosphorylation level is not increased in DGK ζ -depleted cells before and upon ActD treatment, and after washing out. This finding suggests that DGK ζ depletion suppresses Akt-mediated NHEJ DNA repair. Consistent with this inference, the protein level of DNA-PKcs, which is responsible for Akt-Ser473 phosphorylation upon DNA damage [34], is not upregulated, but is rather downregulated in DGK ζ -depleted cells upon ActD treatment and after washing out.

Actually, BRCA1 is well-known to play a major role in DNA damage response, including both HR and NHEJ repair systems, by participating in cellular pathways for DNA repair, mRNA transcription, cell cycle regulation, and protein ubiquitination [45,46]. In addition to the regulation of DNA-PK, Akt participates in the regulatory mechanism of BRCA1 protein stability and function through direct phosphorylation of BRCA1. Furthermore, the Akt-Ser473 phosphorylation status consistently correlates with stability of the BRCA1 protein [37]. In this regard, BRCA1 protein and phosphorylation levels are upregulated significantly in control cells, but those levels remain quite low in DGK ζ -depleted cells upon DNA damaging agent treatment and after washing out.

Collectively, the results presented herein suggest that depletion of DGK ζ engenders decreased Akt activation, together with the attenuated DNA-PKcs protein level. As a result, induction of protein synthesis and stability of BRCA1 are downregulated, which attenuates BRCA1-mediated DNA repair mechanism in DGK ζ -depleted cells.

Furthermore, we showed that the DNA damage response pathway dysfunction results in destabilization of DNA repair complex in DGK ζ -depleted cells. Under normal conditions, DGK ζ interacts with Akt and BRCA1, together with HR-related proteins (p95/NBS1, and Rad50) and NHEJ related proteins (Ku80 and DNA-PKcs). In the absence of DGK ζ the binding affinities of Akt with p95/NBS1, MERIT40, BRE, or BRCC36 are decreased. Also, interaction of p95/NBS1 with Akt, MERIT40, or Rad50 is attenuated. These findings suggest that DGK ζ functions as a scaffold protein for proper integration of DNA repair proteins. Therefore, DGK ζ depletion might suppress effective complex formation of DNA repair proteins. It is also noteworthy that DGK ζ depletion partially induces cytoplasmic retention of the major DNA repair proteins, such as NMRN complex protein p95/NBS1 and DNA-PKcs, which might further attenuate functional DNA repair complex formation of both HR and NHEJ mechanisms in the nucleus.

The present study suggests that the critical roles of DGK ζ in DNA repair mechanism include the regulation of Sirt1 and Akt, which initiate and regulate downstream pathways for DNA repair

program. Several points remain to be elucidated: Do these effects of DGK ζ on DNA repair proteins depend on DGK enzymatic activity? Where does DGK ζ act? As shown for p53 regulation, DGK ζ supports nuclear p53 transcriptional activity in a catalytic activity-dependent manner and facilitates its cytoplasmic degradation via UPS, independently of catalytic activity [7,10,11]. Therefore, further study is warranted to assess the regulatory mechanisms of DGK ζ on Sirt1 and Akt, including interaction, activity-dependency, and subcellular localization.

Authors' contributions: TT, MI, and KG conceived the study. TT performed experiments and analyzed data. MI helped writing the manuscript. TT and KG wrote the manuscript.

Acknowledgements: This work was supported by Grants-in-Aid from The Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan (18K06815 and 22K06804 to TT).

Conflict of interest: The authors declare that they have no conflict of interest.

References

1. Chang, H. H. Y.; Pannunzio, N. R.; Adachi, N.; Lieber, M. R. Non-homologous DNA end joining and alternative pathways to double-strand break repair. *Nat. Rev. Mol. Cell Biol.* **2017**, *18* (8), 495-506.
2. Tergaonkar, V.; Pando, M.; Vafa, O.; Wahl, G.; Verma, I. p53 stabilization is decreased upon NF κ B activation: a role for NF κ B in acquisition of resistance to chemotherapy. *Cancer Cell* **2002**, *1* (5), 493-503.
3. Kanoh, H.; Yamada, K.; Sakane, F. Diacylglycerol kinase: a key modulator of signal transduction? *Trends Biochem. Sci.* **1990**, *15* (2), 47-50.
4. Sakane, F.; Imai, S.; Kai, M.; Yasuda, S.; Kanoh, H. Diacylglycerol kinases: why so many of them? *Biochim. Biophys. Acta* **2007**, *1771* (7), 793-806.
5. Goto, K.; Hozumi, Y.; Nakano, T.; Saino, S. S.; Kondo, H. Cell biology and pathophysiology of the diacylglycerol kinase family: morphological aspects in tissues and organs. *Int. Rev. Cytol.* **2007**, *264*, 25-63.
6. Topham, M. K.; Epand, R. M. Mammalian diacylglycerol kinases: molecular interactions and biological functions of selected isoforms. *Biochim. Biophys. Acta* **2009**, *1790* (6), 416-424.
7. Tanaka, T.; Nakano, T.; Hozumi, Y.; Martelli, A. M.; Goto, K. Regulation of p53 and NF- κ B transactivation activities by DGK ζ in catalytic activity-dependent and -independent manners. *Biochim. Biophys. Acta Mol. Cell Res.* **2021**, *1868* (4), 118953.
8. Goto, K.; Kondo, H. A 104-kDa diacylglycerol kinase containing ankyrin-like repeats localizes in the cell nucleus. *Proc. Natl. Acad. Sci. U.S.A.* **1996**, *93* (20), 11196-11201.
9. Hozumi, Y.; Ito, T.; Nakano, T.; Nakagawa, T.; Aoyagi, M.; Kondo, H.; Goto, K. Nuclear localization of diacylglycerol kinase zeta in neurons. *Eur. J. Neurosci.* **2003**, *18* (6), 1448-1457.
10. Goto, K.; Tanaka, T.; Nakano, T.; Okada, M.; Hozumi, Y.; Topham, M. K.; Martelli, A. M. DGK ζ under stress conditions: "to be nuclear or cytoplasmic, that is the question". *Adv. Biol. Regul.* **2014**, *54*, 242-253.
11. Tanaka, T.; Okada, M.; Hozumi, Y.; Tachibana, K.; Kitanaka, C.; Hamamoto, Y.; Martelli, A. M.; Topham, M. K.; Iino, M.; Goto, K. Cytoplasmic localization of DGK ζ exerts a protective effect against p53-mediated cytotoxicity. *J. Cell Sci.* **2013**, *126* (Pt 13), 2785-2797.
12. Okada, M.; Hozumi, Y.; Tanaka, T.; Suzuki, Y.; Yanagida, M.; Araki, Y.; Evangelisti, C.; Yagisawa, H.; Topham, M. K.; Martelli, A. M.; et al. DGK ζ is degraded through the cytoplasmic ubiquitin-proteasome system under excitotoxic conditions, which causes neuronal apoptosis because of aberrant cell cycle reentry. *Cell. Signal.* **2012**, *24* (8), 1573-1582.
13. Green, D. R.; Kroemer, G. Cytoplasmic functions of the tumour suppressor p53. *Nature* **2009**, *458* (7242), 1127-1130.
14. Marchenko, N. D.; Wolff, S.; Erster, S.; Becker, K.; Moll, U. M. Monoubiquitylation promotes mitochondrial p53 translocation. *Embo J.* **2007**, *26* (4), 923-934.
15. Tanaka, T.; Iseki, K.; Tanaka, K.; Nakano, T.; Iino, M.; Goto, K. DGK ζ ablation engenders upregulation of p53 level in the spleen upon whole-body ionizing radiation. *Adv. Biol. Regul.* **2018**, *67*, 93-100.
16. Fei, P.; El-Deiry, W. S. P53 and radiation responses. *Oncogene* **2003**, *22* (37), 5774-5783.
17. Suzuki, K.; Ojima, M.; Kodama, S.; Watanabe, M. Radiation-induced DNA damage and delayed induced genomic instability. *Oncogene* **2003**, *22* (45), 6988-6993.
18. Nelson, W. G.; Kastan, M. B. DNA strand breaks: the DNA template alterations that trigger p53-dependent DNA damage response pathways. *Mol. Cell. Biol.* **1994**, *14* (3), 1815-1823.
19. Vousden, K. H.; Prives, C. Blinded by the Light: The Growing Complexity of p53. *Cell* **2009**, *137* (3), 413-431.

20. Tsuchiya, R.; Tanaka, T.; Hozumi, Y.; Nakano, T.; Okada, M.; Topham, M. K.; Iino, M.; Goto, K. Downregulation of diacylglycerol kinase ζ enhances activation of cytokine-induced NF- κ B signaling pathway. *Biochim. Biophys. Acta* **2015**, *1853* (2), 361-369.
21. Habraken, Y.; Piette, J. NF- κ B activation by double-strand breaks. *Biochem. Pharmacol.* **2006**, *72* (9), 1132-1141.
22. Okada, M.; Hozumi, Y.; Ichimura, T.; Tanaka, T.; Hasegawa, H.; Yamamoto, M.; Takahashi, N.; Iseki, K.; Yagisawa, H.; Shinkawa, T.; et al. Interaction of nucleosome assembly proteins abolishes nuclear localization of DGK ζ by attenuating its association with importins. *Exp. Cell Res.* **2011**, *317* (20), 2853-2863.
23. Karpinich, N. O.; Tafani, M.; Rothman, R. J.; Russo, M. A.; Farber, J. L. The course of etoposide-induced apoptosis from damage to DNA and p53 activation to mitochondrial release of cytochrome c. *J. Biol. Chem.* **2002**, *277* (19), 16547-16552.
24. Porcedda, P.; Turinetto, V.; Lantelme, E.; Fontanella, E.; Chrzanowska, K.; Ragona, R.; De Marchi, M.; Delia, D.; Giachino, C. Impaired elimination of DNA double-strand break-containing lymphocytes in ataxia telangiectasia and Nijmegen breakage syndrome. *DNA Repair (Amst)* **2006**, *5* (8), 904-913.
25. Choong, M. L.; Yang, H.; Lee, M. A.; Lane, D. P. Specific activation of the p53 pathway by low dose actinomycin D: a new route to p53 based cyclotherapy. *Cell Cycle* **2009**, *8* (17), 2810-2818.
26. Sedelnikova, O. A.; Rogakou, E. P.; Panyutin, I. G.; Bonner, W. M. Quantitative detection of (125)IdU-induced DNA double-strand breaks with gamma-H2AX antibody. *Radiat. Res.* **2002**, *158* (4), 486-492.
27. Sakaguchi, K.; Herrera, J. E.; Saito, S.; Miki, T.; Bustin, M.; Vassilev, A.; Anderson, C. W.; Appella, E. DNA damage activates p53 through a phosphorylation-acetylation cascade. *Genes Dev.* **1998**, *12* (18), 2831-2841.
28. Akimoto, R.; Tanaka, T.; Nakano, T.; Hozumi, Y.; Kawamae, K.; Goto, K. DGK ζ depletion attenuates HIF-1 α induction and SIRT1 expression, but enhances TAK1-mediated AMPK α phosphorylation under hypoxia. *Cell. Signal.* **2020**, *71*, 109618.
29. Cheng, H. L.; Mostoslavsky, R.; Saito, S.; Manis, J. P.; Gu, Y.; Patel, P.; Bronson, R.; Appella, E.; Alt, F. W.; Chua, K. F. Developmental defects and p53 hyperacetylation in Sir2 homolog (SIRT1)-deficient mice. *Proc. Natl. Acad. Sci. U.S.A.* **2003**, *100* (19), 10794-10799.
30. Rogakou, E. P.; Boon, C.; Redon, C.; Bonner, W. M. Megabase chromatin domains involved in DNA double-strand breaks in vivo. *J. Cell Biol.* **1999**, *146* (5), 905-916.
31. Tebbs, R. S.; Zhao, Y.; Tucker, J. D.; Scheerer, J. B.; Siciliano, M. J.; Hwang, M.; Liu, N.; Legerski, R. J.; Thompson, L. H. Correction of chromosomal instability and sensitivity to diverse mutagens by a cloned cDNA of the XRCC3 DNA repair gene. *Proc. Natl. Acad. Sci. U.S.A.* **1995**, *92* (14), 6354-6358.
32. Iliakis, G.; Wang, H.; Perrault, A. R.; Boecker, W.; Rosidi, B.; Windhofer, F.; Wu, W.; Guan, J.; Terzoudi, G.; Pantelias, G. Mechanisms of DNA double strand break repair and chromosome aberration formation. *Cytogenet. Genome Res.* **2004**, *104* (1-4), 14-20.
33. Toulany, M.; Lee, K. J.; Fattah, K. R.; Lin, Y. F.; Fehrenbacher, B.; Schaller, M.; Chen, B. P.; Chen, D. J.; Rodemann, H. P. Akt promotes post-irradiation survival of human tumor cells through initiation, progression, and termination of DNA-PKcs-dependent DNA double-strand break repair. *Mol. Cancer Res.* **2012**, *10* (7), 945-957.
34. Bozulic, L.; Surucu, B.; Hynx, D.; Hemmings, B. A. PKBalpha/Akt1 acts downstream of DNA-PK in the DNA double-strand break response and promotes survival. *Mol. Cell* **2008**, *30* (2), 203-213.
35. Winograd-Katz, S. E.; Levitzki, A. Cisplatin induces PKB/Akt activation and p38(MAPK) phosphorylation of the EGF receptor. *Oncogene* **2006**, *25* (56), 7381-7390.
36. Suwa, A.; Hirakata, M.; Takeda, Y.; Jesch, S. A.; Mimori, T.; Hardin, J. A. DNA-dependent protein kinase (Ku protein-p350 complex) assembles on double-stranded DNA. *Proc. Natl. Acad. Sci. U.S.A.* **1994**, *91* (15), 6904-6908.
37. Nelson, A. C.; Lyons, T. R.; Young, C. D.; Hansen, K. C.; Anderson, S. M.; Holt, J. T. AKT regulates BRCA1 stability in response to hormone signaling. *Mol. Cell. Endocrinol.* **2010**, *319* (1-2), 129-142.
38. Ouchi, T. BRCA1 phosphorylation: biological consequences. *Cancer Biol. Ther.* **2006**, *5* (5), 470-475.
39. Lee, J. H.; Mand, M. R.; Deshpande, R. A.; Kinoshita, E.; Yang, S. H.; Wyman, C.; Paull, T. T. Ataxia telangiectasia-mutated (ATM) kinase activity is regulated by ATP-driven conformational changes in the Mre11/Rad50/Nbs1 (MRN) complex. *J. Biol. Chem.* **2013**, *288* (18), 12840-12851.
40. Hari, F. J.; Spycher, C.; Jungmichel, S.; Pavic, L.; Stucki, M. A divalent FHA/BRCT-binding mechanism couples the MRE11-RAD50-NBS1 complex to damaged chromatin. *EMBO Rep.* **2010**, *11* (5), 387-392.
41. Ciccia, A.; Elledge, S. J. The DNA damage response: making it safe to play with knives. *Mol. Cell* **2010**, *40* (2), 179-204.
42. Zhou, B. B.; Elledge, S. J. The DNA damage response: putting checkpoints in perspective. *Nature* **2000**, *408* (6811), 433-439.
43. Caldecott, K. W. Single-strand break repair and genetic disease. *Nat. Rev. Genet.* **2008**, *9* (8), 619-631.

44. Jeong, J.; Juhn, K.; Lee, H.; Kim, S. H.; Min, B. H.; Lee, K. M.; Cho, M. H.; Park, G. H.; Lee, K. H. SIRT1 promotes DNA repair activity and deacetylation of Ku70. *Exp. Mol. Med.* **2007**, *39* (1), 8-13.
45. Kennedy, R. D.; Quinn, J. E.; Johnston, P. G.; Harkin, D. P. BRCA1: mechanisms of inactivation and implications for management of patients. *Lancet* **2002**, *360* (9338), 1007-1014.
46. Kennedy, R. D.; Quinn, J. E.; Mullan, P. B.; Johnston, P. G.; Harkin, D. P. The role of BRCA1 in the cellular response to chemotherapy. *J. Natl. Cancer Inst.* **2004**, *96* (22), 1659-1668.

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.