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Abstract: The theory of special relativity has reexamined and reconstructed the concepts of space and time,
which are indispensable for describing physical laws, consequently instigating a major revolution in physics
in general. Although the correctness of the special theory of relativity has been confirmed by many observations
and experiments, it is unclear why the "principle of relativity" and the "principle of the constant speed of light,"
which form the basis of the idea, are valid. Moreover, although special relativity has advanced our
understanding of time, our understanding of the fundamental question, "What is time?" is still limited. The
theory of special relativity regards space as a four-dimensional construct consisting of one-dimensional time
and three-dimensional space. This paper proposes an alternative framework, wherein real space is uniform
and isotropic four-dimensional space, and elementary particles are waves that propagate through this four-
dimensional space at a constant speed. This new perspective provides evidence to support two of Einstein’s
key principles—the "principle of relativity" and the "principle of the constant speed of light." Furthermore, this
model clarifies what time is and why time flows at a constant rate from the past to the future.

Keywords: constant speed of light; isotropic and uniform four-dimensional space; Lorentz
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1. Introduction

The theory of relativity revolutionized physics by challenging and reconstructing the
fundamental concepts of time and space, which are essential for describing the laws of physics. This
theory is divided into two main branches: special relativity and general relativity. Special relativity
was developed for inertial systems moving at a constant speed, and general relativity was extended
to systems involving acceleration. The theory of special relativity fundamentally transformed our
understanding of time and space by showing that they are intertwined and objects moving at speeds
close to that of light experience length contraction and time dilation [1]. Moreover, the theory clarified
that there is an upper limit to the speed of all objects and that their mass and energy are equivalent
[2]. The theory of relativity, along with quantum mechanics, forms the cornerstone of modern
physics. Quantum field theory [3] is a relativistic approach to quantum mechanics that incorporates
special relativity. The elementary particles that comprise matter and the forces acting between them
can be explained without contradiction using the quantum field theory.

In 1905, Einstein developed the special theory of relativity based on two fundamental principles,
the "principle of relativity" and the "principle of the constant speed of light [4]". Prior to this theory,
Galilean principle of relativity was widely accepted, stating that the laws of dynamics are the same
regardless of whether the point of origin of a coordinate system is stationary or moving at a constant
velocity. However, the discovery by Maxwell that light is an electromagnetic wave [5] revealed that
electromagnetic waves did not conform to the Galilean principle. This was further confirmed by the
Michelson-Morley experiment using interferometry, which showed that the speed of light [6] is
independent of the motion of inertial systems. Based on these observations, Einstein formulated the
special theory of relativity by assuming the "principle of relativity" and the "principle of the constant
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speed of light". These principles have been verified through numerous elementary particle collision
experiments using accelerators [7,8], studies of cosmic rays traveling at nearly the speed of light [9],
and experiments validating quantum field theory [10].

The principles of relativity and the constant speed of light, upon which special relativity theory
is based, have been widely accepted due to numerous experimental confirmations. However, the
underlying reasons for their validity have not been adequately explained [11,12]. Time is another
crucial concept in physics, and it remains less well-understood than space. Although special relativity
has advanced our understanding of time, it has not provided a satisfactory answer to the fundamental
question "What is time? [13,14]".

This paper proposes an alternative approach by assuming that space consists of four dimensions
and is isotropic and uniform, with elementary particles propagating as waves at the inherent speed
of this four-dimensional medium. It is thus aimed to shed light on the nature of time and the validity
of the principles of relativity and constant speed of light. While quantum field theory has proven to
be a powerful tool for understanding the behavior of elementary particles and the forces that act upon
them, a complete understanding of the structure of quantum fields is lacking. The present approach
seeks to uncover the underlying structure of these fields, which will help address many unresolved
questions in physics, such as the origin of baryons, dark matter, and dark energy. Quantum field
theory provides accurate predictions of physical phenomena; however, its reliance on experimentally
determined physical constants limits its ability to provide a more fundamental explanation.
Revealing the underlying structure of quantum fields can help gain a more complete understanding
of the physical world.

2. Overview of special relativity
Before delving into the question of "What is time?" an overview of special relativity is necessary
for the discussion that follows.

2.1. Lorentz transformation [15,16] and invariants

Consider two inertial systems, S and S', in a constant-speed linear motion with relative speed v
in x direction, as shown in Figure 1. The coordinates of an inertial system can be expressed using four
vectors (x%x%,x%x3 ) [17] or Minkowski coordinates (ct,x,y,z) [18] representing one dimension of time
and three dimensions of space, where c is the speed of light. Using these coordinates, the S system
coordinates can be expressed as follows:

xt = (x%xtx2,x3) = (ct,x,y,2) . (1)
The coordinate of the S' system is expressed in the following way:
X't = (0,12, %) = (ct', Xy, 2) 3]

The coordinates of the S and S' systems are related by the following Lorentz transformation:

v
ct' +=x'
ct = <
2 3)
1=z
_ x' + vt’
T @
-z
y=y" )
z=12z. (6)

Furthermore, the inverse transformation can be expressed as
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ct' = —2 . (7)
1Y
o2
,  x-—uvt
T ®)
v
-2
y=y. )
z'=1z. (10)
From (3)-(10), the following relationship can be obtained:
s2 = c2t2 — (x2 + y% 4 2z%) = c2t'* — (x’2 +y% + Z’z) (11)

where s represents an invariant quantity (distance invariant to the Lorentz transformation) that
holds for all inertial systems. The rest mass, my, is also an invariant quantity and can be obtained from
the energy-momentum relationship expressed below:

mo*c* = E* — (p* +py° +p,2)c* = E? — (p"* +py° +p,/%)c? (12)

where E denotes the relativistic energy, and p(px, py, p-) denotes the momentum. The rest mass
mo has the same value for all inertial systems. By setting momentum zero, (12) yields the well-known
eq. Ec=moc? for the rest mass and energy.

z

/ o » ’
0 X, X

Figure 1. Two inertial systems S and S' in constant linear motion with relative speed v in x direction.

2.2. Time delay and Lorentz contraction

Consider the time delay of the S' system from the point of view of the S system. The time in the
S' system can be obtained from the point of view of the S system by substituting the position of the
coordinate origin of the S' system, x'=0, into (3).

!

ct

z’ 13
o (13)
c

ct =

This implies that time t' in system S' flows more slowly than time ¢ in system S and the
relationship can be expressed as
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(14)

In the next step, the contraction of the space of the S' system is considered from the point of view
of the S system. By substituting time ¢"=0 into (4), the distance x’ of the S' system from the perspective

of the S system can be obtained.

e (15)

In other words, the space of the S' system appears to be contracted compared with that of the S

system, and their relation is given by

(16)

2.3. "Same time” and "same position” in the Minkowski spacetime

According to special relativity, two inertial coordinate systems moving relative to each other
cannot share the same time at all points. To illustrate this, let us consider how the same time and
point in the S' system appear in the S system. The same time in the S' system is defined as the
coordinate at which ¢’ is constant. By using (7), the same time in the S' system can be expressed using

the following linear equation in the S system:

(17)

On the other hand, the same position in the S' system is the coordinate where x’ is constant.
Using (8), the same position in the S' system is given by the following linear equation:

v
x=x' 1-—+uwt. (18)
c

Egs. (17) and (18) are expressed in Minkowski coordinates, as shown in Figure 2 (y and z
coordinates are omitted). In the S system, the same time is represented by a line parallel to the x axis,
while the same position is represented by a line parallel to the ct axis. Similarly, in the S' system, the
same time is represented by a line parallel to the x” axis, and the same position is represented by a
line parallel to the ct” axis. As shown in Figure 2, there is only one point (P) that has the same time
and position in both the S and S' systems. In real 4-dimensional spacetime, the y-z plane with common

(ct, x) coordinates represents the same time and place in both systems.

¢t ct’

Same position in S’-sysiem

x’

Satne position in S-system

Figure 2. Same time and same position in the Minkowski spacetime.
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3. Assumptions on time

Although we can visually perceive space and have a general understanding of it, time remains
beyond our perceptual reach, leaving us without a clear answer to the question of what time is. The
theory of special relativity has undoubtedly advanced our understanding of time, but it has not
provided a definite answer to the age-old question, “What is time?” Nevertheless, it is widely
believed that no theory has come closer to unravelling the mystery of time than the theory of special
relativity. To explore the nature of time further, the Minkowski spacetime is examined from different
perspectives.

Eq. (11) of the Lorenz invariant, which describes distance in the Minkowski spacetime, does not
treat time and space equally. This equation reveals that the Pythagorean theorem, which holds in
Euclidean space, does not hold in the Minkowski spacetime. To address this, (11) can be transformed
so that the Pythagorean theorem holds in this non-Euclidean spacetime.

ct? = s + (x% +y? + z%). (19)

As shown in (1), in Minkowski spacetime, x? corresponds to the time distance cf; however, x’is
rewritten such that it corresponds to the Lorentz-invariant s as follows:

c?t? = (x92 + (21?2 + (x2)? + (x)2. (20)

In other words, x° is considered not as time but as another spatial axis orthogonal to the other
three axes. The 4D spaces (x%,x",x%x? ) differ from the Minkowski spacetime in that all axes are equal
to each other. Eq. (20) can be expressed in difference form as follows:

c?dt? = (dx°)? + (dxM)? + (dx?)? + (dx3)?. (21)

In addition, solving (21) for time yields the following form.

J(@x%)2 + (dx1)? + (dx?)? + (dx3)?
- .

dt = (22)

This equation implies that time is the distance traveled in the four dimensions of space divided
by the speed of light.

In quantum field theory, elementary particles are understood as excited states of a field, and
their motion is interpreted as the propagation of this excited state as a wave [19]. A medium that
carries waves has a specific propagation speed, and waves always propagate at their inherent speed
when nothing is around them to constrain them. While waves propagating in air or water are not
stationary, elementary particles, although waves, can remain stationary in free space without being
constrained. This behavior is apparently strange.

To explain this phenomenon, let us assume that all elementary particles are waves that
propagate through 4D space at the speed of light c. This assumption provides a possible explanation
for the stationary behavior of elementary particles. For example, the relative speed of two surfers on
the same wave can be zero. If the 4D spacetime is considered as an inertial system consisting of a
group of elementary particles propagating at the speed of light in the same direction in 4D space, as
shown in Figure 3, the elementary particles in this inertial system appear to be at rest with respect to
each other. Moreover, the propagation of the speed of light in 4D space can be considered as the
underlying cause of the flow of time, which ticks at a constant speed from the past to the future. This
perspective suggests a close relationship between the behavior of waves in 4D space and the flow of
time.


https://doi.org/10.20944/preprints202305.1785.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 May 2023 d0i:10.20944/preprints202305.1785.v1

l‘-d

Inertial system

x0=ct

AAAND o o

4D Space

Figure 3. Inertial coordinate system created by elementary particles propagating through the 4D space
at the speed of light.

4. Mathematical model: 4D space

In this study, using the following two assumptions, valid coordinate transformations in 4D space
were obtained, and their relationship was discussed based on the Lorentz transformation:

Assumption 1: Space consists of four isotropic and uniform dimensions.

Assumption 2: Time is determined as the distance covered by an elementary particle
propagating through a 4D space divided by the speed of light.

4.1. Coordinate transformation in the 4D space

The simplest system with relative motion consists of two elementary particles. Let us consider a
system consisting of two elementary particles, P1 and P>, propagating in different directions in 4D
space with speed c.

The motion of these particles can be analyzed by first examining P1 alone. As shown in Figure 3,
if the direction of motion of elementary particle P1 is considered as the x?axis, the direction of the x?
axis becomes the time axis of the coordinate system fixed to elementary particle P1. In other words,
the distance x? traveled by elementary particle P1 from its origin divided by its speed c is the time t of
particle P1.

e=X (23)

The remaining three axes, (x!,x?% x*), orthogonal to the x0 axis, form the spatial coordinates
(x,y,z) of the coordinate system fixed to particle P1. The coordinate system (ct,x,y,z) fixed to particle
P1 is an inertial coordinate system that moves at a constant speed of light c in 4D space.

Next, the motion of elementary particle P2, which propagates in a direction different from that
of elementary particle P, is considered. As shown in Figure 4, the particle P2 starts to propagate at
the same time as the particle P1 from a certain point (let this be the origin), and the direction of
propagation of the particle P2 is assumed to form an angle 6 with the direction of propagation of the
elementary particle P1. This direction is the x'? axis of particle P2, while x? and x ! axes are assumed to
be in the same plane as the x? and x " axes. The speed component of particle P2 in the x! axis direction
can be expressed as follows:

v =sinb * c. (24)

Furthermore, from (24), the following equations are obtained.
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ing = 2 25

sind =, (25)

c0sf =+/1 —sin20 = (26)

The transformation from coordinates (x'%,x'") to coordinates (x%x?) is given by the well-known
rotation of the coordinate axes.

x% = cosf * x'° —sind - x', (27)
x! =sind + x'° + cosf - x"* (28)
Using (25) and (26), (27) and (28) can be rewritten as follows:

(29)

(30)

(G2))

(32)

(33)
x'3=x3. (34)
x()
x
t Wz
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Figure 4. Elementary particles P1 and P> moving in the 4D space with relative speed v in x direction.

4.2. "Same time” and "same position” of the inertial system moving in the 4D space

The two inertial coordinate systems moving in 4D space cannot share the same time at all points,
as in Minkowski spacetime. Figure 5 shows the coordinates of the S and S' systems moving relative
to each other in 4D space (x? and x° axes are omitted). As in the Minkowski spacetime, the same time
in the S system can be represented by a line parallel to the x! axis, and the same time in the S' system
can be represented by a line parallel to the x'? axis. Only one point (P) exists where the lines of the
same time and position in the S and S' systems overlap each other (in real 4D space, x?- x> plane with
common (x’, x') coordinates corresponds to the same time and position).

0
X
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. X
1
- o
S Same position in S”-system
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S : s
. ! 7
S
~ L
\*’Same time in S-system
/'/ i \\‘\
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7
X

Figure 5. Same time and same position of two inertial systems in motion in the 4D space.

In addition to the inertial systems described earlier, there is another notion of time that must be
considered. This is the same time in 4D space. To illustrate this, let us again consider two elementary
particles that simultaneously start propagating in different directions from the origin. Figure 6 shows
the positional relationship of the two elementary particles after time t has elapsed during their
propagation. The elementary particles P1 and P2 are both located on the circumference of radius ct in
the 4D space at time ¢. Although the same time in the inertial system of the two elementary particles
is shown in Figure 6, note that there are two types of times at play here: the same time in the inertial
system of the two particles and the same time in the 4D space.

Same time ol the inertial
P \\ system ol 7,

% Same time of the inertial

= 3
T—=ct "~ systemoff,
(< T .

1

of HFZ

;"‘\\ Sume time of
the 4T) space
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Figure 6. Same time in the inertial system and same time in the 4D space.
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As discussed in Section 2.2, when two objects move relative to each other at a speed v, they
perceive each other's time as flowing slower than their own time. The relationship is expressed by

(35)

In other words, the other person’s time, as observed by each elementary particle, is the past time
of the other person’s elementary particles. As shown in Figure 6, the time at which elementary particle
P2 is observed by elementary particle P1 is the time at P2’ (t’' = \/1—72/02 t). Similarly, the time at
which elementary particle P1 is observed by elementary particle P2 is the time at Py’ (t' = m t)

The time \/Tz/czt is known as the eigentime in the theory of special relativity and is
denoted by 7= Jl—Tz/cz t. The following relationship between the eigentime 7 and the Lorentz-
invariant distance s also exists:

s=crt. (36)

4.3. Equivalence of the Minkowski spacetime and the 4D Space

This section presents an examination as to why motion in an isotropic and uniform 4D space is
transformed by the Lorentz transformation.

The Lorentz and rotational transformations in the 4D space, and their respective inverse
transformations can be expressed as follows:

ct' +=x'
ot =—5—
2’ (37)
1-Y
c
=ct' +x'
x=S— (38)
-z
ct—=x
ct' = ——
2’ (39)
1=
c
—=ct+x
X' =—
2’ (40)
1Y
c

(41)

(42)

(43)

(44)
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Egs. (37)-(40) corresponding to the Lorentz transformation and (41)—(44) corresponding to the
rotational transformation in 4D space do not initially appear to be the same. To compare them
directly, the rotational transformation equation is rewritten in the same form as the Lorentz
transformation.

X' =, (45)

[y
|
n|§
NN

=
|
|
=
1S
+
=
iy

(46)

[N
|
ﬁwl t:N

X = —— 47)

—_
|
nlt%
NN

|

|
=

3
+
=

i

S
I

(48)

(=Y
|
nlﬁ
NN

Compared to (37)—(40), the following correspondence between the coordinate axes of the 4D
space and the coordinates of the Minkowski spacetime is observed:

x° o ct, (49)
X e x, (50)
"’ e ct, (51)
Xl e X (52)

This correspondence between the 4D space coordinates and the Minkowski spacetime
coordinates is illustrated in Figure 7, where x%ct’) indicates that the x? axis in the 4D space is the ct’
axis in the Minkowski spacetime. The meanings of the other coordinates are the same.

0
x
.\.\\ [ . - P {x() ’xl) (xy() ,xr])
e —-—-—'—-—-:7*1#?_ ‘‘‘‘‘‘ Same time in S-system
x(er) VAN
S Same time in S’-system
ety .
I xf i
1, ~ |
x(x :
( ) | 3!
e
x’!

Figure 7. Correspondence between the 4D space coordinate and the Minkowski spacetime
coordinate.
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Here, a few aspects are noteworthy. As shown in (49)—(52) and Figure 7, the relation between
the two time axes in the Minkowski spacetime is in contrast to the relation of the time axes in the 4D
space (such that ct’ corresponds to x? and ct corresponds to x0).

The distance between the coordinate origin and event P is given by the following equation using
the coordinates in the 4D space:

(4% = O+ (x"D)?. (53)
Substituting (49)-(52) into (53) gives the following equation:
2t +x? = 2t +x'2. (54)
Further transposition of x to the right-hand side and x” to the left-hand side gives the following
equation:
c2t'?—x'? = c?t2—x2. (55)

This equation is simply the invariant distance formula of the Lorentz transformation, as
indicated by (11).

This discussion yields the conclusion that there is a one-to-one correspondence between the
Minkowski spacetime and 4D space. Each transformation equation can be obtained by substituting
the coordinate variables shown in (49)—(52). Hence, it can be stated that "the Minkowski spacetime
and the 4D space are completely equivalent.” Notably, the reason why the invariant distance in the
Minkowski spacetime is not the Pythagorean theorem but the difference between the square of the
time distance and the space distance. This is because of the different approach to taking the time axis
in the Minkowski spacetime and the 4D space, as aforementioned (so that ct’ corresponds to x? and
ct corresponds to x0).

4.4. Time delay and Lorentz contraction derived from rotational transformation in the 4D space

This section shows that the time delay and Lorentz contraction can be obtained from the
rotational transformation in 4D space as well as from the Lorentz transformation.

Two elementary particles, P1 and P2, start linear motion at a constant speed in different directions
from the same position, and their positions at time ¢ are shown in Figure 8. The position coordinates
of the elementary particle P2 at this time are represented by (x, x ") = (ct,0). Substituting this into (29)
and transforming it into the coordinate system of elementary particle P1, the following results:

- ct. (56)

(47)
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Figure 8. Positions of elementary particles P1 and P2 at time ¢.

Thus, from the viewpoint of particle Py, the time of particle P2 is delayed as described by equation
(57), which corresponds to the "time delay" in (14). This demonstrates that the same results as the
Lorentz transformation can be obtained from the rotational transformation in 4D space. From another
perspective, the x%-axis component of the position coordinate of elementary particle Pz is /1-v2/c?t.
This implies that the time of elementary particle P2 as observed by elementary particle P1 is the
distance that particle P2 has traveled in the direction of the time axis of particle P1. Conversely, the
time of elementary particle P1 from the perspective of elementary particle P2 is the distance that
particle P1 has traveled in the direction of the time axis of particle P>. These time relationships are
relative to each other.

Figure 9 shows the coordinate of a position ¢ from the origin on the x" axis as (x"?, x'?) = (0, {).
By substituting this into (30) and transforming it into the coordinate system of elementary particle P,
the following results:

(58)



https://doi.org/10.20944/preprints202305.1785.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 May 2023 d0i:10.20944/preprints202305.1785.v1

13

0
X s
X
1P,
J— R Jhc N
- / \PZ
ll \\
l" \‘
l' [ vz |
|'J * 1 B c_ll ‘l' ’ ]
i 1 l’
A X
% L ra
.‘ 1 —Fl ]
| A
’/I lJ
/ U
Y 1 0 1y _
u‘ 7 Pt (X’ :xr )7 (O’l)
/’ H
s 1
!
4 - |
- L b )
ST S Same position X
in S-system

Figure 9. Lorentz contraction of the coordinate axes of the elementary particle P2.

It appears that the distance in the x" direction of elementary particle P2 contracts in the
coordinate system of elementary particle P1, according to the ratio given in (58). This is the equivalent
to the "Lorentz contraction” in (16). It can be observed that the spatial distance of the elementary
particle P2 corresponds to the distance projected onto the x! axis of the coordinate system of the
elementary particle P1. Similarly, the spatial distance of the elementary particle P: is the distance
projected onto the x'? axis of the coordinate system of the elementary particle P2. It is important to
note that spatial distance relationships, such as time relationships, are relative to each other.

4.5. Upper limit of speed and the principle of constant speed of light

As mentioned in Section 4.1, the relative speed occurs due to the difference in the direction of
propagation of each elementary particle and is given by the following equation:

v=sinf *c. (59)

This implies that the relative speed is maximum when the direction of propagation of each
elementary particle differs by 90°, that is, when their directions of motion are orthogonal to each
other. Therefore, an upper limit to the relative speed of elementary particles is set, which is equal to

the speed of light c.
As mentioned in Section 2.1, the four vectors of special relativity are defined by the following

equation:
xt = (x°,x%,x% x3) = (ct, x). (60)
The four-momentum p* is defined by the following equation:
d(ct)
dr

The following equation gives the relationship between energy and momentum:

D) - (61)

p* = mout = (my

E? = my?c* + p?c?, (62)
where mo is the rest mass of the elementary particle. Further,

m02C4 = E2— pzcz — EIZ _ pIZCZ , (63)


https://doi.org/10.20944/preprints202305.1785.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 May 2023 d0i:10.20944/preprints202305.1785.v1

14

is Lorentz-invariant, and the rest mass mo is the same for all inertial systems.
In contrast, the four vectors in the 4D space are defined as follows (considering x? as ct instead
of ct):

xt = (x°,x1,x2,x3) = (ct,x). (64)
Thus, the four-momentum p* in the 4D space is defined as follows:
p* = mout = (mgc, p). (65)
The relationship between energy and momentum is given by the following equation (as in
special relativity):
E? = my%c* + p2c?. (66)
The relationship between energy and momentum for elementary particles with zero mass is
given by the following equation for both special relativity and 4D space:
E =|plc. (67)

The four-momentum equation for elementary particles with zero mass is given by

p*=(0,p). (68)

Because the rest mass is Lorentz-invariant, elementary particles with zero mass have zero mass
in all inertial systems. Elementary particles with zero mass have zero momentum in the direction of
the time axis, as expressed in (68). As mentioned earlier, the speed of elementary particles with a
direction of motion that differs by 90° from the time axis, is the speed of light. In other words, the
speed of elementary particles with zero mass is the speed of light in all inertial systems. This is the
reason for the validity of the principle of the constant speed of light.

4.6. Klein—Gordon and Dirac equations

The Klein—-Gordon and Dirac equations are important as they support the quantum field theory
[3,19]. Therefore, it is necessary to show that the assumption of a 4D space is consistent with these
equations.

The Klein—-Gordon equation is obtained by making the following quantum mechanical
replacement to (62), which is established between the energy and momentum:

d
; —ihV. 69
E - ih 3 p — —IhV (69)

As discussed in Section 4.5, the relationship between the energy and momentum in a 4D space
is given by (66), similar to the theory of special relativity. Therefore, the Klein-Gordon equation has
the same form in special relativity and 4D space. By replacing (69) and rewriting (66) in the form of a
wave equation, the well-known Klein—-Gordon equation is obtained.

1 9?2 m3c?
(c_Zﬁ_ V2 + f(l)z >(p(x) =0. (70)

However, the four-momentum in 4D space is given by (65). If it is considered as a vector in a 4D
space, it takes the following form:

Ps = moceg + ple; + pe, +pies. (71)

where e, represents the unit vector of the x# (u=0 ~ 3) axis. In addition, p, is a vector in the
4D space, and this notation is used to distinguish it from the usual vector p in 3D space. Using
replacement (69) in (71) yields:
10 ps 0 0 0
lhzam =mycey — lhﬁel - lhﬁez - lhﬁ

Using the correspondence between (65) and (66), the following replacement is used:

e;z. (72)
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1
Ipsl - EE -  h——=. (73)

Furthermore, by transposing the right-hand side of (72) to the left-hand side, the following
equation is obtained:

10 9
h——ﬂ+ ih=— e +ih

6t|p4| ox Zez‘l'lha 3 moceo =0. (74)
On the other hand, the Dirac equation is as follows:
0 ] 0 d
(zha—y + lha yt+ Lha y? + lha 3 y3 mocl4)1,b(x) =0 (75)

where y# (u=0 ~ 3) denotes a 4 x 4 matrix (gamma matrix) satisfying the following relation:
vy +vivE =20, (76)
I, is the unit matrix and g# is the metric tensor.
+1 for u=v=20

" ={-1 for p=v=123. (77)
0 for u#v

Egs. (74) and (75) can now be compared. The Dirac equation (75) differs from the vector equation
in (74) because it is an equation for four-component spinors; however, it has the same formal form.
The following correspondence is observed between the unit vector e,, the gamma matrix y* and
the four-vector x*:

e, oI, ©x°, (78)
P4

L oy'oct, 79
Pl 7
e, ©oyloxt, (80)
e, ©y:ox?, (81)
e; oyioexd. (82)

The correspondences mentioned above suggest that the gamma matrix y* plays the role of both
a unit vector and a matrix that acts on the spinor. On this basis, the Klein-Gordon equation can be
interpreted as an energy conservation law in 4D space, and the Dirac equation can be interpreted as
a four-momentum conservation law in the 4D space. From the above discussion, the following
relationship between 4D space and Minkowski spacetime may be recalled:

-4D space : Space : Quantum field

-Minkowski spacetime: Spacetime: Inertial system

This implies that the 4D space is an isotropic and uniform space with four dimensions that lacks
time and constitutes a field of elementary particles. In contrast, the Minkowski spacetime is an inertial
system in which time is obtained by a group of elementary particles that propagate through 4D space
at the speed of light. Our universe may consist of only one 4D space, forming a field and countless
inertial systems propagating through 4D space at the speed of light

5. Discussion

This paper presents the derivation of the principle of relativity from the motion of elementary
particles in 4D space. The invisibility of the time axis, equivalence of mass and energy, and dilation
of time are also discussed.
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5.1. The principle of relativity

The principle of relativity implies that the laws of physics are the same for all inertial systems.
Because it is a fundamental assumption, its validity does not need to be questioned further as long as
experimental or observational evidence supports the conclusions drawn from it. However, it is still
worthwhile to explore its underlying meaning.

An inertial system consists of a group of elementary particles that propagate at the speed of light
in the same direction through an isotropic and uniform 4D space. Because inertial systems moving in
different directions differ only in the direction of propagation, there is no reason for the laws of
physics to differ owing to differences in the direction of propagation if the space is isotropic and
uniform. Therefore, the principle of relativity can be explained by assuming an isotropic and uniform
4D space.

Although the principle of relativity can be explained by assuming an isotropic and uniform 4D
space, it is important to note that this assumption has been experimentally verified accurately.
Nevertheless, understanding the underlying meaning of the principle can help deepen our
understanding of the nature of the universe.

5.2. Why time is invisible

Our ability to observe and measure the depth of space and position of objects depends on the
transfer of information between objects through light and sound waves. For instance, we rely on light
to see, while animals such as bats use ultrasound to locate their prey. However, elementary particles
with zero mass, such as photons, cannot convey information about the direction of the time axis since
they have no momentum in that direction. Moreover, elementary particles with mass can travel at
the speed of light along the direction of the time axis, but they cannot transfer information back and
forth along it. As a result, we have no means of determining the depth the time axis and, therefore,
we cannot precisely measure determine the time.

5.3. Equivalence of mass and energy

Einstein’s famous equation E= moc? was derived from special relativity [2], and its validity has
been proven through numerous experiments and observations. This equation expresses the
equivalence between the rest mass of an object and its energy. For instance, evidence of this equation
can be observed in nuclear power and the energy of the sun, both of which result from a small amount
of mass being converted to energy through fission and fusion reactions.

In an inertial coordinate system moving with elementary particles, mo represents the rest mass
of the particles. However, in 4D space, elementary particles propagate through space at the speed of
light and have momentum p=moc and kinetic energy E=moc?. It can be challenging to understand how
the rest mass is equivalent to energy; however, this becomes simpler if E= moc? is interpreted as the
kinetic energy of an object moving at the speed of light.

5.4. Time dilation [20]

Section 4.4 explains that a moving object experiences time dilation according to (57). This leads
to an interesting hypothetical scenario known as the twin paradox [21], where one twin who travels
into space in a spaceship and returns to Earth years later, finds that their time has slowed down
compared to their younger twin, who has aged significantly.

This phenomenon can be explained using the concept of 4D space as follows: Consider two
elementary particles P1 and P2, which move in different directions starting from the same point at
time zero, as shown in Figure 10. As long as their motions remain unchanged, their relative motions
will remain unchanged as they move in different directions but marking the same time with each
other.
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Same time of the inertial

Same time of the inertial
system of P,

Figure 10. Time travel occurring at the moment when the inertial coordinate system changes.

However, when the direction of motion changes, things get interesting. At time t, the positions
of P1 and P2 in 4D space are shown in Figure 10. If P2 changes its direction of motion in the same
direction as P1 at point A, it implies that P2 moves into the same inertial system as Px.

As aresult, when P2 arrives at point A, which is represented by a straight line parallel to the x"!
axis and corresponds to the same time as P1, it moves to point B, which is simultaneously located in
the inertial system of particle P1. The time when P2 arrives at point A is ', which is obtained from
(57). However, as soon as P2 enters the same inertial system as P1, it moves to time ¢ at the same time
as P1.

Thus, the time of P2 is delayed relative to P1 due to its motion in a different direction, and it
experiences time dilation. This mechanism explains the twin paradox and the reason why the moving
brother in our hypothetical scenario would experience slower time than the stationary brother.

5.5. Field that creates 4D space and the ticks of time

This section presents an exploration of the structure of the field that gives rise to 4D space and
examine how time operates within this space.

According to quantum field theory, a vacuum is not empty but composed of harmonic
oscillators. Elementary particles are considered to be excited states of these oscillators that propagate
as waves. For these waves to propagate, they require a medium and a foundation to hold the
harmonic oscillators. In order for quantum field theory to be valid, there must be an absolute
foundation to hold these oscillators, such as 4D space. As previously described, if the inertial
coordinate system is considered to be a group of elementary particles that propagate at the speed of
light in a 4D space, this 4D space can be considered a medium that transmits waves of elementary
particles and as an absolute space.

The universe is composed of four isotropic and uniform dimensions, and 4D space is the
medium through which elementary particles propagate at the speed of light. Time is a secondary
phenomenon that arises from the excited state of a field propagating at a constant speed. The excited
state of the field creates time by moving through 4D space, much like falling dominoes. Time does
not exist in the space before or after the dominoes fall; only the quantum field fluctuations are present.
Time moves at a constant speed from the past to the future because these dominoes fall at a constant
speed in a constant direction. Our universe can be considered as the tip of a domino that keeps time
ticking as it falls.
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6. Conclusion

This paper proposes that space is composed of isotropic and uniform 4D space and that
elementary particles are waves that propagate at an inherent speed in this medium. Based on these
assumptions, the following conclusions were drawn:

e A one-to-one correspondence exists between Minkowski spacetime and 4D space, indicating
their complete equivalence. The Lorentz transformation in Minkowski spacetime is equivalent
to a rotational transformation in a 4D space.

e  Itis demonstrated that time delay and Lorentz contraction can be derived not only from
Lorentz transformations, but also from rotational transformations in a 4D space.

e  The principle of relativity and the principle of the constant speed of light, which Einstein
assumed when deriving the special theory of relativity, can be derived by assuming the 4D
space. The present study also clarified why time flows at a constant speed from the past to the
future.

There remain several unsolved problems in physics, such as the origin of baryons and the nature
of dark matter and dark energy. To solve these problems, the structure of quantum fields comprising
the universe must be unraveled. It is believed that the 4D space proposed in this study is an important
step towards unraveling the structure of quantum fields.
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