Supporting Information

New Antibacterial Diterpenoids from the South China Sea Soft Coral

Klyxum molle

Jia-Dong Yu^{1,2}, Dan-Dan Yu³, Ming-Zhi Su³, Yu-Cheng Gu⁴, Hong Wang^{1,*}, Yue-Wei Guo^{1,2,3,*}

¹ College of Pharmaceutical Science and Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China

² State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China

³ Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China

⁴ Syngenta, Jealott's Hill International Research Centre, Bracknell, Berkshire RG42 6EY, United Kingdom

^{*} Correspondence: hongw@zjut.edu.cn (H.W.); ywguo@simm.ac.cn (Y.-W.G.); Tel.: +86-21-50805813 (Y.-W.G.)

Table of contents

- Figure S1. ¹H NMR spectrum of 1 (600MHz, CDCl₃)
- Figure S2. ¹³C NMR spectrum of 1 (125 MHz, CDCl₃)
- Figure S3. HSQC spectrum of 1 (600 MHz, CDCl₃)
- Figure S4. HMBC spectrum of 1 (600 MHz, CDCl₃)
- Figure S5. ¹H–¹H COSY spectrum of 1 (600 MHz, CDCl₃)
- Figure S6. NOESY spectrum of 1 (600 MHz, CDCl₃)
- Figure S7. HRESIMS spectrum of 1
- Figure S8. UV and CD spectrum of 1
- Figure S9. IR spectrum of 1
- Figure S10. ¹H NMR spectrum of 2 (600MHz, CDCl₃)
- Figure S11. ¹³C NMR spectrum of 2 (125 MHz, CDCl₃)
- Figure S12. UV and CD spectrum of 2
- Figure S13. ¹H NMR spectrum of 3 (600MHz, CDCl₃)
- Figure S14. ¹³C NMR spectrum of 3 (125 MHz, CDCl₃)
- Figure S15. UV and CD spectrum of 3
- Figure S16. ¹H NMR spectrum of 4 (600MHz, CDCl₃)
- Figure S17. ¹³C NMR spectrum of 4 (125 MHz, CDCl₃)
- Figure S18. ¹H NMR spectrum of 5 (600MHz, CDCl₃)
- Figure S19. ¹³C NMR spectrum of 5 (125 MHz, CDCl₃)
- Figure S20. ¹³C NMR spectrum for mixture of 4 and 5 (125 MHz, CDCl₃)
- Figure S21. HSQC spectrum for mixture of 4 and 5 (600 MHz, CDCl₃)
- Figure S22. HMBC spectrum for mixture of 4 and 5 (600 MHz, CDCl₃)
- Figure S23. ¹H–¹H COSY spectrum for mixture of 4 and 5 (600 MHz, CDCl₃)
- Figure S24. NOESY spectrum for mixture of 4 and 5 (600 MHz, CDCl₃)
- Figure S25. HREIMS spectrum for mixture of 4 and 5
- Figure S26. UV and CD spectrum of 4
- Figure S27. UV and CD spectrum of 5
- Figure S28. IR spectrum for mixture of 4 and 5
- Figure S29. ¹H NMR spectrum of 6 (600MHz, CDCl₃)
- Figure S30. ¹³C NMR spectrum of 6 (125 MHz, CDCl₃)
- Figure S31. HSQC spectrum of 6 (600 MHz, CDCl₃)
- Figure S32. HMBC spectrum of 6 (600 MHz, CDCl₃)
- Figure S33. ¹H–¹H COSY spectrum of 6 (600 MHz, CDCl₃)
- Figure S34. NOESY spectrum of 6 (600 MHz, CDCl₃)
- Figure S35. HRESIMS spectrum of 6
- Figure S36. UV and CD spectrum of 6
- Figure S37. IR spectrum of 6
- Figure S38. ¹H NMR spectrum of 7 (600MHz, CDCl₃)
- Figure S39. ¹³C NMR spectrum of 7 (125 MHz, CDCl₃)
- Figure S40. ¹H NMR spectrum of 8 (600MHz, CDCl₃)
- Figure S41. ¹³C NMR spectrum of 8 (125 MHz, CDCl₃)
- Figure S42. ¹³C NMR spectrum for mixture of 7 and 8 (125 MHz, CDCl₃)

```
Figure S43. HSQC spectrum for mixture of 7 and 8 (600 MHz, CDCl<sub>3</sub>)
```

Figure S46. NOESY spectrum for mixture of 7 and 8 (600 MHz, CDCl₃)

Figure S47. HRESIMS spectrum for mixture of 7 and 8

Figure S48. UV and CD spectrum of 7

Figure S49. UV and CD spectrum of 8

Figure S50. IR spectrum for mixture of 7 and 8

Figure S51. ¹H NMR spectrum of 9 (600MHz, CDCl₃)

Figure S52. ¹³C NMR spectrum of 9 (125 MHz, CDCl₃)

Figure S53. HSQC spectrum of 9 (600 MHz, CDCl₃)

Figure S54. HMBC spectrum of 9 (600 MHz, CDCl₃)

Figure S55. ¹H–¹H COSY spectrum of 9 (600 MHz, CDCl₃)

Figure S56. NOESY spectrum of 9 (600 MHz, CDCl₃)

Figure S57. HREIMS spectrum of 9

Figure S58. IR spectrum of 9

Figure S59. ¹H NMR spectrum of 10 (600MHz, CDCl₃)

Figure S60. ¹³C NMR spectrum of 10 (125 MHz, CDCl₃)

Figure S61. HSQC spectrum of 10 (600 MHz, CDCl₃)

Figure S62. HMBC spectrum of 10 (600 MHz, CDCl₃)

Figure S63. ¹H–¹H COSY spectrum of 10 (600 MHz, CDCl₃)

Figure S64. NOESY spectrum of 10 (600 MHz, CDCl₃)

Figure S65. HRESIMS spectrum of 10

Figure S66. IR spectrum of 10

Figure S67. ¹H NMR spectrum of 11 (600MHz, CDCl₃)

Figure S68. ¹³C NMR spectrum of 11 (125 MHz, CDCl₃)

Figure S69. HSQC spectrum of 11 (600 MHz, CDCl₃)

Figure S70. HMBC spectrum of 11 (600 MHz, CDCl₃)

Figure S71. ¹H–¹H COSY spectrum of 11 (600 MHz, CDCl₃)

Figure S72. NOESY spectrum of 11 (600 MHz, CDCl₃)

Figure S73. HREIMS spectrum of 11

Figure S74. UV and CD spectrum of 11

Figure S75. IR spectrum of 11

Figure S76. ¹H NMR spectrum of 12 (600MHz, CDCl₃)

Figure S77. ¹³C NMR spectrum of 12 (125 MHz, CDCl₃)

Figure S78. HSQC spectrum of 12 (600 MHz, CDCl₃)

Figure S79. HMBC spectrum of 12 (600 MHz, CDCl₃)

Figure S80. ¹H–¹H COSY spectrum of 12 (600 MHz, CDCl₃)

Figure S81. NOESY spectrum of 12 (600 MHz, CDCl₃)

Figure S82. HREIMS spectrum of 12

Figure S83. UV and CD spectrum of 12

Figure S84. IR spectrum of 12

Figure S85. ¹H NMR spectrum of 13 (600MHz, CDCl₃)

Figure S86. ¹³C NMR spectrum of 13 (125 MHz, CDCl₃)

Figure S44. HMBC spectrum for mixture of 7 and 8 (600 MHz, CDCl₃)

Figure S45. ¹H–¹H COSY spectrum for mixture of 7 and 8 (600 MHz, CDCl₃)

- Figure S87. HSQC spectrum of 13 (600 MHz, CDCl₃)
- Figure S88. HMBC spectrum of 13 (600 MHz, CDCl₃)
- Figure S89. ¹H–¹H COSY spectrum of 13 (600 MHz, CDCl₃)
- Figure S90. NOESY spectrum of 13 (600 MHz, CDCl₃)
- Figure S91. HREIMS spectrum of 13
- Figure S92. IR spectrum of 13
- Figure S93. ¹H NMR spectrum of 14 (600MHz, CDCl₃)
- Figure S94. ¹³C NMR spectrum of 14 (125 MHz, CDCl₃)
- Figure S95. HSQC spectrum of 14 (600 MHz, CDCl₃)
- Figure S96. HMBC spectrum of 14 (600 MHz, CDCl₃)
- Figure S97. ¹H–¹H COSY spectrum of 14 (600 MHz, CDCl₃)
- Figure S98. NOESY spectrum of 14 (600 MHz, CDCl₃)
- Figure S99. HREIMS spectrum of 14
- Figure S100. UV and CD spectrum of 14
- Figure S101. IR spectrum of 14
- Figure S102. ¹H NMR spectrum of 15 (600MHz, CDCl₃)
- Figure S103. ¹³C NMR spectrum of 15 (125 MHz, CDCl₃)
- Figure S104. HSQC spectrum of 15 (600 MHz, CDCl₃)
- Figure S105. HMBC spectrum of 15 (600 MHz, CDCl₃)
- Figure S106. ¹H–¹H COSY spectrum of 15 (600 MHz, CDCl₃)
- Figure S107. NOESY spectrum of 15 (600 MHz, CDCl₃)
- Figure S108. HREIMS spectrum of 15
- Figure S109. UV and CD spectrum of 15
- Figure S110. IR spectrum of 15
- Figure S111. Structure of studied isomers of compound 9
- **Figure S112**. Averaged isotropic magnetic shielding constants (σ) of studied isomers and experimental ¹H and ¹³C data of 9
- **Figure S113**. DP4+ results obtained using experimental ¹H and ¹³C data of compound **9** versus isomers **9a** and **9b**
- Figure S114. Structure of studied isomers of compound 10
- Figure S115. Averaged isotropic magnetic shielding constants (σ) of studied isomers and experimental ¹H and ¹³C data of 10
- Figure S116. DP4+ results obtained using experimental ¹H and ¹³C data of compound 10 versus isomers 10a, 10b, 10c, 10d

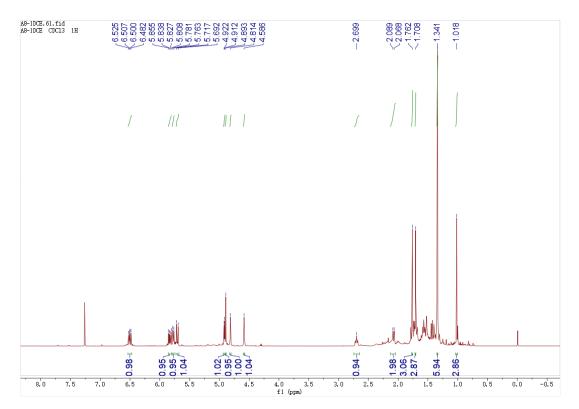


Figure S1. ¹H NMR spectrum of 1 (600MHz, CDCl₃)

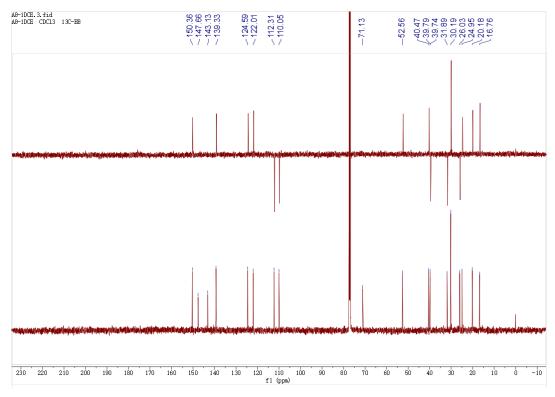


Figure S2. ¹³C NMR spectrum of 1 (125 MHz, CDCl₃)

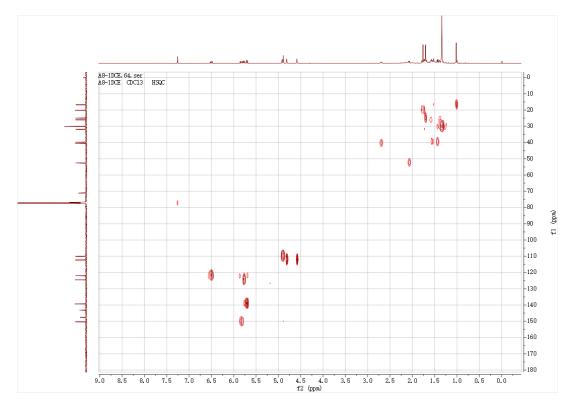


Figure S3. HSQC spectrum of 1 (600 MHz, CDCl₃)

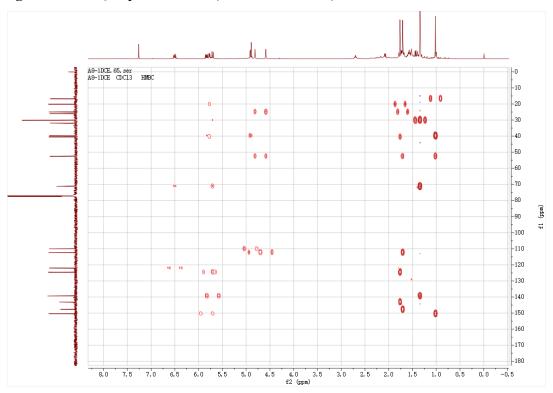


Figure S4. HMBC spectrum of 1 (600 MHz, CDCl₃)

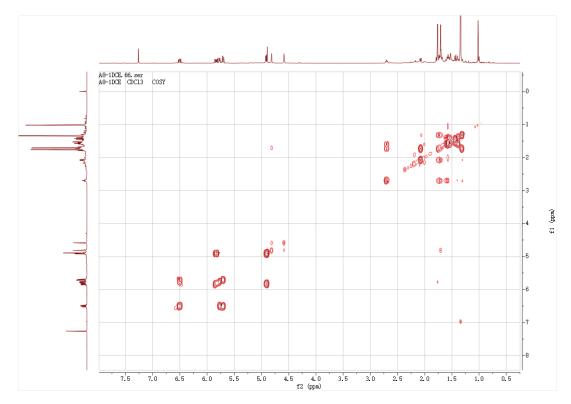


Figure S5. ¹H–¹H COSY spectrum of 1 (600 MHz, CDCl₃)

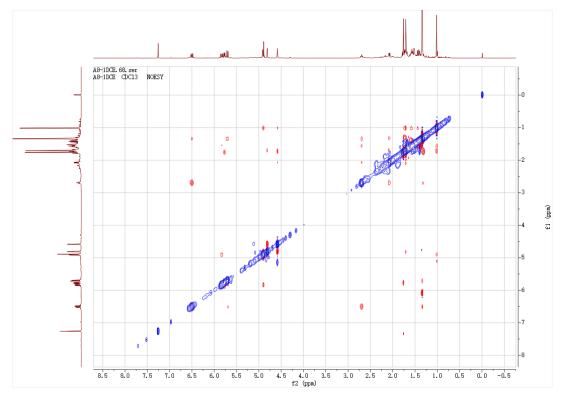
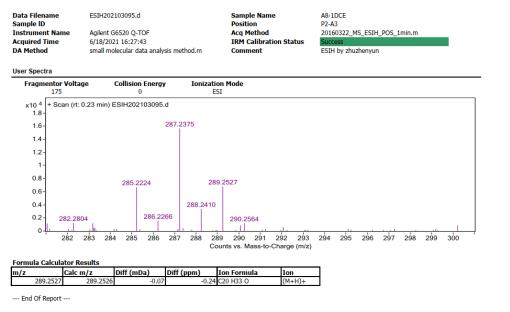



Figure S6. NOESY spectrum of 1 (600 MHz, CDCl₃)

Qualitative Analysis Report

Agilent Technologies Page 1 of 1 Printed at: 16:37 on: 6/18/2021

Figure S7. HRESIMS spectrum of 1

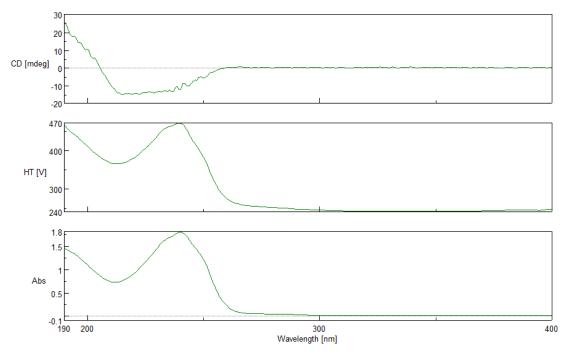


Figure S8. UV and CD spectrum of 1

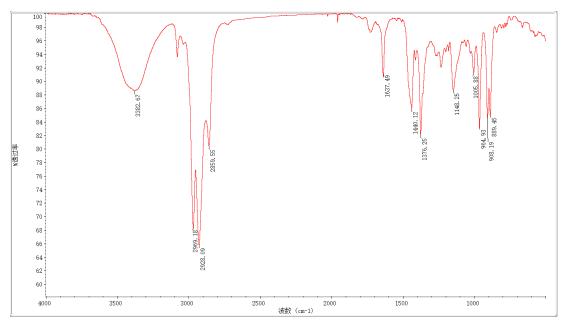


Figure S9. IR spectrum of 1

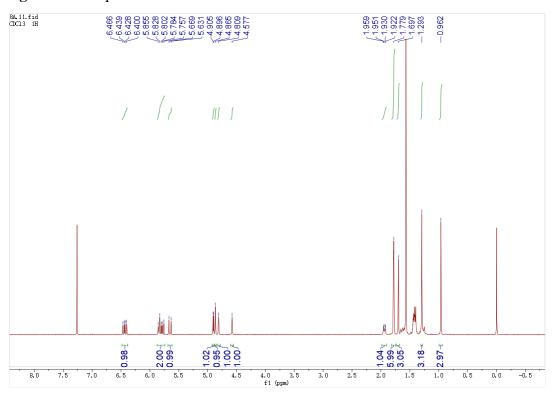


Figure S10. ¹H NMR spectrum of 2 (600MHz, CDCl₃)

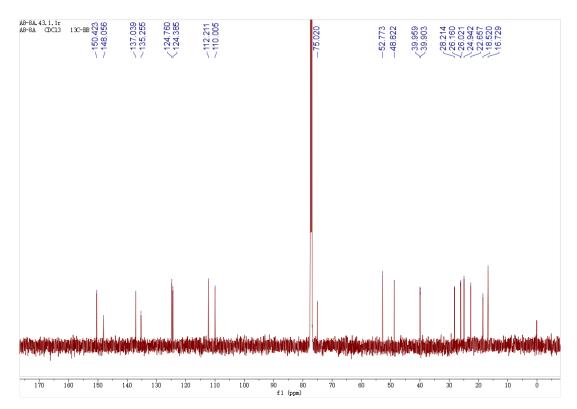


Figure S11. ¹³C NMR spectrum of 2 (125 MHz, CDCl₃)

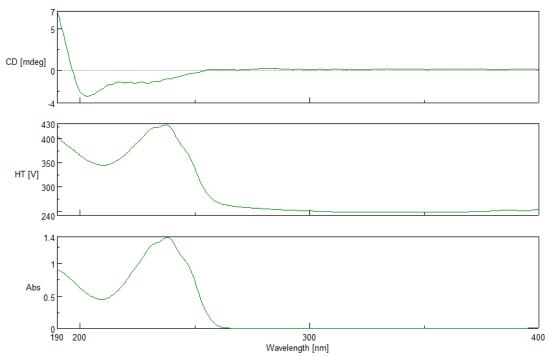


Figure S12. UV and CD spectrum of 2

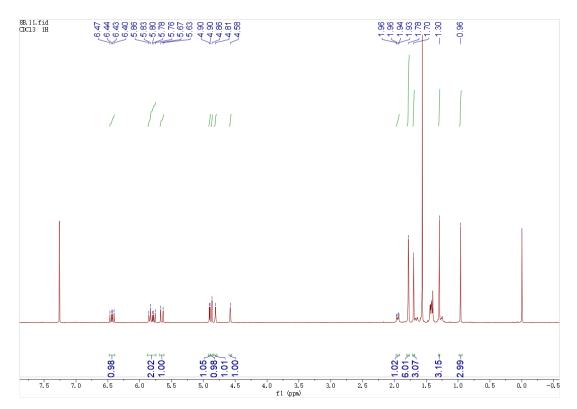


Figure S13. ¹H NMR spectrum of 3 (600MHz, CDCl₃)

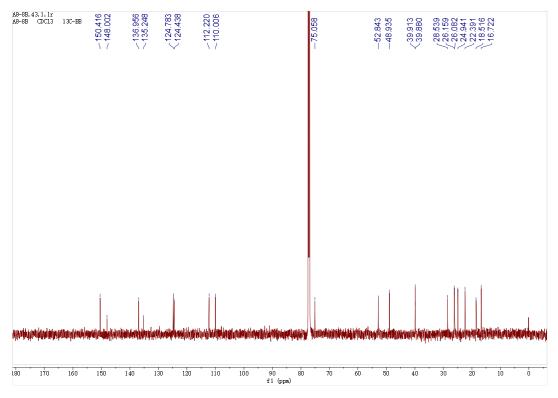


Figure S14. ¹³C NMR spectrum of 3 (125 MHz, CDCl₃)

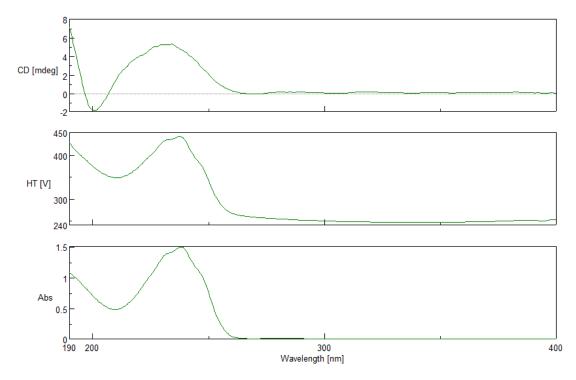


Figure S15. UV and CD spectrum of $\bf 3$

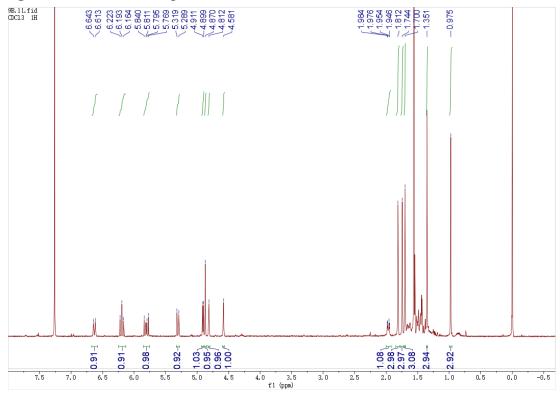


Figure S16. ¹H NMR spectrum of 4 (600MHz, CDCl₃)

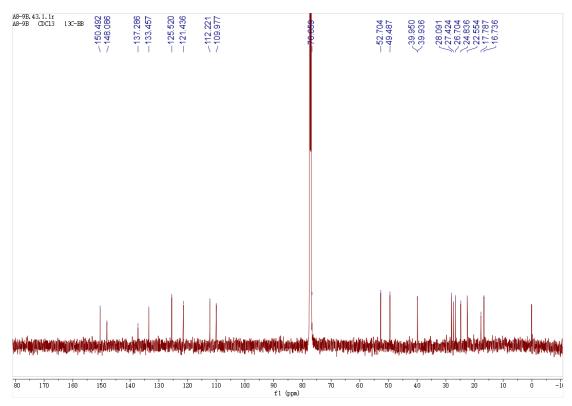


Figure S17. ¹³C NMR spectrum of 4 (125 MHz, CDCl₃)

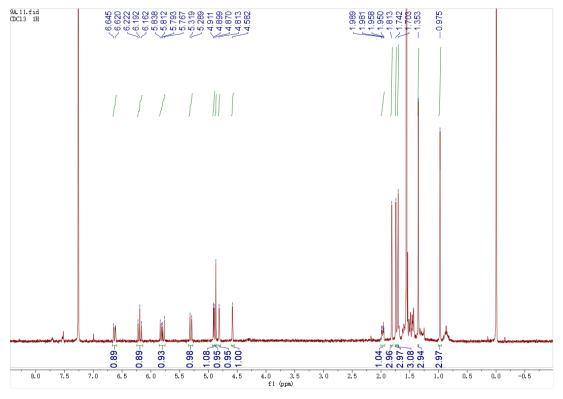


Figure S18. ¹H NMR spectrum of 5 (600MHz, CDCl₃)

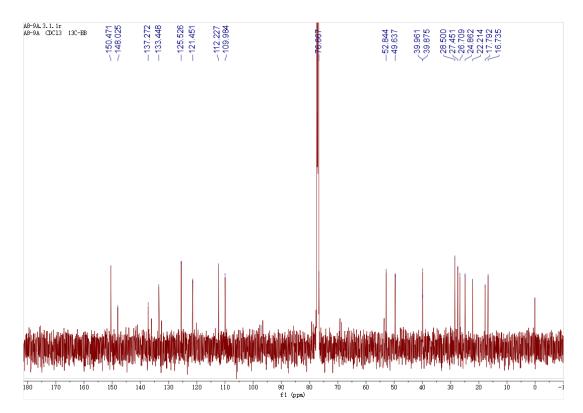


Figure S19. ¹³C NMR spectrum of 5 (125 MHz, CDCl₃)

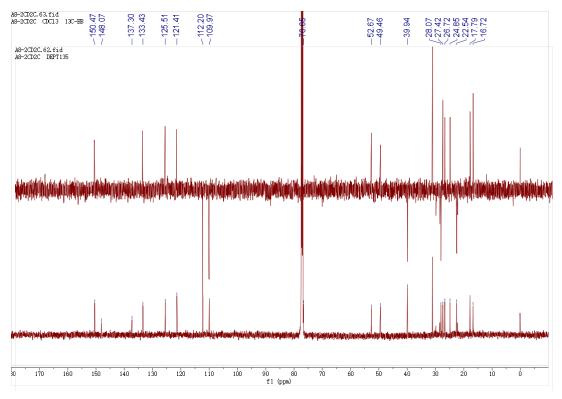


Figure S20. ¹³C NMR spectrum for mixture of 4 and 5 (125 MHz, CDCl₃)

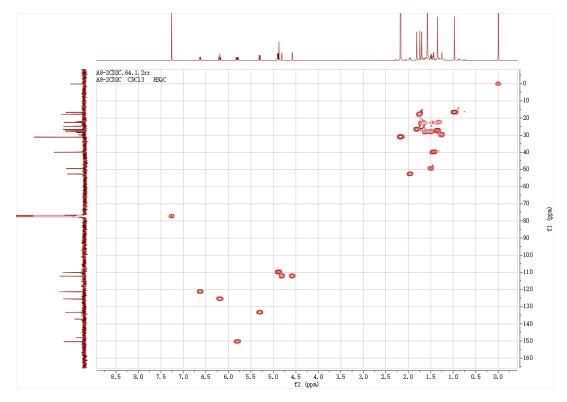


Figure S21. HSQC spectrum for mixture of 4 and 5 (600 MHz, CDCl₃)

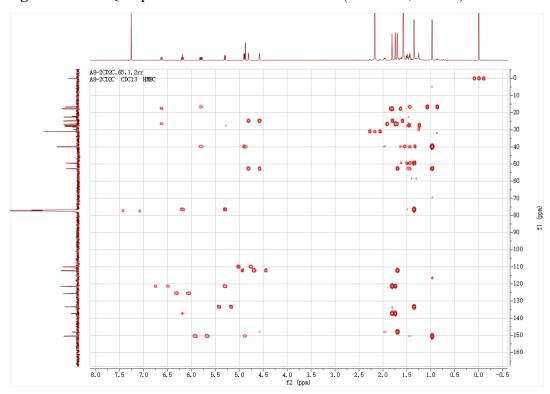


Figure S22. HMBC spectrum for mixture of 4 and 5 (600 MHz, CDCl₃)

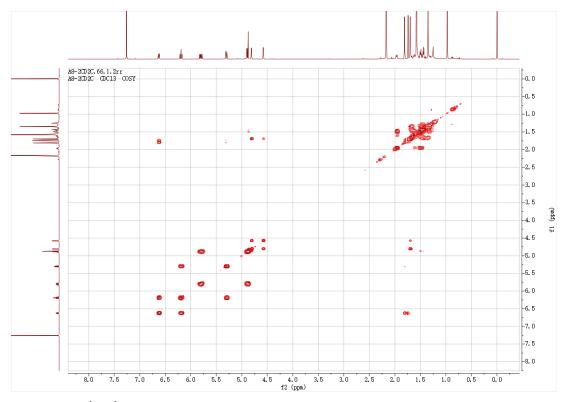


Figure S23. ¹H–¹H COSY spectrum for mixture of 4 and 5 (600 MHz, CDCl₃)

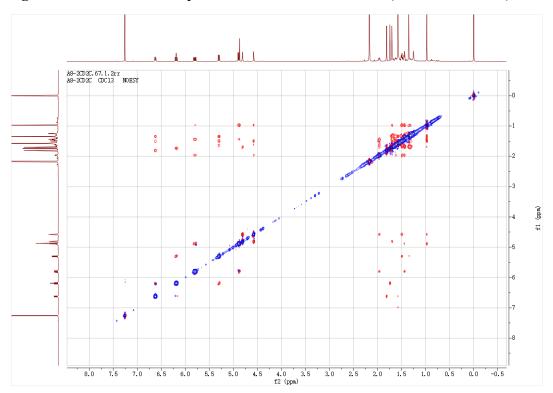


Figure S24. NOESY spectrum for mixture of 4 and 5 (600 MHz, CDCl₃)

```
EI202101585 A8-2CD2C -c1#6 RT: 1.04
T: + c EI Full ms [49.50-800.50]
m/z = 48-803
    m/z
                Intensity Relative
                                               Theo.
                                                              Delta
                                                                           RDB
                                                                                         Composition
                                                 Mass
                                                               (mmu)
                                                                          equiv.
 245.1899
                   203136.0
                                      0.22
                                               245.1900
                                                                 -0.09
                                                                                5.5 C<sub>17</sub> H<sub>25</sub> O<sub>1</sub>
                                                                                4.5 C<sub>18</sub> H<sub>29</sub>
 245.2261
                   242856.0
                                      0.26
                                               245.2264
                                                                 -0.23
 246.1945
                    95360.0
                                      0.10
                                               246.1978
                                                                 -3.31
                                                                                5.0 C<sub>17</sub> H<sub>26</sub> O<sub>1</sub>
 255.2110
                   361052.0
                                      0.39
                                               255.2107
                                                                  0.26
                                                                                6.5 C<sub>19</sub> H<sub>27</sub>
 256.2154
                    75098.0
                                      0.08
                                               256.2186
                                                                                6.0 C<sub>19</sub> H<sub>28</sub>
                                                                 -3.13
 270.2346
                                                                                6.0 C<sub>20</sub> H<sub>30</sub>
                   581491.0
                                      0.62
                                               270.2342
                                                                  0.44
                                                                 -3.30
 271.2387
                   171166.0
                                      0.18
                                               271.2420
                                                                                5.5 C<sub>20</sub> H<sub>31</sub>
 273.2214
                   335740.0
                                      0.36
                                               273.2213
                                                                  0.11
                                                                                5.5 C<sub>19</sub> H<sub>29</sub> O<sub>1</sub>
 286.2296
                    77414.0
                                      0.08
                                               286.2291
                                                                  0.47
                                                                                6.0 C<sub>20</sub> H<sub>30</sub> O<sub>1</sub>
 288.2454
                   176988.0
                                      0.19
                                               288.2448
                                                                                5.0 C<sub>20</sub> H<sub>32</sub> O<sub>1</sub>
                                                                  0.60
```

Figure S25. HREIMS spectrum for mixture of 4 and 5

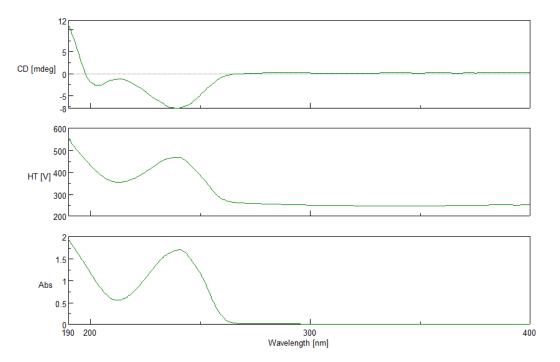


Figure S26. UV and CD spectrum of 4

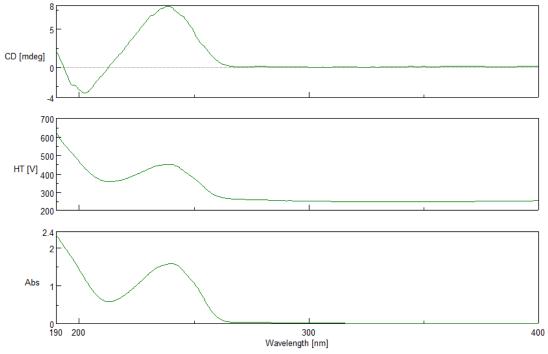


Figure S27. UV and CD spectrum of 5

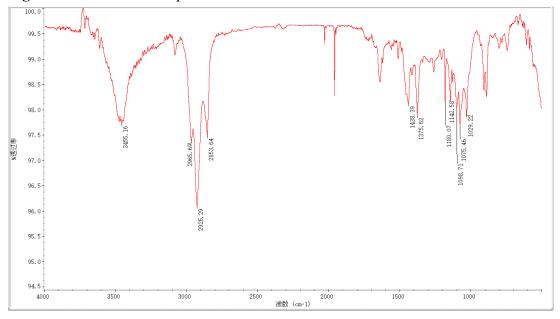


Figure S28. IR spectrum for mixture of 4 and 5

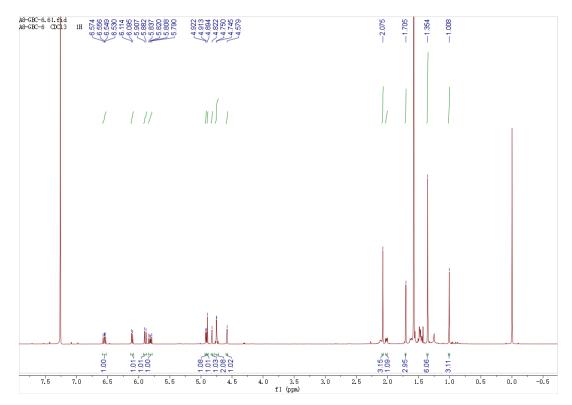


Figure S29. ¹H NMR spectrum of 6 (600MHz, CDCl₃)

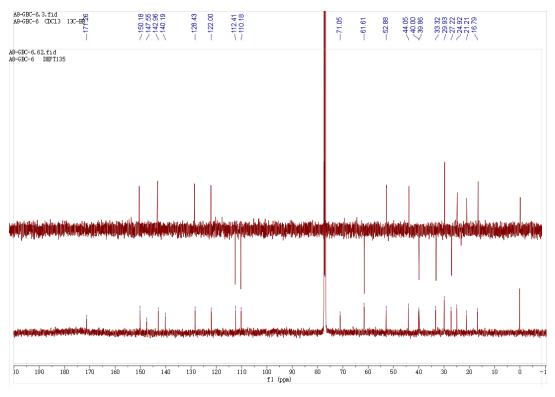


Figure S30. ¹³C NMR spectrum of 6 (125 MHz, CDCl₃)

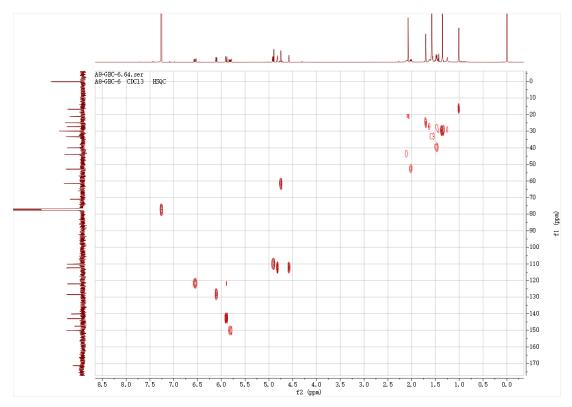


Figure S31. HSQC spectrum of 6 (600 MHz, CDCl₃)

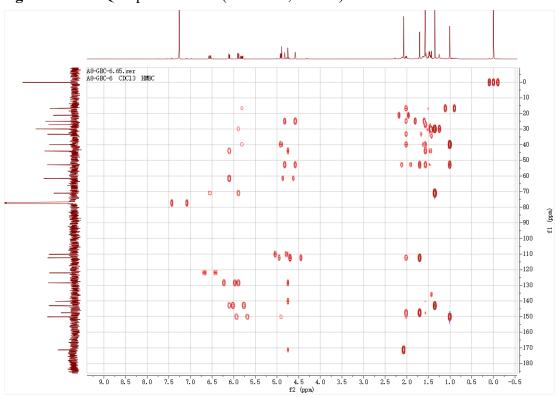


Figure S32. HMBC spectrum of 6 (600 MHz, CDCl₃)

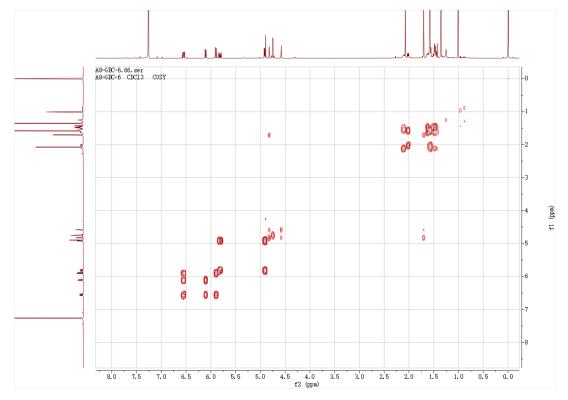


Figure S33. ¹H–¹H COSY spectrum of 6 (600 MHz, CDCl₃)

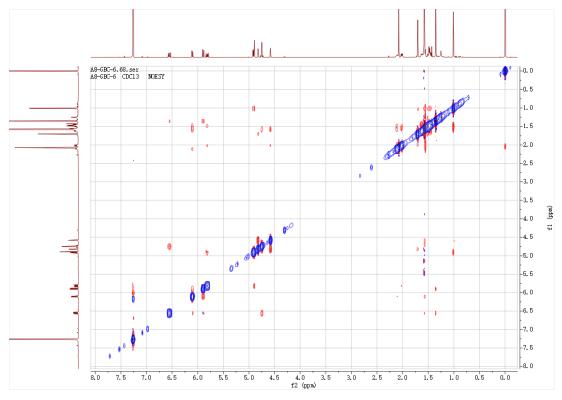
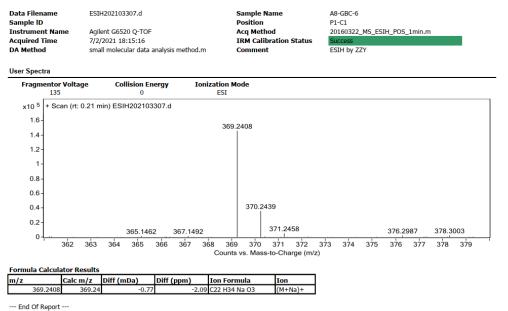



Figure S34. NOESY spectrum of 6 (600 MHz, CDCl₃)

Qualitative Analysis Report

End of Report

Agilent Technologies

Page 1 of 1 Printed at: 18:18 on: 7/2/2021

Figure \$35. HRESIMS spectrum of 6

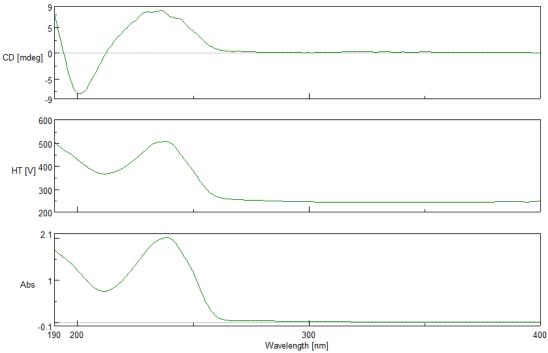


Figure S36. UV and CD spectrum of 6

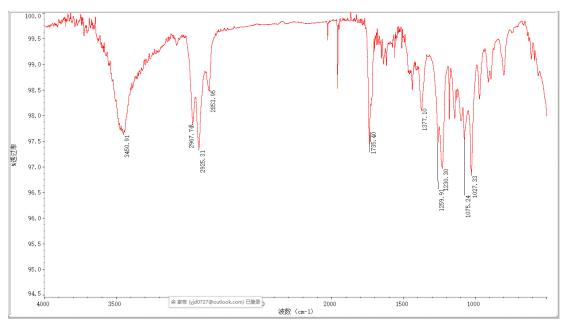


Figure S37. IR spectrum of 6

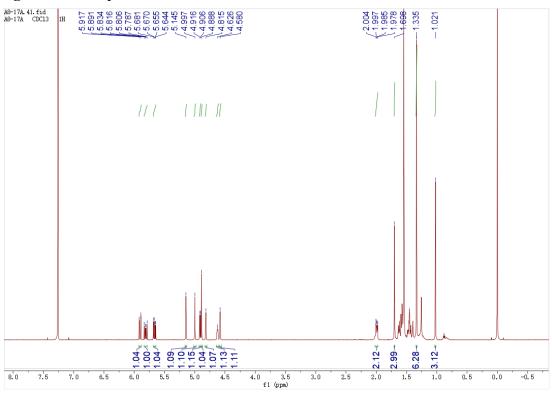


Figure S38. ¹H NMR spectrum of 7 (600MHz, CDCl₃)

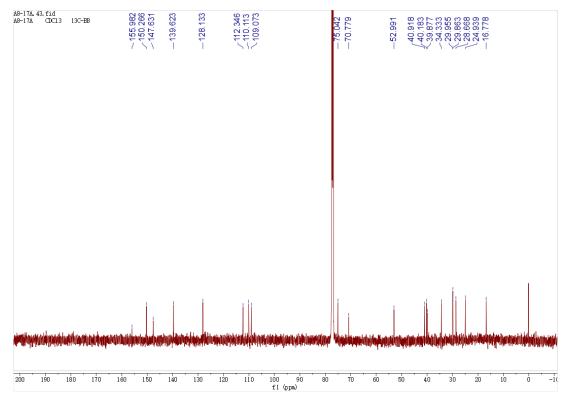


Figure S39. ¹³C NMR spectrum of 7 (125 MHz, CDCl₃)

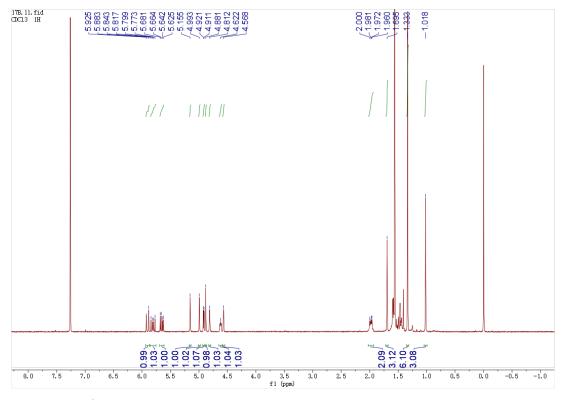


Figure S40. ¹H NMR spectrum of 8 (600MHz, CDCl₃)

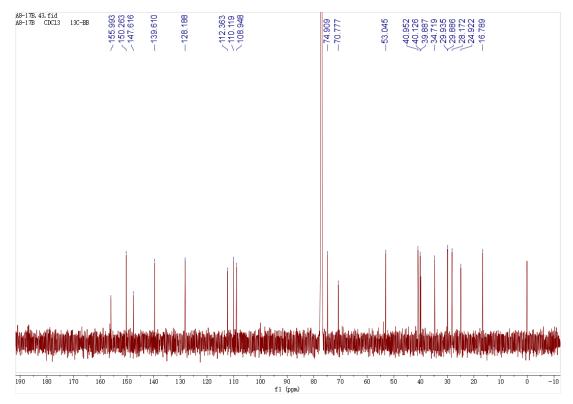


Figure S41. ¹³C NMR spectrum of 8 (125 MHz, CDCl₃)

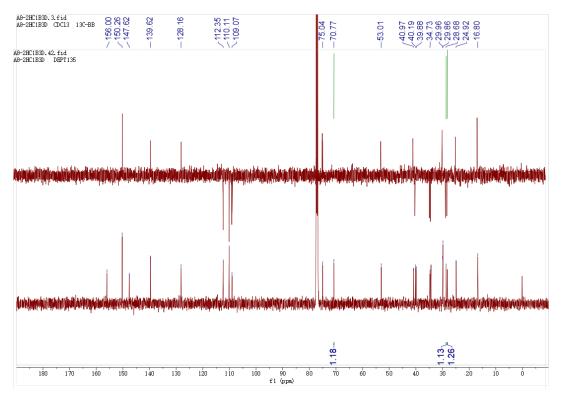


Figure S42. ¹³C NMR spectrum for mixture of 7 and 8 (125 MHz, CDCl₃)

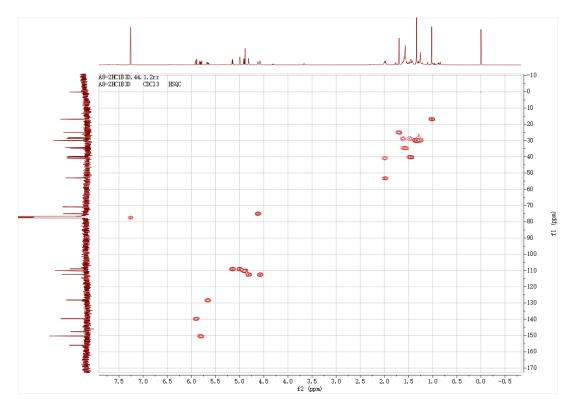


Figure S43. HSQC spectrum for mixture of 7 and 8 (600 MHz, CDCl₃)

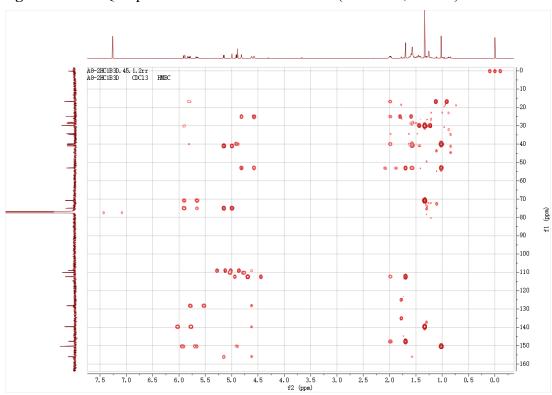


Figure S44. HMBC spectrum for mixture of 7 and 8 (600 MHz, CDCl₃)

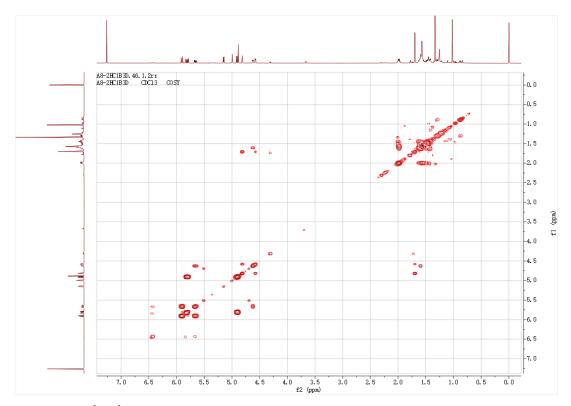


Figure S45. ¹H–¹H COSY spectrum for mixture of 7 and 8 (600 MHz, CDCl₃)

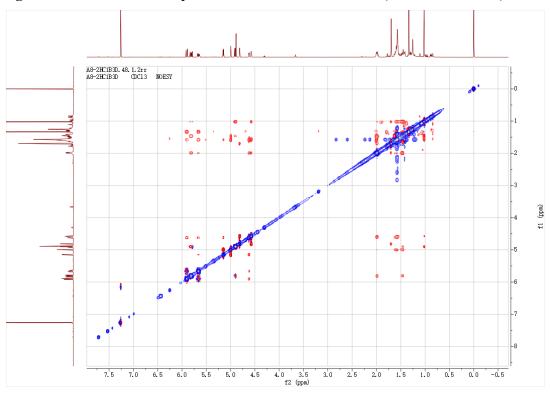


Figure S46. NOESY spectrum for mixture of 7 and 8 (600 MHz, CDCl₃)

Qualitative Analysis Report

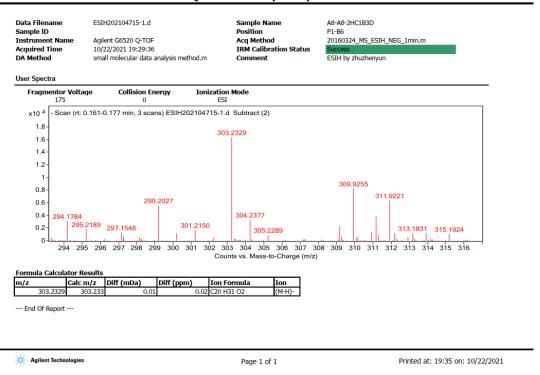


Figure S47. HRESIMS spectrum for mixture of 7 and 8

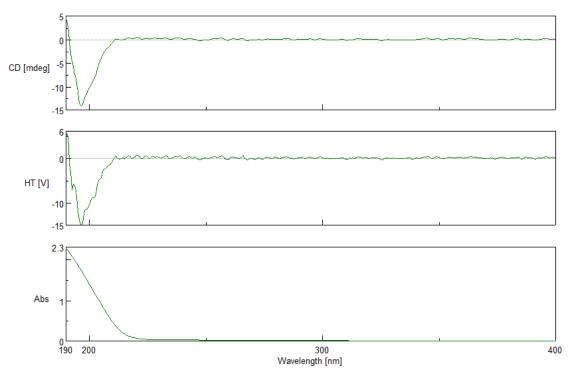


Figure S48. UV and CD spectrum of 7

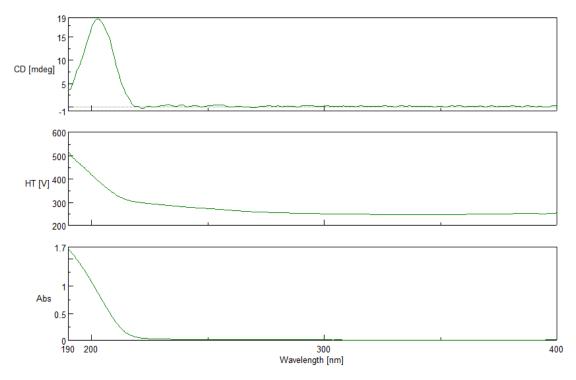


Figure \$49. UV and CD spectrum of 8

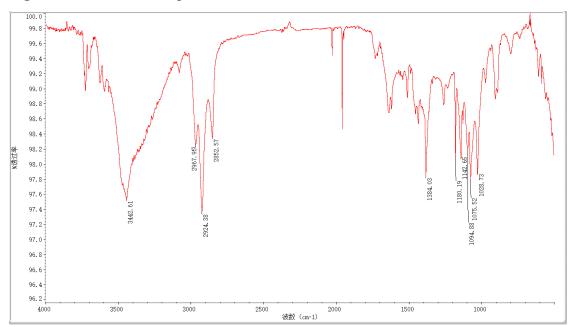


Figure S50. IR spectrum for mixture of 7 and 8

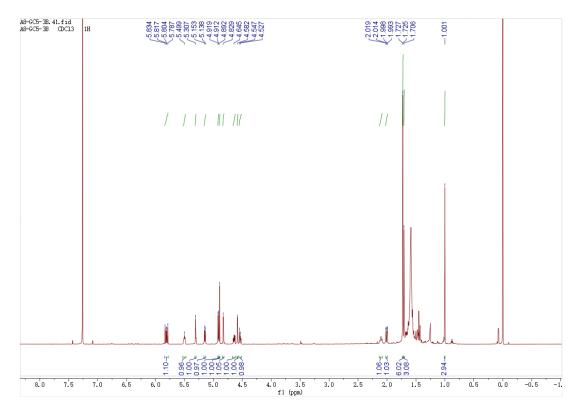


Figure S51. ¹H NMR spectrum of 9 (600MHz, CDCl₃)

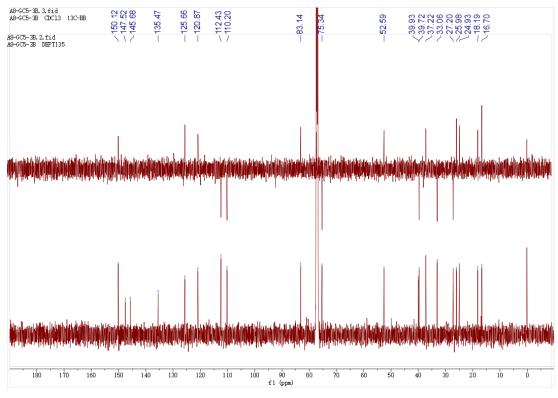


Figure S52. ¹³C NMR spectrum of 9 (125 MHz, CDCl₃)

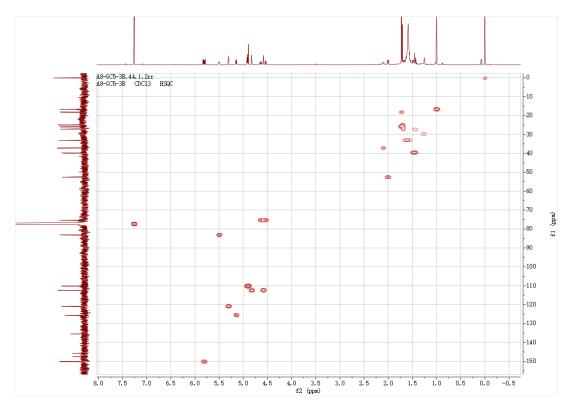


Figure S53. HSQC spectrum of 9 (600 MHz, CDCl₃)

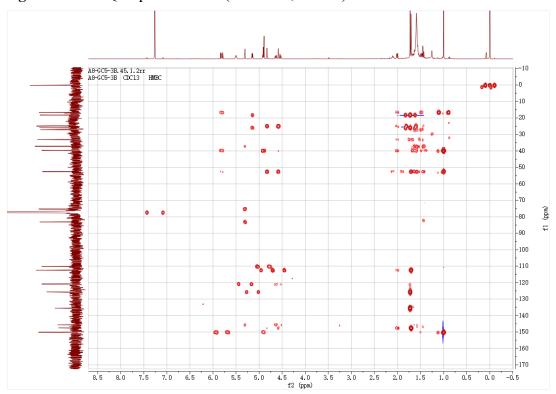


Figure S54. HMBC spectrum of 9 (600 MHz, CDCl₃)

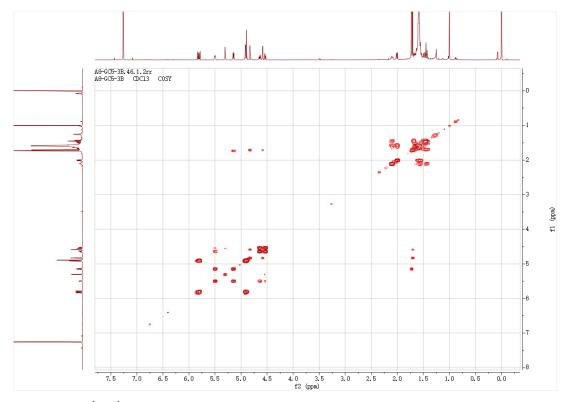


Figure S55. ¹H–¹H COSY spectrum of 9 (600 MHz, CDCl₃)

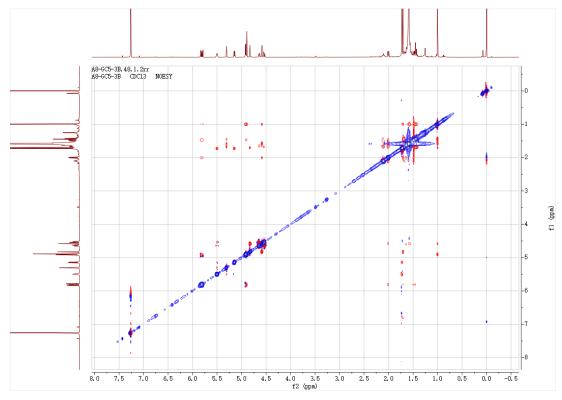


Figure S56. NOESY spectrum of 9 (600 MHz, CDCl₃)

EI202101751 A8-GC5-3B -c1#5 RT: 0.83						
T: + c EI Full ms [49.50-800.50]						
m/z= 48-803						
m/z	Intensity	Relative		Delta		Composition
115 0550	1042025 0	1 70	Mass	(mmu)	-	a - 7 -
115.0559			115.0542			C 9 H 7
117.0700	1692654.0					C 9 H 9
119.0858						
120.0926						
	3271862.0		121.0648			C8 H9 O1
121.1029			121.1012	1.72		
129.0727						
131.0846						
163.1088						C ₁₁ H ₁₅ O ₁
185.1328	961094.0					
187.1125						C13 H15 O1
187.1487						
189.1275						C13 H17 O1
190.1341						C13 H18 O1
201.1271	4531159.0		201.1274			C14 H17 O1
201.1639	1104557.0	1.51	201.1638	0.12	5.5	C ₁₅ H ₂₁
202.1334	1760286.0	2.40	202.1352	-1.77	6.0	C14 H18 O1
203.1428	3368857.0	4.60	203.1430	-0.24	5.5	C14 H19 O1
205.1586	1191392.0	1.63	205.1587	-0.08	4.5	C14 H21 O1
215.1430	3745532.0	5.11	215.1430	-0.05	6.5	C15 H19 O1
216.1487	1480633.0	2.02	216.1509	-2.19	6.0	C15 H20 O1
217.1590	12308992.0	16.79	217.1587	0.29	5.5	C15 H21 O1
229.1588	1458979.0	1.99	229.1587	0.11	6.5	C16 H21 O1
243.1744	3528118.0	4.81	243.1743	0.04	6.5	C17 H23 O1
257.1911	1261285.0	1.72	257.1900	1.14	6.5	C ₁₈ H ₂₅ O ₁
271.2056	73304064.0	100.00	271.2056	-0.05	6.5	C19 H27 O1
284.2138	979916.0	1.34	284.2135	0.30	7.0	C20 H28 O1
285.2203	1427519.0	1.95	285.2213	-1.04	6.5	C20 H29 O1
286.2288	2825975.0	3.86	286.2291	-0.27	6.0	C20 H30 O1

Figure S57. HREIMS spectrum of 9

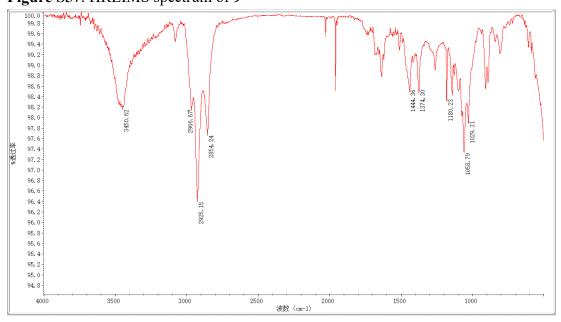


Figure S58. UV and CD spectrum of 9

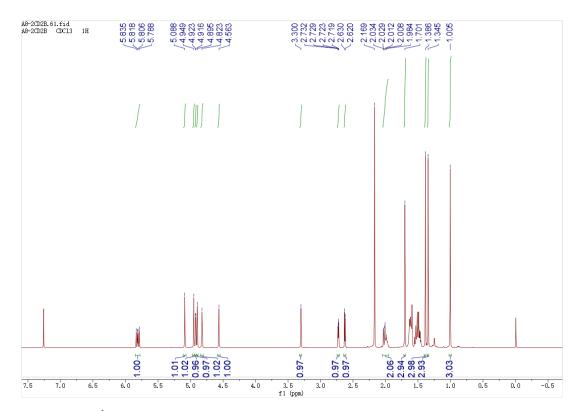


Figure S59. ¹H NMR spectrum of 10 (600MHz, CDCl₃)

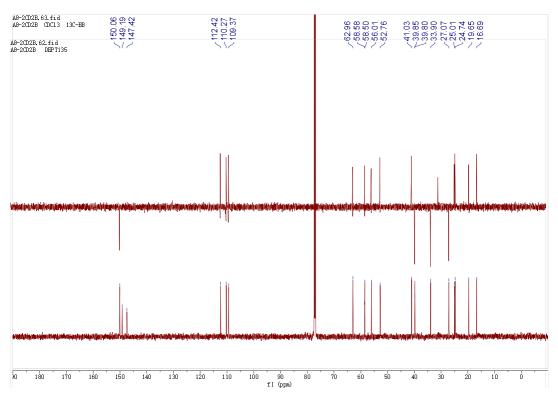


Figure S60. ¹³C NMR spectrum of 10 (125 MHz, CDCl₃)

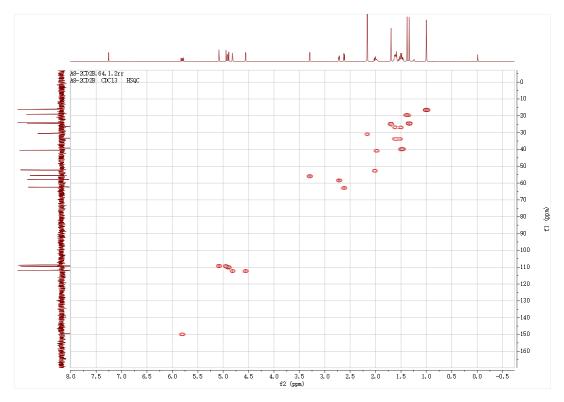


Figure S61. HSQC spectrum of 10 (600 MHz, CDCl₃)

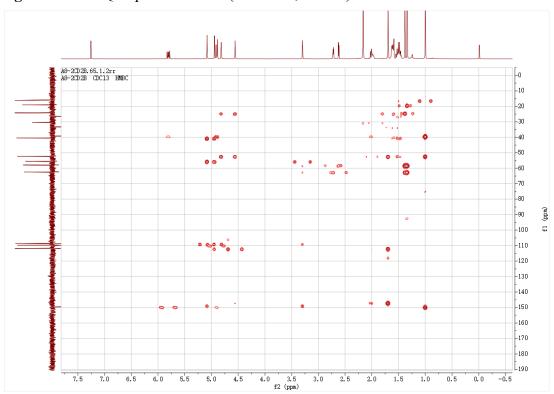


Figure S62. HMBC spectrum of 10 (600 MHz, CDCl₃)

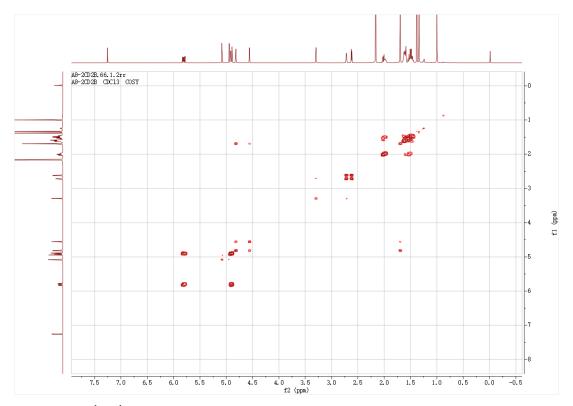


Figure S63. ¹H–¹H COSY spectrum of 10 (600 MHz, CDCl₃)

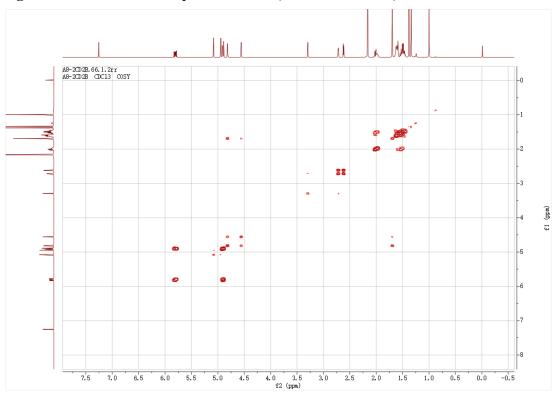
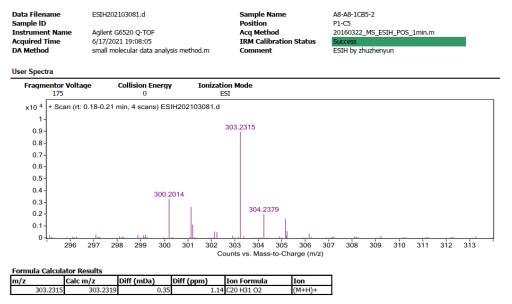



Figure S64. NOESY spectrum of 10 (600 MHz, CDCl₃)

Qualitative Analysis Report

--- End Of Report ---

Agilent Technologies

Page 1 of 1 Printed at: 19:22 on: 6/17/2021

Figure S65. HRESIMS spectrum of 10

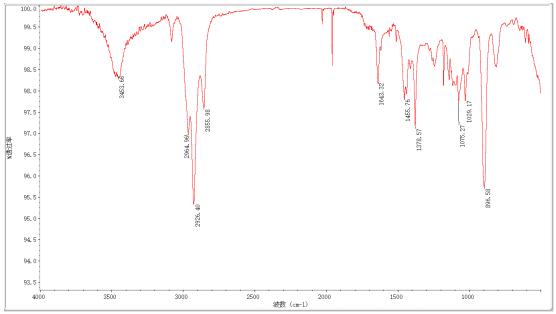


Figure S66. IR spectrum of 10

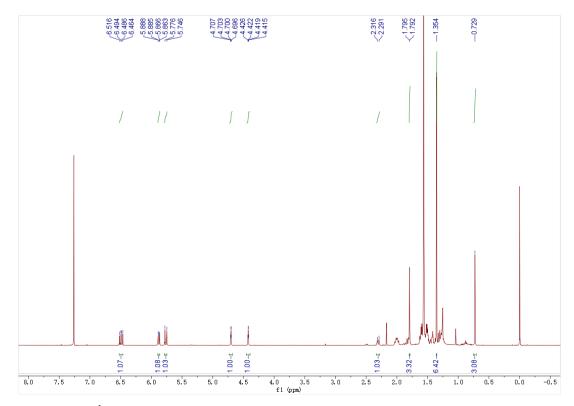


Figure S67. ¹H NMR spectrum of 11 (600MHz, CDCl₃)

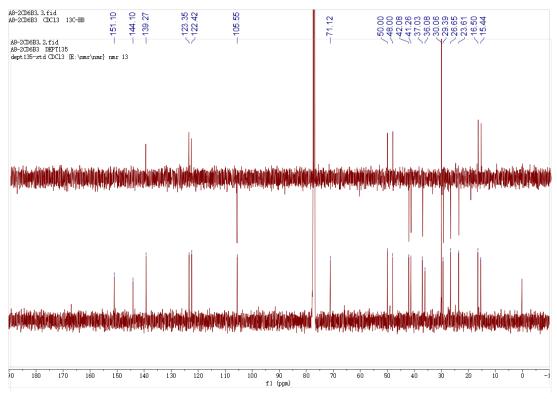


Figure S68. ¹³C NMR spectrum of 11 (125 MHz, CDCl₃)

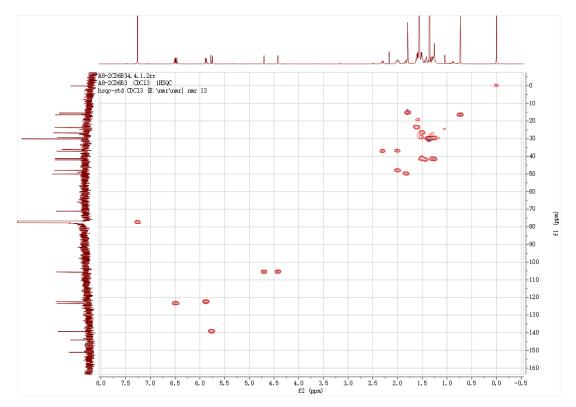


Figure S69. HSQC spectrum of 11 (600 MHz, CDCl₃)

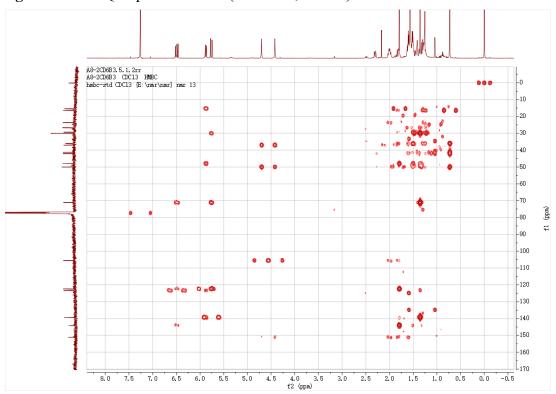


Figure S70. HMBC spectrum of 11 (600 MHz, CDCl₃)

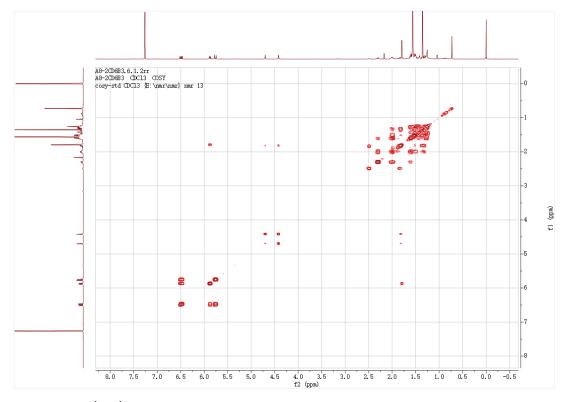


Figure S71. ¹H–¹H COSY spectrum of 11 (600 MHz, CDCl₃)

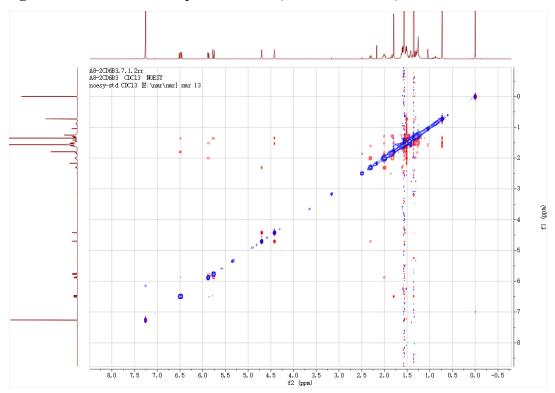


Figure S72. NOESY spectrum of 11 (600 MHz, CDCl₃)

D:\data\2021\E1202101757_A8-2CD6B3 -o1 10/11/2021 4:44:27 PM									
EI202101757 A8-2CD6B3 -c1#7 RT: 1.24									
	Full ms [4	9.50-800.	50]						
m/z = 48-8				_					
m/z	Intensity	Relative		Delta	RDB	Composition			
	0150050 0	30.03	Mass	(mmu)	equiv.				
69.0696			69.0699			C 5 H 9			
79.0177						C5 H3 O1			
	1806400.0					C5 H4 O1			
	6581477.0					C5 H5 O1			
	8451328.0					C7 H9			
	8269501.0					C7 H11			
	7764670.0		105.0335			C7 H5 O1			
	4003476.0					C 9 H 3			
	6925085.0					C 9 H11			
	2796667.0					C ₁₀ H ₁₁			
	8804864.0					C ₁₀ H ₁₈			
	2902759.0					C ₁₀ H ₁₄			
	3465007.0		135.1168			C ₁₀ H ₁₅			
	4440810.0		145.1012			C ₁₁ H ₁₃			
	13904640.0					C ₁₁ H ₁₅			
148.1221						C ₁₁ H ₁₆			
	2609460.0		149.1325			C ₁₁ H ₁₇			
	4436779.0					C ₁₂ H ₁₅			
	2032857.0					C ₁₂ H ₁₆			
	14538752.0					C ₁₂ H ₁₇			
	11487232.0					C ₁₂ H ₁₈			
	3687488.0					C ₁₂ H ₁₉			
	3984464.0		173.1325			C ₁₃ H ₁₇			
	3621926.0		175.1481			C ₁₃ H ₁₉			
187.1482	3997293.0	20.20	187.1481	0.11		C14 H19			
188.1552	3067359.0	15.50	188.1560	-0.77	5.0	C ₁₄ H ₂₀			
189.1633	19788288.0	100.00	189.1638	-0.51	4.5	C ₁₄ H ₂₁			
199.1476	2196013.0	11.10	199.1481	-0.54	6.5	C ₁₅ H ₁₉			
201.1635	6774948.0	34.24	201.1638	-0.26	5.5	C ₁₅ H ₂₁			
215.1779	4036843.0	20.40	215.1794	-1.50	5.5	C ₁₆ H ₂₃			
216.1857	10152704.0	51.31	216.1873	-1.55	5.0	C ₁₆ H ₂₄			
227.1796	2300580.0	11.63	227.1794	0.15	6.5	C ₁₇ H ₂₃			
255.2101	6456835.0	32.63	255.2107	-0.61	6.5	C ₁₉ H ₂₇			
270.2343	6491346.0	32.80	270.2342	0.10	6.0	C20 H30			
271.2398	2065761.0	10.44	271.2420	-2.23	5.5	C20 H31			
273.2213	7769219.0	39.26	273.2213	-0.01	5.5	C ₁₉ H ₂₉ O ₁			
288.2443	19262976.0	97.35	288.2448	-0.47	5.0	C ₂₀ H ₃₂ O ₁			

Figure S73. HREIMS spectrum of 11

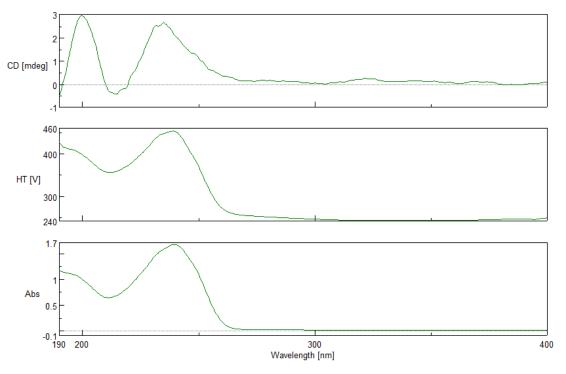


Figure S74. UV and CD spectrum of 11

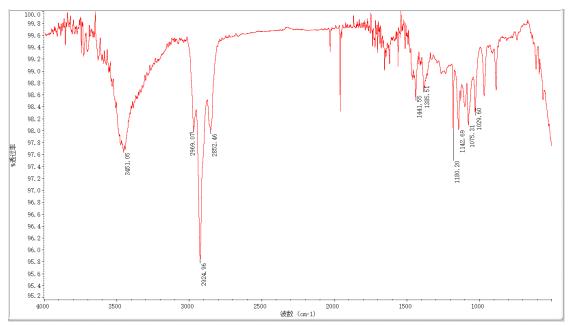


Figure S75. IR spectrum of 11

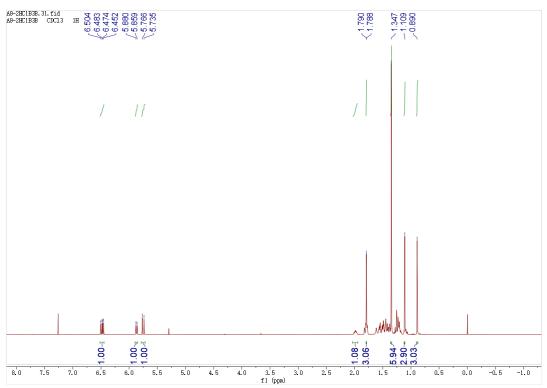


Figure S76. ¹H NMR spectrum of 12 (600MHz, CDCl₃)

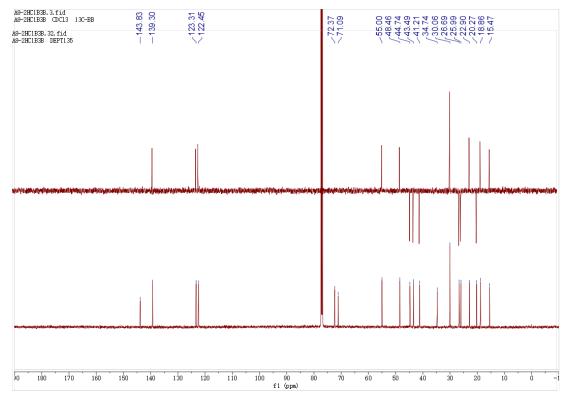


Figure S77. ¹³C NMR spectrum of 12 (125 MHz, CDCl₃)

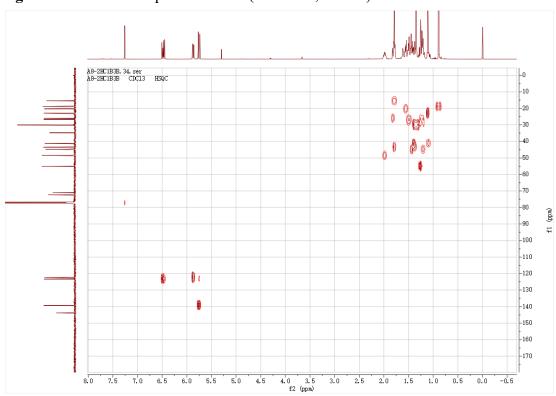


Figure S78. HSQC spectrum of 12 (600 MHz, CDCl₃)

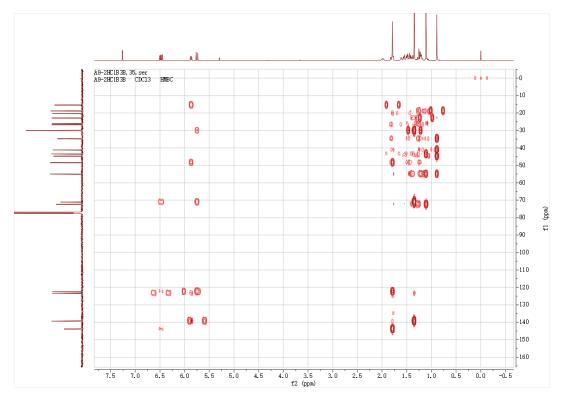


Figure S79. HMBC spectrum of 12 (600 MHz, CDCl₃)

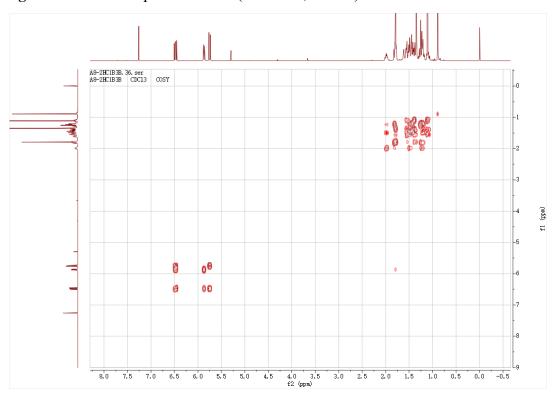


Figure S80. ¹H–¹H COSY spectrum of 12 (600 MHz, CDCl₃)

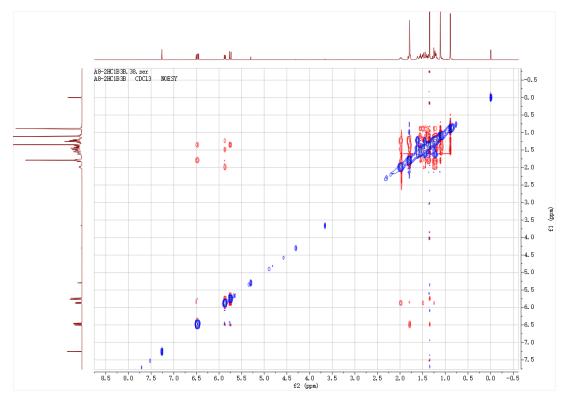


Figure S81. NOESY spectrum of 12 (600 MHz, CDCl₃)

D:\data\2021\EI20)2101774A8-2HC1E	33B -c1	10/2	10/20/2021 12:29:00 PM							
EI202101774A8-2HC1B3B -c1#14 RT: 2.68											
T: + c EI Full ms [49.50-800.50]											
m/z = 48-803											
m/z	Intensity	Relative	Theo.	Delta	RDB	Composition					
			Mass	(mmu)	equiv.						
59.0103	2524197.0	10.65	59.0128	-2.42	1.5	C ₂ H ₃ O ₂					
162.0071	4810107.0	20.30	162.0100	-2.93	12.0	C ₁₂ H ₂ O ₁					
176.9954	1557874.0	6.58	176.9971	-1.73	12.5	C ₁₂ H ₁ O ₂					
245.2269	6149729.0	25.96	245.2264	0.57	4.5	C ₁₈ H ₂₉					
255.2113	2755052.0	11.63	255.2107	0.61	6.5	C ₁₉ H ₂₇					
270.2337	1391885.0	5.87	270.2342	-0.46	6.0	C ₂₀ H ₃₀					
273.2204	5979248.0	25.24	273.2213	-0.87	5.5	C ₁₉ H ₂₉ O ₁					
288.2453	6068558.0	25.61	288.2448	0.55	5.0	C ₂₀ H ₃₂ O ₁					
289.2497	1726042.0	7.29	289.2526	-2.88	4.5	C ₂₀ H ₃₃ O ₁					
306.2553	3863438.0	16.31	306.2553	-0.08	4.0	C ₂₀ H ₃₄ O ₂					

Figure \$82. HREIMS spectrum of 12

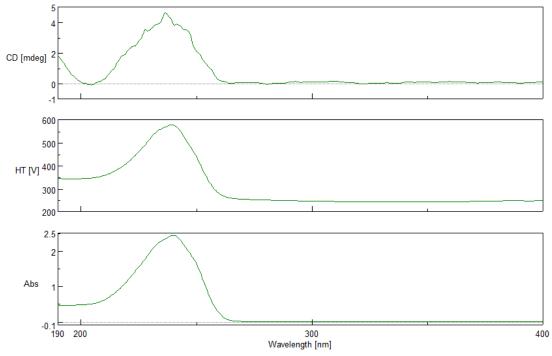


Figure \$83. UV and CD spectrum of 12

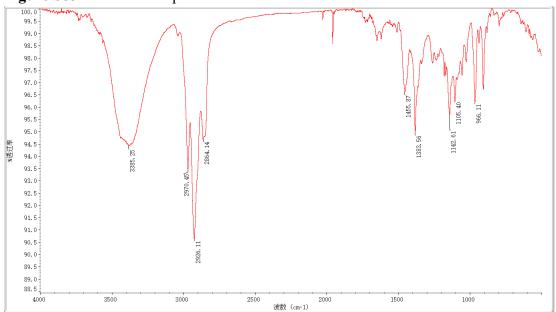


Figure S84. IR spectrum of 12

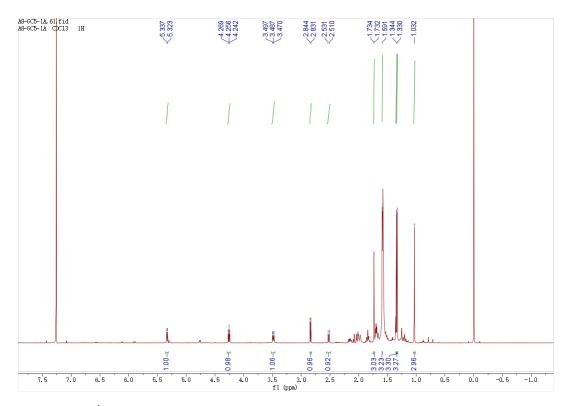


Figure S85. ¹H NMR spectrum of 13 (600MHz, CDCl₃)

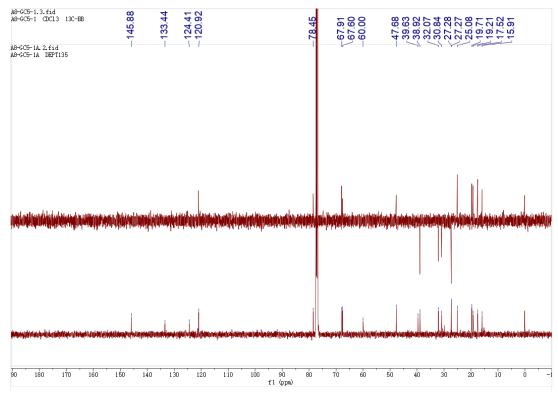


Figure S86. ¹³C NMR spectrum of 13 (125 MHz, CDCl₃)

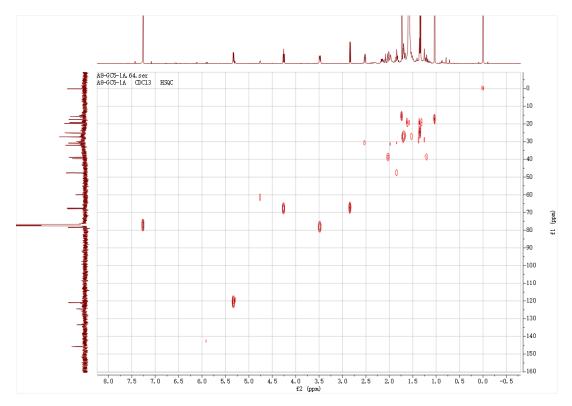


Figure S87. HSQC spectrum of 13 (600 MHz, CDCl₃)

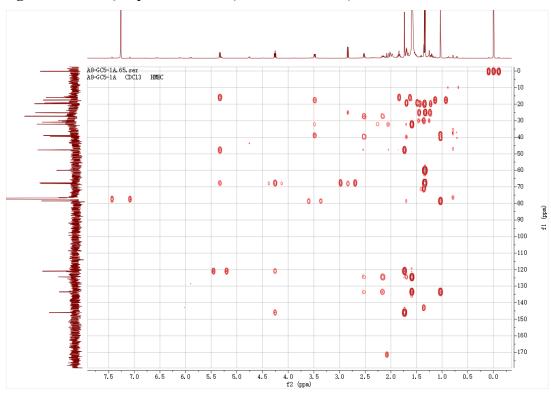


Figure S88. HMBC spectrum of 13 (600 MHz, CDCl₃)

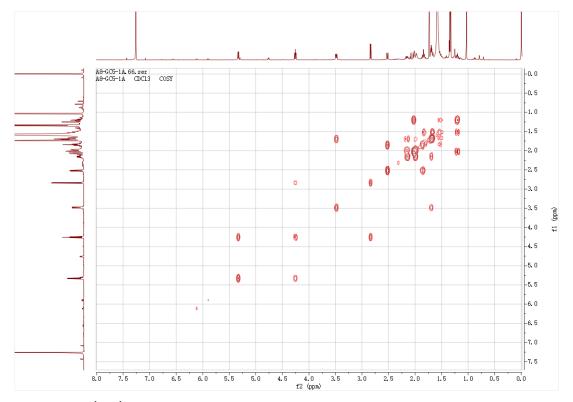


Figure S89. ¹H–¹H COSY spectrum of 13 (600 MHz, CDCl₃)

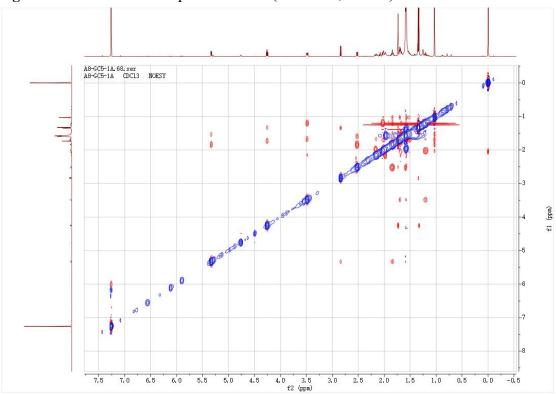


Figure S90. NOESY spectrum of 13 (600 MHz, CDCl₃)

EI202101749 A8-GC5-1A -c1#14 RT: 2.68 T: + c EI Full ms [49.50-800.50] m/z = 48-803m/z Intensity Relative Theo. Delta RDB Composition equiv. Mass (mmu) 7.0 C₁₆ H₂₀ 1397829.0 212.1546 4.66 212.1560 -1.35 6.5 C₁₆ H₂₁ 2581159.0 8.60 213.1638 -1.14 213.1626 215.1426 1684101.0 5.61 215.1430 -0.43 6.5 C₁₅ H₁₉ O₁ 218.1657 812947.0 2.71 218.1665 -0.78 5.0 C₁₅ H₂₂ O₁ 229.1579 841138.0 2.80 229.1587 -0.82 6.5 C₁₆ H₂₁ O₁ 2084501.0 6.94 230.1665 -0.82 6.0 C₁₆ H₂₂ O₁ 230.1657 231.1729 1604021.0 5.34 231.1743 -1.45 5.5 C16 H23 O1 6.0 C₁₇ H₂₄ O₁ 244.1823 1308243.0 4.36 244.1822 0.10 5.0 C₁₆ H₂₄ O₂ 4.21 248.1771 248.1773 1264526.0 0.22 249.1839 932739.0 3.11 249.1849 -0.96 4.5 C₁₆ H₂₅ O₂ 2.90 0.51 6.5 C₁₇ H₂₃ O₂ 259.1698 870855.0 259.1693 787152.0 2.62 269.1900 -0.96 7.5 C19 H25 O1 269.1890 284.2138 1668902.0 5.56 284.2135 0.32 7.0 C₂₀ H₂₈ O₁ 287.2004 1104993.0 3.68 287.2006 -0.16 6.5 C₁₉ H₂₇ O₂ 302.2240 1388705.0 4.63 302.2240 -0.06 6.0 C₂₀ H₃₀ O₂ 5.0 C₂₀ H₃₂ O₃ 320.2347 1207871.0 4.02 320.2346 0.15

Figure S91. HREIMS spectrum of 13

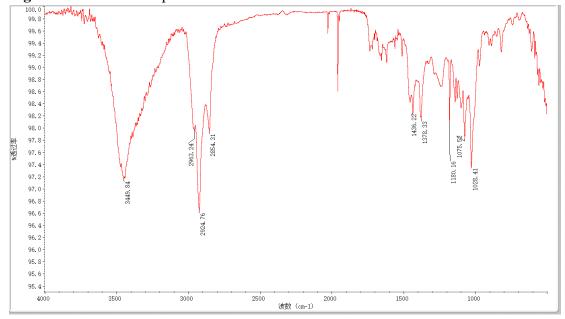


Figure S92. IR spectrum of 13

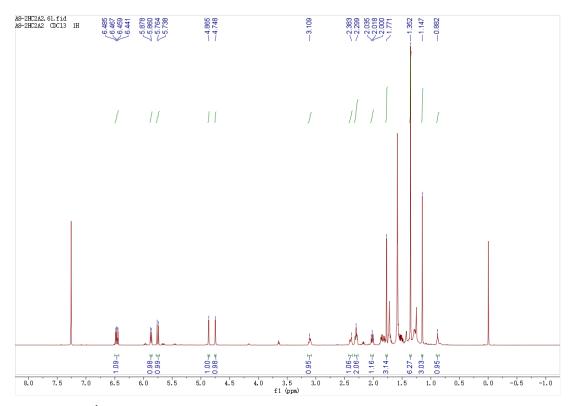


Figure S93. ¹H NMR spectrum of 14 (600MHz, CDCl₃)

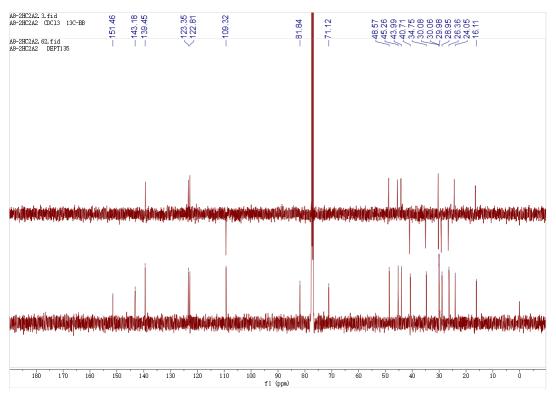


Figure S94. ¹³C NMR spectrum of 14 (125 MHz, CDCl₃)

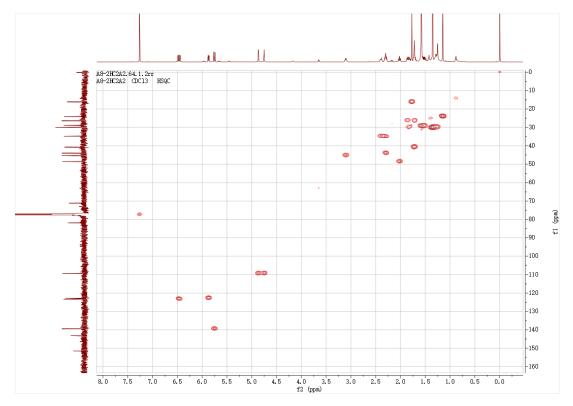


Figure S95. HSQC spectrum of 14 (600 MHz, CDCl₃)

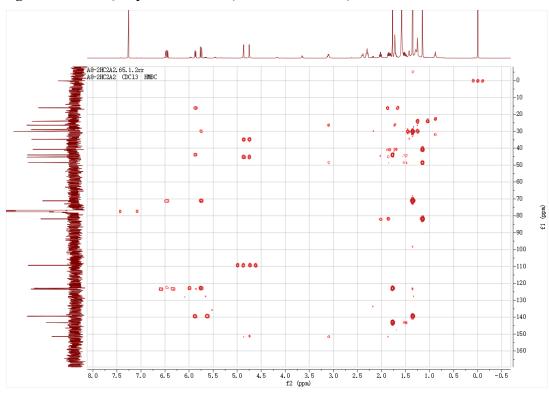


Figure S96. HMBC spectrum of 14 (600 MHz, CDCl₃)

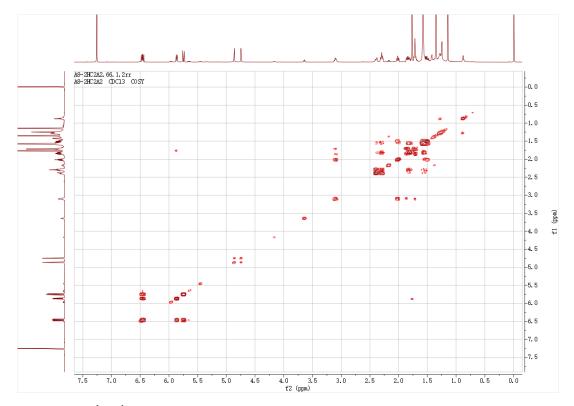


Figure S97. ¹H–¹H COSY spectrum of 14 (600 MHz, CDCl₃)

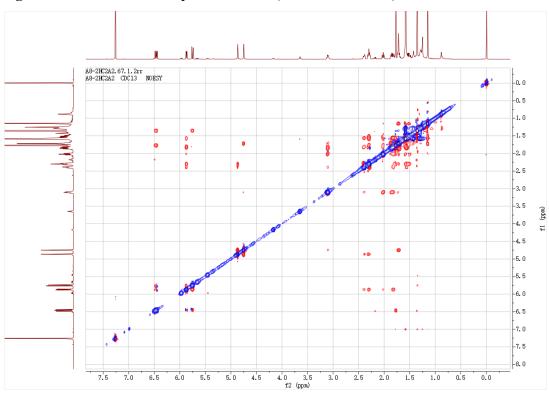


Figure S98. NOESY spectrum of 14 (600 MHz, CDCl₃)

EI202101755 A8-2HC2A2 -c1#11 RT: 2.07									
T: + c EI Full ms [49.50-800.50]									
m/z = 48-8				_					
m/z	Intensity	Relative				Composition			
045 4554	0740065		Mass	(mmu)	_				
	2748265.0					C 16 H 23			
217.1586			217.1587			C ₁₅ H ₂₁ O ₁			
218.1642			218.1665			C ₁₅ H ₂₂ O ₁			
225.1641			225.1638			C ₁₇ H ₂₁			
226.1701	750871.0	6.11	226.1716	-1.51	7.0	C ₁₇ H ₂₂			
227.1793	1622788.0	13.20	227.1794	-0.15	6.5	C ₁₇ H ₂₃			
228.1868	6052541.0	49.22	228.1873	-0.48	6.0	C ₁₇ H ₂₄			
229.1587	621327.0	5.05	229.1587	-0.02	6.5	C ₁₆ H ₂₁ O ₁			
230.1654	554594.0	4.51	230.1665	-1.12	6.0	C ₁₆ H ₂₂ O ₁			
231.1738	837951.0	6.81	231.1743	-0.59	5.5	C 16 H 23 O 1			
232.1801	288342.0	2.34	232.1822	-2.02	5.0	C ₁₆ H ₂₄ O ₁			
239.1790	399418.0	3.25	239.1794	-0.44	7.5	C ₁₈ H ₂₃			
240.1862	306836.0	2.50	240.1873	-1.09	7.0	C ₁₈ H ₂₄			
241.1586	317595.0	2.58	241.1587	-0.08	7.5	C ₁₇ H ₂₁ O ₁			
241.1948	353250.0	2.87	241.1951	-0.29	6.5	C ₁₈ H ₂₅			
243.1741	855220.0	6.96	243.1743	-0.23	6.5	C ₁₇ H ₂₃ O ₁			
243.2104	2031386.0	16.52	243.2107	-0.32	5.5	C ₁₈ H ₂₇			
244.1803	359733.0	2.93	244.1822	-1.83	6.0	C ₁₇ H ₂₄ O ₁			
245.1898	461657.0	3.75	245.1900	-0.21	5.5	C ₁₇ H ₂₅ O ₁			
246.1980	1533774.0	12.47	246.1978	0.14	5.0	C ₁₇ H ₂₆ O ₁			
253.1955	2744070.0	22.32	253.1951	0.43	7.5	C ₁₉ H ₂₅			
257.1899	333257.0	2.71	257.1900	-0.09	6.5	C ₁₈ H ₂₅ O ₁			
258.1976	279843.0	2.28	258.1978	-0.21	6.0	C ₁₈ H ₂₆ O ₁			
268.2187	1867822.0	15.19	268.2186	0.16	7.0	C ₂₀ H ₂₈			
269.2236	699282.0	5.69	269.2264	-2.74	6.5	C ₂₀ H ₂₉			
271.2057	3967903.0	32.27	271.2056	0.08	6.5	C19 H27 O1			
286.2289	8008206.0	65.13	286.2291	-0.23	6.0	C 20 H 30 O 1			
289.2159	348483.0	2.83	289.2162	-0.35	5.5	C ₁₉ H ₂₉ O ₂			
304.2400	350254.0	2.85	304.2397	0.36	5.0	C 20 H 32 O 2			

Figure \$99. HREIMS spectrum of 14

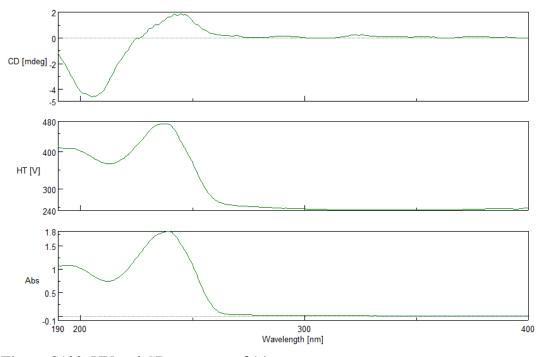


Figure S100. UV and CD spectrum of 14

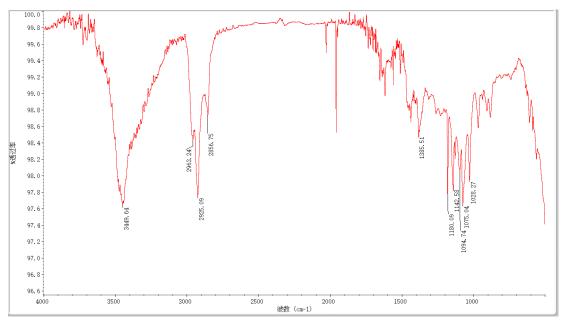


Figure S101. IR spectrum of 14

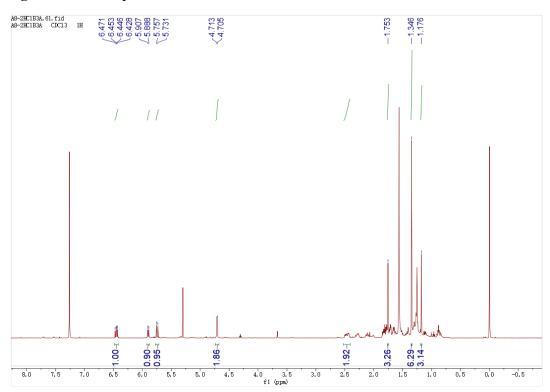


Figure S102. ¹H NMR spectrum of 15 (600MHz, CDCl₃)

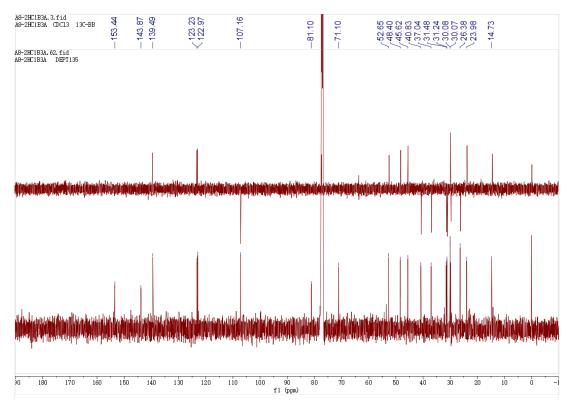


Figure S103. ¹³C NMR spectrum of 15 (125 MHz, CDCl₃)

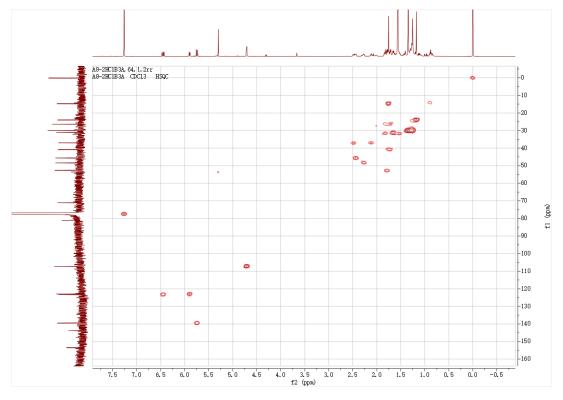


Figure S104. HSQC spectrum of 15 (600 MHz, CDCl₃)

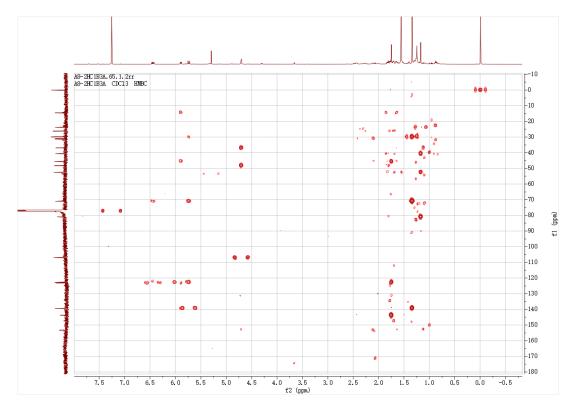


Figure S105. HMBC spectrum of 15 (600 MHz, CDCl₃)

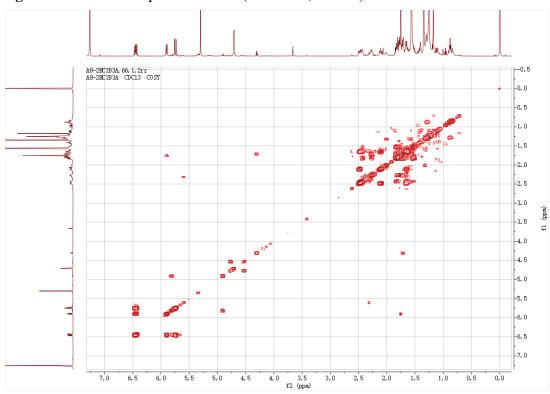


Figure S106. ¹H–¹H COSY spectrum of 15 (600 MHz, CDCl₃)

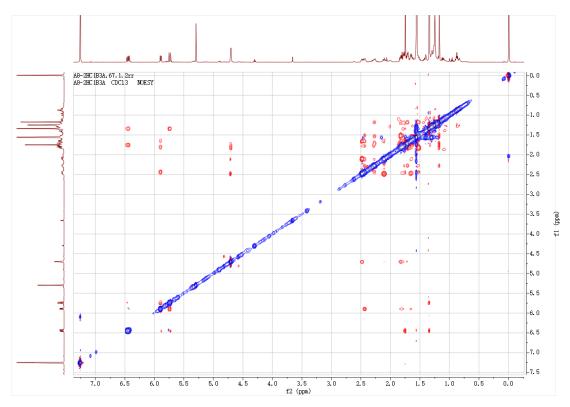


Figure S107. NOESY spectrum of 15 (600 MHz, CDCl₃)

D:\data\2021\EI20	02101813_A8-2HC1B	3A -c1	10/2	1/2021 1:24:13 F	PM						
EI20210181	EI202101813 A8-2HC1B3A -c1#7 RT: 1.24										
T: + c EI Full ms [49.50-800.50]											
	m/z = 48-803										
m/z	Intensity	Relative		Delta	RDB	Composition					
			Mass	(mmu)	equiv.						
199.1479	3644199.0	31.50	199.1481	-0.23	6.5	C 15 H 19					
200.1538	1192140.0	10.30	200.1560	-2.18	6.0	C ₁₅ H ₂₀					
201.1635	2498025.0	21.59	201.1638	-0.23	5.5	C15 H21					
204.1504	1388662.0	12.00	204.1509	-0.44	5.0	C ₁₄ H ₂₀ O ₁					
211.1467	1077776.0	9.32	211.1481	-1.47	7.5	C ₁₆ H ₁₉					
213.1630	3543084.0	30.63	213.1638	-0.82	6.5	C ₁₆ H ₂₁					
214.1705	4530516.0	39.16	214.1716	-1.06	6.0	C16 H22					
215.1779	2846127.0	24.60	215.1794	-1.57	5.5	C16 H23					
225.1640	1082919.0	9.36	225.1638	0.24	7.5	C ₁₇ H ₂₁					
227.1796	1183173.0	10.23	227.1794	0.13	6.5	C ₁₇ H ₂₃					
228.1871	1855571.0	16.04	228.1873	-0.15	6.0	C ₁₇ H ₂₄					
243.1738	961042.0	8.31	243.1743	-0.59	6.5	C17 H23 O1					
243.2101	3286915.0	28.41	243.2107	-0.65	5.5	C ₁₈ H ₂₇					
253.1949	2327920.0	20.12	253.1951	-0.19	7.5	C ₁₉ H ₂₅					
268.2187	1472032.0	12.72	268.2186	0.14	7.0	C ₂₀ H ₂₈					
271.2054	4733635.0	40.92	271.2056	-0.21	6.5	C ₁₉ H ₂₇ O ₁					
286.2294	2905988.0	25.12	286.2291	0.28	6.0	C20 H30 O1					
304.2402	1077830.0	9.32	304.2397	0.53	5.0	C ₂₀ H ₃₂ O ₂					

Figure S108. HREIMS spectrum of 15

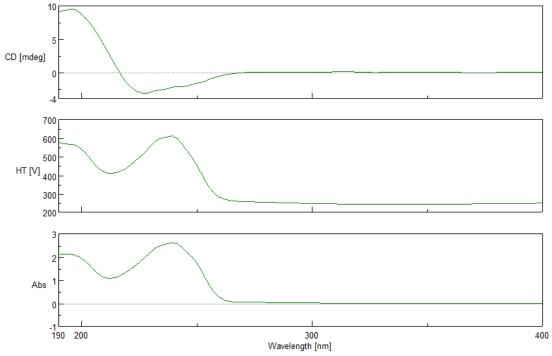


Figure S109. UV and CD spectrum of 15

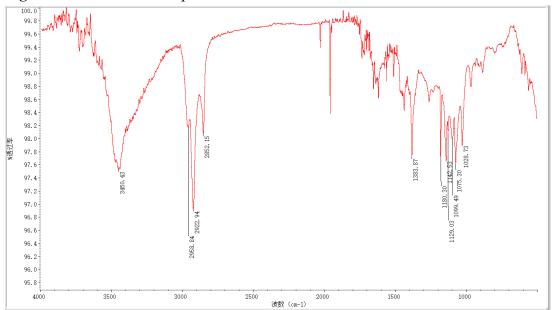


Figure S110. IR spectrum of 15

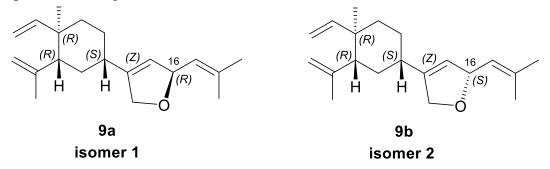


Figure S111. Structure of studied isomers of compound 9

Functional		Solvent?		Basis		Type of Data		
■PV11	P¥91	PC		6-31+0	(d, p)	Shielding	g Tensors	
		DD4+	₫ 99. 83 %	₫ 0.17%	_			
Nuclei	sp2?	DP4+ xperimenta		Isomer 2	Isomer 3	Isomer 4	Isomer	
C	sp2:	39.9	153. 2	153.1	130met 3	INCHEL T	ISOMEI	
c		52.6	143.1	143.0				
c	х	33.1	162.6	161.8				
c	^	37.2	156.5	156.7				
c	х	27.2	167.9	168.9				
c	X	39.7	160.3	160.2				
c	Δ	150.1	50.6	50.5				
c		147.5	50.6	50.6				
c		112.4	84. 2	84.3				
c	X	24.9	169.2	169.1				
c		110.2		88.5				
C	X	16.7	88.6					
			176.44	176.64				
C		145.7	53. 22	53.38				
C C		120.9 75.3	75. 26	75.37				
	Х		121.71	121.50				
C		83.1	111.39	111.22				
C		125.7	72. 28	72.37				
С		135.5	62.77	62.64				
C		26	169.22	169.24				
С		18.2	177.55	177.55				
TT		0.01	20. 77	20. 70				
H H		2.01 1.61	29. 77 29. 83	29. 79 30. 09				
H H	Х		30.24	30. 20				
<u>п</u> Н	X	1.61 2.1						
п Н		1.68	29.50	29.54				
	X		30. 2202172					
H	Х	1.44		30.1060126				
<u>Н</u> Н	X	1.46		30.1569978				
	X	1.46		30.0419154				
H		5.81		25. 2541179				
H	X	4.58		26. 4066554				
H	Х	4.83	26.6772847					
H		1.71		30.1114021				
H		1.71	29.894635					
H		1.71		29. 8413915				
H	X	4.9		26. 4920136				
H	Х	4.9		26. 5121271				
H		1.01		31. 2775949				
H		1.01		30.1677567				
H		1.01		30. 5417124				
H		5.31	26.1803821					
H	X	4.54		27.1196528				
H	Х	4.64		26. 8802879				
H		5. 5		26.1429093				
H		5. 15	26. 3244063					
H		1.73	30.0380179					
H		1.73	30.0194962					
H		1.73	30.1830762					
H		1.73	30.023883					
H		1.73	30. 427398					
H		1.73	29.8146288	30. 4130154				

Figure S112. Averaged isotropic magnetic shielding constants (σ) of studied isomers and experimental 1H and ^{13}C data of 9

Functional mPW1PW91		ent?	Basis Set 6-31+G(d,p)		Type of Data Shielding Tensors	
	Isomer 1	Isomer 2	Isomer 3	Isomer 4	Isomer 5	Isomer 6
sDP4+ (H data)	42.51%	4 57. 49%	-	-	-	_
sDP4+ (C data)	d 56. 15%	43.85%	-	-	-	_
sDP4+ (all data)	48.63%	₫ 51.37 %	ı	ı	-	-
uDP4+ (H data)	4 99.86%	d 0. 14%	-	-	_	-
uDP4+ (C data)	46.34%	₫ 53.66%	-	-	-	-
uDP4+ (all data)	4 99.84%	4 0. 16%	-	ı	_	_
DP4+ (H data)	4 99. 81%	d 0. 19%	_	_	_	_
DP4+ (C data)	₫ 52. 51 %	47.49%	_	_	_	_
DP4+ (all data)	4 99. 83%	d 0. 17%	_	_	_	_

Figure S113. DP4+ results obtained using experimental ¹H and ¹³C data of compound **9** versus isomers **9a** and **9b**

Figure S114. Structure of studied isomers of compound 10

Functional			Solvent? PCM		s Set G(d,p)	Type of Data Shielding Tensors	
		DP4+	₫ 0.00 %	d 0.00%	d 0.00%	₫100.00 %	_
Nuclei	sp2?	xperimenta	Isomer 1	Isomer 2	Isomer 3	Isomer 4	Isomer 5
С		39.8	153.2	153.2	153.0	153.3	
С		52.8	142.7	143.0	142.8	142.6	
С	х	33.9	161.3	161.7	160.8	161.5	
С		41.1	150.3	150.7	150.4	151.1	
С	х	27.1	168.7	168.6	169.2	167.7	
С	х	39.8	160.2	160.4	160.5	160.3	
С		150.1	50.6	50.7	50.5	50.6	
С		147.4	50.5	50.2	50.4	50.6	
С	х	110.3	88.5	88. 5	88. 6	88. 7	
С	х	112.4	84.3	84. 6	84. 4	84.3	
С		16.7	176.1	176.6	176.5	176.2	
С		25	169.26	168.40	168.31	169.14	
С		149.2	48.95	49.01	48.77	48. 48	
С	х	109.4	88.10	88. 55	88.69	88.13	
С		56	140.54	140.28	139.04	138.60	
С		58.5	134.21	133.95	135.71	135. 28	
С		63	132.43	132.44	134.01	134.51	
С		58.6	137.30	137.33	136.13	136.21	
С		24.7	171.51	171.52	171.89	171.77	
С		19.7	176.09	176.09	176.60	176.57	

H		2.02	29. 78	29.80	29.83	29. 81
H	х	1.6	29. 98	29.81	29.92	29. 81
H	х	1.53	30.16	30.26	30.18	30. 27
H		1.99	29. 5340503	29.517696	29.5956355	29. 6243786
H	х	1.62	29. 7831772	29.9978599	29. 7877729	29. 9591575
H	х	1.5	30.2143417	30.0858343	30.1919774	30.0895766
H	х	1.48	30.1046551	30.1281622	30.1176191	30.1096067
H	х	1.48	29.9937712	30.0083197	29.9991686	30.0194794
H		5.81	25. 2271971	25. 2583384	25. 2592416	25. 2241271
H	х	4.9	26. 4846061	26. 4854008	26. 4922313	26. 4890081
H	х	4.9	26. 4944741	26.5012281	26.5043046	26.5027924
H	х	4.83	26. 3857173	26.3608126	26.3667446	26.3900452
H	х	4.57	26.6718796	26.6631036	26.6368418	26. 673243
H		1.01	31.2459623	29.8978105	29.8906625	31.2651856
H		1.01	30.1154923	29.8163244	29.818158	30.0740645
H		1.01	30. 5278597	30.0877662	30.092478	30.528799
H		1.71	30.0889904	31.2842685	31.2837359	30.086878
H		1.71	29.8894967	30.145295	30.0930534	29. 8766822
H		1.71	29.838201	30.4981115	30.4880025	29. 8909581
H	x	5.09	26.392703	26.3902534	26.4149611	26. 3753123
H	x	4.95	26.5050457	26.5294215	26.5164921	26. 4797489
H		3.31	28. 4239683	28. 4298219	28. 2685267	28. 2544793
H		2.73	29. 3437228	29.3441615	29.0729206	28. 9523859
H		2.63	29. 4835126	29. 4809384	29.0557675	28. 9546145
H		1.35	30.2351614	30. 24241	30.2165028	30. 1538297
H		1.35	31.0853627	30.161786	30.1429085	30. 2238291
H		1.35	30.1598604	31.091115	31.0473772	31.0521698
H		1.39	30.1808229	30.3462962	30.2116177	30.3701416
H		1.39	30.8349274	30.8392735	30.3502838	30. 2137848
H		1.39	30.3443156	30.1821691	30.7772859	30.7714605

Figure S115. Averaged isotropic magnetic shielding constants (σ) of studied isomers and experimental 1H and ^{13}C data of 10

Functional	Solvent?		Basis Set		Type of Data	
mP♥1P♥91	P	91	6-31+0	G(d, p)	Shielding	Tensors
	Isomer 1	Isomer 2	Isomer 3	Isomer 4	Isomer 5	Isomer 6
sDP4+ (H data)	4 0. 01%	4 0. 00%	4 0. 00%	4 99. 99 %	ı	-
sDP4+ (C data)	45.05%	4 19. 28%	4 6. 69%	4 28. 98%	ı	_
sDP4+ (all data)	4 0.01%	4 0. 00%	4 0. 00%	4 99. 99%	ı	-
uDP4+ (H data)	4 0. 03%	4 0. 00%	4 0. 00%	4 99. 97 %	-	-
uDP4+ (C data)	15.75%	4 27. 27 %	4 20. 23%	4 36. 76%	_	_
uDP4+ (all data)	4 0.01%	4 0. 00%	4 0. 00%	4 99. 99 %	ı	_
DP4+ (H data)	4 0. 00%	4 0.00%	4 0. 00%	1 00.00%	_	-
DP4+ (C data)	4 29. 13 %	1 21.59%	ⅆ 5. 55%	43.73%	-	_
DP4+ (all data)	4 0. 00%	4 0.00%	4 0. 00%	4 100.00%	_	_

Figure S116. DP4+ results obtained using experimental ¹H and ¹³C data of compound 10 versus isomers 10a, 10b, 10c, 10d