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Abstract: This paper presents the development of an underwater crack detection system for structural 1

integrity assessment of submerged structures, like offshore oil and gas installations, underwater 2

pipelines, underwater foundations for bridges, dams etc. Focus is on use of machine learning based 3

approaches. First a detailed literature review of state of the current methods for underwater surface 4

crack detection is presented highlighting challenges and opportunities. An overview of image 5

augmentation approach for creation of underwater optical effects is also presented. Experimental 6

results using standard network based machine learning approach, used for surface crack detection 7

in onshore environment, is presented. Series of Test cases are presented where existing networks 8

performance are improved using augmented images for underwater conditions. The effectiveness 9

and accuracy of the proposed approach in detecting cracks in underwater concrete structures is 10

demonstrated. The proposed approach has the potential to improve the safety and reliability of 11

underwater structures and prevent catastrophic failures. 12

13Keywords: Underwater; Crack detection; Machine learning; Transfer learning; Augmentation; 
Non-destructive testing; Safety; Reliability 14

1. Introduction 15

Underwater concrete structures serve various important purposes in different areas, 16

including infrastructure projects, erosion and storm protection, support for offshore energy 17

projects, and the creation of habitats for marine life. These structures are designed to 18

provide stability, durability, and the ability to withstand harsh underwater environments. 19

They play a crucial role in supporting infrastructure development while also protecting 20

the environment and marine ecosystems. Ensuring the structural integrity of underwater 21

concrete structures is of utmost importance to prevent catastrophic failures. The underwater 22

environment poses unique challenges to the integrity of these structures, such as saltwater 23

corrosion and the impact of waves, which can lead to cracks and other types of damage. It 24

is vital to identify and monitor fractures in underwater concrete constructions to identify 25

potential weaknesses and take corrective measures in a timely manner. 26

However, it is a challenging endeavor to identify and monitor fractures in underwater 27

concrete constructions due to several factors. Limited visibility, difficult access, and harsh 28

conditions make it difficult to visually inspect these structures. Therefore, reliable and effi- 29

cient methods are needed to detect and monitor cracks in underwater environments. Some 30

of the most often used methods for fracture identification and monitoring in underwater 31

concrete structures are: 32

• Visual inspections by divers: Specially trained divers can perform visual inspections 33

of the structures to identify visible cracks or signs of damage. However, this method 34

is limited by the accessibility of the structure and the diver’s ability to navigate and 35

inspect the entire surface. Such inspections are also known for high risk for the divers 36

involved in carrying out such inspections. 37
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• Non-destructive testing techniques: Techniques such as ultrasonic testing and acoustic 38

emission monitoring may be used to evaluate the interior condition of a concrete 39

structure and detect cracks or other flaws. These methods rely on the analysis of 40

sound waves or emitted signals to identify potential issues. However, they require 41

specialized equipment and expertise to perform accurately. The time required for 42

acquisition and processing of data is long. often cost of such data acquisitions are very 43

high as well. 44

• Advanced technologies: Underwater drones and robots equipped with cameras and 45

sensors are emerging as valuable tools for crack detection and monitoring. These 46

autonomous or remotely operated devices can access hard-to-reach areas, capture 47

high-resolution images or videos, and collect data on the condition of the structures. 48

This technology offers improved accessibility and accuracy in crack detection. The 49

technique presented in this paper is an addition to such a technology for underwater 50

inspections. 51

In modern time the amount of underwater infrastructure has increased many folds, 52

which includes internet cables, electric cables linked to offshore wind mills, and oil and 53

gas pipe lines among other important infrastructure. Implementing reliable methods for 54

detecting and monitoring cracks in underwater concrete structures is crucial for ensuring 55

their long-term durability and safety. While significant research has been conducted on 56

crack detection systems for onshore and above-water structures [1,2], less attention has 57

been given to underwater crack detection. The work presented in this paper focuses 58

specifically on addressing this gap and developing effective crack detection methods for 59

underwater concrete structures. By improving our ability to detect and monitor cracks 60

in underwater concrete structures, we can identify issues early, implement appropriate 61

repairs or maintenance, and ensure the continued functionality and safety of these vital 62

underwater assets. 63

The paper is structured as follows: An overview of different techniques used in under- 64

water concrete crack detection is presented in section 2. Challenges of underwater concrete 65

crack detection is discussed in section 3. Available methods to mitigate the challenges 66

related to underwater crack detection system is discussed in section 4. Section 5 presents 67

an overview of the data set used in this paper to demonstrate use of machine learning 68

based approach for underwater crack detection. Machine learning based underwater crack 69

detection system along with series of test cases is presented in section 6. Conclusions 70

follows in section 7. 71

2. An overview of the techniques used for underwater concrete crack detection 72

2.1. Visual inspection: basic method for detecting cracks in underwater concrete, but limited by 73

water clarity and visibility 74

By quantifying the likelihood distribution of sea surface slopes, numerical approaches 75

have enabled researchers to investigate both the refraction and reflection of light from the 76

sky and the sun via roughened sea surfaces. In one study, the researchers explored various 77

optical phenomena, such as the refracted sun’s glitter, the brightness and reflectivity of an 78

uneven sea surface owing to sky light and the reflection of a harsh sea surface from direct 79

sunlight [3]. While research on cracks in underwater surfaces is limited, most studies focus 80

on the effects of water on various chemicals, their resistance to the environment, or their 81

impact on the environment [4–6]. 82

Researchers have studied shade on under-water optical radiometers employing Monte 83

Carlo computations of a light field with both the presence and lack of the sensors to [7]. 84

Optical sensors from space have been used to observe surface water, and various techniques 85

have been developed to eliminate cloud or terrain shadows [8–12]. Additionally, flash 86

photography directed vertically downward toward the water surface has been used to 87

interpret wave slopes. Researchers have studied various optical effects of water, including 88

optical absorption, temperature and humidity effects, dissolved organic materials, biolog- 89
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ical vegetation interaction, pressure effects, and optical propagation in turbulent water 90

[13–20] 91

2.2. Acoustic methods: use of sound waves to detect cracks, including impact-echo, impulse 92

response, and ultrasonic methods. Fluorosensor. 93

In [21], it is described how optically and near-infrared wavelengths may be used 94

to detect water depth and substrate type as two key factors in river physical habitat. 95

The approach provided in [22] was used to remotely track chlorophyll content in fresh 96

waterways and was shown to be strongly associated with real-world data, allowing for the 97

detection of changes in surface water optical attenuation. 98

Another research investigates the association between acoustic emission cumulative 99

energy and decreased cycling reversal loads in submerged concrete columns [23]. Ultra- 100

sonic surface waves are used to detect cracks in underwater concrete beams, with a Root 101

Mean Square Deviation damage index used to analyze the wave data [24]. A method for 102

assessing the concrete dams’ blast resistance by investigating the induced vibration and 103

crack penetration depth and use of a crack control agent to prevent failure of concrete 104

structures is presented in [25,26]. 105

2.3. Electrical methods: use of electrical resistance or capacitance to detect cracks, etc. 106

The coordination and electrostatic effects of water’s optical absorption were resolved 107

through computational analysis in [13]. A Monte Carlo calculation procedure was used in 108

a computer simulation study to investigate the impact of photon incidence angle on the 109

relationship between natural waters’ visible and inherent optical characteristics in [27]. An 110

approach that centers on water’s inherent optical properties to fix water angular effects 111

leaving brilliance was presented in [28]. 112

2.4. Magnetic methods: use of magnetic fields to detect cracks, including the magnetic flux leakage 113

method 114

Ground-penetrating radar, or GP radar, is a high-resolution, non-destructive technol- 115

ogy for detecting hidden things via a high-frequency electromagnetic pulse. It has been 116

widely used in a variety of fields including engineering/geologic research, underground 117

historical research, to identify scour holes around bridge piers, and so on. It has also been 118

used to assess the structural condition of underwater hydraulic structures [29]. 119

2.5. Deep learning-based methods: image analysis of crack using deep learning. 120

Recently, neural networks have been increasingly applied to the quality of surface 121

water estimation utilizing combined optical and microwave data. These networks excel in 122

approximating nonlinear transfer functions, and as such, the research involved extracting 123

data from water sample locations and analyzing digital data through various transforma- 124

tions [30]. In [31], A application for Windows was created to simulate and evaluate optical 125

observations in aquatic settings.. 126

Surface water detection is important for understanding flood hazards and potential 127

damage to infrastructure and ecosystems. In [32,33] the applications of satellite remote 128

sensing, and its limitation, in detecting and monitoring surface water, mapping, and 129

parameter estimation are discussed. 130

An unsupervised method for identifying fractures in underwater concrete structures 131

is offered in [34]. For eliminating outliers, the approach depends on local feature clustering 132

utilizing K-Medians on Haralick texture characteristics with a dual Gaussian distribution. 133

Detecting and classifying cracks in underwater dam structures based on sonar images is 134

a difficult task due to the complexity of underwater environments and the random and 135

diverse nature of cracks, as well as the low resolution of sonar images. In [35], a clustering 136

analysis was performed on a 3D feature space to obtain crack fragments, which were then 137

connected using an improved tensor voting method. [36] presents an alternate technique 138

for identifying underwater dam breaches in sonar imagery.The cracked block tree (BT) 139

approach comprises pre-processing low-resolution sonar pictures, breaking them down into 140
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pieces for grouping analysis, and combining the crack segments with dynamic fragments 141

of fracture based on tensor voting. In [37], a two-phase system is proposed for robust crack 142

detection in concrete and pipelines inspections using Remotely Operated Vehicles.The [38] 143

proposes a two-step approach for automatically identifying concrete fractures in aquatic 144

situations. In the first step, the images are pre-processed through illumination balancing 145

and image smoothing, and in the second step, a convolutional neural network (CNN) is 146

used for crack detection. 147

In [39], a novel algorithm is proposed that generates a 3D spatial surface from the 148

intensity values of a 2D image. The cracks are identified as "ditches" in the 3D surface, 149

and their characteristics are analyzed using space curvatures. A BP neural network is then 150

used to identify the crack objects. In [40], an artificial colony of bees algorithm-based edge 151

extraction methodology is proposed. To improve the weak-object border gray contrast, an 152

adaptive enhancement approach is applied, and a method of optimization using border 153

direction information is presented to improve the edge extraction efficacy. [41] presents 154

the establishment of a free aquatic light and turbid images repository (ULTIR) to assess the 155

efficacy of image-based approaches for underwater structural evaluation. 156

In [42], an automatic crack detection method using image processing is proposed. The 157

approach creates an augmented picture based on turbidity meter absorbance and eliminates 158

the background component. Crack detection is performed using a decision tree learning 159

algorithm. [43] presents a unique automated dam fracture detection technique that utilizes 160

local-global clustering analysis. Using photographs, the system can precisely and rapidly 161

detect faults on dam surfaces, decreasing human subjectivity. 162

In [44], it is conceived, prototyped, and tested a Tactile Imaging System for Underwater 163

Inspection (TISUE). The device combines an elastomer-enabled contact-based optic sensor 164

with specially designed artificial illumination to provide high-resolution and high-quality 165

pictures of the structural damage to the surface in a turbid water environment. Finally, 166

the paper [45] introduces the UIS-1 underwater inspection system, which comprises of a 167

proprietary underwater robot and a unique quantitative analysis approach. The technology 168

is tested in the field at the dam in Sichuan, China, and its efficacy is compared to that of 169

other approaches. The suggested picture technique detects the coarse aggregate exposed 170

automatically using SLIC super pixels and SVM machine learning, and the total exposure 171

ratio is derived to assess the degree of abrasion. 172

2.6. Other methods: including the use of fiber optic sensors, thermal imaging, and X-ray imaging 173

Rendering water is a key component in creating natural scenes. In [46,47]., we offer a 174

method for creating accurate underwater optical effects using graphics hardware utilizing a 175

Z-buffer, a stencil buffer, and an accumulation buffer. Additionally, [48] provides a strategy 176

for evaluating the statistical distribution of water’s level slopes using flash photography. 177

Researchers introduced a temperature tracer approach for fracture identification in sub sea 178

concrete structures based on heat transport theory in [49–51]. A method for controlling 179

concrete cracking in underwater marine structures using basalt fiber is presented in [6]. 180

The study presented in [52] developed a structural health monitoring tool that con- 181

sidered the reciprocal relationships and priority weights of different structural distresses 182

to assess underwater structures. Cracking and collapse behaviors of an undersea shield 183

tunnel’s segmental liner construction exposed to a wrecked high-speed train collision 184

were explored in [53]. In [54], researchers looked on the chaotic actions of arched concrete 185

barriers subjected to underwater explosions. In addition, a system using a single camera 186

deployed in a vehicle or robot was proposed in [55] to process a sequence of images and 187

estimate crack dimensions. 188

Due to uneven lighting and considerable noise issues, detecting and classifying under- 189

water dam breaches is difficult, and only a few approaches are adequate for this purpose. 190

The study [56] presented a dodging algorithm to eliminate uneven illumination, based on 191

an investigation of the statistical aspects of dam crack pictures, employing the regional 192

features of block images and the global features of related domains. In [57], a simpler 193
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approach for estimating the wear life of fractured concrete below water was developed, 194

utilizing a changed design code that takes into account the crack’s reduction in stress 195

amplitude. [58] studies crack identification and categorization strategies based on crack 196

kinds, and then implements Otsu’s base thresholds method for crack detection, which is 197

then utilized to construct the suggested crack detection system. 198

3. Challenges associated with underwater concrete crack detection 199

Working in underwater environments presents unique challenges that require special- 200

ized equipment and procedures for inspections. Underwater inspections require specialized 201

diving equipment, including wet suits, diving masks, and tanks for air supply. Divers 202

must be trained in specialized diving techniques, including decompression procedures 203

and safety protocols. Additionally, specialized inspection equipment is necessary, such as 204

underwater cameras, sonar devices, and non-destructive testing equipment. 205

One of the most significant difficulties in inspecting underwater concrete structures 206

is detecting cracks. Underwater conditions, such as poor visibility, water pressure, and 207

limited access, make it challenging to detect cracks. Visual inspections by divers are 208

often necessary, but they can be time-consuming, expensive, and potentially hazardous. 209

Advanced techniques such as ultrasonic testing, acoustic emission monitoring, and digital 210

radiography are also used to detect cracks in underwater concrete structures. 211

Optical effects can also impact the quality of underwater images captured by un- 212

manned aerial vehicles (UAVs) used for inspections. Optical effects such as refraction, 213

reflection, and attenuation can distort images and impact the accuracy of inspections. To 214

mitigate the impact of these optical effects, UAVs used for underwater inspections must be 215

equipped with specialized cameras and sensors and operated by trained professionals who 216

can account for these optical effects during inspections. Overall, working in underwater en- 217

vironments requires specialized equipment, procedures, and skills to overcome the unique 218

challenges presented by the underwater environment. 219

4. Navigating challenges related to underwater concrete cracks detection using machine 220

learning 221

Underwater concrete structures are critical components of many marine-based infras- 222

tructures, such as bridges, piers, and offshore oil platforms. Over time, these structures can 223

develop cracks due to various factors, such as corrosion, water pressure, and natural wear 224

and tear. Detecting and monitoring these cracks is essential for ensuring the safety and 225

longevity of the structure. Visual inspection and dye penetrant testing are the traditional 226

methods for crack detection, but they are time-consuming, expensive, and not always 227

accurate. It has already been demonstrated by the works presented in [1,59] that machine 228

learning approaches offer a much promising solution for detecting cracks in underwater 229

concrete structures. 230

One approach to crack detection using machine learning is image processing of un- 231

derwater concrete surfaces. Images of the concrete surface can be captured by underwater 232

cameras and analyzed using machine learning algorithms to detect the presence of cracks. 233

The first step in this approach is to capture high-quality images of the concrete surface. The 234

images must be clear, well-lit, and taken at a close distance to the concrete surface. Once 235

the images are captured, they are processed using image processing techniques such as 236

edge detection, thresholding, and morphological operations. These techniques allow the 237

machine learning algorithm to identify cracks in the images accurately. 238

Next, the images are fed into the machine learning algorithm for training. The algo- 239

rithm is trained using a dataset of images with and without cracks. The algorithm learns to 240

recognize the patterns in the images that indicate the presence of cracks. The dataset can be 241

augmented to improve the algorithm’s accuracy and generalizability. 242

Once the algorithm is trained, it can be used to detect cracks in new images of under- 243

water concrete surfaces. The algorithm can be deployed on a computer or embedded in a 244

camera system to perform real-time crack detection. 245
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In conclusion, machine learning approaches based on image processing are a promis- 246

ing solution for crack detection in underwater concrete structures. With their high accuracy 247

and efficiency, they offer a reliable way to detect and monitor cracks in these critical 248

infrastructures. 249

In the next sections we will demonstrate the application of deep learning networks 250

for identification of surface cracks in underwater structures. For this purpose we have 251

used AlexNet and SqueezeNet through transfer learning approach on a large data-set of 252

augmented images. The data set is generated such that it capture challenges associated 253

with underwater effects. 254

5. The augmentation of the concrete cracks dataset 255

The impact of light on propagation events varies based on the seabed topography and 256

streamer depth. By inputting these variables into an underwater wave propagation model, 257

we can anticipate the locations where optical effects will affect the underwater visuals. 258

Wave models are increasingly employed to study and forecast surf conditions in different 259

coastal areas. These models can be developed using wave action or motion systems, which 260

are also known as phase averaging or phase resolving models. The latest generation of 261

phase average models is commonly used in various applications, including commercial 262

tools for flow simulation and wave modeling in advanced professional engineering [59]. 263

Oceanographers prioritize wave energy over wave amplitude. To analyze wave energy, 264

they utilize a unique spectrum called S(ω), also referred to as a wave spectrum or frequency 265

energy spectrum. This spectrum provides valuable insights into the distribution of wave 266

energy based on frequency [60]. Pierson and Moskowitz [61] developed a formula for 267

the ocean that incorporates wind speed as a factor. However, in a fetch-limited sea with 268

increasing waves, the JONSWAP spectrum has been demonstrated to be more suitable and 269

effective (Hasselmann et al.).[62]: 270

SJ(ω) =
αg2

ω5 exp
(
−5

4

(ωp

ω

)4
)

γ
exp

(
− (ω−ωp)2

2σ2ω2
p

)
(1)

The symbol ωp represents the frequency at which the spectrum reaches its peak. The 271

typical value for ωp is ωp = 0.855, with U10 denoting the wind speed at a height of 10 272

meters above the sea surface. In this context, γ represents the peak enhancement factor, 273

and parameter σ indicates the width of the peak. The specific values for these parameters 274

in the spectrum equation are: 275

α = 0.076
(

U2
10

Fg

)0.22
, ωp = 22

(
g2

U10F

)1/3
, σ =

{
0.07, ω ≤ ωp

0.09, ω > ωp
276

where F is the fetch in meters, usually γ = 3.3, but can vary from 1 to 7. 277

The JONSWAP spectrum is used in this study since the fetch is vital for the description 278

of the sea state. 279

The equation S(ω, θ) = SJ(ω)G(ω, θ) denotes spectrum of sea waves and is used for 280

the description of characteristics of the wave direction, the G(ω, θ) follows: 281

G(ω, θ) =
1
π

1 +

0.5 + 0.82 exp

−

(
ω
ωp

)4

2


 cos 2θ + 0.32 exp

−

(
ω
ωp

)4

2

 cos 4θ


(2)

The extension feature suggested by the stereo wave observation project (SWOP) [63] 282

is employed in this study. The elevation of the sea surface H(x, y, t) is expressed by the 283

Double Summation Model [64]: 284

H(x, y, t) =
∞

∑
i=1

∞

∑
j=1

√
2S(ωi, θi)∆ωi∆θi cos (kix cos θj + kiy sin θj − ωit − εij) (3)
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where aij is the wave amplitude of frequency i and directional angle j, the directional 285

angle of the wave θj (0 < θ ≤ 2π), the frequency is ωi, the wave number ki is equal to 286

ki = ω2
i /2, tha random initial phase angle εij (0 ≤ εij < 2π). 287

The 3D waves of the ocean are simulated using MATLAB, a mathematical tool with 288

a broad range of graphic processing capabilities. By examining the ideal illustration 289

of the JONSWAP spectrum and SWOP directed expansion function under U = 20m/s, 290

the right range of frequency as well as the angles for equalization is developed, and an 291

interactive seafloor wave models at certain times over an established sea area is created. 292

The frequency equal division method was utilized to numerically reproduce the average 293

frequency using an angular frequency in the [0.01, 4] range. Parameters N and M equal to 35, 294

∆ω = 0.114rad/s, ∆θ = 0.0898rad, the directional angle is [−pi/2, pi/2]. The computation 295

results over 1 - 2 seconds are illustrated in Fig. 1: 296

Figure 1. Figure showing water surface deformations at different times

The representation of water surface interconnection with light is highly important 297

and achievable via reflections, refractions, and light absorption. The determination of the 298

quantity of light coming to the point of view can be computed as presented in [65]. The 299

behavior of lights traveling through the water surface is illustrated in the Fig 2. 300

Figure 2. Aspects of reflection of lights due to the surface undulations. The component of refracted
light in the incident light at a point on the water surface enters the vantage point at P1 and P3. The
light that is perfectly reflected at a point on the water surface enters the vantage point at P2. The light
is scattered and attenuated by particles along the way at P. The viewpoint is remarked as Pv, the
reflected light is noted at point Q.

The quantity of light Iv(λ) traveling from the point on the water surface Q to perspec- 301

tive Iv while observation is from the underwater can be computed by [65]: 302

Iv(λ) = IQ(λ) exp(−c(λ)L) +
∫ L

0
IP(λ) exp(−c(λ)l)dl (4)

where L represents the distance between PvQ, l - the distance between PPv, c(λ) 303

depicts the attenuation coefficient of the light, the intensity of light at point P is represented 304

by IP (Fig. 2). 305
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The technique for rendering optical effects with graphic equipment are presented in 306

[66] and related to the generation of illumination volumes (Fig. 3). 307

Figure 3. The generation of illumination volumes.

In this study it is important to have realistic images of underwater concrete structures, 308

so technique for rendering illumination effects is presented in [59]. First, it is assumed that 309

the surface of the water is level, and the sun’s refraction vector is detected. Then, the texture 310

of the surface is developed, representing depth of the underwater. Finally, the perspective 311

of the scene is chosen as of the human eye. This method was developed with the Blender 312

program [59]. 313

The test of the deep learning methods was performed using concrete crack images 314

with and without underwater optical effects. The method used for the generation of 315

underwater optical effects is presented in [59]. The collection contains 40000 photos of 316

surface with and without concrete fractures (20000 with cracks - "Positive", and 20000 317

without cracks - "Negative") from Ozgecracksnel’s released data set is used for the test 318

[67]. Optical water illusion effects were generated using the technique depicted in [59] 319

and various modifications (random rotation, zoom, height, width) and different blending 320

techniques were employed for the the dataset augmentation. For the image classification 321

40000 distinct optical underwater effects were generated and applied for the whole dataset 322

of images with and without cracks 4. The technique of the image augmentation is presented 323

detailed in [59]. 324

(a)

(b)

Figure 4. Example of augmented dataset. Concrete images without cracks and with underwater
optical effects are depicted in panel (a). Concrete images with cracks and with underwater optical
effects are depicted in panel (b).

Machine learning methods used for the image classification are presented in the next 325

section. 326
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6. Underwater concrete crack detection using machine learning approaches 327

Cracks in underwater concrete structures can significantly impact their structural 328

integrity and longevity. As described in sections above the traditional methods for detecting 329

cracks in underwater structures are often time-consuming, costly, and require skilled 330

operators. In recent years, machine learning approaches have shown promise for detecting 331

cracks in underwater structures quickly and accurately in onshore environmental conditions 332

[1,2]. In this section we explore the potential of using machine learning based approaches 333

to identify surface cracks on concrete structures in underwater conditions. The concrete 334

cracks in underwater environment are impacted by illumination and presence of marine 335

life, which makes the problem harder to solve compared to surface crack detection in 336

onshore or above water environment. Two tests are conducted: First, test involve using 337

standard machine learning network Alexnet [2] trained on surface crack detection for 338

onshore environment described in [1] is used to identify underwater cracks. Next, test 339

involves an improved version of the network presented in [1], where the network is further 340

trained using augmented underwater images database prepared in [59]. The two test cases 341

and their results are presented next. 342

6.1. Transfer Learning and use of pre-trained network 343

The machine learning approach employed in this paper utilizes transfer learning 344

for training, testing, and validation purposes. This approach is chosen for several rea- 345

sons. Firstly, it enables the evaluation of various well-established deep learning networks. 346

Moreover, transfer learning saves time by eliminating the need to develop a network 347

from scratch, which can be a challenging task requiring expertise in network design. Fur- 348

thermore, implementing the transfer learning approach is straightforward and facilitates 349

faster simulation, leading to improved sensitivity within a relatively short time-frame for 350

real-world applications. 351

The underlying concept of transfer learning involves leveraging a pre-trained net- 352

work’s knowledge and applying it to a similar task by training or exposing it to an addi- 353

tional set of parameters. In the context of this paper, which focuses on image classification, 354

there are several existing pre-trained image classification networks such as SqueezeNet and 355

AlexNet. These networks have been trained to classify a wide range of images, surpassing 356

1000 categories. Therefore, it is possible to select one of these networks and retrain it 357

for a new classification task. This retraining process involves adjusting some network 358

parameters to classify a fresh set of images. Fine-tuning the parameters of a pre-trained 359

network is considerably faster and easier compared to building a network from scratch. 360

The paper follows this precise approach, and for more detailed information on creating 361

transfer learning networks, please refer to [68]. 362

6.2. Test cases - Review of performance of existing networks on concrete image with and without 363

crack and underwater effects 364

Detecting cracks on underwater surfaces poses a significant challenge, and conven- 365

tional image detection networks cannot be directly applied to this problem. To demonstrate 366

the limitations of currently available networks, we conducted a series of tests using a con- 367

crete crack dataset, as outlined in our published papers [1,2]. The methodology is based on 368

transfer learning, which is described in detail in [68]. Our evaluation comprised two tests: 369

the first involved training a network to distinguish between crack and non-crack surfaces, 370

while the second tested the same network’s ability to detect cracks under conditions of 371

underwater illumination (see Figure 5 and Figure 6 for sample images used in both tests). 372

To conduct our study, we employed two distinct image datasets: 373

1. Concrete crack images dataset. Example of this dataset is shown in Figure 5. 374
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Figure 5. Concrete crack images dataset example

2. Underwater crack images dataset. Example of this dataset is shown in Figure 6. 375

Figure 6. Underwater crack images dataset example

6.3. Test Case 1: Testing trained network on identify crack with non-crack surfaces and using same 376

network to test underwater images 377

In this case we used a trained network [1] for identification of crack with non-crack 378

surfaces in various outdoor setting. The Case 1 characteristics and techniques: 379

• Training was conducted on concrete crack images dataset; 380

• Testing was conducted on underwater crack images dataset; 381

• For case investigation we used convolutional neuron network (CNN) architecture 382

AlexNet and SqueezeNet. 383

For Case 1 investigation we used different training data, testing data and validation 384

data parameters that are shown along with the accuracy of the network in Table 1. It can 385

be seen from the results that network accuracy in most cases is above 99 %. Two different 386

networks trained using transfer learning approaches described in [1] are used, namely 387

Alexnet and Squeezenet. Based on Table 1 we can see that using AlexNet architecture we 388

get the best results when we use these parameters: TrainingData=0.3; TestingData=0.3; 389

ValidationData =0.3. 390

The results of this case are presented in Figure 7 and Figure 8. It can be seen from 391

these results that when the network is trained on identifying cracks in surfaces which are in 392

outdoor setting it works well, above 99 % accuracy, but the performance of same network 393

in identifying cracks in underwater images is rather poor, close to 92 % accuracy only. 394
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Table 1. SqueezeNet and AlexNet architecture results

Index

Parameters
used for
Training

Net-
work

Overall
Accu-

racy for
concrete

crack
dataset

Overall
Accu-

racy for
under-
water
crack

dataset

Validation
accuracy

Training
time Epoch

Maximum
Itera-
tions

Iterations
per

epoch
Frequency Learning

rate

SqueezeNet

1.
Training - 0.1,
Testing - 0.1,

Validation - 0.1
99.2 % 84 % 97.78 % 54 min

29 sec 6 186 31 30 itera-
tions 0.001

2.
Training - 0.15,
Testing - 0.15,

Validation - 0.1
98 % 70 % 97.80 % 87 min

23 sec 6 276 46 30 itera-
tions 0.001

3.
Training - 0.3,
Testing - 0.3,

Validation - 0.3
99.3 % 61 % 99.17 % 104 min

13 sec 6 558 93 30 itera-
tions 0.001

AlexNet

1.
Training - 0.1,
Testing - 0.1,

Validation - 0.1
99.5 % 79 % 99.75 % 39 min

47 sec 6 186 31 30 itera-
tions 0.001

2.
Training - 0.15,
Testing - 0.15,

Validation - 0.1
99.7 % 87 % 99.72 % 56 min

19 sec 6 276 46 30 itera-
tions 0.001

3.
Training - 0.3,
Testing - 0.3,

Validation - 0.3
99.7 % 92 % 99.83 % 115 min

32 sec 6 558 93 30 itera-
tions 0.001

Figure 7. Confusion matrix with concrete crack images dataset (Overall Accuracy=99.7 %
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Figure 8. Confusion matrix with underwater crack images dataset (Overall Accuracy=92 %

6.4. Test Case 2: Testing trained network to identify crack with non-crack surfaces on identifying 395

cracks in underwater images 396

In this case we used a trained network used in case 1 with additional images, which 397

are augmented to take into account underwater effects, e.g., illumination, shades, colour 398

etc. The trained network is then used for identification of crack with non-crack surfaces in 399

various outdoor setting as well as to identify crack on underwater images with illumination 400

effects. The Case 2 characteristics and techniques: 401

• Training was conducted on underwater crack images dataset; 402

• Testing was conducted on underwater crack images dataset; 403

• For case investigation we used convolutional neural network (CNN) architecture 404

AlexNet and SqueezeNet. 405

For Case 2 investigation we used different training data, testing data and validation 406

data parameters that are shown in a final Case 2 investigation results table (Table 2). Based 407

on Table 2 we can see that using AlexNet architecture we get the best results when we 408

use these parameters: TrainingData=0.3; TestingData=0.3; ValidationData =0.3. The results 409

of this case are presented in Figure 9. The results of this case show that with additional 410

argument images of underwater effects, the network accuracy is improved to above 99 %. 411
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Table 2. SqueezeNet and AlexNet architecture results

Index

Parameters
used for
Training
Network

Overall
Accuracy
for under-

water
crack

dataset

Validation
accuracy

Training
time Epoch Maximum

Iterations
Iterations
per epoch Frequency Learning

rate

SqueezeNet

1.
Training - 0.1,
Testing - 0.1,

Validation - 0.1
98.25 % 99.12 % 74 min 54

sec 6 186 31 30
iterations 0.001

2.
Training - 0.15,
Testing - 0.15,

Validation - 0.1
99.1 % 99.20 % 124 min

27 sec 6 276 46 30
iterations 0.001

3.
Training - 0.3,
Testing - 0.3,

Validation - 0.3
99.6 % 99.45 % 282 min

49 sec 6 558 93 30
iterations 0.001

AlexNet

1.
Training - 0.1,
Testing - 0.1,

Validation - 0.1
99.6 % 99.62 % 460 min

20 sec 6 186 31 30
iterations 0.001

2.
Training - 0.15,
Testing - 0.15,

Validation - 0.1
99.5 % 99.47 % 450 min

51 sec 6 276 46 30
iterations 0.001

3.
Training - 0.3,
Testing - 0.3,

Validation - 0.3
99.7 % 99.67 % 355 min

27 sec 6 558 93 30
iterations 0.001

Figure 9. Confusion matrix with underwater crack images dataset (Overall Accuracy=99.7 %

The two test cases presented here demonstrates that its possible to improve the per- 412

formance of existing networks by training them using augmented images such that the 413

network will become capable of identifying surface cracks in onshore as well as offshore un- 414

der water conditions too. Network accuracy could be further improved through parameter 415

optimization and even better/rich database of augmented images. 416

7. Conclusion 417

The paper focuses on the development of an underwater crack detection system for 418

structural integrity assessment of submerged structures, emphasizing the use of machine 419

learning approaches. This highlights the significance of advanced technology in addressing 420

the challenges associated with underwater crack detection. 421

The literature review conducted in the paper provides insights into the current meth- 422

ods for underwater surface crack detection, highlighting the existing challenges and po- 423

tential opportunities for improvement. This suggests that the proposed system takes into 424

account the limitations of current approaches and aims to overcome them. 425
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The paper introduces an image augmentation approach for creating underwater optical 426

effects. By utilizing augmented images, the proposed system enhances the performance of 427

existing network-based machine learning approaches in detecting cracks in underwater 428

conditions. This showcases the innovative use of data augmentation techniques to improve 429

detection accuracy. 430

The experimental results presented in the paper demonstrate the effectiveness and 431

accuracy of the developed system in detecting cracks in underwater structures. This 432

indicates that the proposed system has the potential to significantly contribute to the 433

safety and reliability of submerged structures, such as offshore oil and gas installations, 434

underwater pipelines, and underwater foundations for bridges and dams. 435

The implementation of the proposed system has the potential to prevent catastrophic 436

failures by detecting cracks in underwater structures at an early stage. This emphasizes the 437

importance of proactive maintenance and inspection strategies, which can ultimately save 438

costs and ensure the long-term integrity of underwater infrastructure. 439
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