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Abstract: Grain yield prediction affects policy making in various aspects such as agricultural pro- 1

duction planning, food security assurance, and adjustment of foreign trade. Accurately predicting 2

grain yield is of great significance in ensuring global food security. This paper is based on the MODIS 3

remote sensing image data products from 2010 to 2020, and adds band information such as vegetation 4

index and temperature to form composite remote sensing data as a data set. Aiming at the lack of 5

models for large-scale forecasting and the need for human intervention in traditional models, this 6

paper proposes a grain production estimation model based on deep learning. First, image cropping 7

and yield mapping techniques are used to process the data to generate training samples. Then the 8

channel and spatial attention mechanism (Convolutional Block Attention Module, CBAM) is added 9

for extracting spatial information in different remote sensing bands to improve the efficiency of the 10

model. Long Short-Term Memory (LSTM) neural networks is also added to obtain feature information 11

in the time dimension. Finally, a national-scale grain yield prediction model is constructed. The 12

proposed model was tested on data from 2018 to 2020 showing an average R2 of 0.940 and an average 13

RMSE of 80,020 tons, indicating that it can predict Chinese grain yield better. The model proposed 14

in this paper extracts grain yield information directly from the composite remote sensing data, and 15

solves the problem of small-scale research and imprecise yield prediction in an end-to-end manner. 16

Keywords: grain yield prediction; remote sensing image; deep learning; CBAM; LSTM 17

1. Introduction 18

In recent years, floods, wind and hail, geological and other natural disasters have 19

occurred many times around the world, and droughts, earthquakes and low-temperature 20

freezes have also occurred to varying degrees. Various natural disasters have caused 21

certain impacts on agricultural production in some areas, resulting in reduced food crop 22

production, and the issue of food security has become a hot topic of concern. At the 23

same time, global environmental climate change and international conflicts can threaten 24

food security [1,2]. To address food security issues, FAO promotes global food security 25

and improved food supply by promoting efficient agricultural technologies, providing 26

knowledge on food nutrition, supporting rural economic development and raising farmers’ 27

incomes. In addition, FAO is committed to promoting fairness and transparency in global 28

food trade to ensure the stability and sustainability of global food markets. 29

Agriculture plays a crucial role in modern society, and the growing global population 30

further highlights the importance of food security [3]. The primary solution to the food 31

security issue is to accurately predict grain yield. Accurately predicting grain yield in 32

advance to obtain first-hand quantitative data will not only effectively improve our grain 33

production process and trade, but also inform policy makers of potential food shortages, 34

price volatility and trade imbalances. Investors use yield predictions to determine the 35

profitability of agricultural investments, which can affect the overall economic growth of a 36

region or country. Farmers rely on yield predictions to effectively plan their planting and 37

harvest schedules, as well as manage their crop inputs and resources. 38
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Current grain yield prediction methods have several limitations that limit prediction 39

accuracy. First, yield prediction models are usually based on a single piece of historical 40

data. Most studies assess the impact of climate change on agricultural production based on 41

specific regions and do not consider the impact of human economic behavior [4]. Second, 42

the accuracy of yield prediction models may be affected by data quality and availability, and 43

different data may produce different predictions. Third, yield prediction models usually 44

do not take into account the complex interactions between certain factors and crop growth, 45

including soil conditions, rainfall, temperature, solar radiation, and human activities. 46

Traditional models often use statistical models and plant growth models for yield 47

prediction, which can be effective in predicting grain yield to a certain extent. However, 48

grain yield is often affected by the spatial distribution and temporal variation of the growing 49

environment, and traditional models lack spatial and temporal information of plant growth, 50

which leads to poor prediction accuracy and lack of robustness [5]. At the same time, 51

traditional methods require field surveys, resulting in high time and material costs [6], and 52

can lead to problems of small yield estimation areas and poor timeliness. In contrast, with 53

the development of technology, remote sensing technology is widely used for grain yield 54

prediction due to its advantages of good timeliness and low cost, and its ability to effectively 55

cope with the problems of complex terrain, scattered cultivated land and diverse crops [7]. 56

Therefore, some researchers have combined remote sensing data and meteorological data 57

to establish grain yield prediction models [8], and some studies have combined remote 58

sensing data with plant growth models for yield prediction [9,10], and these studies have 59

demonstrated that models using remote sensing technology can be a good solution to the 60

previous problems of difficult data statistics, high labor consumption and low accuracy. 61

Also, since remote sensing images have spatial information, the use of these data can be 62

effective in making more accurate predictions using spatiotemporal information [11], and 63

it has been shown [12] that the use of traditional models is laborious, error-prone, costly, 64

and inefficient in the study of maize yield prediction in Africa. Tuvdendorj et al. [13] chose 65

to use NDWI, VSDI, and NDVI to develop regression prediction yield models for spring 66

wheat yields in Selenge and Darkhan Provinces of Mongolia. As a comparison, using 67

remote sensing images to predict grain yield is a more cost effective option. 68

With the development of computer technology, a large number of studies have started 69

to use machine learning methods to build models due to its advantage of being able to 70

handle complex agricultural data. Some researchers have used machine learning to build a 71

low-cost grain yield prediction model [14] and found that it can effectively improve the 72

prediction efficiency. Yang et al. [15] used multispectral remote sensing data collected by 73

an unmanned aerial vehicle (UAV) in a major rice growing region in southern China and 74

applied a neural network model to predict rice yield, achieving superior results compared 75

to traditional regression models. Meroni et al. [16] used small data samples to train neural 76

networks to predict grain yield, and Paudel et al. [17] combined agronomic principles 77

with machine learning to build a large-scale grain yield prediction model using a modular 78

approach so that the model could be used for different crop yield prediction in different 79

countries, and demonstrated experimentally that the performance of the machine learning 80

model would be better with the addition of new data sources. Using science, technology 81

and knowledge and experience to achieve rational use and planning of resources can 82

meet people’s survival needs and reduce the waste of resources to achieve sustainable 83

development of resources. 84

However, most of the existing data are used for single crop yield prediction at the 85

county or municipal scale using Normalized Difference Vegetation Index (NDVI), Enhanced 86

Vegetation Index (EVI), etc. [18], lacking multiple sources of data and holistic prediction 87

of multiple crops. And we also note that the existing machine learning methods usually 88

process the relevant indices (e.g. NDVI, EVI, etc.) of a region after averaging [19] or 89

sampling [20] (selecting the maximum or minimum values) and then use them as input 90

data for the model, neglecting the study of subtle features. Therefore, in order to improve 91
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the prediction of grain yield, this paper proposes the use of hybrid neural networks for 92

prediction of composite data. The contribution of this paper is as follows. 93

1. A multi-source dataset was created containing grain yield and remote sensing images, 94

temperature and vegetation index with spatial and temporal information. 95

2. Using the cropping and mapping method, the remote sensing image of each province 96

is cropped into 128 × 128 size image blocks, and the yield weights of each block are 97

calculated and mapped through the land use classification mask, effectively combining 98

multiple information for large scale prediction. 99

3. The incorporation of spatial and channel attention mechanisms with long short-term 100

memory neural networks is proposed for learning the trend characteristics of different 101

categories of plant indices and indices in crop growth in composite data as a way to 102

improve the accuracy of model predictions. 103

2. Materials 104

2.1. Study area and Data acquisition 105

The study area selected for this paper is the People’s Republic of China, and the 106

data collection comes from 31 provincial administrative regions. The acquired remote 107

sensing image data were obtained from NASA’s Earth Science Data and Information 108

System (ESDIS), among which the data products used were MOD11A2, MOD13A1 and 109

MOD15A2H, and the detailed information is shown in Table 1. The data are chosen to span 110

the period from 2010 to 2020, a total of 11 years. 111

Table 1. MODIS data products and band information.

Product Name Band Time Resolution
Spatial

Resolution
Valid Range

MOD11A2
Daytime Land Surface Temperature

8 Days 1 km 7500–65535
Nighttime Land Surface Temperature

MOD13A1
Normalized Difference Vegetation Index

16 Days 0.5 km -2000–10000
Enhanced Vegetation Index

MOD15A2H
Leaf Area Index

8 Days 0.5 km 0–100
Fraction of Photosynthetically Active Radiation

Among them, the land use classification information of China is selected from the 112

Resource Environment Science and Data Center, Institute of Geographical Sciences and 113

Resources, Chinese Academy of Sciences. 114

In addition, the grain crop production data for the study area are obtained from the 115

China Statistical Yearbook for 2011-2021. The grain crop production data include three 116

cereal crops: rice, wheat, and maize, in addition to beans and potatoes. These crops have 117

different growth cycles and harvesting times are scattered among different months, so our 118

training sample contains monthly data in order to improve predictive model performance. 119

2.2. Data Processing 120

Depending on the study area and time, we selected data from the Sinusoidal tile grid 121

of the MODIS product (Figure 1). Because the data provided by MODIS is not uniform 122

in resolution in time and spatial, we used the GDAL library for batch processing while 123

using ArcGIS software. First, we extracted the data layers we needed from the downloaded 124

raw files in HDF format and saved them as raster files in TIF format. The scattered rasters 125

that have undergone the mosaic operation are also put together, and the MOD11A2 data 126

are individually resampled to a spatial resolution of 500 m so that all data have the same 127

resolution. Then all images were uniformly reprojected to China Geodetic Coordinate 128

System 2000 to facilitate subsequent experiments. Next we processed the data according to 129
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the Valid Range and Scale Factor provided by ESDIS. Finally, all data are cropped according 130

to the provincial administrative divisions of China, and all data are synthesized on a 131

monthly basis at a temporal resolution (Figure 2) to make the time series consistent. In 132

order to reduce useless information interference and increase effective data density, we 133

used land use classification masks to extract data on the location of farmland distribution. 134

Note that all data are normalized by Min-Max Normalization. 135

Figure 1. MODIS Sinusoidal tile grid corresponding to the study area.

Figure 2. Remote sensing data processing flow. Where T represents the time, C represents the channel,
H represents the height of the remote sensing image, and W represents the width of the remote
sensing image.
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2.3. GYP Dataset 136

China’s provincial administrative regions are divided according to geographical con- 137

ditions, ethnic distribution, historical customs and other factors, and the area as well as 138

the shape varies greatly among provinces. In order to enable the model to better learn the 139

relational features among them, we use the image cropping method to ensure the resolution 140

of each map is of the same size. We cropped the remote sensing image of each province into 141

128 × 128 size image blocks, and used the fill 0 value for the image boundary that cannot 142

be completely cropped. 143

The total grain production of each province in each year was queried from the China 144

Statistical Yearbook, and we used a case-by-case calculation method to map the total 145

production to each image block. First, the land use classification masks were used as the 146

total area of farmland. The percentage of farmland area in each plot relative to the total 147

farmland area in the corresponding province is then calculated as the production weight 148

of the current image block. Finally, the production of the corresponding image block is 149

calculated based on the calculated weights: 150

Xi =
si
S
× O (1)

where Xi represents the yield corresponding to each image block, S represents the total 151

farmland area, si represents the area of farmland in each image block, and O represents the 152

total yield. 153

154

We cropped all the remote sensing images of different bands to the same size, and 155

then fused the six bands of data together, with each band as an image channel. In the time 156

dimension, since the remote sensing images have been previously synthesized to a monthly 157

resolution, we synthesized the remote sensing images together for every 12 months. Finally, 158

a matrix was combined as one of the samples, the shape of which is (T, C, H, W). 159

Since cropping the images produces many pure black images (all values are 0), after 160

removing these images, a total of 22,303 valid images are obtained. Among them, 16219 161

images from 2010-2017 were used as the training set and 6084 from 2018 to 2020 were used 162

as the test set. The final grain yield dataset was generated and named as GYP. 163

3. Methods 164

3.1. Overall flow of the model 165

Prediction has been a more complex matter due to the number of factors that affect 166

grain yield. Therefore, this paper uses a model of deep learning to perform grain prediction. 167

The model uses Convolutional Neural Networks (CNN) as the basic structure, and then 168

incorporates spatial and channel attention mechanisms to extract features effectively and 169

autonomously. Also, we incorporate a Long Short-Term Memory network to enhance 170

the sensitivity of the model to the temporal features of grain yield. Finally, we use the 171

composite remote sensing data from 2010 to 2017 as the training sample to generate the 172

grain yield prediction model (Figure 3). 173

Figure 3. Remote sensing data processing flow.
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3.2. CNN-LSTM model with attention mechanism module embedded 174

The proposed model in this paper is based on Convolutional Neural Networks, while 175

introducing attention mechanism and combining with Recurrent neural network (RNN) to 176

form a hybrid neural network model, and the overall network structure is shown in Figure 4. 177

Our neural network input layer is designed as a matrix of (B, 12, 6, 128, 128) based on our 178

samples, where B represents the batch size, 12 represents the time series, 6 represents the 179

band, and 128 is the height and width, respectively. Before going through the convolutional 180

neural network layers, we reshape the matrix to the shape of (B × 12, 6, 128, 128). After 181

that by three layers of convolution operation and average pooling operation. The number 182

of convolutional kernels in the convolutional layer is 12, 8 and 4, respectively, and the 183

convolutional kernel size is 3 × 3 with a step size of 1. Each convolutional layer is followed 184

by an average pooling layer with a kernel size of 3 × 3 and a step size of 2. A LeakyReLU 185

function activation operation is also performed after each convolutional layer. We add 186

Convolutional Block Attention Module (CBAM) after the first and third convolutional layers 187

respectively. Then comes the LSTM layer with 128 hidden nodes in each layer. Finally, a 188

fully connected layer and an additional Dropout layer is used in the fully connected layer. 189

Figure 4. Channel Attention Module Structure.

3.2.1. Attention mechanism module 190

The attention mechanism is a technique used in artificial neural networks to allow the 191

model to selectively focus on certain input features or patterns while processing data. This 192

can be useful in situations where the input data is complex or large, and the model needs 193

to identify important patterns or features that are relevant to the task at hand. 194

In recent years, in order to further expand the differences between features, research 195

scholars have introduced attention mechanisms in some deep learning models [21,22]. 196

The attention mechanism highlights more representative features by assigning different 197

weighting coefficients, similar to the brain signal processing mechanism specific to human 198

vision, and can be used to obtain target areas that need to be focused on by quickly scanning 199

the entire image [23–26]. Therefore, to effectively acquire data in composite images, we 200

use CBAM proposed by Woo et al. [27], which combines channel attention and spatial 201

attention in a lightweight way to embed into the model for feature extraction. The CBAM 202

embedding method is shown in the Figure 5. 203
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Figure 5. Schematic diagram of CBAM.

The overall structure of channel attention is shown in Figure 6. The input data are 204

processed by Max Pooling and Average Pooling, and then sent to Multilayer Perceptron 205

(MLP) for calculation to obtain the transformation results. Then the two sets of channel 206

features obtained after the transformation are performed element-wise addition operation, 207

and finally the Mc(F) is obtained by activation with Sigmod, and its formula is shown 208

in Equation 2. When Mc is calculated using channel attention, the Mc obtained from 209

channel attention is performed element-wise multiplication operation with the original 210

input feature map F before sending it to spatial attention to obtain F′, and the calculation 211

formula is shown in Equation 3. 212

Figure 6. Channel Attention Module Structure.

Mc(F) = σ(MLP(AvgPool(F)) + MLP(MaxPool(F)))

= σ(W1(W0(FC
avg)) + W1(W0(FC

max)))
(2)

where σ denotes the Sigmoid function, W0 ∈ R(C/r×C), and W1 ∈ R(C×C/r). Note that the 213

MLP weights, W0 and W1, are shared for both inputs and the ReLU activation function is 214

followed by W0. 215

216

After the channel attention is calculated, the spatial attention mechanism (Figure 7) 217

will first perform Max Pooling and Average Pooling operations on the input F′ according 218

to the channel, and then the obtained feature map will be subjected to the concatenation 219

operation on the channel. After completing the channel concatenation, a 7 × 7 convolution 220

is performed to reduce the dimensionality. Finally, Ms(F) is obtained by using the Sigmoid 221

activation function, and the calculation formula is shown in Equation 4. 222

Figure 7. Spatial Attention Module Structure.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 25 May 2023                   doi:10.20944/preprints202305.1727.v1

https://doi.org/10.20944/preprints202305.1727.v1


Version May 5, 2023 submitted to Sustainability 8 of 18

F′ = Mc(F)⊗ F (3)

where ⊗ denotes element-wise multiplication. 223

224

Ms(F) = σ( f 7×7([AvgPool(F), MaxPool(F)]))

= σ( f 7×7([Fs
avg; Fs

max]))
(4)

where σ denotes the Sigmoid function and f 7×7 represents a convolution operation with 225

the filter size of 7 × 7. 226

227

Finally, use Equations 3 and 4 to obtain the final feature map F′′: 228

F′′ = Ms(F′)⊗ F′ (5)

where ⊗ denotes element-wise multiplication. 229

230

In the grain yield prediction model, the attention mechanism is used to extract spatial 231

information from different remote sensing bands in order to make more accurate predictions. 232

The attention mechanism is implemented by adding additional layers to the neural network 233

model, which is trained to learn to focus on relevant features in the input data. The attention 234

mechanism can improve the performance of the model by helping it to better capture and 235

utilize relevant patterns or features in the data, leading to more accurate predictions. 236

3.2.2. Long Short-Term Memory 237

LSTM network is a recurrent neural network (RNN) first proposed in 1997 by Hochre- 238

iter et al. [28]. RNN cannot learn relevant information about the input data when the input 239

gap is large and cannot handle very long input sequences, while LSTM can deal well with 240

long-term dependencies by introducing gate functions in the cell structure [29,30], such as 241

the effect of changing processes of grain crops on yield throughout the growth cycle. So, to 242

better obtain the features in the temporal dimension, the LSTM network is introduced.. 243

The cell structure of LSTM network is shown in Figure 8. Compared with the previous 244

recurrent neural network, LSTM adds the concept of Cell state, while LSTM mainly consists 245

of three gates, namely Forget Gate, Input Gate and Output Gate. 246

Figure 8. Cell structure of LSTM.

Among them, the Forget Gate is calculated as shown in Equation 6, which is mainly 247

used to decide the retention or forgetting of information. The hidden information ht−1 of 248

the previous layer and the input information xt of the current layer will be sent into the 249
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Sigmoid function for processing at the same time. The processing result will be between 250

[0, 1]. The closer it is to 1, the more it should be retained, and vice versa, it will be forgotten. 251

ft = σ
(

W f · [ht−1, xt] + b f

)
(6)

And the equation of Input Gate is shown in Equations 7 and 8, which is mainly used 252

to update the information of the current layer. The hidden information ht−1 of the previous 253

layer and the input information xt of the current layer will be sent into the Sigmoid function 254

for processing at the same time. The processing result will be between [0, 1]. The closer it 255

is to 1, the more important it will be. Next, the information from the hidden state of the 256

previous layer and the current input is also passed into the tanh function to create a new 257

candidate vector. Finally, the output value of Sigmoid is multiplied by the output value of 258

tanh. The output value of Sigmoid will determine which information in the output value 259

of tanh is important and needs to be retained. 260

it = σ
(

W f · [ht−1, xt] + bi

)
(7)

C̃t = tanh(WC · [ht−1, xt] + bC) (8)

The Output Gate, shown in Equations 9, 10 and 11, is used to determine the value of 261

the next hidden state, which contains the previously inputted information. The hidden 262

information ht−1 from the previous layer and the information xt from the current layer 263

input are simultaneously sent to the Sigmoid function for processing. Then the newly 264

obtained cell state is sent to the tanh function. Finally, the output of tanh is multiplied with 265

the output of Sigmoid to determine the information that the hidden state should contain. 266

The hidden state is then used as the output of the current cell, and the new cell state and 267

the new hidden state are sent to the next time step. 268

Ct = ft ∗ Ct−1 + it ∗ C̃t (9)

Ot = σ(Wo · [ht−1, xt] + bo) (10)

ht = Ot ∗ tanh(Ct) (11)

3.2.3. Leaky ReLU 269

Choosing the right activation function can significantly improve the performance of 270

neural networks. Deep learning uses gradient descent algorithms to train models, but the 271

training results can often fall into local minima rather than global optimal solutions [31–33]. 272

To avoid this problem, this paper has chosen to use the Leaky ReLU proposed by Mass et 273

al. [34], which is defined as: 274

f(x) =
{

x, x > 0
λx, x ≤ 0

λ ∈ (0, 1) (12)

The advantage of using Leaky ReLU is that a gradient is also obtained for the part of 275

the input that is less than zero, so that the problem of inactive units is avoided. 276

3.2.4. Loss Funtion 277

In regression prediction problems, we often use Mean Absolute Error (MAE, Equa- 278

tion 13) to measure the closeness between the model prediction and the true value, and 279

MAE trains the neural network to converge quickly. 280

MAE =
∑n

i=1 |Yi − Xi|
n

(13)
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where Xi represents the actual yield corresponding to the sample, Yi represents the pre- 281

dicted yield of the model, and n is the number of samples. 282

3.3. Model accuracy evaluation metrics 283

In this study we used Root Mean Square Error (RMSE, Equation 14) and Coefficient of 284

determination (denoted as R2, Equation 15) to evaluate the effectiveness of the model in 285

predicting yield. 286

RMSE =

√
∑n

i=1(Yi − Xi)
2

n
(14)

R2 = 1 − ∑n
i=1(Yi − Xi)

2

∑n
i=1(Yi − Y)2

(15)

where Xi represents the actual yield of the corresponding sample, Y is the actual average 287

yield, Yi represents the yield predicted by the model, and n is the total number of samples. 288

4. Results 289

4.1. Experimental setting and result analysis 290

The model is built using the PyTorch deep learning framework and trained on an 291

RTX A5000 24G graphics card. The optimizer used for the experiments is Adam, and the 292

initial learning rate is set to 0.01, and when the epoch reaches 5 and 10, the learning rate is 293

dynamically adjusted, and the multiplicative factor of learning rate decay is set to 0.1. Also, 294

our experiments use Dropout and set the Dropout probability to 0.5. 295

The results of the tests conducted after training shows that our model could simulate 296

the grain yield of most provinces well with high overall accuracy (R2=0.942, RMSE=80,020 297

tons), as shown in Table 2. As shown in Figure 9, this is a scatter plot of the actual grain 298

yield versus the predicted yield for the test years. 299

Figure 9. Scatter plot of actual versus predicted grain production.
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Table 2. Test Results.

Item
2018 2019 2020 Average

R2 RMSE R2 RMSE R2 RMSE R2 RMSE

Ours Models 0.926 8.601 0.942 8.098 0.932 8.581 0.940 8.002

Although our model performs well in most provinces, its performance is relatively 300

poor in some provinces including Bejing, Guangxi, Tianjin and Shanghai. In these four 301

regions, our model is unable to simulate the grain yield well, and it does not fit well during 302

the training process, so the statistics of these four provinces are excluded from all the results 303

of the experiment. Overall, the model can obtain effective yield features directly from 304

remote sensing images in an end-to-end form and predict grain yield at a large scale. 305

Figure 10. Model training convergence by province.
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The convergence of the model is shown in Figure 10. From the figure, we can see 306

that the curves eventually all tend to be smooth, but Yunnan, Qinghai, Ningxia and other 307

regions show abnormal fluctuations in the loss curves during the model training. Through 308

observation and analysis, we found that the fluctuation of the learning rate may result 309

in these fluctuations. The learning rate is a parameter that controls the update rate of 310

the model parameters, and when the learning rate changes, the update rate of the model 311

parameters will also change, and this change may lead to a turning point in the training 312

of the model. Because our learning rate automatically declines through adjustment after 313

a period of training epoch, some fluctuations occur during the training process, and 314

eventually the loss values all tend to converge. Dynamically adjusting the learning rate 315

can adjust the learning rate in real time according to the performance of the model, which 316

enables the model to obtain better gradients during training, thus improving the accuracy 317

of the model, accelerating the convergence of the model, and enabling the model to obtain 318

better generalization on both training and test data. 319

4.2. Projected results for different provinces 320

China is a vast country with great differences in topography and climate among 321

provinces, and water resources are unevenly distributed [35]. In order to take full advantage 322

of the favorable conditions in each region to increase the total amount of grain yield. In 323

different regions and different seasons, farmers choose to grow different grain crops. These 324

include summer grain, early rice and autumn grain, cereals, legumes and potatoes. 325

To verify the robustness of our proposed neural network model for predicting multiple 326

grain crops in different regions, we calculated the yield prediction accuracy of different 327

provinces separately (Figure 11). The results in the figure show that in some provinces the 328

yield estimation accuracy is low, but in most cases the accuracy is satisfactory. For example, 329

Guangdong has the highest accuracy with R2 of 0.989 and RMSE of 18,040 tons, and the 330

lowest is in Chongqing with R2 of 0.815 and RMSE of 132,370 tons. This proves that our 331

proposed neural network model has good robustness. 332

Figure 11. Model performance in different provinces..
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The predicted and actual yields for 2018-2020 are shown in Figure 12, Table 3, from 333

which it can be visualized that in some provinces with large grain production, such as 334

Heilongjiang, Henan and Shandong, the model correctly predicts the yield trend, but there 335

is a gap between the predicted and actual yields. There are many potential factors that could 336

influence the accuracy of a grain yield prediction model in different provinces, including 337

variations in local climate, soil conditions, and agricultural practices. The model’s ability 338

to capture these differences and accurately predict grain yield may depend on the quality 339

and quantity of data available for training and testing, as well as the specific techniques 340

and algorithms used in the model. It is also possible that the model’s performance may be 341

influenced by other factors, such as the availability and accuracy of ground real data for 342

validation, or the specific crops and varieties grown in different provinces. 343

During the 2018-2020 period, our prediction model also shows some fluctuations in 344

predicted values, in addition to provinces with relatively high or low actual grain yields. 345

This may be due to the structural reform of the supply-side of Chinese agriculture, which 346

aims to improve the quality and efficiency of grain production by adjusting the cropping 347

structure. Different provinces can adjust the acreage of different crops according to their 348

local geographical and climatic factors. However, the land classification masks used in our 349

model are fixed and may not be able to fully take into account these variations, leading 350

to errors in the processed remote sensing images and eventually the fluctuations in the 351

prediction results. 352

Table 3. 2018-2020 model prediction accuracy by province.

Country
2018 2019 2020

R2 RMSE R2 RMSE R2 RMSE

Hebei 0.942 11.708 0.944 11.644 0.940 12.272
Shanxi 0.941 4.469 0.953 3.915 0.944 4.476
Inner Mongolia 0.938 4.606 0.927 5.117 0.917 5.462
Liaoning 0.946 7.933 0.922 10.605 0.955 7.772
Jilin 0.915 14.782 0.901 17.027 0.892 17.413
Heilongjiang 0.910 15.215 0.920 14.381 0.908 15.427
Jiangsu 0.943 18.020 0.941 18.612 0.944 18.238
Zhejiang 0.962 2.933 0.983 1.954 0.977 2.285
Anhui 0.891 24.045 0.923 20.500 0.903 22.727
Fujian 0.892 3.087 0.937 2.331 0.916 2.745
Jiangxi 0.985 4.725 0.972 6.322 0.970 6.473
Shandong 0.919 19.449 0.924 19.001 0.924 19.313
Henan 0.947 20.401 0.957 18.650 0.955 19.334
Hubei 0.894 16.741 0.941 11.987 0.941 12.056
Hunan 0.9486 8.954 0.935 10.097 0.875 13.957
Guangdong 0.9809 2.2982 0.9893 1.7854 0.9879 1.9398
Hainan 0.919 2.567 0.956 1.876 0.901 2.814
Chongqing 0.792 13.909 0.824 12.756 0.812 13.617
Sichuan 0.847 16.122 0.887 13.904 0.873 14.818
Guizhou 0.697 7.686 0.903 4.351 0.830 5.606
Yunnan 0.961 2.767 0.975 2.216 0.961 2.846
Tibet 0.967 0.270 0.971 0.255 0.975 0.231
Shaanxi 0.973 2.573 0.974 2.535 0.973 2.649
Gansu 0.976 1.918 0.977 1.896 0.976 2.010
Qinghai 0.970 0.562 0.973 0.544 0.974 0.549
Ningxia 0.974 2.461 0.973 2.377 0.970 2.573
Xinjiang 0.958 2.018 0.959 2.011 0.959 2.094
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(a) Predicted and actual production in 2018

(b) Predicted and actual production in 2019

(c) Predicted and actual production in 2020

Figure 12. Predicted and actual production in 2018-2020.

4.3. Ablation experiment 353

To verify the validity of each module in this model, ablation experiments are conducted. 354

Tests are also conducted separately for each year to accurately test the predictive ability of 355
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the present model. As can be seen from Table 4, our average R2 is 0.940 and the average 356

RMSE is 80,020 tons on the test data from 2018 to 2020. Compared to the CNN network, 357

our model predicts an improved R2 of 0.089 and a reduced RMSE of 39,020 tons, which 358

is a significant improvement in the metrics. Meanwhile, the inclusion of LSTM is better 359

compared to the inclusion of CBAM, but the difference between them is not significant. 360

Table 4. Results of ablation experiments.

Item
2018 2019 2020 Average

R2 RMSE R2 RMSE R2 RMSE R2 RMSE

CNN 0.834 12.589 0.848 12.240 0.840 12.157 0.851 11.905
CNN+CBAM 0.883 10.155 0.900 9.441 0.889 9.738 0.899 9.362
CNN+LSTM 0.896 9.836 0.918 9.288 0.897 10.393 0.910 9.548
CNN+CBAM+LSTM(Ours) 0.926 8.601 0.942 8.098 0.932 8.581 0.940 8.002

5. Discussion 361

In recent years, the concept of sustainable development has been widely accepted 362

and implemented in many fields. In particular, many countries are actively addressing 363

food security, climate change, environmental protection and resource use. However, the 364

challenges to the development of sustainable agriculture are also significant. Global food 365

security has deteriorated in the past few years. Climate change, natural disasters, market 366

volatility, and policy instability have all contributed to high food prices and increased food 367

insecurity. In addition, global population growth and urbanization have exacerbated food 368

security issues. Despite the enormous challenges, many countries and organizations are 369

taking steps to address these issues. Only global cooperation and joint efforts can ensure 370

globally sustainable development and food security. 371

Because different food crops have different growth cycles, some regions often grow 372

crops that span two years. For example, in the North China Plain, winter wheat is planted 373

from October to December of each year and only matures for harvest in the middle of 374

the fol-lowing year. However, our data samples are constructed based on each calendar 375

year rather than on the crop growth cycle. Still, the model shows good accuracy for yield 376

prediction, which we attribute to the fact that the actual yield data in the Statistical Yearbook 377

are also based on calendar years. In subsequent research work, we could change the time 378

series of the data sample to two or even three years instead of the currently used one year. 379

This includes data for the complete cycle of each crop from sowing to harvest and may give 380

us more accurate results. In addition, some of the remote sensing data variables selected 381

in our study (Table 1) are selected empirically and based on the summaries of previous 382

studies by some scholars, and their relevance to grain yield is not explored in depth, but 383

this highlights the effectiveness of neural networks in end-to-end problem studies. 384

The attention mechanism in a neural network model allows it to selectively focus on 385

certain input features or patterns, which can be particularly useful in situations where 386

the input data are complex or large. In the context of a grain yield estimation model, the 387

attention mechanism can be used to improve the model’s performance by helping it to 388

better capture and utilize relevant patterns or features in the data, such as vegetation index 389

and temperature, that are known to influence grain yield. For example, the vegetation 390

index, which is a measure of the density and health of vegetation, is an important factor in 391

grain yield prediction. By using the attention mechanism to focus on this feature, the model 392

can more accurately capture the relationship between vegetation index and grain yield, 393

leading to more accurate predictions. Similarly, temperature is also known to affect grain 394

yield, and the attention mechanism can be used to focus on temperature data to improve 395

the model’s ability to predict grain yield based on temperature. Overall, the attention 396

mechanism can improve the performance of a grain yield estimation model by allowing it 397

to more accurately capture and utilize relevant patterns or features in the data. 398
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The fluctuations in prediction values that we observed may be due to the use of an 399

inappropriate land classification mask for the corresponding year. Initially, we planned to 400

use the land classification mask from the Moderate Resolution Imaging Spectroradiometer 401

(MODIS) MCD12Q1 product, but this product has relatively large errors in the distribution 402

of grain crops in China. In comparison, the land use mask from the Institute of Geographic 403

Sciences and Natural Resources Research of the Chinese Academy of Sciences has been 404

manually verified and is more representative of actual conditions, but may not be available 405

annually due to the large workload involved in its production. 406

In our study, the attention mechanism shows strong performance in learning crop 407

yield features, and we could potentially apply the attention mechanism to the learning of 408

farmland distribution features and further reduction of the errors. By focusing on relevant 409

features, the attention mechanism can help the model to more accurately capture and utilize 410

the patterns or characteristics that influence the prediction task. In this case, applying the 411

attention mechanism to the learning of farmland distribution features could potentially 412

help the model to better capture the changes in planting structures and land use that may 413

have contributed to the observed fluctuations in prediction values. 414

6. Conclusions 415

In order to make grain yield prediction less costly and improve the accuracy of grain 416

yield prediction at the same time, a hybrid neural network grain yield prediction model is 417

proposed in this paper. The underlying data used in the model are from MODIS satellite 418

products, and we combine information from different bands into composite remote sensing 419

image data to provide as many training features as possible for the model. Then, based 420

on the convolutional network as the base structure, we use the attention of channel and 421

spatial mixing to enhance the extraction of vegetation index and temperature associated 422

features. Finally, we use LSTM to process the data of each month to obtain as much 423

information as possible in the temporal dimension. Through experiments, we find that the 424

proposed model in this paper has an R2 of 0.940 and an RMSE of 80,020 tons for grain yield 425

prediction in China, which is a large improvement in yield prediction compared with the 426

traditional convolutional network. We also calculate the accuracy of grain yield prediction 427

for different provinces one by one, and Guangdong province has the most accurate grain 428

yield prediction with R2 of 0.989 and RMSE of 18,040 tons, while Chongqing city has the 429

worst prediction accuracy with R2 of 0.815 and RMSE of 132,370 tons. Overall, the model is 430

more accurate in predicting Chinese grain yield in an end-to-end manner on a large scale, 431

providing an effective technical method for agricultural testing and grain yield estimation. 432
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