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Abstract: Linear programming formulations of forest ecosystem management (FEM) problems proposed in the 
60s have been adapted and improved upon over the years. Generating management alternatives for forest 
management planning is a key step in building these models. Global forests are diverse, and a variety of models 
have been developed to simulate management alternatives. Climate change has made forest management 
calculations even more complex, requiring flexibility, diverse parameters, models, and methods. Despite this 
complexity, consistent concepts can be applied in developing management alternatives for forest management 
planning. This work describes iGen, a flexible forest prescription generator that applies the AI technique Rule-
Based System (AI-RBS). iGen projects the state and associated inputs and outputs for a set of management units 
using rules from its knowledge base. An Inference Engine uses the rules to simulate a set of prescriptions in a 
tree-like graph structure. Without needing IT specialists, forest managers can describe the potential 
development of their forest through variables, rules, formulas, functions, and procedures. A key feature of iGen 
is that it is not limited to, adapted to, or focused on any specific region, landscape, forest condition, projection 
method, or yield function. Instead, it aims to maximize generality, enabling it to address a broad range of FEM 
problems. This article introduces iGen, explaining its concepts, structure, and algorithms through two FEM 
problems: natural regeneration with shelterwood harvests and plantation/coppice. For data and iGen source 
programs, visit github.com/…/iGen. 

Keywords: forest ecosystem management decision support system; rule-based system; forest 
planning; harvest scheduling; forest optimization 

 

1. Introduction 

The forest ecosystem management (FEM) problem can be defined as characterizing the Pareto 
frontier for the problem of selecting a management prescription for the duration of some planning 
horizon for each forest management unit within a specified planning area, given a set of management 
and policy objectives and constraints. A management unit is defined here as either a contiguous area 
to be managed with a single prescription or as a collection of similar areas to which a common set of 
management prescriptions can be applied and for which the associated inputs and outputs for a given 
prescription will be sufficiently similar. While other approaches could be used to solve the FEM 
problem, this paper focuses on situations where the problem will be formulated as either a linear 
program (LP) or mixed-integer linear programming (MIP) problem. To formulate this problem, one 
needs to have 1) a set of forest management units, 2) a set of management prescriptions for each unit, 
and 3) a set of management constraints and objectives. It is also necessary to quantify the contribution 
of each management alternative to each constraint or objective, i.e., the relevant inputs and outputs 
associated with each prescription for a given management unit. For the purposes of this paper, we 
refer to any problem that fits this definition as a FEM problem. FEM problems are frequently quite 
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complex, and considerable research has gone into the development of decision support systems to 
assist forest planners in finding efficient solutions to such problems [1–8]. 

A forest ecosystem management decision support system (FEMDSS) is a software system that 
facilitates the formulation, solution, storage, and interpretation of FEM models. It must be able to 
project the state, including the associated inputs and outputs, of each management unit under each 
possible management prescription for the entire planning horizon. It must then be able to use the 
information generated about the projected states (and inputs and outputs) of each management unit 
to formulate and solve a set of optimization models, store the solutions of these models, and use the 
solution information to enable decision-makers to visualize and understand the attributes of the 
Pareto frontier and the implied tradeoffs among objectives.  

Most of the literature related to the FEMDSS problem has addressed questions related to the 
formulation and solution of these optimization models [1,9] or to the problem of generating and/or 
visualizing the Pareto frontier [10–13]. This paper focuses on the generation of alternatives for a 
FEMDSS, often referred to as a stand simulator module. According to Eriksson and Bergh [14], an 
effective stand simulator should be able to cover a broad problem domain. Eriksson and Bergh [14] 
describe two strategies for a prescription generation: evaluation and development. The evaluation 
strategy involves assessing forest states and growth based on a predefined management strategy to 
simulate a single preferred management prescription for each management unit. On the other hand, 
the development strategy generates a range of management options for each stand so that preferred 
management strategies for each management unit can be assessed in the context of identifying an 
overall optimal strategy for the forest as a whole, using either linear programming (LP), mixed-
integer linear programming (MILP), or heuristic techniques. iGen is designed for the latter context. It 
is not designed to find an optimal solution, but rather to generate a set of feasible alternatives. 

Since the 1960s, numerous forest management alternative generators have been developed [15–
18]. The need for multiple generators arises due to the unique features of each FEM planning 
problem, which existing solutions often cannot handle [19]. Various FEM problems differ in the types 
of management regimes, outputs (e.g., wood, wildlife habitat, carbon storage), and production 
functions used to predict inputs and outputs for each management alternative. Growth and yield 
models, the most common production functions, vary widely, ranging from simple yield models 
[20,21] to more complex individual tree models [22,23] and process-based physiological models [24]. 
Moreover, models used in different regions frequently require different inputs (e.g., age, site class, 
basal area, forest type, tree list) and output variables (e.g., species mix, product mix to meet local 
market demand). Therefore, forest planners often develop their own alternative generators tailored 
to their specific FEM problem. 

The alternative generation phase is the initial step of a FEMDSS; thus, it is the one that deals with 
the forest reality that varies most from one planning instance to another. Several authors have 
emphasized the use of rules to enhance the flexibility of Decision Support Systems (DSS) for FEM, 
addressing various problems [25–33]. These rules are often applied to predefined conditions, possible 
forest interventions, or projection methods for growth and yields [34]. Here, we propose the use of 
an artificial intelligence (AI) technique [35–37] for building a rule-based system that provides the 
forest planning analyst with complete flexibility and control over the alternative-generation process. 
This technique enables a standardized approach to generating management alternative information 
that enhances the efficiency of the process and produces a FEMDSS that can be applied to a broad 
range of forest conditions.  

Furthermore, standardizing the model formulation step results in a flexible structure for the 
database that stores the information about the alternatives. The database can store information for all 
management prescriptions and facilitates easy retrieval of information for the model formulation 
step. The general features of this database are also outlined in this paper. 

Specifically, this paper focuses on the alternative generation process within a general FEMDSS 
framework. To enhance flexibility and user-defined forest conditions, we build on the developer-
group strategy described by Eriksson and Bergh (2022) that allows users to openly define variables 
that guide the simulation of possible options for their forests. The proposed approach uses an 
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artificial intelligence (AI) rule-based technique to develop a comprehensive alternative generation 
framework for FEMDSS. We present iGen, an open-source software, as an implementation of this 
framework that can be collaboratively developed to address a wide range of FEM problems across 
the globe. 

2. Materials and Methods 

This section describes the application of an AI technique called a Rule-Based System (AI-RBS) to 
generate management alternatives. The approach is extremely flexible, allowing it to be applied to a 
wide range of FEM applications. Furthermore, it breaks down the alternative generation process into 
a set of fundamental components that are easily recognizable to most forest managers, which reduces 
the effort required by forest planners to formulate management models. We first describe the 
structure of the management alternative generation process, its elements, and the role of each element 
in the alternative generation process. Next, we describe the AI-RBS and how it has been applied to 
non-forestry applications. Finally, we describe iGen, an application of AI-RBS to the forest 
management alternative generation task. 

2.1. The structure of management alternative generation component of the problem 

We assume the following: 

• The initial state of a management unit, i, can be described by a vector of n attributes 𝑋𝑖0 =  [𝑥𝑖01 ,  𝑥𝑖02 …  𝑥𝑖0𝑛]  
• The state of the forest can be described by aggregating the states of individual management 

units. 
• The initial state of each management unit is a known set of values for 𝑋𝑖0 

Note that the set of attributes for a management unit at a given time is defined to include any 
relevant inputs and outputs associated with that management unit at that time. 

To project the state of each management unit under a given management alternative, we must 
have equations of motion that describe how the vector of state attributes evolves over time, as a 
function of any interventions that may be applied to the management unit. The general specification 
of the equations of motion is: 𝑋𝑖𝑝= 𝑓(𝑋𝑖𝑝−1, 𝐼𝑖𝑝) Equation of motion (1) 

where: 
p is a period 
Xip is the vector of attributes for management unit i in period p 
Iip  is an intervention that is applied to management unit i in period p 
Every problem requires the explicit specification of these elements, i.e., the state of a 

management unit and the equations of motion for the management unit. Without these elements, the 
problem cannot be described mathematically. Note, however, that we have defined both the state 
space and the equations of motion very generally so that this specification can be applied to virtually 
any FEM problem. 

The final elements needed to formulate management alternatives are a set of potential 
interventions and the conditions under which they can be applied. This is where the rules come in. 
Intervention rules are defined based on managers’ knowledge of potential interventions and the 
conditions under which the interventions can be applied. 

2.2. AI - Rule Based System description 

Rule-Based Systems (RBS) are one of the earliest AI techniques and were first developed in the 
1970s [35–37]. These techniques are the simplest form of artificial intelligence and mimic the 
reasoning of a human expert in solving a knowledge-intensive problem. In other words, RBSs encode 
human expert knowledge about a specific topic into an automated system [38,39]. An RBS reproduces 
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deductive reasoning mechanisms by employing logic rules made of conjunctions of conditions to 
verify and a set of actions to execute [40]. 

In the context of an RBS, a rule consists of two parts: the IF part and the THEN part. It relates 
the facts in the IF part to some action in the THEN part. The IF part is called antecedent (or condition), 
and the THEN part is called consequent (or action). Thus, a simple rule can be expressed as: IF 

antecedent THEN consequent. Each rule states that if certain conditions are met, then certain 
conclusions can be inferred [38,39] A rule base is a particular type of knowledge base that consists of 
three essential elements: (i) a set of facts relevant to the beginning state of the system, (ii) a set of rules 
describing actions that should be taken as a function of the current state, and (iii) a termination 
criterion that determines when a solution has been found [39]. A rule base aims to encapsulate the 
intelligence and information held by experts and to provide this knowledge to others through an 
RBS.  

These elements are embedded in an information technology system that has at least the 
following components: (i) a knowledge base with the rules and termination conditions; (ii) a database 
with the beginning state; and (iii) an inference engine. The inference engine combines reasoning 
methods with the knowledge base to each state and applies the reasoning required by the system to 
reach a solution [39,41] The inference engine is designed to act based on rule conditions. It goes 
through the beginning states, checks the applicable rules, and executes the “consequent” of the 
matched rule when it finds a match. The inference engine performs this process in a loop until the 
termination condition is reached. At this point, the inference engine is ready to present a solution to 
the initial question [42].  

2.3. Applications of Rule Base Systems in other fields 

While the AI-RBS methodology is simple in concept, it has been used to solve complex problems. 
For example, AI-RBS methods have been widely applied in medicine. Health applications of AI-RBS 
are becoming more advanced and capable of delivering innovative services for improving the quality 
of life and promoting wellness and a healthy lifestyle. Minutolo et al. [40] assert that the most relevant 
component of such applications is the RBS. Medical diagnosis applications often use RBSs with 
medical image processing to select surgical strategies and for other medical tasks [43–48]. Beyond 
medicine, the rule-based technique, combined with other information technology methods, has been 
applied to a variety of research areas including electric pumps control [49,50], power distribution 
networks [51], floor plan analysis [52], welding process control [53], air conditioning systems [54], 
investment analysis [55], and many others. 

AI-RBS has been widely and successfully applied because it is one of the most common and 
natural explainable frameworks for knowledge representation [56]. After analyzing three 
applications for medical image processing, Matsuyama [41] concludes that even when far from 
complete, this way of organizing knowledge can increase the flexibility of software systems, and it is 
a flexible software environment for developing image analysis systems. According to Abdullah et al. 
[57], rule-based technology is three times more efficient than conventional methods in the context of 
healthcare edits. It outperforms conventional systems by increasing the confidence in the value of the 
results to 95%. Moreover, al Fryan et al. [47], analyzing the use of decision trees associated with a 
rule-base in medical applications, recommend using these technologies in other fields of study due 
to the efficiency of the processes. 

2.4. iGen description 

Considering the structure of the FEMDSS problem described in section 2.1 we have developed 
a software system called iGen that applies Rule-based System principles to the problem of generating 
forest management alternatives in the context of an FEMDSS. This section describes the iGen 
elements and how they work together to generate management alternatives for each management 
unit of a given forest. The iGen elements are designed to enable the application to enumerate all 
possible ways a given forest management unit could be managed. 
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2.4.1. iGen elements 

Set of variables and initial state 

Potential management alternatives for each management unit are based on its initial state. A 
user-defined set of variables must first be specified in iGen to describe the initial and subsequent 
states of each management unit. Furthermore, the state variables must include any inputs or outputs 
that will be relevant in the model-building stage. If the planner expects to include an objective or 
constraints related to carbon storage, they must create a variable for that attribute when specifying 
the vector of state variables. For a typical FEM problem, the state variables could include age, basal 
area, forest type or species composition, site quality, standing and harvested wood or non-wood 
product quantities, biomass stock, carbon stock, the carbon sequestration rate, other ecosystem 
services indicators, equipment requirements, and cost of management activities. The state descriptor 
vector is flexible and can also include a matrix – for example, a tree list and the attributes of each tree 
in the list. The initial values of the state-descriptor variables must describe all relevant attributes of 
the management unit and enable the projection of the state of the management unit. The structure 
and attributes of the state-descriptor variables are defined by the analyst based on their specific 
instance of the FEM problem. Furthermore, the analyst must populate the initial state-descriptor 
variables based on the initial condition of each management unit in their forest. For a given instance 
of iGen, this defines a set of variables 𝑋𝑖0 =  [𝑥𝑖01 ,  𝑥𝑖02 …  𝑥𝑖0𝑛]  that describes the initial state each 
management unit within the forest of interest. 

Set of intervention types 

According to Bettinger et al. [58], human interventions are management activities that can alter 
the character of a forest. The stand of trees in each management unit will grow and develop according 
to its condition until the managers intervene. These interventions could be any silvicultural 
treatment, harvesting, or a business intervention like an ownership change. Also, how the forests 
evolve after an intervention is central to decisions because forest sustainability and growth rates can 
be enhanced or harmed by human interventions. 

In iGen an intervention is an event that can be planned. iGen does not consider random 
disturbances. Also, non-intervention, where no activity is planned, is treated as a particular type of 
intervention in iGen and is considered a feasible management option by default, although this can be 
overridden in the case of a mandatory treatment.   

In an instance of iGen, the analyst must define the set of valid intervention typess, 𝐼 = [𝐼1, 𝐼2 … 𝐼𝑛], that can occur in their forest. In addition, the initial state of a management unit must 
include the last intervention that happened in that unit and when it occurred. The initial state is what 
rule-based system principles call “the set of facts of a beginning state” [39], as described in section 2.2. 

Equations of motion 

Left free to grow and affected solely by the forces of nature, forests change, and understanding 
the change that can occur is critical for forest planning efforts [58]. Equations of motion typically 
mathematically describe these biological changes. Understanding and representing those changes is 
one of the most crucial issues of the forest planning process. Each state variable must have an 
equation of motion that describes how that variable evolves over time. The equation of motion for a 
variable  𝑥𝑛 ∈  𝑋   (   Equation 1) is a function of the vector of state variables from the 
previous period and the intervention type occurring in the period (      Equation 2). 𝑥𝑖,𝑛,𝑝= 𝑓𝑛(𝑋𝑖,𝑝−1, 𝐼𝑖,𝑝) Equation of motion for a state variable n (2) 

Note that the intervention 𝐼𝑖,𝑝  can be a non-intervention, in which case the function should 
compute the development of the management unit in the absence of any management activity. In the 
case of a regular intervention, the function should calculate the result of the intervention, including 
any natural growth. 
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Rule base 

In iGen, rules describe the conditions under which interventions may be applied to management 
units. In other words, a rule is a Boolean function that returns false when an intervention cannot be 
applied and true when an intervention can be applied. More specifically, rules specify the sequence 
under which interventions can be applied, so they are built on the last intervention that occurred in 
a management unit and the subsequent evolution of the state of the unit. Thus, given two intervention 
types 𝐼𝑙𝑎𝑠𝑡 and 𝐼𝑛𝑒𝑥𝑡 , we say that a rule 𝑟𝑛 ∈ 𝑅 is a Boolean function representing the condition for 
the application of 𝐼𝑛𝑒𝑥𝑡 given that  𝐼𝑙𝑎𝑠𝑡  occurred and given the current state of the management 
unit.  𝑅 =  [𝑟1 , 𝑟2 …  𝑟𝑛] Set of Rules (3) 𝑟𝑛  =   𝑓(𝐼𝑙𝑎𝑠𝑡 , 𝐼𝑛𝑒𝑥𝑡 , 𝑋𝑝 )  Rule function (4) 

where f is a boolean function. 
Since the state of the forest is evolving over time according to the equations of motion, the values 

of the state variables change over time, so the rules must be reevaluated in each period. So, after an 
occurrence of an 𝐼𝑙𝑎𝑠𝑡 , a 𝑟𝑛 function can return false in a sequence of periods, until in a certain period 𝑝 the 𝑟𝑛 function returns true, so the intervention 𝐼𝑛𝑒𝑥𝑡 can be applied.   

As described earlier, a rule has two parts: a condition and a consequent. Accordingly, once iGen 
has evaluated the condition for applying a rule, if the rule returns true, the consequent part is to create 
a branch where one branch assumes that no intervention will occur, and the other branch assumes 
that the corresponding active intervention will occur. For each branch, iGen will apply the equations 
of motion for each state variable for the given management unit, in one case with no intervention and 
in the other with an active intervention. If the rule returns false, the consequent part is to continue 
assuming that no intervention will occur. Multiple rules may apply for a management unit at a single 
point in time, so it is possible to create multiple branches, each representing different interventions. 

In summary, an instance of iGen includes a defined set of rules 𝑅 =  [𝑟1 , 𝑟2 …  𝑟𝑛] according to 
the specifics of the given forest planning situation. Each instance has a unique set of rules that 
translate how the interventions can be sequenced to generate a complete set of alternatives. The 
analyst must build this rule base comprising the elements 𝐼 =  [𝐼1, 𝐼2 … 𝐼𝑛]   and =  [𝑥1 ,  𝑥2 …  𝑥𝑛]. 
Network Graph 

The management alternatives for each management unit are stored in a network graph. Each 
unit has one graph built in a non-loop-directed graph named tree-graph [59]. The first node of each 
graph describes the initial state of the corresponding management unit and begins with the last 
intervention in the unit. This last intervention may have happened in period zero or any period before 
period zero of the planning horizon. If the last intervention occurred prior to period zero, iGen will 
update the management unit’s state to time zero. The nodes of the graph represent the state of the 
management unit at a given point in time. All the edges of the graph have a one-period length, and 
the total length of the graph is the planning horizon, plus any nodes representing the state of the 
management unit prior to period zero. 

iGen systematically processes each node in the graph until reaching an ending point, which 
represents the state of the management unit at the end of the planning horizon. For each node that is 
processed, a new non-intervention node is created for the subsequent period representing the 
management unit's natural development when no active intervention is planned. The state variables 
for the management unit are updated for the new node with the equations of motion assuming no 
active intervention will occur. When an active intervention can be applied, a new intervention node 
is also created and the state variables for the management unit are updated with the equations of 
motion assuming the intervention occurs. Figure 1 shows an example of the resulting graph and its 
elements.   
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Figure 1. An example management unit network graph. 

The management unit graphs and the underlying database that stores them are the main output 
of the application. The graphs contain all simulated state data (including inputs and outputs) for all 
possible management alternatives for each management unit according to the rules created in the 
rule base. Each node of these graphs has a vector of attributes calculated according to the equations 
of motion. The resulting graphs show the evolution of the forest state over time. 

Relational Database 

All the elements of the graphs, including parameters, inputs, outputs, rule base, and equations 
of motion, are kept in a relational database. Table 1 shows the elements and the tables where they are 
stored.  

As discussed above, the analyst must specify the set of state variables, the set of intervention 
types, the equations of motion, the initial state of each management unit, and build the rule base. 
Those elements are the inputs of the application. Also, the analyst must specify some general 
parameters such as the planning horizon, period length, name of the model, and other parameters 
related to the graph shape, as the graph can be visualized as a table or a graph. Examples of these 
inputs and outputs are presented in section Figure 2 shows a diagram of Entities and Relationships 
(DER) of one instance of iGen. The DER also shows how the tables described in Table 1 are related to 
each other. 

Table 1. iGen database tables where the elements are stored. 

iGen elements 
Input or 

Output 

Tables where the elements 

are stored 

Set of state variables Input Variable 
Set of Intervention types Input InterventionType 

Equations of motion for non-Intervention nodes Input Variable  
Equations of motion for intervention nodes Input RuleCondtion 

Rule base Input Rule and RuleCondtion 
Initial nodes Input Nodes 

Graph Output Nodes 
General Parameters Input Parameter 
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Figure 2. Diagram of entities and relationships of an instance of iGen. 

It is important to note that this is a dynamic database. Depending on the unique characteristics 
of the FEM problem, the analyst defines which variables will describe the state of the individual 
management units. Those variables will be rows in the Variable table, and for consistency, they will 
be the columns of the Nodes table. Also, there must be an equation of motion for each variable. The 
equations of motion used to update the state of a management unit during the graph building process 
can be stored in the Variable table, or an external function can be specified in the case of complex 
equations of motion. 

The analyst can define the MgmUnit attributes according to specific forest characteristics and 
planning needs. The table must be in the database because each graph node is related to a 
management unit. The Nodes table has one attribute to connect each node to its previous node 
(PreviousNode) and another to connect each node to the last active intervention (LiNode). Also, there 
is an attribute to identify the node type (NodeType). The other fields in this table are user-defined 
elements of the set of state variables.  

The Rule table is related twice to the InterventionType table, one for the Last Intervention and one 
for the Next Intervention. The Rule condition function compiles all RuleExpression attributes for the 
same Rule when IfOrThen equals “IF.” The equations of motion for each variable and each rule (or a 
pair Ilast - Inext) are stored in the attribute RuleExpression in the RuleCondition table when IfOrThen equals 
“THEN.” 

2.4.2. iGen Algorithm: The Inference Engine 

The Inference Engine (I_Engine), as the algorithm of a Rule-base system is called, applies the 
rules to the initial nodes and builds a tree graph, as in Figure 1. The first step is to consider all initial 
nodes as nodes-to-be-open and put them in a list. The opening process is a recursive procedure. 
During the opening process, I_Engine generates new nodes, mostly non-intervention nodes plus 
some intervention nodes.  These new intervention nodes will also need to be opened, but iGen 
processes an entire non-intervention path until it reaches the end of the planning horizon or until an 
exception occurs where two interventions are required to happen in a prescribed sequence, as shown 
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in the Pennsylvania example below. I_Engine saves all new nodes in the graph and adds any new 
intervention nodes to the “node-to-open” list. When I_Engine finishes the opening process of one 
node, it sets it as an “opened-node.” I_Engine continues with this process until the “node-to-open” 
list is empty.  

The node opening process involves nine steps. Figure 1 provides an example to demonstrate the 
opening process. Figure 3 shows the nine steps in a flow chart. 

1o–I_Engine gets a node from the “node-to-open” list. Initially, this node will be an initial node. This 
node is always an intervention node. In our example (Figure 1), an intervention I1 happens in node 
a:I1. 
2o –I_Engine creates a new non-intervention node in the following period (node #1 in Figure 1) and 
connects it to the current node being processed (node a:I1 initially).  
3o – I_Engine uses the equations of motion for each variable to update the forest state for the new 
node and saves the results in the recently generated node record. 
4o – I_Engine filters the rules to select only the ones with I1 as the last Intervention. 
5o – For the first rule (Ilast, Inext) = (I1, I2), I_Engine runs the Rule Boolean function.  

• If it returns True, that is a match. So, I_Engine: 

a) creates a node with an intervention I2 in the same period,  
b) connects this node to the previous node,   
c) evaluates the equation of motion for the Intervention I2 for each state variable to 
determine what happens to this specific management unit when I2 occurs, and 
d) unless the new node occurs at the end of the planning horizon, adds this new node to the 
“node-to-open” list. 

• If it returns False, I_Engine does nothing. 

6o – I_Engine repeats step 5o for each rule in the filtered list of rules. 
7o – I_Engine repeats steps 2o through 6o until the end of the planning horizon and removes the node 
that was processed from the “node-to-open” list.  
8o – I_Engine returns to the node-to-open list and picks the next one. In our example, node a:I1 will 
no longer be in the list, but there will be two others to open: b:I2 and c:I2. 
9o – I_Engine repeats steps from 1o to 8o until the node-to-open list is empty.  

 

Figure 3. Flow chart of the inference engine algorithm. 
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In summary, in our example (Figure 1), I_Engine begins by opening the node a:I1; it then   

a) generates nodes 1 to 12;  
b) finds a match at node 6, creates node c:I2, connects it to node 5 (the node previous to node 6), and 

sets c:I2  as a “node-to-open;” 
c) finds a match at node 7, creates node b:I2, connects it to node 6 (the node previous to node 7), and 

sets b:I2 as a “node-to-open;” 
d) and sets the node a:I1 as “opened.” 

Next, I_Engine opens the node b:I2 and generates nodes 13 to 17 without creating any new 
intervention nodes to add to the “nodes to open” list. Next, it opens node c:I2 and generates nodes 
from 18 to 23 and the intervention node d:I2. Node d:I2 is not added to the “nodes to open” list because 
it is already at the end of the planning horizon. 

The graph in Figure 1 represents four potential management prescriptions for this management 
unit that apply for the span of the planning horizon. Note that these prescriptions share at least some 
arcs and nodes within the graph. In fact, all four prescriptions share the same path from the initial 
node through node 5. Generating prescriptions this way avoids simulating shared components of 
each prescription multiple times. These kinds of efficiencies are crucial for FEMDSSs when there are 
many management units and many management alternatives for each management unit. 
I_Engine can efficiently generate graphs for FEM problems that have thousands of management units 
with potentially millions of nodes. Additionally, a multicriteria framework typically involves 
projecting a variety of ecosystem services indicators, production, and social indicators. In these cases, 
simulating state updates for many management alternatives can consume considerable computer 
resources. The iGen framework (Inference Engine and the representation of the problem as Graphs 
and Rule-bases) was developed to optimize the use of planning resources, including computer 
processing and analysts’ time. 

3. Examples 

In this section we apply the concepts of Section 2 to two FEMDSS problems: a natural 
regeneration problem with shelterwood harvests and a plantation/coppice problem. The data for the 
two examples are attached to this article in SQLite® and Excel® format. The iGen source programs 
that can run these examples can be found at github.com/…/iGen. 

3.1. Pennsylvania Example 

3.1.1. Problem description 

To demonstrate how iGen generates alternatives for a management problem, consider an 
example of an even-aged forest managed under a natural regeneration regime; we refer to it as the 
Pennsylvania Example. 

The Pennsylvania Example has eight management units, each with an area, age, species 
composition type (forest type), site quality, and the last intervention that occurred in it. Stand growth 
is projected with yield curves developed by Gilabert et al. [60] for natural forests in Pennsylvania. 
Alternatives are generated for a 110-year planning horizon comprised of eleven 10-year periods. Also, 
for simplicity, we consider only two site qualities and two forest types. 

3.1.2. Set of state variables 

The state variables chosen for the Pennsylvania Example are typical ones, including area, age, site 
quality, forest type, yield, yield removed, yield remaining, the last intervention in a unit, and when 
it occurred. Two additional variables are defined to facilitate the application of required treatment 
sequences. The variable named TreatReq specifies a required treatment to apply to the unit, and 
AfterInt tracks how many periods have elapsed since the last intervention. 
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3.1.3. Set of intervention types 

We consider two types of interventions: a shelterwood cut (SWC) and an overstory removal 
(OR). In practice, most management units require a SWC prior to an OR to establish advance 
regeneration. An SWC can only occur after a specified minimum age. On the better site, site 1, the 
SWC can be done starting at 60 years old. On the poorer site, a SWC can occur only after age 70. An 
OR should occur immediately (one period, or 10 years) after an SWC intervention. After an OR, the 
regeneration process begins, and the age is set to zero. In some management units where an inventory 
cruise has indicated that adequate advance regeneration already exists, an OR can be made without 
a SWC. A management unit cannot be designated as not requiring a SWC unless it is already old 
enough to be harvested, and this condition is valid only for the first cycle. Subsequent regeneration 
cycles will assume that an SWC treatment will be required and the general rule requiring an SWC 
followed by an OR will apply. 

3.1.4. Initial state 

With these definitions, we can define the initial state for the management units. Table 2 shows 
the initial states of key variables for the first three management units. Note that the columns of the 
table match the previously defined set of state variables. The age refers to the management unit's age 
at the end of the period when the last intervention happened. Management unit 1 was harvested (OR) 
60 years ago and requires a SWC before an OR can be conducted. Management unit 2 was harvested 
50 years ago and does not require a SWC before an OR can be conducted. Management unit 3 was 
recently treated with a shelterwood harvest and must receive an OR in the first period. 

Table 2. Initial State for three management units in the Pennsylvania Example. 

        yield 

Mgm 

Unit 
Site 

Area 

(acre) 
Period Inter-vention 

Age 

(years) 

Spc 

Compo-sition 

Treat 

Req 

Standing Volume 

(MBF*) 

Removed 

Volume 

Remaining 

Volume 

1 1 100 -6 OR 8 1 SWC 0 0 0 
2 1 90 -5 OR 7 2 OR 0 0 0 
3 2 120 0 SWC 70 1 OR 6,311.49 2,524.59 3,786.89 

(*) Thousand board feet. 

3.1.5. Equation of motion 

The equations of motion describe the evolution of the state variables over time. An equation of 
motion must be specified for each variable. In the Pennsylvania Example, most variables have simple 
equations that can be specified directly in iGen, as shown in Table 3. For more complex equations of 
motion, iGen can call an external function. In this example, only the yield variables require external 
functions to calculate updated values. The information in Table 3 is stored in the database table 
Variable. 

Table 3. Equations of Motion for the Pennsylvania Example. 

Variable Equations of Motion Variable Equations of Motion 

MgmUnit = :MgmUnit Age = :Age + 10 
Site = :Site SpcComposition = :SpcComposition 

Area = :Area TreatReq = :TreatReq 
AfterInt  = AfterInt + 1   

yield =ExtFunctions.PennsylvaniaYield(:Age+10,[:Site],[:SpcComposition],[9],'stocked','ni', 'Standing') 
yRemoved =ExtFunctions.PennsylvaniaYield(:Age+10,[:Site],[:SpcComposition],[9],'stocked', 'ni','Removed') 

yRemaining =ExtFunctions.PennsylvaniaYield(:Age+10,[:Site],[:SpcComposition],[9],'stocked', 'ni', 'Remaining') 

The value of each variable at the previous node is accessed by writing “:variableName.” So, for 
example, the equation “Site = :Site” specifies that the value of the site quality variable does not change. 
This is also the case for MgmUnit, Area, SpcComposition, and TreatReq. The expression "Age = :Age+10" 
(Table 3) tells iGen to add ten years to the previous node’s Age variable value. While this seems 
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obvious, iGen is meant to be general and flexible in the way specific meanings are assigned to 

variables. The analyst preparing the problem must provide meaning to each variable by writing 
appropriate equations of motion. The external function, PennsylvaniaYield is written in Python, and it 
returns standing, removed, and remaining volume based on the age, site, species composition, and 
stocking of the stand and the type of intervention being simulated (e.g., SWC vs. OR). A full transcript 
of this function is provided in Annex 1. 

3.1.6 Example rules 

As noted earlier, a SWC can happen a minimum of 60 or 70 years after a management unit had 
been regenerated, depending on the site quality. A rule can therefore be created in iGen to guide the 
I_Engine during the alternative generation algorithm. The rule for implementing a SWC is shown in 
Table 4. 

Table 4. The rule for shelterwood cut in the Pennsylvania Example. 

On the database table Rule: 

RuleId LastIntervention NextIntervention RuleDescription 

7 OR SWC A Shelterwood cut can occur after a minimum age 
On the database table RuleCondition: 

RuleVar RuleExpression 

Conditional Part 

    Age, Site ((:Age >= 60) and (:Site == 1)) or ((:Age >= 70) and (:Site == 2)) 
    TreatReq (:TreatReq == 'SWC') 

Consequent Part 

MgmUnit = :MgmUnit Age = :Age 
Site = :Site SpcComposition = :SpcComposition 

Area = :Area TreatReq = 'OR' 
AfterInt = 0 

Yield = ExtFunctions.PennsylvaniaYield(:Age,[:Site],[:SpcComposition],[9],'stocked','SWC', 'Standing') 
YRemoved = ExtFunctions.PennsylvaniaYield(:Age,[:Site],[:SpcComposition],[9],'stocked','SWC', 'Removed') 
yRemaining = ExtFunctions.PennsylvaniaYield(:Age,[:Site],[:SpcComposition],[9],'stocked','SWC', 'Remaining') 

The conditional part of a rule specifies when a particular intervention can be applied, in this 
case, an SWC. In addition, a rule must describe how the management unit’s state will be updated 
after an SWC occurs. This is described in the consequent part of the rule. In both the conditional and 
the consequent parts, the variable values refer to the new non-intervention node that is being 
analyzed when a new intervention node is created and not the previous node. This non-intervention 
node represents the state of the management unit just prior to the implementation of the intervention. 

The next rule establishes the conditions for an OR occurrence following an SWC. Since the OR 
should occur immediately after a SWC intervention, the RuleCondtion states that when the last 
intervention was an SWC and AfterInt == 1 then an OR must occur (Table 5). And when the I_Engine 
gets a match for this rule, the consequent part is the same as the rule described in Table 4, with the 
following exceptions (i) age is set to five1 on average by the end of the period (Age = 5), and (ii) the 
treatment required will turn to SWC (TreatReq = 'SWC'); (iii) and the yield functions are called with 
the parameter 'OR' for the intervention type parameter. 

Table 5. The rule for an overstory removal following a shelterwood harvest in the Pennsylvania 
Example. 

Rule table: 
RuleId Last Intervention Next Intervention RuleDescription 

6 SWC OR Overstory removal must occur after a Shelterwood 

  
RuleCondition  

table: 
RuleId IfOrThen RuleVar RuleExpression 

6 If AfterInt (:AfterInt == 1) 

 
1 The age is set to five because we assume that the intervention happened at the midpoint of the 

period. 
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Table 6 shows the rule for management units that do not require an SWC prior to conducting an 
OR, i.e., management units with LastIntervention = 'OR' and TreatReq = 'OR' (Table 6). Note that in the 
consequent part of this rule TreatReq is set to 'SWC', as shown in Table 6, so that in the next rotation a 
SWC will be required. Note that the yield functions are called with the parameter 'OR1.' This is 
because the yield for an OR will be greater when no SWC has been conducted prior to the OR. 

Table 6. The rule for an overstory removal without a shelterwood harvest in the Pennsylvania 
Example. 

On the database table Rule: 

RuleId LastIntervention NextIntervention RuleDescription 

8 OR OR An overstory removal can occur without a shelterwood cut 
On the database table RuleCondition  

  RuleVar RuleExpression  
Conditional Part 

  TreatReq (:TreatReq == ‘OR’)  
Consequent Part 

MgmUnit = :MgmUnit Then Age = 5 
Site = :Site Then SpcComposition = :SpcComposition 

Area = :Area Then TreatReq = ‘SWC’ 
AfterInt = 0    

Yield = ExtFunctions.PennsylvaniaYield(:Age,[:Site],[:SpcComposition],[9],’stocked’,’OR1’, ‘Standing’) 
YRemoved = ExtFunctions.PennsylvaniaYield(:Age,[:Site],[:SpcComposition],[9],’stocked’,’OR1’, ‘Removed’) 
Yremaining = ExtFunctions.PennsylvaniaYield(:Age,[:Site],[:SpcComposition],[9],’stocked’,’OR1’, ‘Remaining’) 

3.1.7. Result 

The I_Engine applies the rules to the initial state and generates one network graph containing 
all the alternatives for each management unit. Data related to all graphs are stored in the database 
table Nodes, and the results can be visualized in either of the two formats, a graph or a table. As an 
example, Figure 4 presents the graph for management unit 2. This management unit is one where an 
inventory cruise indicated that an OR can be made without a SWC. The Figure 4 shows that the last 
intervention in unit 2 was an OR that occurred 50 years ago. From period -5, the I_Engine grows the 
forest until period 0 (zero), at which point unit 2 reaches age 57. Then, according to the rules, the 
I_Engine opens a non-intervention node (which will leave the unit to grow one period more) and an 
OR node. Following the non-intervention path, the I_Engine generates the default non-intervention 
node and one OR node for each period until the end of the planning horizon. The program then 
begins opening the intervention nodes that have not been processed. After each OR node the program 
grows the forest until age 65, because this unit is site 1 (Table 2), and then begins creating SWC 
alternatives for each period until the end of the planning horizon. 

When the equations of motion are applied to update the state of the forest over time, the values 
of each variable for each non-intervention node are stored in the Nodes table shows some rows of this 
table for the nodes highlighted in Figure 4. Node 43, an OR node, is the first one of the set, and the 
following nodes refer to it in the column LiNode (Last Intervention Node).  

For management units 1 and 3, that have a TreatReq = “SWC”, I_Engine, according to the rules 
raws a similar graph with a different sequence in which the pattern observed in Figure 6 follows a 
second cycle. Appendix B shows the graph for management unit 1.  

Table 7. Pennsylvania Example State updates. 

NodeId 
Previous 

Node 
LiNode Period 

Inter-

vention 
Age After-Int  Yield  

Y  

Removed 

Y  

Remaning 

 43 41 2 1 OR 5 0 13,432.09  13,432.09   
197 43 43 2 ni 15 1 217.65    
198 197 43 3 ni 25 2 1,821.78    
199 198 43 4 ni 35 3 4,528.49    
200 199 43 5 ni 45 4 7,510.23    
201 200 43 6 ni 55 5 10,362.44    
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NodeId 
Previous 

Node 
LiNode Period 

Inter-

vention 
Age After-Int  Yield  

Y  

Removed 

Y  

Remaning 

203 201 43 7 SWC 65 0 12,949.49  5,179.80  7,769.70  

 

Figure 4. Management alternative graph for Pennsylvania Example - Management Unit 2. 

3.2. Plantation-Coppice Example 

3.2.1. Problem description 

The second FEMDSS example is a fast-growing plantation under a short-rotation coppice regime 
to produce biomass or pulp wood [61,62]. We call it the Plantation-Coppice Example. 

The Plantation-Coppice Example has seven management units, with each belonging to a stratum 
and having attributes such as area, age, rotation count and the last intervention that occurred in it. 
Unlike the first example, the Plantation-Coppice Example has a yield table with two entries: Stratum 
and Age. The alternatives are generated for a 21-year horizon comprised of twenty-one 1-year 
periods. Also, for simplicity, we consider only two strata. 

3.2.2. State variables 

As with the first example, the state variables for the Plantation-Coppice Example management 
units are the typical ones such as area, age, stratum, rotation count, yield, the last intervention in a 
unit, and when it occurred. The rotation count is 1 after the initial planting, 2 after the first coppice, 
and so on.  

3.2.3. Potential interventions 

The two types of interventions are based on a regular coppice regime: a clear cut followed by a 
renewal planting (CCR) or a clear cut followed by sprouting from stumps (CCS). In this example only 
one CCS is allowed, so after a coppice harvest the next clear cut must be followed by a renewal (CCR) 
to plant new genetic material [63]. 
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3.2.4. Initial state 

With these definitions, we can define the initial state for each management unit. Table 8 shows 
the data for the first four. Note that the columns of the table match the set of state variables. The age 
and the yield refer to the management unit's age in the period when the last intervention happened. 
All ages are zero when a clear cut occurs, some are in the first rotation after the renewal, and others 
are in the second rotation, following a CCS intervention. 

Table 8. Plantation/Coppice example initial state for four management units. 

MgmUnit Stratum Area Period Last Intervention Age Rotation Yield 

1 1 40 -2 CCR 0 1 0 
2 1 50 -4 CCR 0 1 0 
3 2 54 -2 CCR 0 1 0 
4 1 20 -1 CCS 0 2 0 

3.2.5. Equation of motion 

As in the Pennsylvania Example, in the Plantation-Coppice Example most variables have simple 
equations of motion for no intervention, as shown in Table 9. Only the yield variable requires a 
function (SearchTable) to select yield coefficients from a production table. For this kind of equation of 
motion, I_Engine can read a table (Productivity) using the specified entries (Stratum, Age) to return the 
appropriate value (Volume). 

Table 9. Plantation-Coppice example equations of motion for no intervention. 

VariableId Equation of Motion 

MgmUnit =:MgmUnit 
Stratum =:Stratum 

Area =:Area 
Age =:Age+1 

RotationCount =:RotationCount 
Yield =SearchTable(Productivity,(:Stratum,:Age + 1),Volume) 

3.2.6. Example Rules 

There are three rules related to the two intervention types in Coppice Example. After a CCR, we 
can have either another CCR or a CCS. However, a CCR must follow a CCS. The rule conditions for 
the three possibilities are the same. The management units can only be cut at ages 6 or 7 if they have 
reached a minimum yield of 200 m3/ha. However, in periods 1 to 3, older ages up to 9 years can also 
be cut. Table 10 shows how the rules are written within the iGen context. 

Table 10. The conditional part of the Plantation/Coppice Example Rules. 

 Intervention    

Rule Id Last Next  Rule Var RuleExpression 

1 CCR CCR If 
Age (6 <= :Age <= 7) or (1 <= :Period <=3 and 6 <= :Age <=9) 

Yield :Yield>=200 

2 CCS CCR If 
Age (6 <= :Age <= 7) or (1 <= :Period <=3 and 6 <= :Age <=9) 

Yield :Yield>=200 

3 CCR CCS If  
Age (6 <= :Age <= 7) or (1 <= :Period <=3 and 6 <= :Age <=9) 

Yield :Yield>=200 

When any of these rules is satisfied a new intervention node is generated, and I_Engine applies 
the consequent part of the rules (intervention state updates). The equation of motion for all variables 
are identical, except for RotationCount, which assumes the value 1 when a CCR occurs and value 2 
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when a CCS occurs according to the logic of coppice regime. Age and Yield turn to zero; Area, 
MgmUnit and Stratum remain the same. 

3.2.7. Results 

As in the Pennsylvania Example, the I_Engine generates a graph for each management unit. 
presents the graph for the management unit 1 of our Plantation-Coppice example. Unit 1 was clear cut 
two years before the beginning of the horizon; therefore, by the fourth period it will be possible to 
cut this unit again. This results in three alternatives for the fourth period: conducting a CCR, or a 
CCS, or doing nothing and letting the forest grow (no intervention). This pattern repeats in the 
following years according to the rules. For unit 3, located in a less productive stratum, it is impossible 
to have a clear cut at age six because the minimum productivity is not reached yet, making fewer 
alternatives for that unit, as shown in Appendix C. 

As stated earlier, Inference Engine applies the equation of motion to previous states and saves 
each state in the Nodes table. Table 11 shows the content of part of this table regarding the nodes 
marked in Figure 5. The CCS node in period 4 is node #15. Nodes 218 to 219 have node 15 as the last 
intervention (LiNode). Note that the initial value of RotationCount for unit 1 was 1, but the CCS 
intervention changes this value to 2 

 

Figure 5. Coppice Example - Management Unit 1. 

Table 11. Plantation/Coppice Example State Updates. 

NodeId PreviousNode LiNode Period Age RotationCount Yield 

214 15 15 5 1 2 60 
215 214 15 6 2 2 100 
216 215 15 7 3 2 140 
217 216 15 8 4 2 190 
218 217 15 9 5 2 210 
219 218 15 10 6 2 230 
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4. Discussion and conclusions 

A single set of management alternatives can be used to build multiple optimization models, for 
example, when finding the Pareto frontier of a multiobjective planning problem. So, in many cases, 
the alternative generation process only needs to be done once, while the optimization model-building 
process will usually need to be performed multiple times. A well-defined, flexible structure that 
provides an interface between the generation of management alternatives and the model formulation 
phase improves the transparency and clarity of the processes for the forest analyst. This visual 
interface allows the analyst to verify and validate the alternatives generated and better understand 
the relationships between the evolution of the forest state and the management prescriptions before 
building any optimization models. 

We contend that developing a sufficiently general and comprehensive framework that applies 
to the majority of FEM planning situations that use linear programming (LP) or mixed-integer 
programming (MIP) formulations is quite challenging. Furthermore, we believe that our framework 
has accomplished that by identifying the common elements that define the process of generating 
alternatives for any FEM problem. These are: 1) the definition of the state space for the management 
units, 2) the specification of potential management interventions that can be applied to the 
management units, 3) a set of rules that define the conditions when each management intervention 
can be applied, and 4) equations of motion that describe how the state of a management unit will 
evolve over time in a no-intervention case or with an active intervention. This is the key contribution 
of the iGen methodology: identifying these fundamental elements of the alternative generation 
process and defining them in a very general way creates a framework that can be applied to most, if 
not all, FEM problems. While each problem is unique in terms of the specific details of these elements, 
the iGen modeling framework allows forest planners to specify the state description, the possible 
interventions, the rules for applying interventions, and the equations of motion according to the 
specifics of their problem.  

Besides its generality, a key feature of the iGen approach to alternative generation is its 
efficiency. First, it efficiently simulates each possible alternative for each management unit. iGen uses 
a recursive algorithm for generating a graph of alternatives for each management unit, ensuring that 
each arc of the graph is simulated only once, and the rules specified by the user guarantee that only 
acceptable and feasible alternatives will be created. In addition, each node in the graph is unique, so 
there is no duplication of information storage and all data related to the management alternatives 
needed for building the LP model or MIP models are contained in the database. Furthermore, because 
the graph provides a natural representation of the alternatives, it makes it easy for users to visualize, 
interpret and verify the data generated for each alternative. Since the equations of motion and 
intervention rules are written by the forest planning analyst and not by the programmer, the analyst 
has control of the model. The analyst can verify the alternatives generated and better understand the 
relationships between the evolution of the forest state and the management prescriptions. They can 
also check the validity of the coefficients that will be used to build an LP or MIP model before the 
model is built to ensure that the simulations in the model are generating valid results. This is much 
easier than reviewing the coefficients of, for example, an LP model. 

While not addressed in this paper, the network structure of the management alternative 
database produced by iGen provides a natural structure for constructing an LP or MIP model. Exactly 
how this is done will be the topic of a forthcoming paper, but it is easy to extract the information 
needed to build objective functions and constraints for LP and MIP models from the database. 
Specifically, one can easily construct area (for LP) or logical (for MIP) constraints, as well as 
accounting constraints for any ecosystem service that was included in the state variable definition. 
Furthermore, this is easily done for a variety of model structures, including Model I, Model II [64], 
and others. Constraints, such as flow [65], supply chain and market[66], transportation and logistics 
[67], adjacency [68], labor [69], and equipment constraints [70] can also be built, but will require other 
inputs that are not needed in the alternative generation stage and that can be input at the LP or MIP 
model-building stage. 
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The code for iGen is open source, and datasets and equations of motion sample code for different 
types of forests are provided on the github.com/…/iGen. We hope this system will be a valuable 
resource for practitioners and researchers interested in the development of FEMDSSs. 
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Appendix A 

PennsylvaniaYield is an external function written in Python. All external functions must be 
saved in a file named ExtFunctions.py which is one of the files of iGen Python Project. 
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Appendix B 

Pennsylvania Example – Management unit 1 

 

Appendix C 

Coppice Example – Management Unit 3 
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