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Abstract: As an emerging network paradigm, Space-Air-Ground integrated networks (SAGIN)
has attracted the attentions from academia and industry. That is because SAGIN can implement
seamless global coverage and connections among electronic devices in space, air, and ground spaces.
Additionally, the shortages of computing and storage resources in mobile devices greatly affect
the quality of experiences for intelligent applications. Hence, we devise to integrate SAGIN as an
abundant resource pool into mobile edge computing environments (MEC). To facilitate efficient
processing, we need to solve the optimal task offloading decisions. Different from the existing
MEC task offloading solutions, we have to face some new challenges, such as the fluctuation of
processing capability for an edge computing node, the uncertainty of the transmission latency caused
by the heterogeneous network protocols, the uncertain amount of uploaded tasks during a period,
and so on. In this paper, we firstly describe a task offloading decision problem in new challenge
environments. But, we cannot use the standard robust optimization and stochastic optimization
methods to obtain the optimal result under the uncertain network environments. In this paper, we
propose the condition value at risk-aware distributionally robust optimization algorithm, named
as CVAR-DRO, to solve the task offloading decision problem. The proposed CVAR-DRO method
combines the distributionally robust optimization and the condition value at risk model for solving
the optimal result. And then, We have evaluated our approach in simulation SAGIN environments
with the confidence interval, the number of mobile task-offloading and the various parameters.
We compare our proposed CVAR-DRO algorithm with the state-of-the-art algorithms, such as the
standard robust optimization algorithm, the stochastic optimization algorithm, the DRO algorithm,
and the brute algorithm. The experimental results show that CVAR-DRO can get a sub-optimal
mobile task-offloading decision. Overall, CVAR-DRO is more robust than others to the new challenges
mentioned above in SAGIN.

Keywords: Space-Air-Ground Integrated Network; Mobile Edge Task Offloading; Distributionally
Robust Optimization; Conditional Value at Risk

1. Introduction

With the booming development of the Internet of Things (IoT) ecosystem, users expect to obtain
higher quality experiences (QoE) for various IoT applications. After the official deployment and
operation of the fifth generation (5G) mobile system, the sixth generation (6G) mobile system is
gradually coming into the limelight. The high-speed communication technologies can provide
higher quality of service (QoS) for the IoT applications, such as intelligent transportation, intelligent
agriculture, maritime surveillance, smart cities, natural disaster relief, and so on. However, the existing
terrestrial communication networks cannot effectively provide the QoS and QoE guarantee for the
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intelligent and low-latency IoT applications. In recent years, the Space-Air-Ground integrated network
(SAGIN) architecture has attracted the attention from academia and industry. SAGIN is an integration
of space layer, aerial layer, and ground layer. As a multidimensional network, SAGIN adopts different
communication protocols in each segment or the integration of different segments to achieve high
throughput and high-reliability data delivery [1].

However, we have to face some new challenges in SAGIN, such as the mobile edge
computationally intensive tasks offloading and resources allocation in uncertain and heterogeneous
network environments. The uncertain network parameters, such as the uncertain latency, the uncertain
amount of arrival tasks, and the uncertain computation resources, may seriously impact the efficiency
of edge task execution. Nowadays, the stochastic optimization (SO) [2] and the robust optimization
(RO) [3-5] methods are proposed to solve the uncertainty problems. The SO method can use the
probability distribution of measuring parameters to predict the potential uncertainty and obtain
the mathematical expectation of objective function. The RO method can directly solve the target
value under the worst-case conditions, and it doesn’t need to obtain the probability distributions
of measuring parameters. Distributionally robust optimization (DRO) can be viewed as a unifying
framework for the SO and RO methods. The DRO method can replace the probability distribution
of uncertain measuring parameters with a fuzzy set [6]. And then it can choose the worst case in the
fuzzy set to get better robustness. Additionally, literature [7] proposed the conditional value at risk
(CVaR) aware DRO method, which can reflect the potential risk and improve its stability.

There are two main technical challenges in solving the risk-aware two-stage DRO problem.
Firstly, it is difficult to solve the DRO problem due to the fuzzy sets. Secondly, the first-stage offloading
decision is the zero-one integer programming. And, the second-stage is a resources allocation procedure
for latency insensitivity and computation-intensive tasks. But, in this paper, we have to solve the
risk-aware two-stage DRO problem, which brings new challenge. If we can solve the risk-aware
two-stage DRO problem, we can get the better revenue under the uncertainty and the quality of
service(QoS) in SAGIN network architecture.

Our contributions are summarized as follows:

e Investigate the task offloading decision model in the SAGIN environment. The task offloading
model consists of two stages: the first stage is task offloading decision, and the second stage is
edge-cloud collaboration and cloud resource allocation.

e  Building upon the work in (1), a fuzzy set of computational resources for edge computing nodes
is constructed, and consideration for CVaR is introduced. Then, based on the theory of Lagrange
duality, the model is transformed into a semidefinite programming form, and the Conditional
Value at Risk (CVaR)-aware Distributionally Robust Optimization for Task Offloading (RaDROO)
algorithm is proposed to solve the task offloading problem with distributional robustness under
risk awareness.

e  We conducted simulation experiments from two aspects. On the one hand, we adjust some
parameters of the proposed model to get the optimal parameter values. On the other hand, we
fix the parameters and compare with the the state of the art algorithms in different computation
and network environments. The experimental results demonstrate that our proposed model and
algorithm have better results than the state of the art methods in terms of usability, robustness
and risk.

The remainder of this paper is organized as follows. Section II gives a brief introduction to SAGIN
before reviewing the computation task offloading. Section III describes the network architecture and
proposes a computation task offloading model under uncertain computation environments. Section
IV gives the risk-aware DRO algorithm to obtain the optimal task offloading decision and resource
allocation strategy. Section V shows the performance evaluation and analysis. Section VI concludes
our work and presents the future work.
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2. Related Work

In this section, we firstly introduce the SAGIN architecture. And then, we review the traditional
computation task offloading, the computation task offloading under the uncertain network and
computation environments, and the risk-aware computation offloading, respectively.

2.1. SAGIN Architecture

The SAGIN refers to the integration and synergy of systems from multiple domains-space, air,
ground-to form a wide area coverage and high speed network for more efficient communication and
data exchange. It is a proposed solution to address the growing need for enhanced communication and
information sharing capabilities. SAGIN requires the use of various technical means, such as satellite
communications, unmanned aerial vehicles and ground sensors, to enable collaborative operations
and data sharing between different platforms. By sharing data and information in real time, situational
awareness can be improved, decision making can be optimised, and mission effectiveness can be
enhanced.

Over time, the SAGIN architecture has evolved rapidly and various projects like Global
Information Grid (GIG) have been proposed and widely deployed [8]. liu et al. [1] describe the
communication network design and resource allocation algorithm of SAGIN in a high-dimensional
network environment. Likewise, SAGIN can be invoked in MEC environments and has excellent
performance in unique environments, i.e. desert, disaster scenarios. Yuet al. [9] considered the
fine-grained offloading problem and caching problem and proposed the SAGIN framework which
supports edge computing.

The impact of SAGIN on computating tasks offloading is multifaceted and can be summarized as
follows:

—  Cross-platform efficiency: Through the integration and collaborative operations achieved by
SAGIN, different tasks can be offloaded and migrated between different platforms, thereby
improving the efficiency of task execution.

—  Increased Flexibility through Edge-Cloud Collaboration: In the SAGIN network, tasks can be
dynamically allocated and scheduled, allowing them to be offloaded to the most suitable platforms
based on their computational requirements. This improves resource utilization.

Overall, the impact of SAGIN on the field of task offloading is positive, as it can improve task
execution efficiency, safety, flexibility, and coverage. An ECN built on the SAGIN framework will be
able to more fully exploit its capabilities. Consolidate all available resources to provide computing
resources for the computing tasks in this network environment.

2.2. Traditional Computation Offloading

First of all, a class of existing tasks offloading optimization algorithms in practice applications
is on task dependency. Yuan et al. [10] paid an attention to a dependent task assignment problem
over multiple mobile terminal devices (MTDs). In [11], an efficient partitioned search method was
implemented for obtaining optimal solutions for task offloading policies and resource allocation under
task-dependent models. Besides, without considering task dependency, whether to offload to edge
computing nodes(ECN) for tasks and how much computing resources are allocated by ECNs according
to the performance requirements for computing offloads is a hot topic of current researchers. The
mainstream research directions under this scope are the following three. The first one is to explore
task offloading decision schemes that minimize task execution delay[12,13]. Xiao et al. [14] designed
a heat prediction method to analyze the dynamics of urban heat zones, aided by the design of a
non-cooperative game-theoretic strategy selection based on regret matching to achieve minimum time
delay. Dai, Y. et al. [15] proposed a JSCO algorithm to search for the solution to the optimization
problem in a distributed manner with less overhead, using the integrated task processing delay as
the performance metric. In [16], Farhangi, E.et al. proposed a novel offload approach OAMC, which
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takes into account the dynamic changes of mobile applications and reduces the number of migrations
and overall data movement while minimizing the turnaround time of mobile applications. Secondly,
plenty of studies[17-20] focus on obtaining task offloading decisions in edge computing networks
that minimize energy consumption, which is affected by the amount of offloading computations,
MTD-MECs distance, channel conditions, application type, compression efficiency, and etc.. Hmimz et
al. [19]jointly considered both the priority of certain MTDs and minimizing overall power consumption.
Third, [21,22] assumes that the system can gain a certain amount of revenue by completing the task, and
the goal is to find the offloading decision that maximizes the revenue. Samantaet al. [23] synthetically
explores delay-sensitive and delay-tolerant edge services and guaranteed Quality of Experience(QoE)
to be maximized over a long period using the Lyapunov method. Chenget al. [24] applied gaming
offloading algorithms to maximize mobile network operator revenue.

In addition to the common is solved by traditional optimization methods, Some researchers[25]
have also chosen to apply intelligent optimization algorithms to pick the optimal unloading decision.In
[20], it developed a new adaptive inertia weight-based particle swarm optimization (NAIWPSO)
algorithm to minimize the energy consumption of MTDs while considering the channel constraint
condition during task offloading. Li et al. [26] proposed an algorithm, named EIPSO, based on
an developed particle swarm optimization. Tout et al. [27] designed a multi-objective intelligent
optimization algorithm based on genetic algorithm.

Machine learning and deep learning algorithms are now extraordinary prevalent in the research
field in droves. Maleki, E. Fet al. [16] applied a Machine Learning(ML) algorithm called matrix
complementation to design two fresh offloading methods, S-OAMC and G-OAMC, that enhance
scalability and find low turnaround time offloading decisions. In [28], various machine learning
techniques for the communication, network and security components of the future 6G environment in
vehicular networks were profiled, and methods and directions for implementing artificial intelligence
in future 6G vehicular networks are envisioned. However, machine learning algorithms typically
require a significant amount of training data and cannot be directly computed. They rely on training
on large datasets to learn patterns and make predictions. Additionally, machine learning algorithms
are sensitive to changes in the environment and may require retraining or adaptation to maintain their
performance.

Table 1. Content in the relevant literature.

Previous Work Game ML RO SO DRO meanrisk-aware SAGIN

[29] v
(30], [3] v
[16] v
[7] v
[2] v
[31], [32] v
[33] v v
Our Algorithm v v v

2.3. Uncertain-aware Computation Offloading

The above research scenarios whole assume that controllers has access to accurate computing
resource and channel information either statically or dynamically. Nevertheless, in application
environments, MECN are transient which can considerably impact resource utilization and user
QoE. [30][3] investigates robust task offloading that is tolerant to failures in offloading scenarios
and can effectively overcome this. In [4], robust tasks with tolerant server failures offloaded were
contemplated to achieve higher application responsiveness. To counter the inaccuracy of channel
measurements, [5] design a robust offloading strategy for channel information estimation errors.
Facing the connection instability between MTDs and small clouds, [3] proposed a robust computation
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offloading strategy with failure recovery. [34] introduced a mobility model and a trade-off fault
tolerance mechanism for the offload system, taking into account the dependencies between services.

In contrast to the robust optimization described above, which sacrifices a lot of device performance
to ensure its robustness during application, stochastic optimization is used. The investigations
of Stochastic Optimization (SO) in MEC gives the probability distribution of channel resources,
computational resources of ECNs varying randomly[2]. proposed a two-stage SO to tackle the challenge
of uncertain dynamic environments.

2.4. Risk-aware Computation Offloading

Unlike the uncertain or undefined parameter scenarios described above, risk considerations
refer to unexpected conditions that occur during system operation. Bai et al. [29] solve risk-aware
computation offloading (RCO) problem by considering the use of Bayesian Stackelberg Game to
rationally disperse the nodes for task offloading when the server is attacked by outside miscreants.
Apostolopoulos et al. [35] take account of the uncertainty in MEC server computational resources as
well as storage space under heterogeneous networks. Schultz, R.et al. [32] explain the risk consideration
in stochastic programming, i.e., mean-risk, and also give the expression formula for CVaR. With CVaR,
Pan et al. [36] considered the availability of the MEC system in case of possible link failure. Mean-CVaR
is commonly deployed in finance, where Zhang et al. [31] have studied portfolio selection under return
fuzzy set conditions, considering a downside risk measure to reduce investment risk.

3. Network Architecture and System Model

In this section, we elaborate on the SAGIN architecture and channel models. Based on the
compute, caching and communication (3C) requirements, We developed an optimization model for
making computing offload decisions, aiming to minimize cost.

3.1. SAGIN Architecture and Channel Models

SAGIN is a novel network structure integrating multiple dimensions. It adopts different protocols
and occupies different frequency bands for establishing communications between the different
dimensions[1]. We select the rational frequency band for communications by taking into account the
distance between ECNSs, the influence of current environmental factors on the link, the free-space path
loss, tropospheric attenuation, and other factors.

In the study, tasks are uploaded to the nearest BSs from MTDs by default. As shown in Figure 1,
the SAGIN architecture consists of five components: the MTD segment, ground segment, satellite
segment, aerial segment, and cloud data centre (CDC) segment. Let B = {1,2,---,B} be used as
the set of BSs . Furthermore, as a representative of the aerial segment, UAVs are despatched as the
extension of the ground BS process. The set of the UAVs are denoted by & = {1,2,--- ,U}. The
satellite segment consists of LEO satellites. Due to the utilization of higher communication frequency
bands, satellites possess lower propagation delay and free space attenuation [37].

The SAGIN system offers three tasks offload strategies, depending on the task information
uploaded by MTDs: firstly, selecting a BS that possess sufficient computing resources to calculate the
task; secondly, applying for a UAV offload and compute the task; thirdly, selecting for a UAV as an
intermediary and applying an LEO satellite to offload and compute the task. As a multi-dimensional
6G network, SAGIN integrates several network segments and uses communication protocols to achieve
high reliability and high throughput data transmission [38].

The maximum achievable transmission rate K[bits/s] for the tasks in the channel can be expressed
as follows.

K = Blog,(1+ P19 /), M
L, = 32.45+201gd(km) +201g f(MHz).


https://doi.org/10.20944/preprints202305.1689.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 May 2023 do0i:10.20944/preprints202305.1689.v1

6 0f 20

Within the above equation, B (HZ), P and Noise represent channel bandwidth, average signal
power and noise power; L, d, f represent propagation loss in free space, and the distance between
ECNs and signal frequency, respectively.

S
Space L Jﬁ) /) CDC
/

LEO Satellite / \\

e TN~ Q
. Yo B oy
Air ol o B

UAV

Cloud Server

Ground

MEC Network

Figure 1. SAGIN model.

3.2. Computation Tasks Offloading Model

We suppose that there are n latency sensitivity and computation-intensive tasks offloaded to
nearby BSs, where the set of tasks is denoted as ' = {1,2,--- ,N}. And, each of tasks is charactered

by any parameters, (nup 1", ndow ”) ,i € N, in which n"? denotes the input and uploaded data size;

1
1P denotes the number of CPU cycles required to process data; n°“" denotes the processed and
downloaded data size. In this research, the study’s objective is 3C and the total cost of tasks, thus
keeping the atomicity of the tasks, i.e. each task can only be served by one processing ECN.

In our proposed SAGIN system, there are four offload destinations: BSs, UAVs, LEO satellites ,and
CDC. We assume that ¥85, x44V  and xLEO are three binary parameters, where ng denotes whether
task i selects BS b as the offload target, xl%AV denotes whether task i selects UAV u as the offload target
and x:EO denotes whether task i selects LEO satellite s as the offload target.

25 1 +Zu 1 UAV+Zs 1 stEO_lweN 2)

xBS, xUAV yLEO ¢ £01},be BjuclU,s €S 3)

The above equation indicates that each task would be offloaded to one ECN in the SAGIN
architecture. xBS = 1 if task n; is offloaded to BS b and xBS = 0 otherwise; x UAV = 1if task n; is
offloaded to UAV u and xZUuAV = 0 otherwise; leSEO = 1if task n; is offloaded to LEO satellite s and
xEEO = 0 otherwise. These three different computing units own different computing power and
storage resources. 575, UAV “and 54T denote the number of computing resources in per second
requested by task i from BSs, UAVs, or LEO satellites, respectively.

We assume that tasks are uploaded to the nearest base station first and then propagate them from
the base station to the target computing nodes. And since the propagation delay of tasks directly to
edge computing nodes is much greater than uploading tasks to the nearest base station, we will ignore

the upload delay of tasks.
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The time taken by a task to be uploaded and downloaded between ECNs and the latency taken to
calculate the task can be expressed as

n“? n“p

THP — = 4)
up —[Lp/10]
B Blogy(1 4+ a0
down down
d o n . n
T = down —[Lp/10] (5)
K Blog, (1 + P0g"—)
Tcomp _ ptime _ pup _ pdown (6)

where TP is the time to execute the task, T"? and T%™“" represent the time of uploading and
downloading the task message.
The overall latency of the tasks offloaded to the BSs spent by the task related to the transfer delay
to the target BS, the computation delay of the BS, and the transfer delay of the result download.
TH =T,F + T, + T&"i e N @)

It is one of the options to upload tasks to the UAVs when the computing resources on the ground
are insufficient to cope with the large influx of tasks.

THAY = TP + 72" + Tiown, i e N ®)

The tasks process changes with the calculations of offloading tasks to LEO satellites. Tasks
information must be uploaded to the nearest UAV, before spreading to satellites. After the task
processing is completed, the data is returned in the original path. The total latency taken to offload the
tasks to an LEO satellite can be expressed as

TLEO — T”P 4 Tibslp 4 TSCUmP + Tglown + Tz%own (9)

where szﬁ, TZZ’Z, Ti‘;w" Tl‘ifbw” and T "P represent uploading latency of task i from BSs to UAVs, and
from UAVs to LEO satellites, downloadmg latency from LEO satellites to UAVs and from UAVs to BSs,
and the computation delay of the task i, respectively.

For this paper, we have chosen to ensure that the task is completed within the time delay

constraints. Therefore, in order to allocating of computing resources rationally, the node only provides

com
n; p

the lowest possible computational resources, f; = /LT _ trans, where T!"" represent the time
1

taken for task i to be transmitted over the link.

There is an upper bound on the total amount of computing resources an ECN can have. As a
result, the combined computational resources required for the tasks assigned to a node should not
exceed the upper limit.

Y fixBS <L), wh e B, (10a)
Y AV < L vu e u, (10b)

Y ! fxkEO < LI s e S, (10¢)
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Consider the caching in 3C, where each ECN has its own storage limit.
Zilil xﬁsn?p < LhBC”Che, Ybe B (11a)
Zfil AV < plleache vy € y (11b)
Zfil xLEORP < pLeache s € S (11c)

LbBC""he, Lijc’”he, and Lémhe represent the cache upper bound of BS b, UAV u, and LEO satellite s,
separately.

The cost for tasks offloading is closely related to the server type, the number of computing
resources needed. In this paper, we focus on solving computational intensive and time delayed
sensitive tasks. Therefore it is the key to minimize the offload cost by picking a reasonable offloading
target. Hence

_\B BS o comp . .BS
Ci=Y ., ((Sb x i X )
u

Yy (47 s mi™ iV (12

+ Zle (JSLEO xni " x xiLSEO),i eN

N

ct=Yy"" Cu (13)
In the above equation, C; denotes the final cost of task i; CALL denotes the cost for accomplishing

whole tasks; (555 , 511;1AV and 5bLEO represent the ratio between the fees and the data size that will be
processed by BSs, UAVs, and LEO satellites, respectively.

min cal

BS yUAV ,LEO

ib "iu s (14)
s.t.(2),(3),(10a), (10b), (10¢), (11a), (11b), (11c)

X

3.3. Computing Resources Fussy Set Model

Realistically, the computational resources of each node can be greatly influenced by external
factors, and the Qu et al. [30] then considered the resource uncertainty of MECN in a traditional
environment. In this paper, for the computing resource uncertainty of ECNs, we propose a realistic
scenario-based set of definite probability distribution to represent the possible range of uncertain
resources.

Based on a fuzzy set of random parameters ¢, we will make the one-stage offloading decision and
the two-stage cloud resource request.

Delage, E. et al. [39] considered a general bounded moments uncertainty set, based on realistic
data, with exact moment uncertainty, i.e.,

D (gr Zr Ho, Y1, ’)/2)
P{eM}=1
—{pcF: EB[E-p) T HEE]—p)<m (15)

E {(5 — o) (& — VO)T} <1k
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where paraments y; and 7, based on historical data, are utilised to control the size of the ambiguity set
and the conservatism of optimal solutions. M is the closed convex set of the support of the currently
known random ¢, and ) and pg are, respectively, its corresponding first-order and second-order
moments. In contrast, F is the set of all probability measures on the measurable space (R™, B), with B
the Borel B-algebra on R™.

The first constraint indicates that the probability density sum of & is 1 over M¢; the second
constraint assumes that the mean of ¢ lies on an ellipsoid of size y; centred at y; the third constraint
forces that the covariance matrix lies in a positive semi-positive definite cone bounded by matrix
inequalities.

4. Risk-aware Distributionally Robust Optimization Tasks Offloading Algorithm Design

In this section, we consider fuzzy sets and CVaR to address the uncertainty of computational
resources in edge computing nodes. We reconstruct the original problem with the uncertainty of the
computational resources, due to the challenging nature of dealing directly with the DRO problem. We
use Lagrangian duals to transform it into a semi-definite programming (SDP) problem to solve it.

In fact, we know that the offloading decision is an integer programming problem, and the
additional computational resources requested from CDC are linear programming, which makes our
problem (19) a MILP problem. Hence, we use branching implicit enumeration method to obtain the
optimal offloading decision based on the uncertainty of computational resources and the minimum
average cost.

4.1. Network Architecture and System Model

In this section, We consider the transformation of the original problem into a two-stage DRO
programming model with a mean-CVaR recourse function, namely a risk-aware DRO model.

Above all, we represent (14) in terms of matrix form variables and parameters. We consider the
setD=BUlUUS and M = B+ U+ S. Then, the formulated problem is written as follow:

min NeompT o X x5 (16)
s.t. X X Oy =0y, (16a)
XT x NuP < [cache, (16b)
XT x F < Leomp, (16¢)

X € RVM 5 € RN, N ¢ RM,N" € RN,
f e RN, Lo ¢ RM, Lomp ¢ RM (16d)

where the offloading strategy matrix variable X := {xXum },cn7 mep, the upper bound of computing

resource vector parameter L"P := {Lcmomp } . the upper bound of cache ceiling vector parameter
me

Leache .= {L%Che } e’ computing resource vector parameter F := {f;},_ /, the ratio between the cost

and the data size vector parameter 0 := {J;};. -, and the all ones vector parameter O.
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Thus, given the uncertainty of the parameter L7, a two-stage offloading strategy model is
created using the distribution set proposed above. We constructed a fuzzy set based on the historical
data of the computing resources of the offload node. Expressed as: & = L7,

min NeompT s X x 6+ B [8 (X, 8)], (17)

s.t. ((16a) — (16d)),
P{te Mt} =1
PCF: (B[E]—po) T (B[] —po) <m (17a)
E[@—n0) € —m)'] <nx
min T x Y,
with 9(X,&) = (X@F*)T x 0, <Z+Y, (17b)
0<Y,

¥ (X, ¢) represent the additional cost of uploading tasks to the cloud when the real-time computing
resources change in a phase of decision task offloading and are insufficient to meet demand. Vector ¢
indicates the ratio of additional costs to required computational power.

Instead, we further consider the mean-CVaR (Conditional Value at Risk) criterion in the model,
which can be expressed in the following form:

VaR,({) =inf{v € R: F (v) > a} (18a)

CVaRy({) = E{Z| > VaR4({)}

= min{o + 1 1E[(¢ - 2):]} (18b)

where F is the cumulative distribution function of the function used to solve for the random variable [,
and a is the given confidence level. (a), means max (a,0).

This model gives the set of possible distributions M?¢ for the unknown stochastic parameter ¢
while ensuring its robustness using a mean-CVaR with two-stage minimization of fees. The following
formulation will be made using min-max theory:

m)}n h(x) + Slgp {1=A)E[d(x,&)] + ACVaR(d(x,¢))} (19)

with h(x) = NO"T « X x5,
s.t. (16a),(16b), (16c), (16d),(174), (17b)),

which A indicates the trade-off coefficient of conditional risk considered in the objective function and
1>A2>0.

do0i:10.20944/preprints202305.1689.v1
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4.2. Transform from DRO to SDP

Problem (19) has presented a DRO problem, below We further analyze the target formula and
convert it to more explicit form.

Slgp {1 =A)E[d(x,¢)] + ACVaR(8(x, )}
= Slgp{ min{Av + (1 - A)E[8(x, &) + 25E[(8(x, ) —0)+]}} (20)
min{Av + s%p{E[(l = A)8(x,8) + 127 (9(x,6) —v)4]}}

The ambiguous distribution set of the random parameter cannot be used directly for the solution,
and we need to convert it into the common inequality form. Consider only the latter half of finding the
optimal value in relation to the random parameter ¢. Instead of the original distribution set form, turn
to the following semi-infinite conic linear problem form expressed as:

sup [ (0= W00 + 12 (00 )] df 0 @
s /M df (@) =1, (21a)
[, @ m)E ) af @ <L C1b)
/ [ oo ] af (&) =0, (210

ML @E-m)" m
&e MS, (21d)

Secondly, we utilize the duality theory to convert it into a SDP problem. Consider the dual of
problem (21):

(Dual) :
inf r+ <H,722—‘140‘ug> + <Z,2> + 271 — 22 g (22)
Z z
T 2
st u(x,&) —r—EHET +26THug +22"¢ <0,& € MS, (22a)
reR, (22b)
H0, (22¢)
/Z z
=0, (22d)
I 7z

with u(x,8) = (1= A)8(x,&) + 2 (8(x,) ~0),
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Z z
where 7, H, and are correspondingly the dual variables of constraints (214), (210), and

~

zT 2
(21c). (a,b) represent Trace(AB).
Due to the inclusion of (), the inequality constraint (224) has to be processed as follow:

r+EHET — 28T Hpy — 227¢

>(1-A)0(x, &) + %(19(% §)—0v)+

When the random parameter ¢ appears in the constraint, it cannot be directly substituted into
constraint (22a). Therefore, it is necessary to consider the dual of problem ¢(x, ¢) such that the random
parameters are transferred into the objective function. Another problem ensues, the coupling of
variables the dual variable g4 and the variable Y. The constraint on the dual variable g confines it to a
boxed region, as indicated by the constraint.

(Dual) :

¥(x,8) = maxq” (X@ F) Oy —¢), (23)

st.p—p=q20, (23a)
p=0, (23a)

Responding to constraint (22a), taking its extreme value points, each point corresponds to two
corresponding semi-definite matrix constraints. We transformed (22a) into a clearer and more concise
form.

r+ ¢HET — 28T Hpug — 227¢
> (1- M) (x,8) + 12, (¢ (x,8) —0)
= (14 1%) (0 0) - 2%

r+ HET —28THug —227¢ > (1 - 1) (x,¢)

Ax

In the above constraints, we represent (1 + 12

) as ¢ and transform them into the following two
Semi-definite matrix constraint.

H 3¢pq" — Hpo —z
T , =0
I (%‘W_HVO—Z) r—¢qT (XQFT) ON + £%
H LAq—Hpg—z
1-A T . =0
(%q*HVO*Z) r—(1—2A)g"(X®F) Oy

do0i:10.20944/preprints202305.1689.v1
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Then, dual problem (22) can be rewritten as following:
min h(x) +Av+r+ <H,722—y0y3> (24)
z
X,0,1,H, -
u,r, |: ZT 5
+{(Z,Y )+ 2 — 2z o
s.t. X x Op =0y, (24a)
xT « N“P < Lcache, (24b)
[ H 3¢q" — Hpo — 2
r . =0 (24¢)
| (39a—Huo—z) r—eq"(X@ Fe)TON + 1%
[ H 54— Hyo — z
T . =0 (24d)
I (%q—Hyo—z> r—(1-A)g"(X®Fe) Oy
ZZT ;] = 0,H 0,7 €R, (24e)
Xij = {0,1},'0 € R, (24e)

4.3. DRO-MILP Algorithm

In the above SDP problem, the X-matrix variables, 0-1 integer variables, and the Y-vector variables,
continuous variables, are included. This makes the original problem a mixed-integer linear formulation,
but he is not able to solve it directly. We relax the problem to a linear problem - simplifying the discrete
variable X to a continuous variable from 0to 1,1i.e., 0 < Xij < 1, inj e X.

In fact, the above SDP problem can be solved by using the SDPT3 solver through the CVX package
in MATLAB. Then, the original problem MILP problem needs to be solved, and here we choose to use
the branching implicit enumeration method to solve it, which a special branch and bound method for
0-1 integer problems, using the feature that the variables can only take two values of 0 or 1, to branch
delimitation for the purpose of hidden enumeration. Where, for each task is divided into m sub-nodes,
i.e., each task can only be offloaded and completely offloaded to one node.

Algorithm 1 present the progress of the calculation of the minimize cost of computation offloading.
First of all, tasks should be sorted according to the number of CPU cycles they require, which
determines the cost spent to a large degree. Then the solution of the relaxed LP problem is obtained,
based on which the implicit enumeration method is performed to solve the solution of the branching
subproblem. During the process of branch and bound, the two nodes with the highest values in
the X; vector, representing the most probable nodes for offloading the current task, are selected at
each iteration. Constantly branching, updating the gradually increasing lower bound; constantly in
delimitation, updating the gradually decreasing upper bound.
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Algorithm 1 Cost-based MILP algorithms for DRO task offloading problem.
Input: Convex Probability Distributional set M™, Stochastic Sample Space F~, Trade-off coefficient
A, Confidence Level &, Ambiguous Set Parameters ; and 77;
Output: Offload Decision X, Optimal cost value to satisfy distribution robustness;

Solve the MILP formulation SDP problem with confidence level &, to obtain optimal value of
continuous variables X and optimal cost value;
forifrom0Oto N —1do

Sort(N)

[opt, X] = max(X;)

[xll-]-, x2,-]-] = max2(X)

if SDP(X/, xl’.,].1 =1) < SDP(X/, xg,jz =1) then

i,j1
lmin_cost[i] = SDP(X/, X;jl =1)
else .
le‘,jz =1
; H ! !
enrcrizziré_cost[z] = SDP(X 'Xi,jz =1)
end for

if min_cost{N —1] ! = NaN then

return X', min_cost[N — 1]
end if

4.4. Complexity Analysis

In Algorithm 1, a solver is used to solve the optimization problem. Here, the time complexity
for solving the optimization problem is set to T, the number of unloading tasks is set to N, and the
branch and bound method is used to traverse all unloading tasks. In the unloading target section, it is
simplified to select only the optimal two node locations with a cycle number of. The time complexity
of the proposed algorithm is O(TN).

5. Performance Evaluation

In this section, we try the performance and effectiveness under different parameters; analyze the
results of the above proposed algorithm under different risk confidence conditions; and compare it
with the traditional algorithm to give its superiority.

5.1. Simulation Setup

We accomplished the simulation on a laptop with an AMD Ryzen 7 4800H with Radeon Graphics
2.90 GHz, 16G RAM, and a Windows 10 OS. We envision a SAGIN-Cloud system where the coverage
of the space layer contains the air layer and the coverage of the air layer contains the whole MECN.
(The following parameters are all randomly within a certain range, given that the mean values are
generated according to a normal distribution)

1) Channel State Information (CSI)

For information transportation within ECNs, different frequency bands are borrowed between
the different layers, resulting in different bandwidths and transmission speeds. Currently, the C-band
is one of the most commonly used frequency bands for satellite operations, with the Ka-band being a
latecomer. This paper assumes that data transmission between BSs and UAVs occupies the C-band,
while the Ka-band is occupied between UAVs and LEO satellites. The bandwidth of C-band is 20MHz,
while the available bandwidth of Ka-band can reach 3500MHz. As for signal frequency range, C-band
and Ka-band are 3.4GHz-8GHz and 26.5-36GHz, respectively.

2) ECNs Information
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The horizontal and vertical coordinates of the BSs on the ground and the UAVs in the air are
within (—1,1) km, respectively, while vertically, they are all 0. In contrast, the UAVs are located at an
altitude of (0.075,0.15) km. LEO satellites are located in space and they are at a distance of (780, 800)
km from the earth’s surface. LEO satellites are located in space and they are (780, 800) km away from
the surface. they are not too space constrained, so are deployed in a square area with four points as
vertices, (-200, -200), (-200, 200), (200, -200), (200, 200).

BSs, UAVs and LEO satellites possess CPU process speed of 2 x 10° cycles/s, 3 x 108 cycles/s, and
5% 10” cycles/s, respectively.

3) Comparison Algorithm

First, we propose to use the most basic comparison algorithm, namely the Brute-Force algorithm.

e  In Brute-Force algorithm, It does not take into account any uncertainty and possible overflow of
computation of task to the extent that it may eventually lead to an inability to obtain an optimal
solution.

Secondly, we compare two traditional algorithms that take parameter uncertainty into account:
robust optimization(RO) algorithm and stochastic optimization(SO) algorithm.

e InRO, only the uncertainty of computational resources of ECNs is considered and their possible
worst-case scenarios are experimentally selected to ensure their robustness.

e In SO, the fuzzy set is constructed based on the historical data of the computational resources of
the given ECNs, thus obtaining their means and variances.

Thirdly, there is another algorithm closest to our proposed one, which is the DRO algorithm for
obtaining the optimal solution.

e In DRO [33], the mean value in the range of uncertainty set is obtained and its optimal robust
result is obtained by minmax theory, which guarantees both robustness and practicality. However,
there is also a drawback, namely that it is an uncertainty set constructed from historical data,
which does not guarantee the stability of its uncertainty set and does not consider its risk.

Lastly, we proposed CVaR-aware DRO algorithm on the basis of the traditional DRO algorithm.

e In CVaR-aware DRO, in addition to what the DRO considers, it also complements certain defects
that it has. It considers CVaR, choosing only the a — tail part as the benchmark, while using A
as a weight with the original part. That is to say, he selectively aggravates the proportion of the
worse part of the results within the final result in order to guarantee its risk resistance.

5.2. Experiments

5.2.1. RaDROO algorithm

First observe the practical results of our proposed RaDROO algorithm under the practical problem
of solving the optimization of offloading cost of edge network tasks. The optimal values of lambda in
the range of (0,1) are given as « of 0.5, 0.7, and 0.9, respectively. As illustrated in Figure 2, when lambda
is 0, it means that CVaR is not considered and weakened to a classical distribution robust problem,
and the obtained results converge to a point. However as the A increases, the consideration of risk is
reinforced step by step, further constraining the range of values provided within the uncertainty set.
This results in a progressive increase in the amount to be spent, but at the same time, a more superior
and stable optimal choice is obtained. At the same time, the larger the lambda, i.e., the larger the
weight considering the CVaR value, the worse the optimal value of the required spend.
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Figure 2. Expect cost under different a

Second, observing the value of V gives a more intuitive view of the degree of consideration of risk
in CVaR. As shown in Figure 3 and Figure 4, it is obvious that the value of V is larger when a higher
alpha value is taken, i.e., when the worse part of the fuzzy set is used as a criterion, and at the same
time, this value is almost unaffected by the value of A taken; however, with a fixed value of «, as the
simultaneous upload of amount of tasks increases, the value of V for each experiment also increases
gradually and steadily, which means that the value of CVaR also increases, that is, the risk is further
considered as a way to ensure the authenticity and practicality of the whole system.
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Figure 4. V value between 110 and 200 tasks.

5.2.2. Comparing with other algorithms

For comparison with other algorithms, some of the parameters of RaDROO are A = 0.5,0 =
05791 =07 =1

The comparison between algorithms takes the obtained target value as the evaluation criterion.
Figure 5 shows the optimal cost results obtained by different algorithms at the same time as the amount
of tasks received increases. Figure 6 and Figure 7 show the comparison of the results of the four
algorithms at task volumes of 150 and 170. When the number of tasks is small, considering only
known allocatable resources all algorithms give better results. As the total number of tasks that may be
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uploaded simultaneously rises, the Brute-Force algorithm fails to obtain an optimal solution because it
does not take into account the lack of computational resources. In contrast, RO, SO, DRO and RaDROO
can obtain their optimal solutions and the optimal cost obtained increases with the increasing number
of tasks.
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o . . . . . . .
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Figure 5. optimal cost of compared algorithms between 110 tasks to 200 tasks
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Figure 6. optimal cost under 150 tasks

Expect Cost

50 RO DRO DRO_CVaR
Model

Figure 7. optimal cost under 170 tasks

In the two observations with the number of tasks 150 and 170, we can clearly get from Figure 6 and
Figure 7 that the results obtained by the RaDROO are closer to those obtained by the traditional DRO
algorithm. Therefore, it can be concluded that RaDROO ensures its robustness while considering CVaR
to obtain higher risk resistance and better results under the uncertainty of computational resources.

The RaDROO algorithm obtains better results also pays a price in terms of computational time,
as shown in Figure 8. the time taken to solve the RO, SO, Brute algorithm is close and lower. the
DRO algorithm obtains the optimal two-stage mean based on fuzzy sets in the minmax theory of
robust algorithms. The RaDROQO algorithm considers CVaR on top of this, which further increases the
complexity of the algorithm and takes more time to solve problem.

Overall, although RaDROO incurs a certain time cost, it strikes a balance between computational
time and risk consideration by incorporating CVaR into the decision-making process. It achieves
improved robustness compared to traditional methods while maintaining competitive performance.
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By considering CVaR, RaDROO is able to effectively manage the risk associated with uncertain factors
and make more informed task offloading decisions in the SAGIN environment.
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Figure 8. Execution time of each algorithm.
6. Conclusions

This paper focuses on the offloading decision problem of tasks in the SAGIN framework,
considering the instability of computational resources of each node and the limited channel resources
and storage resources of ECNs. Based on this problem, we propose the RaDROO algorithm, which
considers while CVaR to improve its risk resistance on the basis of the traditional DRO algorithm.
In addition, we conducted simulation experiments in a simulation environment, and the algorithm
obtained better results than the traditional robust algorithm and close to the traditional DRO algorithm,
and proved the effectiveness of the algorithm.

There are several directions in which we can extend this work in the future. First, the execution
time of the RaDROO algorithm is a major problem that needs to be solved, which may be solved
by optimizing the algorithm architecture and using a better model solving method; second, the task
upload is transient, and we can consider the real-time task unloading decision problem within the
SAGIN framework; third, the value of lambda is freely variable and it is a problem to choose a rational
value; Finally, this experiment only considers the uncertainty of computational resources, in the
actual environment, the storage space of ECNs and CSI also have uncertainty, and the impact of these
uncertainties on the offloading decision is also worth considering.
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