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Abstract: The theory of special relativity has reexamined and reconstructed the concepts of space and time, 
which are indispensable for describing physical laws, consequently instigating a major revolution in physics 
in general. Although the correctness of the special theory of relativity has been confirmed by many observations 
and experiments, it is unclear why the "principle of relativity" and the "principle of the constant speed of light," 
which form the basis of the idea, are valid. Moreover, although special relativity has advanced our 
understanding of time, our understanding of the fundamental question, "What is time?" is still limited. The 
theory of special relativity regards space as a four-dimensional construct consisting of one-dimensional time 
and three-dimensional space. This paper proposes an alternative framework, wherein real space is uniform 
and isotropic four-dimensional space, and elementary particles are waves that propagate through this four-
dimensional space at a constant speed. This new perspective provides evidence to support two of Einstein’s 
key principles—the "principle of relativity" and the "principle of the constant speed of light." Furthermore, this 
model clarifies what time is and why time flows at a constant rate from the past to the future. 
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1. Introduction 

The theory of relativity revolutionized physics by challenging and reconstructing the 
fundamental concepts of time and space, which are essential for describing the laws of physics. This 
theory is divided into two main branches: special relativity and general relativity. Special relativity 
was developed for inertial systems moving at a constant speed, and general relativity was extended 
to systems involving acceleration. The theory of special relativity fundamentally transformed our 
understanding of time and space by showing that they are intertwined and objects moving at speeds 
close to that of light experience length contraction and time dilation [1]. Moreover, the theory clarified 
that there is an upper limit to the speed of all objects and that their mass and energy are equivalent 

[2]. The theory of relativity, along with quantum mechanics, forms the cornerstone of modern 
physics. Quantum field theory [3] is a relativistic approach to quantum mechanics that incorporates 
special relativity. The elementary particles that comprise matter and the forces acting between them 
can be explained without contradiction using the quantum field theory. 

In 1905, Einstein developed the special theory of relativity based on two fundamental principles, 
the "principle of relativity" and the "principle of the constant speed of light [4]". Prior to this theory, 
Galilean principle of relativity was widely accepted, stating that the laws of dynamics are the same 
regardless of whether the point of origin of a coordinate system is stationary or moving at a constant 
velocity. However, the discovery by Maxwell that light is an electromagnetic wave [5] revealed that 
electromagnetic waves did not conform to the Galilean principle. This was further confirmed by the 
Michelson-Morley experiment using interferometry, which showed that the speed of light [6] is 
independent of the motion of inertial systems. Based on these observations, Einstein formulated the 
special theory of relativity by assuming the "principle of relativity" and the "principle of the constant 
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speed of light". These principles have been verified through numerous elementary particle collision 
experiments using accelerators [7,8], studies of cosmic rays traveling at nearly the speed of light [9], 
and experiments validating quantum field theory [10]. 

The principles of relativity and the constant speed of light, upon which special relativity theory 
is based, have been widely accepted due to numerous experimental confirmations. However, the 
underlying reasons for their validity have not been adequately explained [11,12]. Time is another 
crucial concept in physics, and it remains less well-understood than space. Although special relativity 
has advanced our understanding of time, it has not provided a satisfactory answer to the fundamental 
question "What is time? [13,14]". 

This paper proposes an alternative approach by assuming that space consists of four dimensions 
and is isotropic and uniform, with elementary particles propagating as waves at the inherent speed 
of this four-dimensional medium. It is thus aimed to shed light on the nature of time and the validity 
of the principles of relativity and constant speed of light. While quantum field theory has proven to 
be a powerful tool for understanding the behavior of elementary particles and the forces that act upon 
them, a complete understanding of the structure of quantum fields is lacking. The present approach 
seeks to uncover the underlying structure of these fields, which will help address many unresolved 
questions in physics, such as the origin of baryons, dark matter, and dark energy. Quantum field 
theory provides accurate predictions of physical phenomena; however, its reliance on experimentally 
determined physical constants limits its ability to provide a more fundamental explanation. 
Revealing the underlying structure of quantum fields can help gain a more complete understanding 
of the physical world. 

2. Overview of special relativity 

Before delving into the question of "What is time?" an overview of special relativity is necessary 
for the discussion that follows. 

2.1. Lorentz transformation [15,16] and invariants 

Consider two inertial systems, S and S', in a constant-speed linear motion with relative speed v 
in x direction, as shown in Figure 1. The coordinates of an inertial system can be expressed using four 
vectors (x0,x1,x2,x3 ) [17] or Minkowski coordinates (ct,x,y,z) [18] representing one dimension of time 
and three dimensions of space, where c is the speed of light. Using these coordinates, the S system 
coordinates can be expressed as follows:  𝑥ఓ = (𝑥଴, 𝑥ଵ, 𝑥ଶ, 𝑥ଷ) = (𝑐𝑡, 𝑥, 𝑦, 𝑧) . (1)

The coordinate of the S' system is expressed in the following way: 𝑥′ఓ = (𝑥′଴, 𝑥′ଵ, 𝑥′ଶ, 𝑥′ଷ) = (𝑐𝑡′, 𝑥′, 𝑦′, 𝑧′) (2)

The coordinates of the S and S' systems are related by the following Lorentz transformation: 

𝑐𝑡 = 𝑐𝑡ᇱ + 𝑣𝑐 𝑥ᇱට1 − 𝑣ଶ𝑐ଶ   . (3)

𝑥 = 𝑥ᇱ + 𝑣𝑡ᇱට1 − 𝑣ଶ𝑐ଶ  . (4)

𝑦 = 𝑦ᇱ. (5)𝑧 = 𝑧ᇱ. (6)

Furthermore, the inverse transformation can be expressed as 
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𝑐𝑡ᇱ = 𝑐𝑡 − 𝑣𝑐 𝑥ට1 − 𝑣ଶ𝑐ଶ . (7)

𝑥ᇱ = 𝑥 − 𝑣𝑡ට1 − 𝑣ଶ𝑐ଶ . 
(8)

𝑦ᇱ = 𝑦 . (9)𝑧ᇱ = 𝑧 . (10)

From (3)–(10), the following relationship can be obtained: 𝑠ଶ = 𝑐ଶ𝑡ଶ − (𝑥ଶ + 𝑦ଶ + 𝑧ଶ) = 𝑐ଶ𝑡ᇱଶ − ൫𝑥ᇱଶ + 𝑦ᇱଶ + 𝑧ᇱଶ൯ (11)

where s represents an invariant quantity (distance invariant to the Lorentz transformation) that 
holds for all inertial systems. The rest mass, m0, is also an invariant quantity and can be obtained from 
the energy-momentum relationship expressed below: 𝑚଴ଶ𝑐ସ = 𝐸ଶ − ൫𝑝௫ଶ + 𝑝௬ଶ + 𝑝௭ଶ൯𝑐ଶ = 𝐸ᇱଶ − ൫𝑝௫ᇱଶ + 𝑝௬ᇱଶ + 𝑝௭ᇱଶ൯𝑐ଶ (12)

where E denotes the relativistic energy, and p(px, py, pz) denotes the momentum. The rest mass 
m0 has the same value for all inertial systems. By setting momentum zero, (12) yields the well-known 
eq. E0=m0c2 for the rest mass and energy. 

 
Figure 1. Two inertial systems S and S' in constant linear motion with relative speed v in x direction. 

2.2. Time delay and Lorentz contraction 

Consider the time delay of the S' system from the point of view of the S system. The time in the 
S' system can be obtained from the point of view of the S system by substituting the position of the 
coordinate origin of the S' system, x’=0, into (3). 𝑐𝑡 = 𝑐𝑡ᇱට1 − 𝑣ଶ𝑐ଶ . (13)

This implies that time t' in system S' flows more slowly than time t in system S and the 
relationship can be expressed as 
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𝑡ᇱ = ඨ1 − 𝑣ଶ𝑐ଶ 𝑡 . (14)

In the next step, the contraction of the space of the S' system is considered from the point of view 
of the S system. By substituting time t' = 0 into (4), the distance x' of the S' system from the perspective 
of the S system can be obtained. 𝑥 = 𝑥ᇱට1 − 𝑣ଶ𝑐ଶ . (15)

In other words, the space of the S' system appears to be contracted compared with that of the S 
system, and their relation is given by 

𝑥ᇱ = ඨ1 − 𝑣ଶ𝑐ଶ  𝑥 . (16)

2.3. "Same time" and "same position" in the Minkowski spacetime 

According to special relativity, two inertial coordinate systems moving relative to each other 
cannot share the same time at all points. To illustrate this, let us consider how the same time and 
point in the S' system appear in the S system. The same time in the S' system is defined as the 
coordinate at which t' is constant. By using (7), the same time in the S' system can be expressed using 
the following linear equation in the S system: 

𝑐𝑡 = 𝑐𝑡ᇱඨ1 − 𝑣ଶ𝑐ଶ + 𝑣𝑐 𝑥 . (17)

On the other hand, the same position in the S' system is the coordinate where x' is constant. 
Using (8), the same position in the S' system is given by the following linear equation: 

𝑥 = 𝑥ᇱඨ1 − 𝑣ଶ𝑐ଶ + 𝑣𝑡 . (18)

Eqs. (17) and (18) are expressed in Minkowski coordinates, as shown in Figure 2 (y and z 
coordinates are omitted). In the S system, the same time is represented by a line parallel to the x axis, 
while the same position is represented by a line parallel to the ct axis. Similarly, in the S' system, the 
same time is represented by a line parallel to the x' axis, and the same position is represented by a 
line parallel to the ct' axis. As shown in Figure 2, there is only one point (P) that has the same time 
and position in both the S and S' systems. In real 4-dimensional spacetime, the y-z plane with common 
(ct, x) coordinates represents the same time and place in both systems. 

 

Figure 2. Same time and same position in the Minkowski spacetime. 
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3. Assumptions on time 

Although we can visually perceive space and have a general understanding of it, time remains 
beyond our perceptual reach, leaving us without a clear answer to the question of what time is. The 
theory of special relativity has undoubtedly advanced our understanding of time, but it has not 
provided a definite answer to the age-old question, “What is time?” Nevertheless, it is widely 
believed that no theory has come closer to unravelling the mystery of time than the theory of special 
relativity. To explore the nature of time further, the Minkowski spacetime is examined from different 
perspectives. 

Eq. (11) of the Lorenz invariant, which describes distance in the Minkowski spacetime, does not 
treat time and space equally. This equation reveals that the Pythagorean theorem, which holds in 
Euclidean space, does not hold in the Minkowski spacetime. To address this, (11) can be transformed 
so that the Pythagorean theorem holds in this non-Euclidean spacetime. 𝑐ଶ𝑡ଶ = 𝑠ଶ + (𝑥ଶ + 𝑦ଶ + 𝑧ଶ) . (19)

As shown in (1), in Minkowski spacetime, x0 corresponds to the time distance ct; however, x0 is 
rewritten such that it corresponds to the Lorentz-invariant s as follows: 𝑐ଶ𝑡ଶ = (𝑥଴)ଶ + (𝑥ଵ)ଶ + (𝑥ଶ)ଶ + (𝑥ଷ)ଶ . (20)

In other words, x0 is considered not as time but as another spatial axis orthogonal to the other 
three axes. The 4D spaces (x0,x1,x2,x3 ) differ from the Minkowski spacetime in that all axes are equal 
to each other. Eq. (20) can be expressed in difference form as follows: 𝑐ଶ𝑑𝑡ଶ = (𝑑𝑥଴)ଶ + (𝑑𝑥ଵ)ଶ + (𝑑𝑥ଶ)ଶ + (𝑑𝑥ଷ)ଶ . (21)

In addition, solving (21) for time yields the following form. 

𝑑𝑡 = ඥ(𝑑𝑥଴)ଶ + (𝑑𝑥ଵ)ଶ + (𝑑𝑥ଶ)ଶ + (𝑑𝑥ଷ)ଶ𝑐  . (22)

This equation implies that time is the distance traveled in the four dimensions of space divided 
by the speed of light. 

In quantum field theory, elementary particles are understood as excited states of a field, and 
their motion is interpreted as the propagation of this excited state as a wave [19]. A medium that 
carries waves has a specific propagation speed, and waves always propagate at their inherent speed 
when nothing is around them to constrain them. While waves propagating in air or water are not 
stationary, elementary particles, although waves, can remain stationary in free space without being 
constrained. This behavior is apparently strange. 

To explain this phenomenon, let us assume that all elementary particles are waves that 
propagate through 4D space at the speed of light c. This assumption provides a possible explanation 
for the stationary behavior of elementary particles. For example, the relative speed of two surfers on 
the same wave can be zero. If the 4D spacetime is considered as an inertial system consisting of a 
group of elementary particles propagating at the speed of light in the same direction in 4D space, as 
shown in Figure 3, the elementary particles in this inertial system appear to be at rest with respect to 
each other. Moreover, the propagation of the speed of light in 4D space can be considered as the 
underlying cause of the flow of time, which ticks at a constant speed from the past to the future. This 
perspective suggests a close relationship between the behavior of waves in 4D space and the flow of 
time. 
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Figure 3. Inertial coordinate system created by elementary particles propagating through the 4D space 
at the speed of light. 

4. Mathematical model: 4D space 

In this study, using the following two assumptions, valid coordinate transformations in 4D space 
were obtained, and their relationship was discussed based on the Lorentz transformation: 

Assumption 1: Space consists of four isotropic and uniform dimensions. 
Assumption 2: Time is determined as the distance covered by an elementary particle 

propagating through a 4D space divided by the speed of light. 

4.1. Coordinate transformation in the 4D space 

The simplest system with relative motion consists of two elementary particles. Let us consider a 
system consisting of two elementary particles, P1 and P2, propagating in different directions in 4D 
space with speed c. 

The motion of these particles can be analyzed by first examining P1 alone. As shown in Figure 3, 
if the direction of motion of elementary particle P1 is considered as the x0 axis, the direction of the x0 
axis becomes the time axis of the coordinate system fixed to elementary particle P1. In other words, 
the distance x0 traveled by elementary particle P1 from its origin divided by its speed c is the time t of 
particle P1. 𝑡 = 𝑥଴𝑐  . (23)

The remaining three axes, (𝑥ଵ, 𝑥ଶ, 𝑥ଷ), orthogonal to the x0 axis, form the spatial coordinates 
(x,y,z) of the coordinate system fixed to particle P1. The coordinate system (ct,x,y,z) fixed to particle 
P1 is an inertial coordinate system that moves at a constant speed of light c in 4D space. 

Next, the motion of elementary particle P2, which propagates in a direction different from that 
of elementary particle P1, is considered. As shown in Figure 4, the particle P2 starts to propagate at 
the same time as the particle P1 from a certain point (let this be the origin), and the direction of 
propagation of the particle P2 is assumed to form an angle θ with the direction of propagation of the 
elementary particle P1. This direction is the x'0 axis of particle P2, while x1 and x'1 axes are assumed to 
be in the same plane as the x0 and x'0 axes. The speed component of particle P2 in the x1 axis direction 
can be expressed as follows: 𝑣 = 𝑠𝑖𝑛𝜃・𝑐.  (24)

Furthermore, from (24), the following equations are obtained. 
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𝑠𝑖𝑛𝜃 = 𝑣𝑐 ,  (25)

𝑐𝑜𝑠𝜃 = ඥ1 − 𝑠𝑖𝑛ଶ𝜃 = ඨ1 − 𝑣ଶ𝑐ଶ .  (26)

The transformation from coordinates (x'0,x'1) to coordinates (x0,x1) is given by the well-known 
rotation of the coordinate axes. 𝑥଴ = 𝑐𝑜𝑠𝜃・𝑥′଴ − 𝑠𝑖𝑛𝜃・𝑥′ଵ ,  (27)𝑥ଵ = 𝑠𝑖𝑛𝜃・𝑥′଴ + 𝑐𝑜𝑠𝜃・𝑥′ଵ (28)

Using (25) and (26), (27) and (28) can be rewritten as follows: 

𝑥଴ = ඨ1 − 𝑣ଶ𝑐ଶ 𝑥′଴ − 𝑣𝑐 𝑥ᇱଵ , (29)

𝑥ଵ = 𝑣𝑐 𝑥′଴ + ඨ1 − 𝑣ଶ𝑐ଶ 𝑥′ଵ . (30)

This is the coordinate transformation of 4D space. The inverse transformation is as follows: 

𝑥′଴ = ඨ1 − 𝑣ଶ𝑐ଶ 𝑥଴ + 𝑣𝑐 𝑥ଵ , (31)

𝑥′ଵ = − 𝑣𝑐 𝑥଴ + ඨ1 − 𝑣ଶ𝑐ଶ 𝑥ଵ . (32)

The relationship of the other coordinate axes is as follows: 𝑥′ଶ = 𝑥ଶ , (33)𝑥′ଷ = 𝑥ଷ . (34)
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Figure 4. Elementary particles P1 and P2 moving in the 4D space with relative speed v in x direction. 

4.2. "Same time" and "same position" of the inertial system moving in the 4D space 

The two inertial coordinate systems moving in 4D space cannot share the same time at all points, 
as in Minkowski spacetime. Figure 5 shows the coordinates of the S and S' systems moving relative 
to each other in 4D space (x2 and x3 axes are omitted). As in the Minkowski spacetime, the same time 
in the S system can be represented by a line parallel to the x1 axis, and the same time in the S' system 
can be represented by a line parallel to the x′1 axis. Only one point (P) exists where the lines of the 
same time and position in the S and S' systems overlap each other (in real 4D space, x2- x3 plane with 
common (x0, x1) coordinates corresponds to the same time and position). 

 

Figure 5. Same time and same position of two inertial systems in motion in the 4D space. 

In addition to the inertial systems described earlier, there is another notion of time that must be 
considered. This is the same time in 4D space. To illustrate this, let us again consider two elementary 
particles that simultaneously start propagating in different directions from the origin. Figure 6 shows 
the positional relationship of the two elementary particles after time t has elapsed during their 
propagation. The elementary particles P1 and P2 are both located on the circumference of radius ct in 
the 4D space at time t. Although the same time in the inertial system of the two elementary particles 
is shown in Figure 6, note that there are two types of times at play here: the same time in the inertial 
system of the two particles and the same time in the 4D space. 

 
Figure 6. Same time in the inertial system and same time in the 4D space. 
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As discussed in Section 2.2, when two objects move relative to each other at a speed v, they 
perceive each other's time as flowing slower than their own time. The relationship is expressed by 

𝑡ᇱ = ඨ1 − 𝑣ଶ𝑐ଶ 𝑡 . (35)

In other words, the other person’s time, as observed by each elementary particle, is the past time 
of the other person’s elementary particles. As shown in Figure 6, the time at which elementary particle 
P2 is observed by elementary particle P1 is the time at P2’ (𝑡ᇱ = ඥ1 − 𝑣ଶ/𝑐ଶ𝑡). Similarly, the time at 
which elementary particle P1 is observed by elementary particle P2 is the time at P1’ (𝑡ᇱ = ඥ1 − 𝑣ଶ/𝑐ଶ𝑡) 

The time ඥ1 − 𝑣ଶ/𝑐ଶ𝑡  is known as the eigentime in the theory of special relativity and is 
denoted by τ= ඥ1 − 𝑣ଶ/𝑐ଶ𝑡. The following relationship between the eigentime τ and the Lorentz-
invariant distance s also exists: 

s = cτ . (36)

4.3. Equivalence of the Minkowski spacetime and the 4D Space 

This section presents an examination as to why motion in an isotropic and uniform 4D space is 
transformed by the Lorentz transformation. 

The Lorentz and rotational transformations in the 4D space, and their respective inverse 
transformations can be expressed as follows: 

𝑐𝑡 = 𝑐𝑡ᇱ + 𝑣𝑐 𝑥ᇱට1 − 𝑣ଶ𝑐ଶ  , (37)

𝑥 = 𝑣𝑐 𝑐𝑡ᇱ + 𝑥ᇱට1 − 𝑣ଶ𝑐ଶ  , (38)

𝑐𝑡ᇱ = 𝑐𝑡 − 𝑣𝑐 𝑥ට1 − 𝑣ଶ𝑐ଶ , (39)

𝑥ᇱ = − 𝑣𝑐 𝑐𝑡 + 𝑥ට1 − 𝑣ଶ𝑐ଶ  , (40)

𝑥଴ = ඨ1 − 𝑣ଶ𝑐ଶ 𝑥′଴ − 𝑣𝑐 𝑥ᇱଵ , (41)

𝑥ଵ = 𝑣𝑐 𝑥′଴ + ඨ1 − 𝑣ଶ𝑐ଶ 𝑥′ଵ , (42)

𝑥′଴ = ඨ1 − 𝑣ଶ𝑐ଶ 𝑥଴ + 𝑣𝑐 𝑥ଵ , (43)

𝑥′ଵ = − 𝑣𝑐 𝑥଴ + ඨ1 − 𝑣ଶ𝑐ଶ 𝑥ଵ . (44)
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Eqs. (37)–(40) corresponding to the Lorentz transformation and (41)–(44) corresponding to the 
rotational transformation in 4D space do not initially appear to be the same. To compare them 
directly, the rotational transformation equation is rewritten in the same form as the Lorentz 
transformation. 

𝑥଴ = 𝑥′଴ − 𝑣𝑐 𝑥ଵට1 − 𝑣ଶ𝑐ଶ  , (45)

𝑥ଵ = 𝑣𝑐 𝑥଴ + 𝑥′ଵට1 − 𝑣ଶ𝑐ଶ  , (46)

𝑥′଴ = 𝑥଴ + 𝑣𝑐 𝑥′ଵට1 − 𝑣ଶ𝑐ଶ  , (47)

𝑥′ଵ = − 𝑣𝑐 𝑥′଴ + 𝑥ଵට1 − 𝑣ଶ𝑐ଶ  . (48)

Compared to (37)–(40), the following correspondence between the coordinate axes of the 4D 
space and the coordinates of the Minkowski spacetime is observed: 𝑥଴   ⇔  𝑐𝑡ᇱ ,  (49)𝑥ଵ  ⇔  𝑥 , (50)𝑥ᇱ଴ ⇔  𝑐𝑡 , (51)𝑥′ଵ ⇔  𝑥ᇱ .  (52)

This correspondence between the 4D space coordinates and the Minkowski spacetime 
coordinates is illustrated in Figure 7, where x0(ct') indicates that the x0 axis in the 4D space is the ct' 
axis in the Minkowski spacetime. The meanings of the other coordinates are the same.  

 

Figure 7. Correspondence between the 4D space coordinate and the Minkowski spacetime 
coordinate. 
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Here, a few aspects are noteworthy. As shown in (49)–(52) and Figure 7, the relation between 
the two time axes in the Minkowski spacetime is in contrast to the relation of the time axes in the 4D 
space (such that ct′ corresponds to x0 and ct corresponds to x′0). 

The distance between the coordinate origin and event P is given by the following equation using 
the coordinates in the 4D space: (𝑥଴)ଶ+(𝑥)ଶ = (𝑥′଴)ଶ+(𝑥′ଵ)ଶ . (53)

Substituting (49)–(52) into (53) gives the following equation: 𝑐ଶ𝑡′ଶ+𝑥ଶ = 𝑐ଶ𝑡ଶ+𝑥′ଶ . (54)

Further transposition of x to the right-hand side and x' to the left-hand side gives the following 
equation: 𝑐ଶ𝑡′ଶ−𝑥′ଶ = 𝑐ଶ𝑡ଶ−𝑥ଶ . (55)

This equation is simply the invariant distance formula of the Lorentz transformation, as 
indicated by (11). 

This discussion yields the conclusion that there is a one-to-one correspondence between the 
Minkowski spacetime and 4D space. Each transformation equation can be obtained by substituting 
the coordinate variables shown in (49)–(52). Hence, it can be stated that "the Minkowski spacetime 
and the 4D space are completely equivalent." Notably, the reason why the invariant distance in the 
Minkowski spacetime is not the Pythagorean theorem but the difference between the square of the 
time distance and the space distance. This is because of the different approach to taking the time axis 
in the Minkowski spacetime and the 4D space, as aforementioned (so that ct′ corresponds to x0 and 
ct corresponds to x′0). 

4.4. Time delay and Lorentz contraction derived from rotational transformation in the 4D space 

This section shows that the time delay and Lorentz contraction can be obtained from the 
rotational transformation in 4D space as well as from the Lorentz transformation. 

Two elementary particles, P1 and P2, start linear motion at a constant speed in different directions 
from the same position, and their positions at time t are shown in Figure 8. The position coordinates 
of the elementary particle P2 at this time are represented by (x'0, x'1) = (ct,0). Substituting this into (29) 
and transforming it into the coordinate system of elementary particle P1, the following results: 

𝑥଴ = ඨ1 − 𝑣ଶ𝑐ଶ ・𝑥′଴ − 𝑣𝑐 ・𝑥′ଵ = ඨ1 − 𝑣ଶ𝑐ଶ ・𝑐𝑡 .  (56)

If the time at this position is t', 

𝑡ᇱ = 𝑥଴𝑐 = ඨ1 − 𝑣ଶ𝑐ଶ 𝑡. (57)
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Figure 8. Positions of elementary particles P1 and P2 at time t. 

Thus, from the viewpoint of particle P1, the time of particle P2 is delayed as described by equation 
(57), which corresponds to the "time delay" in (14). This demonstrates that the same results as the 
Lorentz transformation can be obtained from the rotational transformation in 4D space. From another 
perspective, the x0-axis component of the position coordinate of elementary particle P2 is ඥ1-vଶ/cଶt. 
This implies that the time of elementary particle P2 as observed by elementary particle P1 is the 
distance that particle P2 has traveled in the direction of the time axis of particle P1. Conversely, the 
time of elementary particle P1 from the perspective of elementary particle P2 is the distance that 
particle P1 has traveled in the direction of the time axis of particle P2. These time relationships are 
relative to each other. 

Figure 9 shows the coordinate of a position ℓ from the origin on the x'1 axis as (x'0, x'1) = (0, ℓ). 
By substituting this into (30) and transforming it into the coordinate system of elementary particle P1, 
the following results: 

𝑥ଵ = 𝑣𝑐 ・𝑥′଴ + ඨ1 − 𝑣ଶ𝑐ଶ ・𝑥′ଵ = ඨ1 − 𝑣ଶ𝑐ଶ ・ℓ . (58)
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Figure 9. Lorentz contraction of the coordinate axes of the elementary particle P2. 

It appears that the distance in the x'1 direction of elementary particle P2 contracts in the 
coordinate system of elementary particle P1, according to the ratio given in (58). This is the equivalent 
to the "Lorentz contraction" in (16). It can be observed that the spatial distance of the elementary 
particle P2 corresponds to the distance projected onto the x1 axis of the coordinate system of the 
elementary particle P1. Similarly, the spatial distance of the elementary particle P1 is the distance 
projected onto the x'1 axis of the coordinate system of the elementary particle P2. It is important to 
note that spatial distance relationships, such as time relationships, are relative to each other. 

4.5. Upper limit of speed and the principle of constant speed of light 

As mentioned in Section 4.1, the relative speed occurs due to the difference in the direction of 
propagation of each elementary particle and is given by the following equation: 𝑣 = 𝑠𝑖𝑛𝜃・𝑐 .  (59)

This implies that the relative speed is maximum when the direction of propagation of each 
elementary particle differs by 90°, that is, when their directions of motion are orthogonal to each 
other. Therefore, an upper limit to the relative speed of elementary particles is set, which is equal to 
the speed of light c. 

As mentioned in Section 2.1, the four vectors of special relativity are defined by the following 
equation: 𝑥ఓ = (𝑥଴ , 𝑥ଵ , 𝑥ଶ, 𝑥ଷ) = (𝑐𝑡 , 𝒙). (60)

The four-momentum 𝑝ఓ is defined by the following equation: 𝑝ఓ = 𝑚଴𝑢ఓ = (𝑚଴ 𝑑(𝑐𝑡)𝑑𝜏  , 𝒑) . (61)

The following equation gives the relationship between energy and momentum: 𝐸ଶ = 𝑚଴ଶ𝑐ସ + 𝑝ଶ𝑐ଶ , (62)

where m0 is the rest mass of the elementary particle. Further, 𝑚଴ଶ𝑐ସ = 𝐸ଶ − 𝑝ଶ𝑐ଶ = 𝐸ᇱଶ − 𝑝ᇱଶ𝑐ଶ , (63)
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is Lorentz-invariant, and the rest mass m0 is the same for all inertial systems. 
In contrast, the four vectors in the 4D space are defined as follows (considering x0 as cτ instead 

of ct): 𝑥ఓ = (𝑥଴ , 𝑥ଵ , 𝑥ଶ, 𝑥ଷ) = (𝑐𝜏 , 𝒙). (64)

Thus, the four-momentum 𝑝ఓ in the 4D space is defined as follows: 𝑝ఓ = 𝑚଴𝑢ఓ = (𝑚଴𝑐 , 𝒑) . (65)

The relationship between energy and momentum is given by the following equation (as in 
special relativity): 𝐸ଶ = 𝑚଴ଶ𝑐ସ + 𝑝ଶ𝑐ଶ . (66)

The relationship between energy and momentum for elementary particles with zero mass is 
given by the following equation for both special relativity and 4D space: 𝐸 = |𝒑|𝑐. (67)

The four-momentum equation for elementary particles with zero mass is given by 𝑝ఓ = (0 , 𝒑) . (68)

Because the rest mass is Lorentz-invariant, elementary particles with zero mass have zero mass 
in all inertial systems. Elementary particles with zero mass have zero momentum in the direction of 
the time axis, as expressed in (68). As mentioned earlier, the speed of elementary particles with a 
direction of motion that differs by 90° from the time axis, is the speed of light. In other words, the 
speed of elementary particles with zero mass is the speed of light in all inertial systems. This is the 
reason for the validity of the principle of the constant speed of light. 

4.6. Klein–Gordon and Dirac equations 

The Klein–Gordon and Dirac equations are important as they support the quantum field theory 
[3,19]. Therefore, it is necessary to show that the assumption of a 4D space is consistent with these 
equations. 

The Klein–Gordon equation is obtained by making the following quantum mechanical 
replacement to (62), which is established between the energy and momentum: 𝐸 → 𝑖ℏ 𝜕𝜕𝑡  ,  𝒑 → −𝑖ℏ∇ . (69)

As discussed in Section 4.5, the relationship between the energy and momentum in a 4D space 
is given by (66), similar to the theory of special relativity. Therefore, the Klein–Gordon equation has 
the same form in special relativity and 4D space. By replacing (69) and rewriting (66) in the form of a 
wave equation, the well-known Klein–Gordon equation is obtained.  ቆ 1𝑐ଶ 𝜕ଶ𝜕𝑡ଶ − 𝛻ଶ + 𝑚଴ଶ𝑐ଶℏଶ ቇ 𝜑(𝑥) = 0 .  (70)

However, the four-momentum in 4D space is given by (65). If it is considered as a vector in a 4D 
space, it takes the following form: 𝒑ସ = 𝑚଴𝑐𝒆଴ + 𝑝ଵ𝒆ଵ + 𝑝ଶ𝒆ଶ + 𝑝ଷ𝒆ଷ . (71)

where 𝒆ఓ represents the unit vector of the 𝑥ఓ (μ = 0 ∼ 3) axis. In addition, pସ is a vector in the 
4D space, and this notation is used to distinguish it from the usual vector p in 3D space. Using 
replacement (69) in (71) yields: 𝑖ℏ 1𝑐 𝜕𝜕𝑡 𝒑ସ|𝒑ସ| = 𝑚଴𝑐𝒆଴ − 𝑖ℏ 𝜕𝜕𝑥ଵ 𝒆ଵ − 𝑖ℏ 𝜕𝜕𝑥ଶ 𝒆ଶ − 𝑖ℏ 𝜕𝜕𝑥ଷ 𝒆ଷ .  (72)

Using the correspondence between (65) and (66), the following replacement is used: 
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|𝒑ସ| →  
1𝑐 𝐸 →  𝑖ℏ 1𝑐 𝜕𝜕𝑡 .  (73)

Furthermore, by transposing the right-hand side of (72) to the left-hand side, the following 
equation is obtained: 𝑖ℏ 1𝑐 𝜕𝜕𝑡 𝒑ସ|𝒑ସ| + 𝑖ℏ 𝜕𝜕𝑥ଵ 𝒆ଵ + 𝑖ℏ 𝜕𝜕𝑥ଶ 𝒆ଶ + 𝑖ℏ 𝜕𝜕𝑥ଷ 𝒆ଷ − 𝑚଴𝑐𝒆଴ = 0 . (74)

On the other hand, the Dirac equation is as follows: ൬𝑖ℏ 𝜕𝜕𝑥଴ 𝛾଴ + 𝑖ℏ 𝜕𝜕𝑥ଵ 𝛾ଵ + 𝑖ℏ 𝜕𝜕𝑥ଶ 𝛾ଶ + 𝑖ℏ 𝜕𝜕𝑥ଷ 𝛾ଷ − 𝑚଴𝑐𝐼ସ൰ 𝜓(𝑥) = 0 (75)

where 𝛾ఓ (μ = 0 ∼ 3) denotes a 4 × 4 matrix (gamma matrix) satisfying the following relation: 𝛾ఓ𝛾ఔ + 𝛾ఔ𝛾ఓ = 2𝜂ఓఔ𝑰ସ . (76)Iସ is the unit matrix and  is the metric tensor. 

𝜂ఓఔ = ቐ+1  𝑓𝑜𝑟  𝜇 = 𝜈 = 0       −1  𝑓𝑜𝑟  𝜇 = 𝜈 = 1,2,30  𝑓𝑜𝑟  𝜇 ≠ 𝜈             . (77)

Eqs. (74) and (75) can now be compared. The Dirac equation (75) differs from the vector equation 
in (74) because it is an equation for four-component spinors; however, it has the same formal form. 
The following correspondence is observed between the unit vector 𝒆ఓ, the gamma matrix 𝛾ఓ and 
the four-vector 𝑥ఓ: 𝒆଴     ⇔ 𝑰ସ  ⇔ 𝑥଴ , (78)𝒑ସ|𝒑ସ| ⇔ 𝛾଴ ⇔ 𝑐𝑡 , (79)

𝒆ଵ    ⇔ 𝛾ଵ ⇔ 𝑥ଵ , (80)𝒆ଶ    ⇔ 𝛾ଶ ⇔ 𝑥ଶ , (81)𝒆ଷ    ⇔ 𝛾ଷ ⇔ 𝑥ଷ . (82)

The correspondences mentioned above suggest that the gamma matrix 𝛾ఓ plays the role of both 
a unit vector and a matrix that acts on the spinor. On this basis, the Klein–Gordon equation can be 
interpreted as an energy conservation law in 4D space, and the Dirac equation can be interpreted as 
a four-momentum conservation law in the 4D space. From the above discussion, the following 
relationship between 4D space and Minkowski spacetime may be recalled: 

-4D space                     : Space       : Quantum field 
-Minkowski spacetime: Spacetime: Inertial system 
This implies that the 4D space is an isotropic and uniform space with four dimensions that lacks 

time and constitutes a field of elementary particles. In contrast, the Minkowski spacetime is an inertial 
system in which time is obtained by a group of elementary particles that propagate through 4D space 
at the speed of light. Our universe may consist of only one 4D space, forming a field and countless 
inertial systems propagating through 4D space at the speed of light 

5. Discussion 

This paper presents the derivation of the principle of relativity from the motion of elementary 
particles in 4D space. The invisibility of the time axis, equivalence of mass and energy, and dilation 
of time are also discussed. 
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5.1. The principle of relativity 

The principle of relativity implies that the laws of physics are the same for all inertial systems. 
Because it is a fundamental assumption, its validity does not need to be questioned further as long as 
experimental or observational evidence supports the conclusions drawn from it. However, it is still 
worthwhile to explore its underlying meaning. 

An inertial system consists of a group of elementary particles that propagate at the speed of light 
in the same direction through an isotropic and uniform 4D space. Because inertial systems moving in 
different directions differ only in the direction of propagation, there is no reason for the laws of 
physics to differ owing to differences in the direction of propagation if the space is isotropic and 
uniform. Therefore, the principle of relativity can be explained by assuming an isotropic and uniform 
4D space. 

Although the principle of relativity can be explained by assuming an isotropic and uniform 4D 
space, it is important to note that this assumption has been experimentally verified accurately. 
Nevertheless, understanding the underlying meaning of the principle can help deepen our 
understanding of the nature of the universe.  

5.2. Why time is invisible 

Our ability to observe and measure the depth of space and position of objects depends on the 
transfer of information between objects through light and sound waves. For instance, we rely on light 
to see, while animals such as bats use ultrasound to locate their prey. However, elementary particles 
with zero mass, such as photons, cannot convey information about the direction of the time axis since 
they have no momentum in that direction. Moreover, elementary particles with mass can travel at 
the speed of light along the direction of the time axis, but they cannot transfer information back and 
forth along it. As a result, we have no means of determining the depth the time axis and, therefore, 
we cannot precisely measure determine the time. 

5.3. Equivalence of mass and energy 

Einstein’s famous equation E= m0c2 was derived from special relativity [2], and its validity has 
been proven through numerous experiments and observations. This equation expresses the 
equivalence between the rest mass of an object and its energy. For instance, evidence of this equation 
can be observed in nuclear power and the energy of the sun, both of which result from a small amount 
of mass being converted to energy through fission and fusion reactions. 

In an inertial coordinate system moving with elementary particles, m0 represents the rest mass 
of the particles. However, in 4D space, elementary particles propagate through space at the speed of 
light and have momentum p= m0c and kinetic energy E= m0c2. It can be challenging to understand how 
the rest mass is equivalent to energy; however, this becomes simpler if E= m0c2 is interpreted as the 
kinetic energy of an object moving at the speed of light. 

5.4. Time dilation [20] 

Section 4.4 explains that a moving object experiences time dilation according to (57). This leads 
to an interesting hypothetical scenario known as the twin paradox [21], where one twin who travels 
into space in a spaceship and returns to Earth years later, finds that their time has slowed down 
compared to their younger twin, who has aged significantly. 

This phenomenon can be explained using the concept of 4D space as follows: Consider two 
elementary particles P1 and P2, which move in different directions starting from the same point at 
time zero, as shown in Figure 10. As long as their motions remain unchanged, their relative motions 
will remain unchanged as they move in different directions but marking the same time with each 
other. 
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Figure 10. Time travel occurring at the moment when the inertial coordinate system changes. 

However, when the direction of motion changes, things get interesting. At time t, the positions 
of P1 and P2 in 4D space are shown in Figure 10. If P2 changes its direction of motion in the same 
direction as P1 at point A, it implies that P2 moves into the same inertial system as P1. 

As a result, when P2 arrives at point A, which is represented by a straight line parallel to the x′1 
axis and corresponds to the same time as P1, it moves to point B, which is simultaneously located in 
the inertial system of particle P1. The time when P2 arrives at point A is t′, which is obtained from 
(57). However, as soon as P2 enters the same inertial system as P1, it moves to time t at the same time 
as P1. 

Thus, the time of P2 is delayed relative to P1 due to its motion in a different direction, and it 
experiences time dilation. This mechanism explains the twin paradox and the reason why the moving 
brother in our hypothetical scenario would experience slower time than the stationary brother. 

5.5. Field that creates 4D space and the ticks of time 

This section presents an exploration of the structure of the field that gives rise to 4D space and 
examine how time operates within this space. 

According to quantum field theory, a vacuum is not empty but composed of harmonic 
oscillators. Elementary particles are considered to be excited states of these oscillators that propagate 
as waves. For these waves to propagate, they require a medium and a foundation to hold the 
harmonic oscillators. In order for quantum field theory to be valid, there must be an absolute 
foundation to hold these oscillators, such as 4D space. As previously described, if the inertial 
coordinate system is considered to be a group of elementary particles that propagate at the speed of 
light in a 4D space, this 4D space can be considered a medium that transmits waves of elementary 
particles and as an absolute space. 

The universe is composed of four isotropic and uniform dimensions, and 4D space is the 
medium through which elementary particles propagate at the speed of light. Time is a secondary 
phenomenon that arises from the excited state of a field propagating at a constant speed. The excited 
state of the field creates time by moving through 4D space, much like falling dominoes. Time does 
not exist in the space before or after the dominoes fall; only the quantum field fluctuations are present. 
Time moves at a constant speed from the past to the future because these dominoes fall at a constant 
speed in a constant direction. Our universe can be considered as the tip of a domino that keeps time 
ticking as it falls. 
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6. Conclusion 

This paper proposes that space is composed of isotropic and uniform 4D space and that 
elementary particles are waves that propagate at an inherent speed in this medium. Based on these 
assumptions, the following conclusions were drawn: 
• A one-to-one correspondence exists between Minkowski spacetime and 4D space, indicating 

their complete equivalence. The Lorentz transformation in Minkowski spacetime is equivalent 
to a rotational transformation in a 4D space. 

• It is demonstrated that time delay and Lorentz contraction can be derived not only from 
Lorentz transformations, but also from rotational transformations in a 4D space. 

• The principle of relativity and the principle of the constant speed of light, which Einstein 
assumed when deriving the special theory of relativity, can be derived by assuming the 4D 
space. The present study also clarified why time flows at a constant speed from the past to the 
future. 
There remain several unsolved problems in physics, such as the origin of baryons and the nature 

of dark matter and dark energy. To solve these problems, the structure of quantum fields comprising 
the universe must be unraveled. It is believed that the 4D space proposed in this study is an important 
step towards unraveling the structure of quantum fields. 
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