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Abstract: Grain yield prediction affects policy making in various aspects such as agricultural pro- 1
duction planning, food security assurance, and adjustment of foreign trade. Accurately predicting =
grain yield is of great significance in ensuring global food security. This paper is based on the MODIS s
remote sensing image data products from 2010 to 2020, and adds band information such as vegetation 4
index and temperature to form composite remote sensing data as a data set. Aiming at the lackof s
models for large-scale forecasting and the need for human intervention in traditional models, this
paper proposes a grain production estimation model based on deep learning. First, image cropping 7
and yield mapping techniques are used to process the data to generate training samples. Then the =
channel and spatial attention mechanism (Convolutional Block Attention Module, CBAM) is added 9
for extracting spatial information in different remote sensing bands to improve the efficiency of the 1o
model. Long Short-Term Memory (LSTM) neural networks is also added to obtain feature information 11
in the time dimension. Finally, a national-scale grain yield prediction model is constructed. The 1=
proposed model was tested on data from 2018 to 2020 showing an average R? of 0.940 and an average 13
RMSE of 80,020 tons, indicating that it can predict Chinese grain yield better. The model proposed 14
in this paper extracts grain yield information directly from the composite remote sensing data, and  1s
solves the problem of small-scale research and imprecise yield prediction in an end-to-end manner. 16

Keywords: grain yield prediction; remote sensing image; deep learning; CBAM; LSTM 17

1. Introduction 18

In recent years, floods, wind and hail, geological and other natural disasters have 1o
occurred many times around the world, and droughts, earthquakes and low-temperature 2o
freezes have also occurred to varying degrees. Various natural disasters have caused =
certain impacts on agricultural production in some areas, resulting in reduced food crop 2=
production, and the issue of food security has become a hot topic of concern. At the =
same time, global environmental climate change and international conflicts can threaten 24
food security [1,2]. To address food security issues, FAO promotes global food security =s
and improved food supply by promoting efficient agricultural technologies, providing e
knowledge on food nutrition, supporting rural economic development and raising farmers” =7
incomes. In addition, FAO is committed to promoting fairness and transparency in global  2s
food trade to ensure the stability and sustainability of global food markets. 20

Agriculture plays a crucial role in modern society, and the growing global population e
further highlights the importance of food security [3]. The primary solution to the food =
security issue is to accurately predict grain yield. Accurately predicting grain yield in 22
advance to obtain first-hand quantitative data will not only effectively improve our grain a3
production process and trade, but also inform policy makers of potential food shortages, sa
price volatility and trade imbalances. Investors use yield predictions to determine the s
profitability of agricultural investments, which can affect the overall economic growth ofa  se
region or country. Farmers rely on yield predictions to effectively plan their planting and  s7
harvest schedules, as well as manage their crop inputs and resources. 38
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Current grain yield prediction methods have several limitations that limit prediction e
accuracy. First, yield prediction models are usually based on a single piece of historical 40
data. Most studies assess the impact of climate change on agricultural production based on 4
specific regions and do not consider the impact of human economic behavior [4]. Second, <
the accuracy of yield prediction models may be affected by data quality and availability, and 43
different data may produce different predictions. Third, yield prediction models usually 44
do not take into account the complex interactions between certain factors and crop growth, s
including soil conditions, rainfall, temperature, solar radiation, and human activities. 46

Traditional models often use statistical models and plant growth models for yield -
prediction, which can be effective in predicting grain yield to a certain extent. However, s
grain yield is often affected by the spatial distribution and temporal variation of the growing s
environment, and traditional models lack spatial and temporal information of plant growth,  so
which leads to poor prediction accuracy and lack of robustness [5]. At the same time, s
traditional methods require field surveys, resulting in high time and material costs [6], and s
can lead to problems of small yield estimation areas and poor timeliness. In contrast, with  ss
the development of technology, remote sensing technology is widely used for grain yield s
prediction due to its advantages of good timeliness and low cost, and its ability to effectively  ss
cope with the problems of complex terrain, scattered cultivated land and diverse crops [7].  se
Therefore, some researchers have combined remote sensing data and meteorological data  s-
to establish grain yield prediction models [8], and some studies have combined remote s
sensing data with plant growth models for yield prediction [9,10], and these studies have o
demonstrated that models using remote sensing technology can be a good solution to the  eo
previous problems of difficult data statistics, high labor consumption and low accuracy. e
Also, since remote sensing images have spatial information, the use of these data can be 2
effective in making more accurate predictions using spatiotemporal information [11], and  es
it has been shown [12] that the use of traditional models is laborious, error-prone, costly, s
and inefficient in the study of maize yield prediction in Africa. Tuvdendorj et al. [13] chose s
to use NDWI, VSDI, and NDVI to develop regression prediction yield models for spring s
wheat yields in Selenge and Darkhan Provinces of Mongolia. As a comparison, using e
remote sensing images to predict grain yield is a more cost effective option. o8

With the development of computer technology, a large number of studies have started s
to use machine learning methods to build models due to its advantage of being able to 7
handle complex agricultural data. Some researchers have used machine learning to builda 7.
low-cost grain yield prediction model [14] and found that it can effectively improve the 7
prediction efficiency. Yang et al. [15] used multispectral remote sensing data collected by
an unmanned aerial vehicle (UAV) in a major rice growing region in southern China and 74
applied a neural network model to predict rice yield, achieving superior results compared s
to traditional regression models. Meroni et al. [16] used small data samples to train neural 7
networks to predict grain yield, and Paudel et al. [17] combined agronomic principles 77
with machine learning to build a large-scale grain yield prediction model using a modular 7
approach so that the model could be used for different crop yield prediction in different 7o
countries, and demonstrated experimentally that the performance of the machine learning  so
model would be better with the addition of new data sources. Using science, technology s
and knowledge and experience to achieve rational use and planning of resources can s
meet people’s survival needs and reduce the waste of resources to achieve sustainable s
development of resources. oa

However, most of the existing data are used for single crop yield prediction at the s
county or municipal scale using Normalized Difference Vegetation Index (NDVI), Enhanced s
Vegetation Index (EVI), etc. [18], lacking multiple sources of data and holistic prediction e
of multiple crops. And we also note that the existing machine learning methods usually s
process the relevant indices (e.g. NDVI, EVI, etc.) of a region after averaging [19] or e
sampling [20] (selecting the maximum or minimum values) and then use them as input s
data for the model, neglecting the study of subtle features. Therefore, in order to improve o
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the prediction of grain yield, this paper proposes the use of hybrid neural networks for e
prediction of composite data. The contribution of this paper is as follows. 03

1. A multi-source dataset was created containing grain yield and remote sensing images, s
temperature and vegetation index with spatial and temporal information. o
2. Using the cropping and mapping method, the remote sensing image of each province o6
is cropped into 128 x 128 size image blocks, and the yield weights of each block are o
calculated and mapped through the land use classification mask, effectively combining o=
multiple information for large scale prediction. 9
3. The incorporation of spatial and channel attention mechanisms with long short-term 100
memory neural networks is proposed for learning the trend characteristics of different 101
categories of plant indices and indices in crop growth in composite data as a way to 12

improve the accuracy of model predictions. 103
2. Materials 104
2.1. Study area and Data acquisition 105

The study area selected for this paper is the People’s Republic of China, and the 106
data collection comes from 31 provincial administrative regions. The acquired remote 1o
sensing image data were obtained from NASA’s Earth Science Data and Information 1os
System (ESDIS), among which the data products used were MOD11A2, MOD13A1 and 100
MOD15A2H, and the detailed information is shown in Table 1. The data are chosen to span 110
the period from 2010 to 2020, a total of 11 years. 1

Table 1. MODIS data products and band information.

Spatial
Product Name Band Time Resolution pa 1a' Valid Range
Resolution
Daytime Land Surface T t
MOD11A2 (AYHIE Land Stirlace "emperatie 8 Days 1km 750065535
Nighttime Land Surface Temperature
Normalized Difference Vegetation Index
MOD13A1 16 Days 0.5 km -2000-10000

Enhanced Vegetation Index

Leaf Area Index
MOD15A2H . ] . o 8 Days 0.5 km 0-100
Fraction of Photosynthetically Active Radiation

Among them, the land use classification information of China is selected from the 1
Resource Environment Science and Data Center, Institute of Geographical Sciences and ~ 11s
Resources, Chinese Academy of Sciences. 114

In addition, the grain crop production data for the study area are obtained from the s
China Statistical Yearbook for 2011-2021. The grain crop production data include three 116
cereal crops: rice, wheat, and maize, in addition to beans and potatoes. These crops have 117
different growth cycles and harvesting times are scattered among different months, so our 1
training sample contains monthly data in order to improve predictive model performance. 119

2.2. Data Processing 120

Depending on the study area and time, we selected data from the Sinusoidal tile grid 122
of the MODIS product (Figure 1). Because the data provided by MODIS is not uniform iz
in resolution in time and spatial, we used the GDAL library for batch processing while 123
using ArcGIS software. First, we extracted the data layers we needed from the downloaded 24
raw files in HDF format and saved them as raster files in TIF format. The scattered rasters izs
that have undergone the mosaic operation are also put together, and the MOD11A2 data 126
are individually resampled to a spatial resolution of 500 m so that all data have the same 127
resolution. Then all images were uniformly reprojected to China Geodetic Coordinate 2.
System 2000 to facilitate subsequent experiments. Next we processed the data according to 120
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the Valid Range and Scale Factor provided by ESDIS. Finally, all data are cropped according
to the provincial administrative divisions of China, and all data are synthesized on a
monthly basis at a temporal resolution (Figure 2) to make the time series consistent. In
order to reduce useless information interference and increase effective data density, we

used land use classification masks to extract data on the location of farmland distribution.

Note that all data are normalized by Min-Max Normalization.
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Figure 1. MODIS Sinusoidal tile grid corresponding to the study area.
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Figure 2. Remote sensing data processing flow. Where T represents the time, C represents the channel,
H represents the height of the remote sensing image, and W represents the width of the remote
sensing image.
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2.3. GYP Dataset 136

China’s provincial administrative regions are divided according to geographical con- a7
ditions, ethnic distribution, historical customs and other factors, and the area as well as 13
the shape varies greatly among provinces. In order to enable the model to better learn the 130
relational features among them, we use the image cropping method to ensure the resolution 140
of each map is of the same size. We cropped the remote sensing image of each province into 1
128 x 128 size image blocks, and used the fill 0 value for the image boundary that cannot 12
be completely cropped. 143

The total grain production of each province in each year was queried from the China 1as
Statistical Yearbook, and we used a case-by-case calculation method to map the total 145
production to each image block. First, the land use classification masks were used as the 16
total area of farmland. The percentage of farmland area in each plot relative to the total 14
farmland area in the corresponding province is then calculated as the production weight 14
of the current image block. Finally, the production of the corresponding image block is  1as
calculated based on the calculated weights: 150

s
Xi =3 x0 1)

where X; represents the yield corresponding to each image block, S represents the total s
farmland area, s; represents the area of farmland in each image block, and O represents the  1s2
total yield. 153

We cropped all the remote sensing images of different bands to the same size, and 1ss
then fused the six bands of data together, with each band as an image channel. In the time  1s6
dimension, since the remote sensing images have been previously synthesized to a monthly s
resolution, we synthesized the remote sensing images together for every 12 months. Finally, 1ss
a matrix was combined as one of the samples, the shape of whichis (T,C, H,W). 150

Since cropping the images produces many pure black images (all values are 0), after 1e0
removing these images, a total of 22,303 valid images are obtained. Among them, 16219 1
images from 2010-2017 were used as the training set and 6084 from 2018 to 2020 were used ez

as the test set. The final grain yield dataset was generated and named as GYP. 163
3. Methods 164
3.1. Overall flow of the model 165

Prediction has been a more complex matter due to the number of factors that affect 1ee
grain yield. Therefore, this paper uses a model of deep learning to perform grain prediction. 1e7
The model uses Convolutional Neural Networks (CNN) as the basic structure, and then ies
incorporates spatial and channel attention mechanisms to extract features effectively and  1es
autonomously. Also, we incorporate a Long Short-Term Memory network to enhance 17
the sensitivity of the model to the temporal features of grain yield. Finally, we use the 17
composite remote sensing data from 2010 to 2017 as the training sample to generate the 172
grain yield prediction model (Figure 3). 173
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Figure 3. Remote sensing data processing flow.
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3.2. CNN-LSTM model with attention mechanism module embedded 174

The proposed model in this paper is based on Convolutional Neural Networks, while 17s
introducing attention mechanism and combining with Recurrent neural network (RNN) to 176
form a hybrid neural network model, and the overall network structure is shown in Figure 4. 177
Our neural network input layer is designed as a matrix of (B, 12,6,128,128) based on our 17s
samples, where B represents the batch size, 12 represents the time series, 6 represents the 17
band, and 128 is the height and width, respectively. Before going through the convolutional  1s0
neural network layers, we reshape the matrix to the shape of (B x 12,6,128,128). After 1a
that by three layers of convolution operation and average pooling operation. The number s
of convolutional kernels in the convolutional layer is 12, 8 and 4, respectively, and the iss
convolutional kernel size is 3 x 3 with a step size of 1. Each convolutional layer is followed 1z
by an average pooling layer with a kernel size of 3 x 3 and a step size of 2. A LeakyReLU  1ss
function activation operation is also performed after each convolutional layer. We add  1ss
Convolutional Block Attention Module (CBAM) after the first and third convolutional layers  1sz
respectively. Then comes the LSTM layer with 128 hidden nodes in each layer. Finally,a  1ss
fully connected layer and an additional Dropout layer is used in the fully connected layer. iso

Conv 1

128

s
LSTM™3 Convolution layer
Input N
_ Pooling layer
g lay
[ cBAM module
w ¢ I LsTM layer
CBAM 1 Fully Connected layer
Figure 4. Channel Attention Module Structure.
3.2.1. Attention mechanism module 100

The attention mechanism is a technique used in artificial neural networks to allow the 10
model to selectively focus on certain input features or patterns while processing data. This ez
can be useful in situations where the input data is complex or large, and the model needs  1e:
to identify important patterns or features that are relevant to the task at hand. 104

In recent years, in order to further expand the differences between features, research 105
scholars have introduced attention mechanisms in some deep learning models [21,22]. 106
The attention mechanism highlights more representative features by assigning different o7
weighting coefficients, similar to the brain signal processing mechanism specific to human s
vision, and can be used to obtain target areas that need to be focused on by quickly scanning 19
the entire image [23-26]. Therefore, to effectively acquire data in composite images, we  zo0
use CBAM proposed by Woo et al. [27], which combines channel attention and spatial 201
attention in a lightweight way to embed into the model for feature extraction. The CBAM 202
embedding method is shown in the Figure 5. 203
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The overall structure of channel attention is shown in Figure 6. The input data are 2o
processed by Max Pooling and Average Pooling, and then sent to Multilayer Perceptron zos
(MLP) for calculation to obtain the transformation results. Then the two sets of channel  zo6
features obtained after the transformation are performed element-wise addition operation, =zo7
and finally the M,(F) is obtained by activation with Sigmod, and its formula is shown o
in Equation 2. When M, is calculated using channel attention, the M. obtained from 200
channel attention is performed element-wise multiplication operation with the original 210
input feature map F before sending it to spatial attention to obtain F/, and the calculation 2u:
formula is shown in Equation 3. 212

MaxPool

-\\-/ -

AvgPool Channel Feature
Shared MLP

Figure 6. Channel Attention Module Structure.

M. (F) = oc(MLP(AvgPool(F)) + MLP(MaxPool(F)))

— (W (Wo(ES,)) + W (Wo(ESer)) @

where o denotes the Sigmoid function, Wy € R(/7<C) and W; € R(C*C/7)_ Note that the 213
MLP weights, Wy and Wi, are shared for both inputs and the ReLU activation function is 21
followed by Wp. 215

After the channel attention is calculated, the spatial attention mechanism (Figure 7) 217
will first perform Max Pooling and Average Pooling operations on the input F’ according  21s
to the channel, and then the obtained feature map will be subjected to the concatenation =210
operation on the channel. After completing the channel concatenation, a 7 x 7 convolution 220
is performed to reduce the dimensionality. Finally, M;(F) is obtained by using the Sigmoid 221

activation function, and the calculation formula is shown in Equation 4. 222
m Conv Layer %% '

[MaxPool, AvgPool] Spatial Feature

Figure 7. Spatial Attention Module Structure.
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F'=M(F)®F ®)
where ® denotes element-wise multiplication. 223
224
M;(F) = o(f"*7([AvgPool (F), MaxPool (F)]))

g
g

4)

(F7([Faogi Fnax]))

where ¢ denotes the Sigmoid function and f”*” represents a convolution operation with 22

the filter size of 7 x 7. 226
Finally, use Equations 3 and 4 to obtain the final feature map F”: 220

F' = Ms(F)®F ®)
where ® denotes element-wise multiplication. 220

In the grain yield prediction model, the attention mechanism is used to extract spatial =23
information from different remote sensing bands in order to make more accurate predictions. =zs2
The attention mechanism is implemented by adding additional layers to the neural network  2ss
model, which is trained to learn to focus on relevant features in the input data. The attention 234
mechanism can improve the performance of the model by helping it to better capture and  =ss
utilize relevant patterns or features in the data, leading to more accurate predictions. 236

3.2.2. Long Short-Term Memory 237

LSTM network is a recurrent neural network (RNN) first proposed in 1997 by Hochre-  23s
iter et al. [28]. RNN cannot learn relevant information about the input data when the input 230
gap is large and cannot handle very long input sequences, while LSTM can deal well with 240
long-term dependencies by introducing gate functions in the cell structure [29,30], such as 24
the effect of changing processes of grain crops on yield throughout the growth cycle. So, to 242
better obtain the features in the temporal dimension, the LSTM network is introduced.. 243

The cell structure of LSTM network is shown in Figure 8. Compared with the previous 24
recurrent neural network, LSTM adds the concept of Cell state, while LSTM mainly consists  2as
of three gates, namely Forget Gate, Input Gate and Output Gate. 246

Forget gate

‘—K‘

(&)

o ®

’ Input gate Output gate

Figure 8. Cell structure of LSTM.

Among them, the Forget Gate is calculated as shown in Equation 6, which is mainly ez
used to decide the retention or forgetting of information. The hidden information /i;_1 of  24s
the previous layer and the input information x; of the current layer will be sent into the 24


https://doi.org/10.20944/preprints202305.1727.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 May 2023

Version May 5, 2023 submitted to Sustainability 90f18

Sigmoid function for processing at the same time. The processing result will be between  zso
[0,1]. The closer it is to 1, the more it should be retained, and vice versa, it will be forgotten. zs1

fo = a(wf e, %] + bf) ®)

And the equation of Input Gate is shown in Equations 7 and 8, which is mainly used =zs:
to update the information of the current layer. The hidden information /;_; of the previous 2ss
layer and the input information x; of the current layer will be sent into the Sigmoid function s
for processing at the same time. The processing result will be between [0, 1]. The closer it 2ss
is to 1, the more important it will be. Next, the information from the hidden state of the =2s6
previous layer and the current input is also passed into the tanh function to create a new s
candidate vector. Finally, the output value of Sigmoid is multiplied by the output value of  zss
tanh. The output value of Sigmoid will determine which information in the output value 2s0

of tanh is important and needs to be retained. 260
i = o (Wy - b1, xi) +by) @)
ét = tanh(Wc . [ht—ll xt] + bc) (8)

The Output Gate, shown in Equations 9, 10 and 11, is used to determine the value of 26
the next hidden state, which contains the previously inputted information. The hidden =z
information h;_; from the previous layer and the information x; from the current layer zes
input are simultaneously sent to the Sigmoid function for processing. Then the newly zes
obtained cell state is sent to the tanh function. Finally, the output of tanh is multiplied with 2es
the output of Sigmoid to determine the information that the hidden state should contain. =zes
The hidden state is then used as the output of the current cell, and the new cell state and 267

the new hidden state are sent to the next time step. 268
Ci=fi*xCiq+irxC )
O¢ = (W, - [h—1,x¢] + by) (10)
hy = O; x tanh(Cy) (11)

3.2.3. Leaky ReLU 260

Choosing the right activation function can significantly improve the performance of 270
neural networks. Deep learning uses gradient descent algorithms to train models, but the 27
training results can often fall into local minima rather than global optimal solutions [31-33]. 272
To avoid this problem, this paper has chosen to use the Leaky ReLU proposed by Mass et 27

al. [34], which is defined as: 274
fx)=1*>0 h e (12)
T A, x <0 !
The advantage of using Leaky ReLU is that a gradient is also obtained for the part of 275
the input that is less than zero, so that the problem of inactive units is avoided. 276
3.2.4. Loss Funtion 277

In regression prediction problems, we often use Mean Absolute Error (MAE, Equa- 27
tion 13) to measure the closeness between the model prediction and the true value, and 27
MAE trains the neural network to converge quickly. 280

_ L |Yi— Xl
n

MAE (13)
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where X; represents the actual yield corresponding to the sample, Y; represents the pre- 2
dicted yield of the model, and 7 is the number of samples. 282

3.3. Model accuracy evaluation metrics 203

In this study we used Root Mean Square Error (RMSE, Equation 14) and Coefficient of zes
determination (denoted as R?, Equation 15) to evaluate the effectiveness of the model in  2es

predicting yield. 286
nY - X;)?
rmsE — | B X (14)
Rz _1_ L= X0® (15)
Y (Yi = Y)?

where X; represents the actual yield of the corresponding sample, Y is the actual average 2
yield, Y; represents the yield predicted by the model, and 7 is the total number of samples. zss

4. Results 280
4.1. Experimental setting and result analysis 200

The model is built using the PyTorch deep learning framework and trained on an 262
RTX A5000 24G graphics card. The optimizer used for the experiments is Adam, and the 202
initial learning rate is set to 0.01, and when the epoch reaches 5 and 10, the learning rate is  zes
dynamically adjusted, and the multiplicative factor of learning rate decay is set to 0.1. Also, 204
our experiments use Dropout and set the Dropout probability to 0.5. 205

The results of the tests conducted after training shows that our model could simulate 206
the grain yield of most provinces well with high overall accuracy (R2=0.942, RMSE=80,020 2o
tons), as shown in Table 2. As shown in Figure 9, this is a scatter plot of the actual grain 2es

yield versus the predicted yield for the test years. 200
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o 2001 o 200
g 2
g g
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g g
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Figure 9. Scatter plot of actual versus predicted grain production.
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Table 2. Test Results.

2018 2019 2020 Average

Item 5 5 5 5
R RMSE R RMSE R RMSE R RMSE

Ours Models 0.926 8.601 0.942 8.098 0.932 8.581 0.940 8.002

Although our model performs well in most provinces, its performance is relatively o0
poor in some provinces including Bejing, Guangxi, Tianjin and Shanghai. In these four so:
regions, our model is unable to simulate the grain yield well, and it does not fit well during o2
the training process, so the statistics of these four provinces are excluded from all the results o3
of the experiment. Overall, the model can obtain effective yield features directly from sos
remote sensing images in an end-to-end form and predict grain yield at a large scale. 208

Hebei Shanxi Inner Mongolia

EJ E3 3 5 ) 75 EJ

Jiangsu Zhejiang

ain Epocn
Xinjiang

ooo

Heilongjiang

Fujian ji;r(-ngxi Sli;"anro;dong

' sain fnoc wain £noch : * vamgpocn
Guangdong Hainan Chongqging
—— train loss o014 ©oza —— train lo:

3 i 3 5 o 5

Figure 10. Model training convergence by province.
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The convergence of the model is shown in Figure 10. From the figure, we can see sos
that the curves eventually all tend to be smooth, but Yunnan, Qinghai, Ningxia and other o7
regions show abnormal fluctuations in the loss curves during the model training. Through 08
observation and analysis, we found that the fluctuation of the learning rate may result soo
in these fluctuations. The learning rate is a parameter that controls the update rate of 310
the model parameters, and when the learning rate changes, the update rate of the model 31
parameters will also change, and this change may lead to a turning point in the training s
of the model. Because our learning rate automatically declines through adjustment after 13
a period of training epoch, some fluctuations occur during the training process, and s1s
eventually the loss values all tend to converge. Dynamically adjusting the learning rate s
can adjust the learning rate in real time according to the performance of the model, which 16
enables the model to obtain better gradients during training, thus improving the accuracy = si-
of the model, accelerating the convergence of the model, and enabling the model to obtain s
better generalization on both training and test data. 310

4.2. Projected results for different provinces 320

China is a vast country with great differences in topography and climate among  sa:
provinces, and water resources are unevenly distributed [35]. In order to take full advantage sz
of the favorable conditions in each region to increase the total amount of grain yield. In 323
different regions and different seasons, farmers choose to grow different grain crops. These 24
include summer grain, early rice and autumn grain, cereals, legumes and potatoes. 326

To verify the robustness of our proposed neural network model for predicting multiple sz
grain crops in different regions, we calculated the yield prediction accuracy of different s27
provinces separately (Figure 11). The results in the figure show that in some provinces the sz
yield estimation accuracy is low, but in most cases the accuracy is satisfactory. For example, 320
Guangdong has the highest accuracy with R? of 0.989 and RMSE of 18,040 tons, and the s
lowest is in Chongqing with R? of 0.815 and RMSE of 132,370 tons. This proves that our ss:
proposed neural network model has good robustness. 332
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Figure 11. Model performance in different provinces..
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The predicted and actual yields for 2018-2020 are shown in Figure 12, Table 3, from = sas
which it can be visualized that in some provinces with large grain production, such as sz
Heilongjiang, Henan and Shandong, the model correctly predicts the yield trend, but there 35
is a gap between the predicted and actual yields. There are many potential factors that could 36
influence the accuracy of a grain yield prediction model in different provinces, including  ss
variations in local climate, soil conditions, and agricultural practices. The model’s ability = sss
to capture these differences and accurately predict grain yield may depend on the quality s
and quantity of data available for training and testing, as well as the specific techniques 40
and algorithms used in the model. It is also possible that the model’s performance may be  sa
influenced by other factors, such as the availability and accuracy of ground real data for s
validation, or the specific crops and varieties grown in different provinces. 343

During the 2018-2020 period, our prediction model also shows some fluctuations in  sas
predicted values, in addition to provinces with relatively high or low actual grain yields. zas
This may be due to the structural reform of the supply-side of Chinese agriculture, which s
aims to improve the quality and efficiency of grain production by adjusting the cropping  sar
structure. Different provinces can adjust the acreage of different crops according to their sss
local geographical and climatic factors. However, the land classification masks used in our s
model are fixed and may not be able to fully take into account these variations, leading  sso
to errors in the processed remote sensing images and eventually the fluctuations in the s
prediction results. 352

Table 3. 2018-2020 model prediction accuracy by province.

2018 2019 2020

Country > 5 5

R RMSE R RMSE R RMSE
Hebei 0.942 11.708 0.944 11.644 0.940 12.272
Shanxi 0.941 4.469 0.953 3.915 0.944 4476
Inner Mongolia 0.938 4.606 0.927 5117 0.917 5.462
Liaoning 0.946 7.933 0.922 10.605 0.955 7.772
Jilin 0.915 14.782 0.901 17.027 0.892 17.413
Heilongjiang 0.910 15.215 0.920 14.381 0.908 15.427
Jiangsu 0.943 18.020 0.941 18.612 0.944 18.238
Zhejiang 0.962 2.933 0.983 1.954 0.977 2.285
Anhui 0.891 24.045 0.923 20.500 0.903 22.727
Fujian 0.892 3.087 0.937 2.331 0.916 2.745
Jiangxi 0.985 4725 0.972 6.322 0.970 6.473
Shandong 0.919 19.449 0.924 19.001 0.924 19.313
Henan 0.947 20.401 0.957 18.650 0.955 19.334
Hubei 0.894 16.741 0.941 11.987 0.941 12.056
Hunan 0.9486 8.954 0.935 10.097 0.875 13.957
Guangdong 0.9809 2.2982 0.9893 1.7854 0.9879 1.9398
Hainan 0.919 2.567 0.956 1.876 0.901 2.814
Chonggqing 0.792 13.909 0.824 12.756 0.812 13.617
Sichuan 0.847 16.122 0.887 13.904 0.873 14.818
Guizhou 0.697 7.686 0.903 4.351 0.830 5.606
Yunnan 0.961 2.767 0.975 2.216 0.961 2.846
Tibet 0.967 0.270 0.971 0.255 0.975 0.231
Shaanxi 0.973 2.573 0.974 2.535 0.973 2.649
Gansu 0.976 1.918 0.977 1.896 0.976 2.010
Qinghai 0.970 0.562 0.973 0.544 0.974 0.549
Ningxia 0.974 2.461 0.973 2.377 0.970 2.573

Xinjiang 0.958 2.018 0.959 2.011 0.959 2.094
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Figure 12. Predicted and actual production in 2018-2020.

353

4.3. Ablation experiment
To verify the validity of each module in this model, ablation experiments are conducted. ssa
Tests are also conducted separately for each year to accurately test the predictive ability of s
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the present model. As can be seen from Table 4, our average R? is 0.940 and the average
RMSE is 80,020 tons on the test data from 2018 to 2020. Compared to the CNN network,
our model predicts an improved R? of 0.089 and a reduced RMSE of 39,020 tons, which
is a significant improvement in the metrics. Meanwhile, the inclusion of LSTM is better
compared to the inclusion of CBAM, but the difference between them is not significant.

Table 4. Results of ablation experiments.

2018 2019 2020 Average
Item 3 3 3 3
R RMSE R RMSE R RMSE R RMSE
CNN 0.834 12.589 0.848 12.240 0.840 12.157 0.851 11.905
CNN+CBAM 0.883 10.155 0.900 9.441 0.889 9.738 0.899 9.362
CNN+LSTM 0.896 9.836 0.918 9.288 0.897 10.393 0.910 9.548
CNN+CBAM+LSTM(Ours) 0.926 8.601 0.942 8.098 0.932 8.581 0.940 8.002

5. Discussion

In recent years, the concept of sustainable development has been widely accepted
and implemented in many fields. In particular, many countries are actively addressing
food security, climate change, environmental protection and resource use. However, the
challenges to the development of sustainable agriculture are also significant. Global food
security has deteriorated in the past few years. Climate change, natural disasters, market
volatility, and policy instability have all contributed to high food prices and increased food
insecurity. In addition, global population growth and urbanization have exacerbated food
security issues. Despite the enormous challenges, many countries and organizations are
taking steps to address these issues. Only global cooperation and joint efforts can ensure
globally sustainable development and food security.

Because different food crops have different growth cycles, some regions often grow
crops that span two years. For example, in the North China Plain, winter wheat is planted
from October to December of each year and only matures for harvest in the middle of
the fol-lowing year. However, our data samples are constructed based on each calendar
year rather than on the crop growth cycle. Still, the model shows good accuracy for yield
prediction, which we attribute to the fact that the actual yield data in the Statistical Yearbook
are also based on calendar years. In subsequent research work, we could change the time
series of the data sample to two or even three years instead of the currently used one year.
This includes data for the complete cycle of each crop from sowing to harvest and may give
us more accurate results. In addition, some of the remote sensing data variables selected
in our study (Table 1) are selected empirically and based on the summaries of previous
studies by some scholars, and their relevance to grain yield is not explored in depth, but
this highlights the effectiveness of neural networks in end-to-end problem studies.

The attention mechanism in a neural network model allows it to selectively focus on
certain input features or patterns, which can be particularly useful in situations where
the input data are complex or large. In the context of a grain yield estimation model, the
attention mechanism can be used to improve the model’s performance by helping it to
better capture and utilize relevant patterns or features in the data, such as vegetation index
and temperature, that are known to influence grain yield. For example, the vegetation
index, which is a measure of the density and health of vegetation, is an important factor in
grain yield prediction. By using the attention mechanism to focus on this feature, the model
can more accurately capture the relationship between vegetation index and grain yield,
leading to more accurate predictions. Similarly, temperature is also known to affect grain
yield, and the attention mechanism can be used to focus on temperature data to improve
the model’s ability to predict grain yield based on temperature. Overall, the attention
mechanism can improve the performance of a grain yield estimation model by allowing it
to more accurately capture and utilize relevant patterns or features in the data.
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The fluctuations in prediction values that we observed may be due to the use of an e
inappropriate land classification mask for the corresponding year. Initially, we planned to  ac0
use the land classification mask from the Moderate Resolution Imaging Spectroradiometer a0
(MODIS) MCD12Q1 product, but this product has relatively large errors in the distribution 42
of grain crops in China. In comparison, the land use mask from the Institute of Geographic 03
Sciences and Natural Resources Research of the Chinese Academy of Sciences has been a0
manually verified and is more representative of actual conditions, but may not be available 405
annually due to the large workload involved in its production. a06

In our study, the attention mechanism shows strong performance in learning crop sor
yield features, and we could potentially apply the attention mechanism to the learning of 4ce
farmland distribution features and further reduction of the errors. By focusing on relevant oo
features, the attention mechanism can help the model to more accurately capture and utilize 410
the patterns or characteristics that influence the prediction task. In this case, applying the a1
attention mechanism to the learning of farmland distribution features could potentially a2
help the model to better capture the changes in planting structures and land use that may a1
have contributed to the observed fluctuations in prediction values. 414

6. Conclusions 415

In order to make grain yield prediction less costly and improve the accuracy of grain 46
yield prediction at the same time, a hybrid neural network grain yield prediction model is 417
proposed in this paper. The underlying data used in the model are from MODIS satellite  a1s
products, and we combine information from different bands into composite remote sensing a1
image data to provide as many training features as possible for the model. Then, based 420
on the convolutional network as the base structure, we use the attention of channel and 421
spatial mixing to enhance the extraction of vegetation index and temperature associated a2z
features. Finally, we use LSTM to process the data of each month to obtain as much 4
information as possible in the temporal dimension. Through experiments, we find that the 424
proposed model in this paper has an R? of 0.940 and an RMSE of 80,020 tons for grain yield a2
prediction in China, which is a large improvement in yield prediction compared with the s2e
traditional convolutional network. We also calculate the accuracy of grain yield prediction 427
for different provinces one by one, and Guangdong province has the most accurate grain  a2s
yield prediction with R? of 0.989 and RMSE of 18,040 tons, while Chongqing city has the a2
worst prediction accuracy with R? of 0.815 and RMSE of 132,370 tons. Overall, the model is  s30
more accurate in predicting Chinese grain yield in an end-to-end manner on a large scale, a3
providing an effective technical method for agricultural testing and grain yield estimation. as2
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