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Abstract: This paper presents the development of an underwater crack detection system for structural 1
integrity assessment of submerged structures, like offshore oil and gas installations, underwater =
pipelines, underwater foundations for bridges, dams etc. Focus is on use of machine learning based s
approaches. First a detailed literature review of state of the current methods for underwater surface 4
crack detection is presented highlighting challenges and opportunities. An overview of image s
augmentation approach for creation of underwater optical effects is also presented. Experimental
results using standard network based machine learning approach, used for surface crack detection 7
in onshore environment, is presented. Series of Test cases are presented where existing networks =
performance are improved using augmented images for underwater conditions. The effectiveness s
and accuracy of the proposed approach in detecting cracks in underwater concrete structures is 1o
demonstrated. The proposed approach has the potential to improve the safety and reliability of 11

underwater structures and prevent catastrophic failures. 12
Keywords: Underwater; Crack detection; Machine learning; Transfer learning; Augmentation; 13
Non-destructive testing; Safety; Reliability 14
1. Introduction 15

Underwater concrete structures serve various important purposes in different areas, 1e
including infrastructure projects, erosion and storm protection, support for offshore energy 17
projects, and the creation of habitats for marine life. These structures are designed to 1
provide stability, durability, and the ability to withstand harsh underwater environments. 1
They play a crucial role in supporting infrastructure development while also protecting 2o
the environment and marine ecosystems. Ensuring the structural integrity of underwater =
concrete structures is of utmost importance to prevent catastrophic failures. The underwater 2=
environment poses unique challenges to the integrity of these structures, such as saltwater  2s
corrosion and the impact of waves, which can lead to cracks and other types of damage. It 24
is vital to identify and monitor fractures in underwater concrete constructions to identify  2s
potential weaknesses and take corrective measures in a timely manner. 26

However, it is a challenging endeavor to identify and monitor fractures in underwater =
concrete constructions due to several factors. Limited visibility, difficult access, and harsh  2s
conditions make it difficult to visually inspect these structures. Therefore, reliable and effi- 2o
cient methods are needed to detect and monitor cracks in underwater environments. Some o
of the most often used methods for fracture identification and monitoring in underwater s
concrete structures are: 32

¢  Visual inspections by divers: Specially trained divers can perform visual inspections 33
of the structures to identify visible cracks or signs of damage. However, this method .
is limited by the accessibility of the structure and the diver’s ability to navigate and s
inspect the entire surface. Such inspections are also known for high risk for the divers e
involved in carrying out such inspections. 37
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*  Non-destructive testing techniques: Techniques such as ultrasonic testing and acoustic s
emission monitoring may be used to evaluate the interior condition of a concrete 3o
structure and detect cracks or other flaws. These methods rely on the analysis of 4o
sound waves or emitted signals to identify potential issues. However, they require 4
specialized equipment and expertise to perform accurately. The time required for
acquisition and processing of data is long. often cost of such data acquisitions are very 4
high as well. m

*  Advanced technologies: Underwater drones and robots equipped with cameras and s
sensors are emerging as valuable tools for crack detection and monitoring. These 46
autonomous or remotely operated devices can access hard-to-reach areas, capture 47
high-resolution images or videos, and collect data on the condition of the structures. s
This technology offers improved accessibility and accuracy in crack detection. The 4o
technique presented in this paper is an addition to such a technology for underwater so
inspections. 51

In modern time the amount of underwater infrastructure has increased many folds, s
which includes internet cables, electric cables linked to offshore wind mills, and oil and s
gas pipe lines among other important infrastructure. Implementing reliable methods for s
detecting and monitoring cracks in underwater concrete structures is crucial for ensuring s
their long-term durability and safety. While significant research has been conducted on e
crack detection systems for onshore and above-water structures [1,2], less attention has s
been given to underwater crack detection. The work presented in this paper focuses ss
specifically on addressing this gap and developing effective crack detection methods for se
underwater concrete structures. By improving our ability to detect and monitor cracks o
in underwater concrete structures, we can identify issues early, implement appropriate e
repairs or maintenance, and ensure the continued functionality and safety of these vital e
underwater assets. 63

The paper is structured as follows: An overview of different techniques used in under- s
water concrete crack detection is presented in section 2. Challenges of underwater concrete  es
crack detection is discussed in section 3. Available methods to mitigate the challenges s
related to underwater crack detection system is discussed in section 4. Section 5 presents o7
an overview of the data set used in this paper to demonstrate use of machine learning s
based approach for underwater crack detection. Machine learning based underwater crack s
detection system along with series of test cases is presented in section 6. Conclusions 7

follows in section 7. 7
2. An overview of the techniques used for underwater concrete crack detection 72
2.1. Visual inspection: basic method for detecting cracks in underwater concrete, but limited by 73
water clarity and visibility 74

By quantifying the likelihood distribution of sea surface slopes, numerical approaches 7
have enabled researchers to investigate both the refraction and reflection of light from the 7
sky and the sun via roughened sea surfaces. In one study, the researchers explored various 7~
optical phenomena, such as the refracted sun’s glitter, the brightness and reflectivity of an  7s
uneven sea surface owing to sky light and the reflection of a harsh sea surface from direct 7
sunlight [3]. While research on cracks in underwater surfaces is limited, most studies focus o
on the effects of water on various chemicals, their resistance to the environment, or their &
impact on the environment [4-6]. 82

Researchers have studied shade on under-water optical radiometers employing Monte s
Carlo computations of a light field with both the presence and lack of the sensors to [7]. &
Optical sensors from space have been used to observe surface water, and various techniques s
have been developed to eliminate cloud or terrain shadows [8-12]. Additionally, flash s
photography directed vertically downward toward the water surface has been used to &
interpret wave slopes. Researchers have studied various optical effects of water, including s
optical absorption, temperature and humidity effects, dissolved organic materials, biolog- e
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ical vegetation interaction, pressure effects, and optical propagation in turbulent water oo

[13-20] o1
2.2. Acoustic methods: use of sound waves to detect cracks, including impact-echo, impulse 02
response, and ultrasonic methods. Fluorosensor. 03

In [21], it is described how optically and near-infrared wavelengths may be used s«
to detect water depth and substrate type as two key factors in river physical habitat. s
The approach provided in [22] was used to remotely track chlorophyll content in fresh o6
waterways and was shown to be strongly associated with real-world data, allowing for the o
detection of changes in surface water optical attenuation. o8

Another research investigates the association between acoustic emission cumulative oo
energy and decreased cycling reversal loads in submerged concrete columns [23]. Ultra- 100
sonic surface waves are used to detect cracks in underwater concrete beams, with a Root 101
Mean Square Deviation damage index used to analyze the wave data [24]. A method for o2
assessing the concrete dams’ blast resistance by investigating the induced vibration and 103
crack penetration depth and use of a crack control agent to prevent failure of concrete 104
structures is presented in [25,26]. 108

2.3. Electrical methods: use of electrical resistance or capacitance to detect cracks, efc. 106

The coordination and electrostatic effects of water’s optical absorption were resolved 107
through computational analysis in [13]. A Monte Carlo calculation procedure was used in  10s
a computer simulation study to investigate the impact of photon incidence angle on the 100
relationship between natural waters’ visible and inherent optical characteristics in [27]. An 110
approach that centers on water’s inherent optical properties to fix water angular effects 1.
leaving brilliance was presented in [28]. 112

2.4. Magnetic methods: use of magnetic fields to detect cracks, including the magnetic flux leakage 113
method 114

Ground-penetrating radar, or GP radar, is a high-resolution, non-destructive technol- s
ogy for detecting hidden things via a high-frequency electromagnetic pulse. It has been 116
widely used in a variety of fields including engineering/geologic research, underground 17
historical research, to identify scour holes around bridge piers, and so on. It has also been  11e
used to assess the structural condition of underwater hydraulic structures [29]. 110

2.5. Deep learning-based methods: image analysis of crack using deep learning. 120

Recently, neural networks have been increasingly applied to the quality of surface 12
water estimation utilizing combined optical and microwave data. These networks excel in 122
approximating nonlinear transfer functions, and as such, the research involved extracting 2s
data from water sample locations and analyzing digital data through various transforma- 12s
tions [30]. In [31], A application for Windows was created to simulate and evaluate optical 125
observations in aquatic settings.. 126

Surface water detection is important for understanding flood hazards and potential 127
damage to infrastructure and ecosystems. In [32,33] the applications of satellite remote 12s
sensing, and its limitation, in detecting and monitoring surface water, mapping, and 12e
parameter estimation are discussed. 130

An unsupervised method for identifying fractures in underwater concrete structures 1
is offered in [34]. For eliminating outliers, the approach depends on local feature clustering 132
utilizing K-Medians on Haralick texture characteristics with a dual Gaussian distribution. 1ss
Detecting and classifying cracks in underwater dam structures based on sonar images is 134
a difficult task due to the complexity of underwater environments and the random and 135
diverse nature of cracks, as well as the low resolution of sonar images. In [35], a clustering 13e
analysis was performed on a 3D feature space to obtain crack fragments, which were then a7
connected using an improved tensor voting method. [36] presents an alternate technique 13s
for identifying underwater dam breaches in sonar imagery.The cracked block tree (BT) 130
approach comprises pre-processing low-resolution sonar pictures, breaking them down into 140
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pieces for grouping analysis, and combining the crack segments with dynamic fragments 1a:
of fracture based on tensor voting. In [37], a two-phase system is proposed for robust crack  1a2
detection in concrete and pipelines inspections using Remotely Operated Vehicles.The [38] = 1s3
proposes a two-step approach for automatically identifying concrete fractures in aquatic  1ss
situations. In the first step, the images are pre-processed through illumination balancing 1ss
and image smoothing, and in the second step, a convolutional neural network (CNN) is 146
used for crack detection. 147

In [39], a novel algorithm is proposed that generates a 3D spatial surface from the 1
intensity values of a 2D image. The cracks are identified as "ditches" in the 3D surface, 14
and their characteristics are analyzed using space curvatures. A BP neural network is then s
used to identify the crack objects. In [40], an artificial colony of bees algorithm-based edge 1s:
extraction methodology is proposed. To improve the weak-object border gray contrast, an s
adaptive enhancement approach is applied, and a method of optimization using border 1ss
direction information is presented to improve the edge extraction efficacy. [41] presents s
the establishment of a free aquatic light and turbid images repository (ULTIR) to assess the 1ss
efficacy of image-based approaches for underwater structural evaluation. 156

In [42], an automatic crack detection method using image processing is proposed. The sz
approach creates an augmented picture based on turbidity meter absorbance and eliminates  1se
the background component. Crack detection is performed using a decision tree learning 1se
algorithm. [43] presents a unique automated dam fracture detection technique that utilizes 1e0
local-global clustering analysis. Using photographs, the system can precisely and rapidly e
detect faults on dam surfaces, decreasing human subjectivity. 162

In [44], it is conceived, prototyped, and tested a Tactile Imaging System for Underwater 1es
Inspection (TISUE). The device combines an elastomer-enabled contact-based optic sensor ies
with specially designed artificial illumination to provide high-resolution and high-quality 1es
pictures of the structural damage to the surface in a turbid water environment. Finally, 1es
the paper [45] introduces the UIS-1 underwater inspection system, which comprises of a 167
proprietary underwater robot and a unique quantitative analysis approach. The technology 1es
is tested in the field at the dam in Sichuan, China, and its efficacy is compared to that of 1es
other approaches. The suggested picture technique detects the coarse aggregate exposed 17
automatically using SLIC super pixels and SVM machine learning, and the total exposure 17
ratio is derived to assess the degree of abrasion. 172

2.6. Other methods: including the use of fiber optic sensors, thermal imaging, and X-ray imaging 17

Rendering water is a key component in creating natural scenes. In [46,47]., we offera 174
method for creating accurate underwater optical effects using graphics hardware utilizinga 17
Z-buffer, a stencil buffer, and an accumulation buffer. Additionally, [48] provides a strategy 17s
for evaluating the statistical distribution of water’s level slopes using flash photography. 17
Researchers introduced a temperature tracer approach for fracture identification in sub sea  17s
concrete structures based on heat transport theory in [49-51]. A method for controlling 17
concrete cracking in underwater marine structures using basalt fiber is presented in [6]. 180

The study presented in [52] developed a structural health monitoring tool that con- e
sidered the reciprocal relationships and priority weights of different structural distresses 1e2
to assess underwater structures. Cracking and collapse behaviors of an undersea shield 1es
tunnel’s segmental liner construction exposed to a wrecked high-speed train collision s
were explored in [53]. In [54], researchers looked on the chaotic actions of arched concrete  1es
barriers subjected to underwater explosions. In addition, a system using a single camera 1s6
deployed in a vehicle or robot was proposed in [55] to process a sequence of images and ez
estimate crack dimensions. 188

Due to uneven lighting and considerable noise issues, detecting and classifying under- 1es
water dam breaches is difficult, and only a few approaches are adequate for this purpose. 190
The study [56] presented a dodging algorithm to eliminate uneven illumination, based on 10
an investigation of the statistical aspects of dam crack pictures, employing the regional 1s2
features of block images and the global features of related domains. In [57], a simpler 1es
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approach for estimating the wear life of fractured concrete below water was developed, 1es
utilizing a changed design code that takes into account the crack’s reduction in stress 1es
amplitude. [58] studies crack identification and categorization strategies based on crack 106
kinds, and then implements Otsu’s base thresholds method for crack detection, which is 17
then utilized to construct the suggested crack detection system. 198

3. Challenges associated with underwater concrete crack detection 109

Working in underwater environments presents unique challenges that require special- 200
ized equipment and procedures for inspections. Underwater inspections require specialized  zo:
diving equipment, including wet suits, diving masks, and tanks for air supply. Divers 202
must be trained in specialized diving techniques, including decompression procedures 2o
and safety protocols. Additionally, specialized inspection equipment is necessary, such as 204
underwater cameras, sonar devices, and non-destructive testing equipment. 205

One of the most significant difficulties in inspecting underwater concrete structures  zos
is detecting cracks. Underwater conditions, such as poor visibility, water pressure, and 2o
limited access, make it challenging to detect cracks. Visual inspections by divers are 2o
often necessary, but they can be time-consuming, expensive, and potentially hazardous. 20
Advanced techniques such as ultrasonic testing, acoustic emission monitoring, and digital =10
radiography are also used to detect cracks in underwater concrete structures. 211

Optical effects can also impact the quality of underwater images captured by un- =212
manned aerial vehicles (UAVs) used for inspections. Optical effects such as refraction, 213
reflection, and attenuation can distort images and impact the accuracy of inspections. To 214
mitigate the impact of these optical effects, UAVs used for underwater inspections must be 215
equipped with specialized cameras and sensors and operated by trained professionals who 216
can account for these optical effects during inspections. Overall, working in underwater en- 217
vironments requires specialized equipment, procedures, and skills to overcome the unique =21
challenges presented by the underwater environment. 210

4. Navigating challenges related to underwater concrete cracks detection using machine 2z
learning 221

Underwater concrete structures are critical components of many marine-based infras- 222
tructures, such as bridges, piers, and offshore oil platforms. Over time, these structures can 223
develop cracks due to various factors, such as corrosion, water pressure, and natural wear 224
and tear. Detecting and monitoring these cracks is essential for ensuring the safety and 225
longevity of the structure. Visual inspection and dye penetrant testing are the traditional 226
methods for crack detection, but they are time-consuming, expensive, and not always 227
accurate. It has already been demonstrated by the works presented in [1,59] that machine  22s
learning approaches offer a much promising solution for detecting cracks in underwater =z
concrete structures. 230

One approach to crack detection using machine learning is image processing of un- 2s:
derwater concrete surfaces. Images of the concrete surface can be captured by underwater 232
cameras and analyzed using machine learning algorithms to detect the presence of cracks. 233
The first step in this approach is to capture high-quality images of the concrete surface. The 23
images must be clear, well-lit, and taken at a close distance to the concrete surface. Once =35
the images are captured, they are processed using image processing techniques such as =236
edge detection, thresholding, and morphological operations. These techniques allow the 237
machine learning algorithm to identify cracks in the images accurately. 238

Next, the images are fed into the machine learning algorithm for training. The algo- =230
rithm is trained using a dataset of images with and without cracks. The algorithm learns to 240
recognize the patterns in the images that indicate the presence of cracks. The dataset can be 24
augmented to improve the algorithm’s accuracy and generalizability. 202

Once the algorithm is trained, it can be used to detect cracks in new images of under- a3
water concrete surfaces. The algorithm can be deployed on a computer or embedded ina 242
camera system to perform real-time crack detection. 245
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In conclusion, machine learning approaches based on image processing are a promis-  2s6
ing solution for crack detection in underwater concrete structures. With their high accuracy 247
and efficiency, they offer a reliable way to detect and monitor cracks in these critical 248
infrastructures. 240

In the next sections we will demonstrate the application of deep learning networks s
for identification of surface cracks in underwater structures. For this purpose we have 25
used AlexNet and SqueezeNet through transfer learning approach on a large data-set of  zs:
augmented images. The data set is generated such that it capture challenges associated s
with underwater effects. 254

5. The augmentation of the concrete cracks dataset 255

The impact of light on propagation events varies based on the seabed topography and 2se
streamer depth. By inputting these variables into an underwater wave propagation model, s
we can anticipate the locations where optical effects will affect the underwater visuals. 2ss
Wave models are increasingly employed to study and forecast surf conditions in different 2so
coastal areas. These models can be developed using wave action or motion systems, which  ze0
are also known as phase averaging or phase resolving models. The latest generation of 26
phase average models is commonly used in various applications, including commercial  ze2
tools for flow simulation and wave modeling in advanced professional engineering [59]. 263

Oceanographers prioritize wave energy over wave amplitude. To analyze wave energy, 2ee
they utilize a unique spectrum called S(w), also referred to as a wave spectrum or frequency  zes
energy spectrum. This spectrum provides valuable insights into the distribution of wave ze6
energy based on frequency [60]. Pierson and Moskowitz [61] developed a formula for e
the ocean that incorporates wind speed as a factor. However, in a fetch-limited sea with  2es
increasing waves, the JONSWAP spectrum has been demonstrated to be more suitable and  zes

effective (Hasselmann et al.).[62]: 270
2 4 ex] _M
L P(-5)
Sy(w) = =% exp( 2 (52) )7 G M

The symbol w) represents the frequency at which the spectrum reaches its peak. The 2
typical value for w) is w, = 0.855, with U;0 denoting the wind speed at a height of 10 27
meters above the sea surface. In this context, v represents the peak enhancement factor, =7
and parameter ¢ indicates the width of the peak. The specific values for these parameters 27

in the spectrum equation are: 275
2\ 022 1/3 0.07,w <
x=0076( F ) Lw,=22(f) o=q U=
rs ! Fio® 0.09,w > w,
where F is the fetch in meters, usually y = 3.3, but can vary from 1 to 7. 277
The JONSWAP spectrum is used in this study since the fetch is vital for the description 27
of the sea state. 279
The equation S(w,#) = S;(w)G(w, #) denotes spectrum of sea waves and is used for zeo
the description of characteristics of the wave direction, the G(w, #) follows: 281

4 4
w w
_ 1 ,@ ,@
G(w,0) = - 1+ [0.5+0.82exp > cos 26 + 0.32 exp 5 cos 46

The extension feature suggested by the stereo wave observation project (SWOP) [63]  ze2
is employed in this study. The elevation of the sea surface H(x,y,t) is expressed by the zs:
Double Summation Model [64]: 284

H(x, Y, f) = Z 2 \/25(601‘, 0;) Aw;AB; cos (kix cos 9] + kiy sin 9] — wjt — Sij) 3)
i=1j=1
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where 4;; is the wave amplitude of frequency 7 and directional angle j, the directional  zes
angle of the wave 6; (0 < 6 < 271), the frequency is w;, the wave number k; is equal to  2ss
k; = w? /2, tha random initial phase angle eij (0 < < 2m). 287

The 3D waves of the ocean are simulated using MATLAB, a mathematical tool with  2ss
a broad range of graphic processing capabilities. By examining the ideal illustration 2ee
of the JONSWAP spectrum and SWOP directed expansion function under U = 20m/s, 200
the right range of frequency as well as the angles for equalization is developed, and an 202
interactive seafloor wave models at certain times over an established sea area is created. 2e2
The frequency equal division method was utilized to numerically reproduce the average zes
frequency using an angular frequency in the [0.01, 4] range. Parameters N and M equal to 35, 204
Aw = 0.114rad /s, A6 = 0.0898rad, the directional angle is [—pi/2, pi/2]. The computation zes
results over 1 - 2 seconds are illustrated in Fig. 1: 206

Time 2.5s Time 3s Time 3.5s

II(m)

xm) Ry m) 00y
Figure 1. Figure showing water surface deformations at different times

The representation of water surface interconnection with light is highly important ze7
and achievable via reflections, refractions, and light absorption. The determination of the 208
quantity of light coming to the point of view can be computed as presented in [65]. The 200
behavior of lights traveling through the water surface is illustrated in the Fig 2. 300

Figure 2. Aspects of reflection of lights due to the surface undulations. The component of refracted
light in the incident light at a point on the water surface enters the vantage point at P; and P3. The
light that is perfectly reflected at a point on the water surface enters the vantage point at P,. The light
is scattered and attenuated by particles along the way at P. The viewpoint is remarked as Py, the
reflected light is noted at point Q.

The quantity of light I,(A) traveling from the point on the water surface Q to perspec- so:
tive I, while observation is from the underwater can be computed by [65]: 302

L) = o) exp(—e()L) + [ 1p(A) exp(—e(A)0)a @

where L represents the distance between P,Q, I - the distance between PP,, c(A) 303
depicts the attenuation coefficient of the light, the intensity of light at point P is represented  s0s
by Ip (Flg 2) 305
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The technique for rendering optical effects with graphic equipment are presented in  sos
[66] and related to the generation of illumination volumes (Fig. 3). 307

water surface

illumination volume
the projection plane

Figure 3. The generation of illumination volumes.

In this study it is important to have realistic images of underwater concrete structures, sos
so technique for rendering illumination effects is presented in [59]. First, it is assumed that s0e
the surface of the water is level, and the sun’s refraction vector is detected. Then, the texture s1o
of the surface is developed, representing depth of the underwater. Finally, the perspective 31
of the scene is chosen as of the human eye. This method was developed with the Blender i
program [59]. 313

The test of the deep learning methods was performed using concrete crack images s
with and without underwater optical effects. The method used for the generation of s1s
underwater optical effects is presented in [59]. The collection contains 40000 photos of 316
surface with and without concrete fractures (20000 with cracks - "Positive", and 20000 317
without cracks - "Negative") from Ozgecracksnel’s released data set is used for the test s
[67]. Optical water illusion effects were generated using the technique depicted in [59] s
and various modifications (random rotation, zoom, height, width) and different blending  sz0
techniques were employed for the the dataset augmentation. For the image classification sz
40000 distinct optical underwater effects were generated and applied for the whole dataset sz
of images with and without cracks 4. The technique of the image augmentation is presented  s2s
detailed in [59]. 324

@

(b)

Figure 4. Example of augmented dataset. Concrete images without cracks and with underwater

P

optical effects are depicted in panel (a). Concrete images with cracks and with underwater optical
effects are depicted in panel (b).

Machine learning methods used for the image classification are presented in the next szs
section. 326
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6. Underwater concrete crack detection using machine learning approaches 327

Cracks in underwater concrete structures can significantly impact their structural szs
integrity and longevity. As described in sections above the traditional methods for detecting  s2o
cracks in underwater structures are often time-consuming, costly, and require skilled 3o
operators. In recent years, machine learning approaches have shown promise for detecting ss:
cracks in underwater structures quickly and accurately in onshore environmental conditions  ss2
[1,2]. In this section we explore the potential of using machine learning based approaches s
to identify surface cracks on concrete structures in underwater conditions. The concrete sss
cracks in underwater environment are impacted by illumination and presence of marine sss
life, which makes the problem harder to solve compared to surface crack detection in 36
onshore or above water environment. Two tests are conducted: First, test involve using  ss7
standard machine learning network Alexnet [2] trained on surface crack detection for s:s
onshore environment described in [1] is used to identify underwater cracks. Next, test 3o
involves an improved version of the network presented in [1], where the network is further a0
trained using augmented underwater images database prepared in [59]. The two test cases s
and their results are presented next. 342

6.1. Transfer Learning and use of pre-trained network 343

The machine learning approach employed in this paper utilizes transfer learning s
for training, testing, and validation purposes. This approach is chosen for several rea- s
sons. Firstly, it enables the evaluation of various well-established deep learning networks. s
Moreover, transfer learning saves time by eliminating the need to develop a network s
from scratch, which can be a challenging task requiring expertise in network design. Fur- sas
thermore, implementing the transfer learning approach is straightforward and facilitates s
faster simulation, leading to improved sensitivity within a relatively short time-frame for sso
real-world applications. 351

The underlying concept of transfer learning involves leveraging a pre-trained net- ss:
work’s knowledge and applying it to a similar task by training or exposing it to an addi- sss
tional set of parameters. In the context of this paper, which focuses on image classification, ssa
there are several existing pre-trained image classification networks such as SqueezeNet and ~ sss
AlexNet. These networks have been trained to classify a wide range of images, surpassing  sse
1000 categories. Therefore, it is possible to select one of these networks and retrain it s
for a new classification task. This retraining process involves adjusting some network ss
parameters to classify a fresh set of images. Fine-tuning the parameters of a pre-trained s
network is considerably faster and easier compared to building a network from scratch. seo
The paper follows this precise approach, and for more detailed information on creating e
transfer learning networks, please refer to [68]. 362

6.2. Test cases - Review of performance of existing networks on concrete image with and without e
crack and underwater effects 364

Detecting cracks on underwater surfaces poses a significant challenge, and conven-  ses
tional image detection networks cannot be directly applied to this problem. To demonstrate sss
the limitations of currently available networks, we conducted a series of tests using a con- ez
crete crack dataset, as outlined in our published papers [1,2]. The methodology is based on  ses
transfer learning, which is described in detail in [68]. Our evaluation comprised two tests: seo
the first involved training a network to distinguish between crack and non-crack surfaces, 7o
while the second tested the same network’s ability to detect cracks under conditions of s
underwater illumination (see Figure 5 and Figure 6 for sample images used in both tests). a7
To conduct our study, we employed two distinct image datasets: 373

1. Concrete crack images dataset. Example of this dataset is shown in Figure 5. 374
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Examples of the dataset -1
G Vegs. p Negative
Negative Negati(/e : ; Negative
>
Figure 5. Concrete crack images dataset example
2. Underwater crack images dataset. Example of this dataset is shown in Figure 6. 275

Examples of the dataset -2
Negative E

Figure 6. Underwater crack images dataset example

6.3. Test Case 1: Testing trained network on identify crack with non-crack surfaces and using same  sze

network to test underwater images 377

In this case we used a trained network [1] for identification of crack with non-crack ss
surfaces in various outdoor setting. The Case 1 characteristics and techniques: 379
e  Training was conducted on concrete crack images dataset; 380
*  Testing was conducted on underwater crack images dataset; 381
*  For case investigation we used convolutional neuron network (CNN) architecture = se2

AlexNet and SqueezeNet. 383

For Case 1 investigation we used different training data, testing data and validation ses
data parameters that are shown along with the accuracy of the network in Table 1. It can  sss
be seen from the results that network accuracy in most cases is above 99 %. Two different sse
networks trained using transfer learning approaches described in [1] are used, namely s
Alexnet and Squeezenet. Based on Table 1 we can see that using AlexNet architecture we  sss
get the best results when we use these parameters: TrainingData=0.3; TestingData=0.3; a0
ValidationData =0.3. 390

The results of this case are presented in Figure 7 and Figure 8. It can be seen from 3o
these results that when the network is trained on identifying cracks in surfaces which arein  se2
outdoor setting it works well, above 99 % accuracy, but the performance of same network  ses
in identifying cracks in underwater images is rather poor, close to 92 % accuracy only. 304
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Table 1. SqueezeNet and AlexNet architecture results
Overall Overall
Parameters Accu-
Accu- . .
used for racy for R . Maximum Iterations .
. . racy for Validation Training Learning
Index Training under- . Epoch Itera- per Frequency
concrete accuracy time . rate
Net- water tions epoch
crack
work dataset crack
dataset
SqueezeNet
1. Teingon, 99.2% 84.% 9778 ~ ormin 6 186 31 S0itera- 1 191
Validation - 0.1 29 sec tions
2. Tome ol 98% 70%  9780% o/ min 6 276 46 S0itera- ) 151
Validation - 0.1 23 sec tions
3. Teing-0n 99.3 % 61 % 99179, ~ '04min 6 558 93 0itera- 1 191
Validation - 03 13 sec tions
AlexNet
1. Teme o 99.5% 79%  99759%  O,min 6 186 31 Sitera- gy
Validation - 0.1 47 sec tions
2. Temme o 99.7 % 87% 99729 ~ comin 6 276 46 0itera- ) 191
Validation - 0.1 19 sec tions
3. Tamt0s 997 % 9%  99839% Lomin 6 558 93 SVitera- ) 51
Validation - 03 32 sec tions
Negative
)
g
Positive

Positive
Predicted Class

Negative

Figure 7. Confusion matrix with concrete crack images dataset (Overall Accuracy=99.7 %
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Negative

True Class

Positive

Negative Positive
Predicted Class

Figure 8. Confusion matrix with underwater crack images dataset (Overall Accuracy=92 %

6.4. Test Case 2: Testing trained network to identify crack with non-crack surfaces on identifying
cracks in underwater images

In this case we used a trained network used in case 1 with additional images, which
are augmented to take into account underwater effects, e.g., illumination, shades, colour
etc. The trained network is then used for identification of crack with non-crack surfaces in
various outdoor setting as well as to identify crack on underwater images with illumination
effects. The Case 2 characteristics and techniques:

¢ Training was conducted on underwater crack images dataset;

e  Testing was conducted on underwater crack images dataset;

*  For case investigation we used convolutional neural network (CNN) architecture
AlexNet and SqueezeNet.

For Case 2 investigation we used different training data, testing data and validation
data parameters that are shown in a final Case 2 investigation results table (Table 2). Based
on Table 2 we can see that using AlexNet architecture we get the best results when we
use these parameters: TrainingData=0.3; TestingData=0.3; ValidationData =0.3. The results
of this case are presented in Figure 9. The results of this case show that with additional
argument images of underwater effects, the network accuracy is improved to above 99 %.

411
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Table 2. SqueezeNet and AlexNet architecture results
Overall
Parameters Accuracy
used for  for under- Validation Training Maximum Iterations Learning
Index . . . Epoch . Frequency
Training water accuracy time Iterations  per epoch rate
Network crack
dataset
SqueezeNet
1. homrll g5, 99129,  +minSd 6 186 31 %0 0.001
Validation - 0.1 sec iterations
2. Totmeoi99.1% 99009 ~ 124min 6 276 46 30 0.001
Validation - 0.1 27 sec iterations
3. it 05 99.6 % 99459 ~ 252min 6 558 93 %0 0.001
Validation - 0.3 49 sec iterations
AlexNet
1. Tesing. 04 99.6 % 99.629 ~ 60min 6 186 31 30 0.001
Validation - 0.1 20 sec iterations
2, Testing. 015, 99.5 % 99479, ~ *50min 6 276 46 %0 0.001
Validation - 0.1 51 sec iterations
3. Tesing. 05, 99.7 % 99.67%  Soomin 6 558 93 30 0.001
Validation - 0.3 27 sec iterations

Negative

True Class

Positive

Negative Positive
Predicted Class

Figure 9. Confusion matrix with underwater crack images dataset (Overall Accuracy=99.7 %

The two test cases presented here demonstrates that its possible to improve the per- 41
formance of existing networks by training them using augmented images such that the 41
network will become capable of identifying surface cracks in onshore as well as offshore un- a1
der water conditions too. Network accuracy could be further improved through parameter ais
optimization and even better/rich database of augmented images. 416

7. Conclusion 417

The paper focuses on the development of an underwater crack detection system for s
structural integrity assessment of submerged structures, emphasizing the use of machine 41
learning approaches. This highlights the significance of advanced technology in addressing  a20
the challenges associated with underwater crack detection. az

The literature review conducted in the paper provides insights into the current meth- 22
ods for underwater surface crack detection, highlighting the existing challenges and po- 423
tential opportunities for improvement. This suggests that the proposed system takes into 424
account the limitations of current approaches and aims to overcome them. a2s
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