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Abstract: As an emerging network paradigm, Space-Air-Ground integrated networks (SAGIN)

has attracted the attentions from academia and industry. That is because SAGIN can implement

seamless global coverage and connections among electronic devices in space, air, and ground spaces.

Additionally, the shortages of computing and storage resources in mobile devices greatly affect

the quality of experiences for intelligent applications. Hence, we devise to integrate SAGIN as an

abundant resource pool into mobile edge computing environments (MEC). To facilitate efficient

processing, we need to solve the optimal task offloading decisions. Different from the existing

MEC task offloading solutions, we have to face some new challenges, such as the fluctuation of

processing capability for an edge computing node, the uncertainty of the transmission latency caused

by the heterogeneous network protocols, the uncertain amount of uploaded tasks during a period,

and so on. In this paper, we firstly describe a task offloading decision problem in new challenge

environments. But, we cannot use the standard robust optimization and stochastic optimization

methods to obtain the optimal result under the uncertain network environments. In this paper, we

propose the condition value at risk-aware distributionally robust optimization algorithm, named

as CVAR-DRO, to solve the task offloading decision problem. The proposed CVAR-DRO method

combines the distributionally robust optimization and the condition value at risk model for solving

the optimal result. And then, We have evaluated our approach in simulation SAGIN environments

with the confidence interval, the number of mobile task-offloading and the various parameters.

We compare our proposed CVAR-DRO algorithm with the state-of-the-art algorithms, such as the

standard robust optimization algorithm, the stochastic optimization algorithm, the DRO algorithm,

and the brute algorithm. The experimental results show that CVAR-DRO can get a sub-optimal

mobile task-offloading decision. Overall, CVAR-DRO is more robust than others to the new challenges

mentioned above in SAGIN.

Keywords: Space-Air-Ground Integrated Network; Mobile Edge Task Offloading; Distributionally

Robust Optimization; Conditional Value at Risk

1. Introduction

With the booming development of the Internet of Things (IoT) ecosystem, users expect to obtain

higher quality experiences (QoE) for various IoT applications. After the official deployment and

operation of the fifth generation (5G) mobile system, the sixth generation (6G) mobile system is

gradually coming into the limelight. The high-speed communication technologies can provide

higher quality of service (QoS) for the IoT applications, such as intelligent transportation, intelligent

agriculture, maritime surveillance, smart cities, natural disaster relief, and so on. However, the existing

terrestrial communication networks cannot effectively provide the QoS and QoE guarantee for the
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intelligent and low-latency IoT applications. In recent years, the Space-Air-Ground integrated network

(SAGIN) architecture has attracted the attention from academia and industry. SAGIN is an integration

of space layer, aerial layer, and ground layer. As a multidimensional network, SAGIN adopts different

communication protocols in each segment or the integration of different segments to achieve high

throughput and high-reliability data delivery [1].

However, we have to face some new challenges in SAGIN, such as the mobile edge

computationally intensive tasks offloading and resources allocation in uncertain and heterogeneous

network environments. The uncertain network parameters, such as the uncertain latency, the uncertain

amount of arrival tasks, and the uncertain computation resources, may seriously impact the efficiency

of edge task execution. Nowadays, the stochastic optimization (SO) [2] and the robust optimization

(RO) [3–5] methods are proposed to solve the uncertainty problems. The SO method can use the

probability distribution of measuring parameters to predict the potential uncertainty and obtain

the mathematical expectation of objective function. The RO method can directly solve the target

value under the worst-case conditions, and it doesn’t need to obtain the probability distributions

of measuring parameters. Distributionally robust optimization (DRO) can be viewed as a unifying

framework for the SO and RO methods. The DRO method can replace the probability distribution

of uncertain measuring parameters with a fuzzy set [6]. And then it can choose the worst case in the

fuzzy set to get better robustness. Additionally, literature [7] proposed the conditional value at risk

(CVaR) aware DRO method, which can reflect the potential risk and improve its stability.

There are two main technical challenges in solving the risk-aware two-stage DRO problem.

Firstly, it is difficult to solve the DRO problem due to the fuzzy sets. Secondly, the first-stage offloading

decision is the zero-one integer programming. And, the second-stage is a resources allocation procedure

for latency insensitivity and computation-intensive tasks. But, in this paper, we have to solve the

risk-aware two-stage DRO problem, which brings new challenge. If we can solve the risk-aware

two-stage DRO problem, we can get the better revenue under the uncertainty and the quality of

service(QoS) in SAGIN network architecture.

Our contributions are summarized as follows:

• Investigate the task offloading decision model in the SAGIN environment. The task offloading

model consists of two stages: the first stage is task offloading decision, and the second stage is

edge-cloud collaboration and cloud resource allocation.
• Building upon the work in (1), a fuzzy set of computational resources for edge computing nodes

is constructed, and consideration for CVaR is introduced. Then, based on the theory of Lagrange

duality, the model is transformed into a semidefinite programming form, and the Conditional

Value at Risk (CVaR)-aware Distributionally Robust Optimization for Task Offloading (RaDROO)

algorithm is proposed to solve the task offloading problem with distributional robustness under

risk awareness.
• We conducted simulation experiments from two aspects. On the one hand, we adjust some

parameters of the proposed model to get the optimal parameter values. On the other hand, we

fix the parameters and compare with the the state of the art algorithms in different computation

and network environments. The experimental results demonstrate that our proposed model and

algorithm have better results than the state of the art methods in terms of usability, robustness

and risk.

The remainder of this paper is organized as follows. Section II gives a brief introduction to SAGIN

before reviewing the computation task offloading. Section III describes the network architecture and

proposes a computation task offloading model under uncertain computation environments. Section

IV gives the risk-aware DRO algorithm to obtain the optimal task offloading decision and resource

allocation strategy. Section V shows the performance evaluation and analysis. Section VI concludes

our work and presents the future work.
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2. Related Work

In this section, we firstly introduce the SAGIN architecture. And then, we review the traditional

computation task offloading, the computation task offloading under the uncertain network and

computation environments, and the risk-aware computation offloading, respectively.

2.1. SAGIN Architecture

The SAGIN refers to the integration and synergy of systems from multiple domains-space, air,

ground-to form a wide area coverage and high speed network for more efficient communication and

data exchange. It is a proposed solution to address the growing need for enhanced communication and

information sharing capabilities. SAGIN requires the use of various technical means, such as satellite

communications, unmanned aerial vehicles and ground sensors, to enable collaborative operations

and data sharing between different platforms. By sharing data and information in real time, situational

awareness can be improved, decision making can be optimised, and mission effectiveness can be

enhanced.

Over time, the SAGIN architecture has evolved rapidly and various projects like Global

Information Grid (GIG) have been proposed and widely deployed [8]. liu et al. [1] describe the

communication network design and resource allocation algorithm of SAGIN in a high-dimensional

network environment. Likewise, SAGIN can be invoked in MEC environments and has excellent

performance in unique environments, i.e. desert, disaster scenarios. Yuet al. [9] considered the

fine-grained offloading problem and caching problem and proposed the SAGIN framework which

supports edge computing.

The impact of SAGIN on computating tasks offloading is multifaceted and can be summarized as

follows:

− Cross-platform efficiency: Through the integration and collaborative operations achieved by

SAGIN, different tasks can be offloaded and migrated between different platforms, thereby

improving the efficiency of task execution.
− Increased Flexibility through Edge-Cloud Collaboration: In the SAGIN network, tasks can be

dynamically allocated and scheduled, allowing them to be offloaded to the most suitable platforms

based on their computational requirements. This improves resource utilization.

Overall, the impact of SAGIN on the field of task offloading is positive, as it can improve task

execution efficiency, safety, flexibility, and coverage. An ECN built on the SAGIN framework will be

able to more fully exploit its capabilities. Consolidate all available resources to provide computing

resources for the computing tasks in this network environment.

2.2. Traditional Computation Offloading

First of all, a class of existing tasks offloading optimization algorithms in practice applications

is on task dependency. Yuan et al. [10] paid an attention to a dependent task assignment problem

over multiple mobile terminal devices (MTDs). In [11], an efficient partitioned search method was

implemented for obtaining optimal solutions for task offloading policies and resource allocation under

task-dependent models. Besides, without considering task dependency, whether to offload to edge

computing nodes(ECN) for tasks and how much computing resources are allocated by ECNs according

to the performance requirements for computing offloads is a hot topic of current researchers. The

mainstream research directions under this scope are the following three. The first one is to explore

task offloading decision schemes that minimize task execution delay[12,13]. Xiao et al. [14] designed

a heat prediction method to analyze the dynamics of urban heat zones, aided by the design of a

non-cooperative game-theoretic strategy selection based on regret matching to achieve minimum time

delay. Dai, Y. et al. [15] proposed a JSCO algorithm to search for the solution to the optimization

problem in a distributed manner with less overhead, using the integrated task processing delay as

the performance metric. In [16], Farhangi, E.et al. proposed a novel offload approach OAMC, which
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takes into account the dynamic changes of mobile applications and reduces the number of migrations

and overall data movement while minimizing the turnaround time of mobile applications. Secondly,

plenty of studies[17–20] focus on obtaining task offloading decisions in edge computing networks

that minimize energy consumption, which is affected by the amount of offloading computations,

MTD-MECs distance, channel conditions, application type, compression efficiency, and etc.. Hmimz et

al. [19] jointly considered both the priority of certain MTDs and minimizing overall power consumption.

Third, [21,22] assumes that the system can gain a certain amount of revenue by completing the task, and

the goal is to find the offloading decision that maximizes the revenue. Samantaet al. [23] synthetically

explores delay-sensitive and delay-tolerant edge services and guaranteed Quality of Experience(QoE)

to be maximized over a long period using the Lyapunov method. Chenget al. [24] applied gaming

offloading algorithms to maximize mobile network operator revenue.

In addition to the common is solved by traditional optimization methods, Some researchers[25]

have also chosen to apply intelligent optimization algorithms to pick the optimal unloading decision.In

[20], it developed a new adaptive inertia weight-based particle swarm optimization (NAIWPSO)

algorithm to minimize the energy consumption of MTDs while considering the channel constraint

condition during task offloading. Li et al. [26] proposed an algorithm, named EIPSO, based on

an developed particle swarm optimization. Tout et al. [27] designed a multi-objective intelligent

optimization algorithm based on genetic algorithm.

Machine learning and deep learning algorithms are now extraordinary prevalent in the research

field in droves. Maleki, E. F.et al. [16] applied a Machine Learning(ML) algorithm called matrix

complementation to design two fresh offloading methods, S-OAMC and G-OAMC, that enhance

scalability and find low turnaround time offloading decisions. In [28], various machine learning

techniques for the communication, network and security components of the future 6G environment in

vehicular networks were profiled, and methods and directions for implementing artificial intelligence

in future 6G vehicular networks are envisioned. However, machine learning algorithms typically

require a significant amount of training data and cannot be directly computed. They rely on training

on large datasets to learn patterns and make predictions. Additionally, machine learning algorithms

are sensitive to changes in the environment and may require retraining or adaptation to maintain their

performance.

Table 1. Content in the relevant literature.

Previous Work Game ML RO SO DRO mean risk-aware SAGIN

[29] ✓

[30], [3] ✓

[16] ✓

[7] ✓

[2] ✓

[31], [32] ✓

[33] ✓ ✓

Our Algorithm ✓ ✓ ✓

2.3. Uncertain-aware Computation Offloading

The above research scenarios whole assume that controllers has access to accurate computing

resource and channel information either statically or dynamically. Nevertheless, in application

environments, MECN are transient which can considerably impact resource utilization and user

QoE. [30][3] investigates robust task offloading that is tolerant to failures in offloading scenarios

and can effectively overcome this. In [4], robust tasks with tolerant server failures offloaded were

contemplated to achieve higher application responsiveness. To counter the inaccuracy of channel

measurements, [5] design a robust offloading strategy for channel information estimation errors.

Facing the connection instability between MTDs and small clouds, [3] proposed a robust computation
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offloading strategy with failure recovery. [34] introduced a mobility model and a trade-off fault

tolerance mechanism for the offload system, taking into account the dependencies between services.

In contrast to the robust optimization described above, which sacrifices a lot of device performance

to ensure its robustness during application, stochastic optimization is used. The investigations

of Stochastic Optimization (SO) in MEC gives the probability distribution of channel resources,

computational resources of ECNs varying randomly[2]. proposed a two-stage SO to tackle the challenge

of uncertain dynamic environments.

2.4. Risk-aware Computation Offloading

Unlike the uncertain or undefined parameter scenarios described above, risk considerations

refer to unexpected conditions that occur during system operation. Bai et al. [29] solve risk-aware

computation offloading (RCO) problem by considering the use of Bayesian Stackelberg Game to

rationally disperse the nodes for task offloading when the server is attacked by outside miscreants.

Apostolopoulos et al. [35] take account of the uncertainty in MEC server computational resources as

well as storage space under heterogeneous networks. Schultz, R.et al. [32] explain the risk consideration

in stochastic programming, i.e., mean-risk, and also give the expression formula for CVaR. With CVaR,

Pan et al. [36] considered the availability of the MEC system in case of possible link failure. Mean-CVaR

is commonly deployed in finance, where Zhang et al. [31] have studied portfolio selection under return

fuzzy set conditions, considering a downside risk measure to reduce investment risk.

3. Network Architecture and System Model

In this section, we elaborate on the SAGIN architecture and channel models. Based on the

compute, caching and communication (3C) requirements, We developed an optimization model for

making computing offload decisions, aiming to minimize cost.

3.1. SAGIN Architecture and Channel Models

SAGIN is a novel network structure integrating multiple dimensions. It adopts different protocols

and occupies different frequency bands for establishing communications between the different

dimensions[1]. We select the rational frequency band for communications by taking into account the

distance between ECNs, the influence of current environmental factors on the link, the free-space path

loss, tropospheric attenuation, and other factors.

In the study, tasks are uploaded to the nearest BSs from MTDs by default. As shown in Figure 1,

the SAGIN architecture consists of five components: the MTD segment, ground segment, satellite

segment, aerial segment, and cloud data centre (CDC) segment. Let B = {1, 2, · · · , B} be used as

the set of BSs . Furthermore, as a representative of the aerial segment, UAVs are despatched as the

extension of the ground BS process. The set of the UAVs are denoted by U = {1, 2, · · · , U}. The

satellite segment consists of LEO satellites. Due to the utilization of higher communication frequency

bands, satellites possess lower propagation delay and free space attenuation [37].

The SAGIN system offers three tasks offload strategies, depending on the task information

uploaded by MTDs: firstly, selecting a BS that possess sufficient computing resources to calculate the

task; secondly, applying for a UAV offload and compute the task; thirdly, selecting for a UAV as an

intermediary and applying an LEO satellite to offload and compute the task. As a multi-dimensional

6G network, SAGIN integrates several network segments and uses communication protocols to achieve

high reliability and high throughput data transmission [38].

The maximum achievable transmission rate K[bits/s] for the tasks in the channel can be expressed

as follows. 



K = Blog2(1 +
P×10−[LP/10]

Noise ),

Lp = 32.45 + 20 lg d(km) + 20 lg f (MHz).
(1)
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Within the above equation, B (HZ), P and Noise represent channel bandwidth, average signal

power and noise power; Lp, d, f represent propagation loss in free space, and the distance between

ECNs and signal frequency, respectively.

MEC Network

UAV

LEO Satellite

Space

Air

Ground

CDC

Cloud Server

Figure 1. SAGIN model.

3.2. Computation Tasks Offloading Model

We suppose that there are n latency sensitivity and computation-intensive tasks offloaded to

nearby BSs, where the set of tasks is denoted as N = {1, 2, · · · , N}. And, each of tasks is charactered

by any parameters,
(

n
up
i , n

comp
i , ndown

i

)
, i ∈ N , in which nup denotes the input and uploaded data size;

ncomp denotes the number of CPU cycles required to process data; ndown denotes the processed and

downloaded data size. In this research, the study’s objective is 3C and the total cost of tasks, thus

keeping the atomicity of the tasks, i.e. each task can only be served by one processing ECN.

In our proposed SAGIN system, there are four offload destinations: BSs, UAVs, LEO satellites ,and

CDC. We assume that xBS, xUAV , and xLEO are three binary parameters, where xBS
ib denotes whether

task i selects BS b as the offload target, xUAV
iu denotes whether task i selects UAV u as the offload target

and xLEO
is denotes whether task i selects LEO satellite s as the offload target.

∑
B

b=1
xBS

ib + ∑
U

u=1
xUAV

iu + ∑
S

s=1
xLEO

is = 1, ∀i ∈ N (2)

xBS
ib , xUAV

iu , xLEO
is ∈ {0, 1}, b ∈ B, u ∈ U , s ∈ S (3)

The above equation indicates that each task would be offloaded to one ECN in the SAGIN

architecture. xBS
ib = 1 if task ni is offloaded to BS b and xBS

ib = 0 otherwise; xUAV
iu = 1 if task ni is

offloaded to UAV u and xUAV
iu = 0 otherwise; xLEO

is = 1 if task ni is offloaded to LEO satellite s and

xLEO
is = 0 otherwise. These three different computing units own different computing power and

storage resources. f BS
ib , f UAV

iu , and f SAT
is denote the number of computing resources in per second

requested by task i from BSs, UAVs, or LEO satellites, respectively.

We assume that tasks are uploaded to the nearest base station first and then propagate them from

the base station to the target computing nodes. And since the propagation delay of tasks directly to

edge computing nodes is much greater than uploading tasks to the nearest base station, we will ignore

the upload delay of tasks.
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The time taken by a task to be uploaded and downloaded between ECNs and the latency taken to

calculate the task can be expressed as

Tup =
nup

kup =
nup

Blog2(1 +
P×10−[LP/10]

N )
(4)

Tdown =
ndown

kdown
=

ndown

Blog2(1 +
P×10−[LP/10]

N )
(5)

Tcomp = Ltime − Tup − Tdown (6)

where Tcomp is the time to execute the task, Tup and Tdown represent the time of uploading and

downloading the task message.

The overall latency of the tasks offloaded to the BSs spent by the task related to the transfer delay

to the target BS, the computation delay of the BS, and the transfer delay of the result download.

TBS
ib = T

up
ib + T

comp
ib + Tdown

ib , i ∈ N (7)

It is one of the options to upload tasks to the UAVs when the computing resources on the ground

are insufficient to cope with the large influx of tasks.

TUAV
iu = T

up
iu + T

comp
iu + Tdown

iu , i ∈ N (8)

The tasks process changes with the calculations of offloading tasks to LEO satellites. Tasks

information must be uploaded to the nearest UAV, before spreading to satellites. After the task

processing is completed, the data is returned in the original path. The total latency taken to offload the

tasks to an LEO satellite can be expressed as

TLEO
is = T

up
iu + T

up
is + T

comp
s + Tdown

iu + Tdown
ib (9)

where T
up
ibu, T

up
ius, Tdown

isu , Tdown
iub and T

comp
is represent uploading latency of task i from BSs to UAVs, and

from UAVs to LEO satellites, downloading latency from LEO satellites to UAVs and from UAVs to BSs,

and the computation delay of the task i, respectively.

For this paper, we have chosen to ensure that the task is completed within the time delay

constraints. Therefore, in order to allocating of computing resources rationally, the node only provides

the lowest possible computational resources, fi =
n

comp
i

/
LT

i − Ttrans, where Ttrans
i represent the time

taken for task i to be transmitted over the link.

There is an upper bound on the total amount of computing resources an ECN can have. As a

result, the combined computational resources required for the tasks assigned to a node should not

exceed the upper limit.

∑
n

i=1
fix

BS
ib ≤ L

Bcomp
b , ∀b ∈ B, (10a)

∑
n

i=1
fix

UAV
iu ≤ L

Ucomp
u , ∀u ∈ U , (10b)

∑
n

i=1
fix

LEO
is ≤ L

Lcomp
s , ∀s ∈ S , (10c)
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Consider the caching in 3C, where each ECN has its own storage limit.

∑
N

i=1
xBS

ib n
up
i ≤ LBcache

b , ∀b ∈ B (11a)

∑
N

i=1
xUAV

iu n
up
i ≤ LUcache

u , ∀u ∈ U (11b)

∑
N

i=1
xLEO

is n
up
i ≤ LLcache

s , ∀s ∈ S (11c)

LBcache
b , LUcache

b , and LLcache
b represent the cache upper bound of BS b, UAV u, and LEO satellite s,

separately.

The cost for tasks offloading is closely related to the server type, the number of computing

resources needed. In this paper, we focus on solving computational intensive and time delayed

sensitive tasks. Therefore it is the key to minimize the offload cost by picking a reasonable offloading

target. Hence

Ci =∑
B

b=1

(
δBS

b × n
comp
i × xBS

ib

)

+ ∑
U

u=1

(
δUAV

u × n
comp
i × xUAV

iu

)

+ ∑
S

s=1

(
δLEO

s × n
comp
i × xLEO

is

)
, i ∈ N

(12)

Call = ∑
N

n=1
Cn (13)

In the above equation, Ci denotes the final cost of task i; CALL denotes the cost for accomplishing

whole tasks; δBS
b , δUAV

b and δLEO
b represent the ratio between the fees and the data size that will be

processed by BSs, UAVs, and LEO satellites, respectively.

min
xBS

ib ,xUAV
iu ,xLEO

is

Call

s.t. (2) , (3) , (10a) , (10b) , (10c) , (11a) , (11b) , (11c)

(14)

3.3. Computing Resources Fussy Set Model

Realistically, the computational resources of each node can be greatly influenced by external

factors, and the Qu et al. [30] then considered the resource uncertainty of MECN in a traditional

environment. In this paper, for the computing resource uncertainty of ECNs, we propose a realistic

scenario-based set of definite probability distribution to represent the possible range of uncertain

resources.

Based on a fuzzy set of random parameters ξ, we will make the one-stage offloading decision and

the two-stage cloud resource request.

Delage, E. et al. [39] considered a general bounded moments uncertainty set, based on realistic

data, with exact moment uncertainty, i.e.,

D
(
ξ, ∑, µ0, γ1, γ2

)

=





P ⊆ F :

P {ξ ∈ M} = 1

(E [ξ]− µ0)
T

∑
−1 (E [ξ]− µ0) ⩽ γ1

E

[
(ξ − µ0) (ξ − µ0)

T
]
⩽ γ2 ∑





(15)
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where paraments γ1 and γ2, based on historical data, are utilised to control the size of the ambiguity set

and the conservatism of optimal solutions. M is the closed convex set of the support of the currently

known random ξ, and ∑ and µ0 are, respectively, its corresponding first-order and second-order

moments. In contrast, F is the set of all probability measures on the measurable space (Rm, B), with B

the Borel β-algebra on Rm.

The first constraint indicates that the probability density sum of ξ is 1 over Mξ ; the second

constraint assumes that the mean of ξ lies on an ellipsoid of size γ1 centred at µ0; the third constraint

forces that the covariance matrix lies in a positive semi-positive definite cone bounded by matrix

inequalities.

4. Risk-aware Distributionally Robust Optimization Tasks Offloading Algorithm Design

In this section, we consider fuzzy sets and CVaR to address the uncertainty of computational

resources in edge computing nodes. We reconstruct the original problem with the uncertainty of the

computational resources, due to the challenging nature of dealing directly with the DRO problem. We

use Lagrangian duals to transform it into a semi-definite programming (SDP) problem to solve it.

In fact, we know that the offloading decision is an integer programming problem, and the

additional computational resources requested from CDC are linear programming, which makes our

problem (19) a MILP problem. Hence, we use branching implicit enumeration method to obtain the

optimal offloading decision based on the uncertainty of computational resources and the minimum

average cost.

4.1. Network Architecture and System Model

In this section, We consider the transformation of the original problem into a two-stage DRO

programming model with a mean-CVaR recourse function, namely a risk-aware DRO model.

Above all, we represent (14) in terms of matrix form variables and parameters. We consider the

set D = B ∪ U ∪ S and M = B + U + S. Then, the formulated problem is written as follow:

min
X

N
compT × X × δ (16)

s.t. X × Om = On, (16a)

XT ×N
up ≤ Lcache, (16b)

XT × F ≤ Lcomp, (16c)

X ∈ RN×M, δ ∈ RN ,Ncomp ∈ RM,Nup ∈ RN ,

f ∈ RN , Lcache ∈ RM, Lcomp ∈ RM (16d)

where the offloading strategy matrix variable X := {xnm}n∈N ,m∈D , the upper bound of computing

resource vector parameter Lcomp :=
{

L
comp
m

}
m∈D

, the upper bound of cache ceiling vector parameter

Lcache :=
{

Lcache
m

}
m∈D

, computing resource vector parameter F := { fi}i∈N , the ratio between the cost

and the data size vector parameter δ := {δi}i∈N , and the all ones vector parameter O.
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Thus, given the uncertainty of the parameter Lcomp, a two-stage offloading strategy model is

created using the distribution set proposed above. We constructed a fuzzy set based on the historical

data of the computing resources of the offload node. Expressed as: ξ = L̃comp.

min
X

N
compT × X × δ +Eξ [ϑ (X, ξ)] , (17)

s.t. ((16a) − (16d)) ,





P ⊆ Fξ :

P
{

ξ ∈ Mξ
}
= 1

(E [ξ]− µ0)
T

∑
−1 (E [ξ]− µ0) ≤ γ1

E

[
(ξ − µ0) (ξ − µ0)

T
]
≤ γ2 ∑





(17a)

with ϑ (X, ξ) =





min
Y

ϕT × Y,

(X ⊗ Freq)T × On ⩽ ξ + Y,

0 ≤ Y,

(17b)

ϑ (X, ξ) represent the additional cost of uploading tasks to the cloud when the real-time computing

resources change in a phase of decision task offloading and are insufficient to meet demand. Vector ϕ

indicates the ratio of additional costs to required computational power.

Instead, we further consider the mean-CVaR (Conditional Value at Risk) criterion in the model,

which can be expressed in the following form:

VaRα(ζ) = inf {v ∈ R : F (v) ≥ α} (18a)

CVaRα(ζ) = E{ζ|ζ ≥ VaRα(ζ)}

= min
v∈R

{v +
1

1 − α
E[(ζ − v)+]} (18b)

where F is the cumulative distribution function of the function used to solve for the random variable ζ,

and a is the given confidence level. (a)+ means max (a, 0).

This model gives the set of possible distributions Mξ for the unknown stochastic parameter ξ

while ensuring its robustness using a mean-CVaR with two-stage minimization of fees. The following

formulation will be made using min-max theory:

min
X

h(x) + sup
ξ

{(1 − λ)E [ϑ(x, ξ)] + λCVaR(ϑ(x, ξ))} (19)

with h(x) = N
compT × X × δ,

s.t. (16a) , (16b) , (16c) , (16d) , (17a) , (17b)),

which λ indicates the trade-off coefficient of conditional risk considered in the objective function and

1 ≥ λ ≥ 0.
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4.2. Transform from DRO to SDP

Problem (19) has presented a DRO problem, below We further analyze the target formula and

convert it to more explicit form.

sup
ξ

{(1 − λ)E[ϑ(x, ξ)] + λCVaR(ϑ(x, ξ))}

= sup
ξ

{ min
v∈R

{λv + (1 − λ)E[ϑ(x, ξ)] + λ
1−αE[(ϑ(x, ξ)− v)+]}}

= min
v∈R

{λv + sup
ξ

{E[(1 − λ)ϑ(x, ξ) + λ
1−α (ϑ(x, ξ)− v)+]}}

(20)

The ambiguous distribution set of the random parameter cannot be used directly for the solution,

and we need to convert it into the common inequality form. Consider only the latter half of finding the

optimal value in relation to the random parameter ξ. Instead of the original distribution set form, turn

to the following semi-infinite conic linear problem form expressed as:

sup
ξ

∫

M
[(1 − λ)ϑ(x, ξ) +

λ

1 − α
(ϑ(x, ξ)− v)+] d f (ξ) (21)

s.t.
∫

M
d f (ξ) = 1, (21a)

∫

M
(ξ − µ0)(ξ − µ0)

Td f (ξ) ≼ γ2 ∑, (21b)

∫

M




∑ ξ − µ0

(ξ − µ0)
T γ1


 d f (ξ) ≽ 0, (21c)

ξ ∈ Mξ , (21d)

Secondly, we utilize the duality theory to convert it into a SDP problem. Consider the dual of

problem (21):

(Dual) :

inf

r,H,


 Z z

zT ẑ




r +
〈

H, γ2 ∑−µ0µT
0

〉
+

〈
Z, ∑

〉
+ ẑγ1 − 2zTµ0 (22)

s.t. u (x, ξ)− r − ξHξT + 2ξT Hµ0 + 2zTξ ≤ 0, ξ ∈ Mξ , (22a)

r ∈ R, (22b)

H ≽ 0, (22c)




Z z

zT ẑ


 ≽ 0, (22d)

with u (x, ξ) = (1 − λ)ϑ(x, ξ) +
λ

1 − α
(ϑ(x, ξ)− v)+
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where r, H, and




Z z

zT ẑ


 are correspondingly the dual variables of constraints (21a), (21b), and

(21c). ⟨a, b⟩ represent Trace(AB).

Due to the inclusion of ()+, the inequality constraint (22a) has to be processed as follow:

r + ξHξT − 2ξT Hµ0 − 2zTξ

⩾(1 − λ)ϑ(x, ξ) +
λ

1 − α
(ϑ(x, ξ)− v)+

When the random parameter ξ appears in the constraint, it cannot be directly substituted into

constraint (22a). Therefore, it is necessary to consider the dual of problem ϑ(x, ξ) such that the random

parameters are transferred into the objective function. Another problem ensues, the coupling of

variables the dual variable q and the variable Y. The constraint on the dual variable q confines it to a

boxed region, as indicated by the constraint.

(Dual) :

ϑ′(x, ξ) = max
q,p

qT
(
(X ⊗ Freq)TON − ξ

)
, (23)

s.t. ϕ − p ⩾ q ⩾ 0, (23a)

p ⩾ 0, (23a)

Responding to constraint (22a), taking its extreme value points, each point corresponds to two

corresponding semi-definite matrix constraints. We transformed (22a) into a clearer and more concise

form.





r + ξHξT − 2ξT Hµ0 − 2zTξ

⩾ (1 − λ)ϑ′(x, ξ) + λ
1−α (ϑ

′(x, ξ)− v)

=
(

1 + λα
1−α

)
ϑ′(x, ξ)− λv

1−α

r + ξHξT − 2ξT Hµ0 − 2zTξ ⩾ (1 − λ)ϑ′(x, ξ)

In the above constraints, we represent
(

1 + λα
1−α

)
as φ and transform them into the following two

Semi-definite matrix constraint.








H 1
2 φqT − Hµ0 − z

(
1
2 φq − Hµ0 − z

)T
r − φqT(X ⊗ Freq)TON + λv

1−α


≽0




H 1−λ
2 q − Hµ0 − z

(
1−λ

2 q − Hµ0 − z
)T

r − (1 − λ) qT(X ⊗ Freq)TON


≽0
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Then, dual problem (22) can be rewritten as following:

min

X,v,r,H,


 Z z

zT ẑ




h(x) + λv + r +
〈

H, γ2 ∑−µ0µT
0

〉
(24)

+
〈

Z, ∑
〉
+ ẑγ1 − 2zTµ0

s.t. X × OM = ON , (24a)

XT ×N
up ⩽ Lcache, (24b)




H 1
2 φqT − Hµ0 − z

(
1
2 φq − Hµ0 − z

)T
r − φqT(X ⊗ Freq)TON + λv

1−α


≽0 (24c)




H 1−λ
2 q − Hµ0 − z

(
1−λ

2 q − Hµ0 − z
)T

r − (1 − λ) qT(X ⊗ Freq)TON


≽0 (24d)

[
Z z

zT ẑ

]
≽ 0, H ≽ 0, r ∈ R, (24e)

xij = {0, 1}, v ∈ R, (24e)

4.3. DRO-MILP Algorithm

In the above SDP problem, the X-matrix variables, 0-1 integer variables, and the Y-vector variables,

continuous variables, are included. This makes the original problem a mixed-integer linear formulation,

but he is not able to solve it directly. We relax the problem to a linear problem - simplifying the discrete

variable X to a continuous variable from 0 to 1, i.e., 0 ⩽ xij ⩽ 1, ∀xij ∈ X.

In fact, the above SDP problem can be solved by using the SDPT3 solver through the CVX package

in MATLAB. Then, the original problem MILP problem needs to be solved, and here we choose to use

the branching implicit enumeration method to solve it, which a special branch and bound method for

0-1 integer problems, using the feature that the variables can only take two values of 0 or 1, to branch

delimitation for the purpose of hidden enumeration. Where, for each task is divided into m sub-nodes,

i.e., each task can only be offloaded and completely offloaded to one node.

Algorithm 1 present the progress of the calculation of the minimize cost of computation offloading.

First of all, tasks should be sorted according to the number of CPU cycles they require, which

determines the cost spent to a large degree. Then the solution of the relaxed LP problem is obtained,

based on which the implicit enumeration method is performed to solve the solution of the branching

subproblem. During the process of branch and bound, the two nodes with the highest values in

the Xi vector, representing the most probable nodes for offloading the current task, are selected at

each iteration. Constantly branching, updating the gradually increasing lower bound; constantly in

delimitation, updating the gradually decreasing upper bound.
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Algorithm 1 Cost-based MILP algorithms for DRO task offloading problem.

Input: Convex Probability Distributional set M∼, Stochastic Sample Space F∼, Trade-off coefficient
λ, Confidence Level α, Ambiguous Set Parameters γ1 and γ2;

Output: Offload Decision X, Optimal cost value to satisfy distribution robustness;

Solve the MILP formulation SDP problem with confidence level α, to obtain optimal value of
continuous variables X and optimal cost value;

for i from 0 to N − 1 do
Sort(N )

[opt, X] = max(Xi)

[x1ij, x2ij] = max2(X)

if SDP(X′, x′i,j1 = 1) ≤ SDP(X′, x′i,j2 = 1) then

x′i,j1 = 1

min_cost[i] = SDP(X′, X′
i,j1 = 1)

else
x′i,j2 = 1

min_cost[i] = SDP(X′, X′
i,j2 = 1)

end if

end for

if min_cost[N − 1] ! = NaN then

return X′, min_cost[N − 1]

end if

4.4. Complexity Analysis

In Algorithm 1, a solver is used to solve the optimization problem. Here, the time complexity

for solving the optimization problem is set to T, the number of unloading tasks is set to N, and the

branch and bound method is used to traverse all unloading tasks. In the unloading target section, it is

simplified to select only the optimal two node locations with a cycle number of. The time complexity

of the proposed algorithm is O(TN).

5. Performance Evaluation

In this section, we try the performance and effectiveness under different parameters; analyze the

results of the above proposed algorithm under different risk confidence conditions; and compare it

with the traditional algorithm to give its superiority.

5.1. Simulation Setup

We accomplished the simulation on a laptop with an AMD Ryzen 7 4800H with Radeon Graphics

2.90 GHz, 16G RAM, and a Windows 10 OS. We envision a SAGIN-Cloud system where the coverage

of the space layer contains the air layer and the coverage of the air layer contains the whole MECN.

(The following parameters are all randomly within a certain range, given that the mean values are

generated according to a normal distribution)

1) Channel State Information (CSI)

For information transportation within ECNs, different frequency bands are borrowed between

the different layers, resulting in different bandwidths and transmission speeds. Currently, the C-band

is one of the most commonly used frequency bands for satellite operations, with the Ka-band being a

latecomer. This paper assumes that data transmission between BSs and UAVs occupies the C-band,

while the Ka-band is occupied between UAVs and LEO satellites. The bandwidth of C-band is 20MHz,

while the available bandwidth of Ka-band can reach 3500MHz. As for signal frequency range, C-band

and Ka-band are 3.4GHz-8GHz and 26.5-36GHz, respectively.

2) ECNs Information
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The horizontal and vertical coordinates of the BSs on the ground and the UAVs in the air are

within (−1, 1) km, respectively, while vertically, they are all 0. In contrast, the UAVs are located at an

altitude of (0.075,0.15) km. LEO satellites are located in space and they are at a distance of (780, 800)

km from the earth’s surface. LEO satellites are located in space and they are (780, 800) km away from

the surface. they are not too space constrained, so are deployed in a square area with four points as

vertices, (-200, -200), (-200, 200), (200, -200), (200, 200).

BSs, UAVs and LEO satellites possess CPU process speed of 2 ∗ 109 cycles/s, 3 ∗ 108 cycles/s, and

5 ∗ 109 cycles/s, respectively.

3) Comparison Algorithm

First, we propose to use the most basic comparison algorithm, namely the Brute-Force algorithm.

• In Brute-Force algorithm, It does not take into account any uncertainty and possible overflow of

computation of task to the extent that it may eventually lead to an inability to obtain an optimal

solution.

Secondly, we compare two traditional algorithms that take parameter uncertainty into account:

robust optimization(RO) algorithm and stochastic optimization(SO) algorithm.

• In RO, only the uncertainty of computational resources of ECNs is considered and their possible

worst-case scenarios are experimentally selected to ensure their robustness.
• In SO, the fuzzy set is constructed based on the historical data of the computational resources of

the given ECNs, thus obtaining their means and variances.

Thirdly, there is another algorithm closest to our proposed one, which is the DRO algorithm for

obtaining the optimal solution.

• In DRO [33], the mean value in the range of uncertainty set is obtained and its optimal robust

result is obtained by minmax theory, which guarantees both robustness and practicality. However,

there is also a drawback, namely that it is an uncertainty set constructed from historical data,

which does not guarantee the stability of its uncertainty set and does not consider its risk.

Lastly, we proposed CVaR-aware DRO algorithm on the basis of the traditional DRO algorithm.

• In CVaR-aware DRO, in addition to what the DRO considers, it also complements certain defects

that it has. It considers CVaR, choosing only the α − tail part as the benchmark, while using λ

as a weight with the original part. That is to say, he selectively aggravates the proportion of the

worse part of the results within the final result in order to guarantee its risk resistance.

5.2. Experiments

5.2.1. RaDROO algorithm

First observe the practical results of our proposed RaDROO algorithm under the practical problem

of solving the optimization of offloading cost of edge network tasks. The optimal values of lambda in

the range of (0,1) are given as α of 0.5, 0.7, and 0.9, respectively. As illustrated in Figure 2, when lambda

is 0, it means that CVaR is not considered and weakened to a classical distribution robust problem,

and the obtained results converge to a point. However as the λ increases, the consideration of risk is

reinforced step by step, further constraining the range of values provided within the uncertainty set.

This results in a progressive increase in the amount to be spent, but at the same time, a more superior

and stable optimal choice is obtained. At the same time, the larger the lambda, i.e., the larger the

weight considering the CVaR value, the worse the optimal value of the required spend.
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Figure 2. Expect cost under different α

Second, observing the value of V gives a more intuitive view of the degree of consideration of risk

in CVaR. As shown in Figure 3 and Figure 4, it is obvious that the value of V is larger when a higher

alpha value is taken, i.e., when the worse part of the fuzzy set is used as a criterion, and at the same

time, this value is almost unaffected by the value of λ taken; however, with a fixed value of α, as the

simultaneous upload of amount of tasks increases, the value of V for each experiment also increases

gradually and steadily, which means that the value of CVaR also increases, that is, the risk is further

considered as a way to ensure the authenticity and practicality of the whole system.
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Figure 3. V value under different α.
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Figure 4. V value between 110 and 200 tasks.

5.2.2. Comparing with other algorithms

For comparison with other algorithms, some of the parameters of RaDROO are λ = 0.5, α =

0.5, γ1 = 0, γ2 = 1.

The comparison between algorithms takes the obtained target value as the evaluation criterion.

Figure 5 shows the optimal cost results obtained by different algorithms at the same time as the amount

of tasks received increases. Figure 6 and Figure 7 show the comparison of the results of the four

algorithms at task volumes of 150 and 170. When the number of tasks is small, considering only

known allocatable resources all algorithms give better results. As the total number of tasks that may be
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uploaded simultaneously rises, the Brute-Force algorithm fails to obtain an optimal solution because it

does not take into account the lack of computational resources. In contrast, RO, SO, DRO and RaDROO

can obtain their optimal solutions and the optimal cost obtained increases with the increasing number

of tasks.
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Figure 5. optimal cost of compared algorithms between 110 tasks to 200 tasks
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Figure 6. optimal cost under 150 tasks
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Figure 7. optimal cost under 170 tasks

In the two observations with the number of tasks 150 and 170, we can clearly get from Figure 6 and

Figure 7 that the results obtained by the RaDROO are closer to those obtained by the traditional DRO

algorithm. Therefore, it can be concluded that RaDROO ensures its robustness while considering CVaR

to obtain higher risk resistance and better results under the uncertainty of computational resources.

The RaDROO algorithm obtains better results also pays a price in terms of computational time,

as shown in Figure 8. the time taken to solve the RO, SO, Brute algorithm is close and lower. the

DRO algorithm obtains the optimal two-stage mean based on fuzzy sets in the minmax theory of

robust algorithms. The RaDROO algorithm considers CVaR on top of this, which further increases the

complexity of the algorithm and takes more time to solve problem.

Overall, although RaDROO incurs a certain time cost, it strikes a balance between computational

time and risk consideration by incorporating CVaR into the decision-making process. It achieves

improved robustness compared to traditional methods while maintaining competitive performance.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 24 May 2023                   doi:10.20944/preprints202305.1689.v1

https://doi.org/10.20944/preprints202305.1689.v1


18 of 20

By considering CVaR, RaDROO is able to effectively manage the risk associated with uncertain factors

and make more informed task offloading decisions in the SAGIN environment.
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Figure 8. Execution time of each algorithm.

6. Conclusions

This paper focuses on the offloading decision problem of tasks in the SAGIN framework,

considering the instability of computational resources of each node and the limited channel resources

and storage resources of ECNs. Based on this problem, we propose the RaDROO algorithm, which

considers while CVaR to improve its risk resistance on the basis of the traditional DRO algorithm.

In addition, we conducted simulation experiments in a simulation environment, and the algorithm

obtained better results than the traditional robust algorithm and close to the traditional DRO algorithm,

and proved the effectiveness of the algorithm.

There are several directions in which we can extend this work in the future. First, the execution

time of the RaDROO algorithm is a major problem that needs to be solved, which may be solved

by optimizing the algorithm architecture and using a better model solving method; second, the task

upload is transient, and we can consider the real-time task unloading decision problem within the

SAGIN framework; third, the value of lambda is freely variable and it is a problem to choose a rational

value; Finally, this experiment only considers the uncertainty of computational resources, in the

actual environment, the storage space of ECNs and CSI also have uncertainty, and the impact of these

uncertainties on the offloading decision is also worth considering.
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