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Abstract: We consider the differential equation y”" + w?p(x)y = 0 where w is a positive parameter.
The principal concern here is to find conditions on the function p~1/%(x), which ensure that the
consecutive differences of sequences constructed from the zeros of a nontrivial solution of the
equation are regular in sign for w sufficiently large. In particular, if ¢, («) denotes the kth positive
zero of the general Bessel (cylinder) function C, (x;a) = J,(x) cosa — Y, (x) sina of order v, and if
lv| < 1/2, we prove that

(—1)"A" ¢ (a) >0 (m=0,1,2,..;k=1,2,..),

where Aay = ai,1 — ax. This type of inequalities was conjectured by Lorch and Szego in 1963. We
also show that the differences of the zeros of various orthogonal polynomials with higher degrees
possess the sign-regularity.

Keywords: Sturm-Liouville equations; differences; zeros; higher monotonicity; Bessel functions;
orthogonal polynomials

MSC: 34B24; 33C10

1. Introduction

We consider the differential equation
¥ +w(x)y=0, a<x<b, (1.1)

associated with a positive parameter w. By a Sturm-Liouville function, we mean a nontrivial real
solution of (1.1). Let {xx(w)} denote the ascending sequence of the zeros of a Sturm-Liouville function
in the interval [, b]. The Sturm comparison theorem (see e.g., [1, p.314] or [3, p.56]) states that the
second differences of the sequence {x;(w)} are all positive if p’(x) < 0, and are all negative if p’(x) > 0.
Our main purpose here is to go beyond the second differences and to show that higher consecutive
differences of sequences constructed from {xy(w)} are regular in sign. Lorch and Szego [3] initiated
the study of the sign-regularity of higher differences of the sequences associated with Sturm-Liouville
functions. In particular, if ¢, («) denotes the kth positive zero of the general Bessel (cylinder) function

Cy(x;a) = Jy(x) cosa — Yy (x) sina,
they proved that, for [v| > 1/2,
(—1)"A" e () >0 (m=0,1,2,..;k=1,2,..), (1.2)m
and conjectured [3, p.71] on the basis of numerical evidence that, for [v| < 1/2,

(—1)"A" e (6) >0 (m=0,1,2,..;k=1,2,..). (1.3)m

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.
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The symbol A™a; means, as usual, the mth (forward) difference of the sequence {ay }:
Aap =ar, A"ap=A""tap - AN"lap (m=1,2,..;k=1,2,..).
Note that C, (x; ) is a solution of the equation
y'+q(x)y =0, x¢€(0,), (1.4)

with g(x) =1 — (v?> — (1/4))x 2. Since g’ (x) = 2(v?> — (1/4))x~3, we see that the Sturm comparison
theorem gives the results (1.2); and (1.3)g. They also mentioned in [3] that the signs of the first
M differences of zeros of a Sturm-Liouville function of (1.4) could be inferred from the signs of
q(m) (x),m =1,2,.., M. Muldoon [7] made some progress in (1.3),,. He proved that (1.3),, holds when
1/3 < |v| < 1/2([7, Corollary 4.2]).

Our approach here is based on the ideas and results of [10], where the string equation y” +
Ap(x)y = 0 with y(0) = y(1) = 0 was considered. Using the eigenvalues and the nodal points,
we constructed a sequence of piecewise continuous linear functions which converges to p~1/2(x)
uniformly on [0, 1]. We also obtained a formula for derivatives of p~!/2(x) in terms of the eigenvalues
and the differences of the nodal points.

This paper is organized as follows. In Section 2, we use the zeros x;(w) of a Sturm-Liouville
function as nodes to obtain a difference-derivative theorem (Lemma 2.1). We also give asymptotic
estimates for p~1/2(x;(w)) as w — oo (Lemma 2.3). Then we are able to express the higher differences
A"y (w) in terms of the derivatives of p~1/2(x) at those zeros. Moreover, the expression can be used
to determine the regular manner of these differences (Theorems 2.4 and 2.5). Besides, we construct
sequences from x;(w), whose all mth differences have the same sign (Corollary 2.6). The proofs of
Lemmas 2.1 and 2.3 rely on a system of interlaced inductions, which will be given in Section 5. In
Section 3, we use an approximation process for the zeros of the general Bessel function to prove the
conjecture of Lorh and Szego (Theorem 3.1). In Section 4, the zeros of various orthogonal polynomials
with higher degrees are shown to share similar sign-regularity (Theorems 4.1 and 4.2).

The notation used throughout is standard. A function ¢(x) is said to be M-monotonic (resp.,
absolutely M-monotonic) on an interval [ if

(—1)"p"(x) >0 (resp.,¢"(x)>0), (xe€Lm=0,1,..,M). (1.5)m

If (1.5)p holds for M = oo, then ¢(x) is said to be completely (resp., absolutely) monotonic on I. A
sequence {a;(w)}, depending on a positive parameter w, is said to be asymptotically M-monotonic
(resp., asymptotically absolutely M-monotonic) if

(=D)"A"ap(w) >0 (resp., A"ar(w) >0), (m=0,1,2,..Mk=1,2,..)
for w sufficiently large.
2. Main Results
In this section we consider the differential equation
v +w?o(x)y=0, a<x<b, (2.1)

where w is a positive parameter. We shall assume throughout that p(x) is a positive C*-function on
the interval [a, b]. The notation f(x) is reserved for the function p~1/2(x). Let y(x; w) be a nontrival
real solution of (2.1), and let x1(w) < xp(w) < --- be the zeros of y(x;w) in the interval [a, b]. For
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a < x < b, we denote by k(x; w) the smallest positive interge k such that x < xj(w). It is known(see
e.g., [9,10]) that

w
min < —Axi(w) < max . 2.2
i o S i) < | max S 22

It follows that 7t miny, ;) f < wAxx(w) < 7wmax,y f. In particular, we have
Axp(w) =0(w™Y) as w — . (2.3)
Thus, by (2.2) and the continuity of f, we obtain f(x) = limy—c0 % AXk(x;)(w) and, for any fixed I,

lim Axk(x;w)+l (w)

=1. 24
w—reo Axk(x;w)(w) 24

Note that (2.4) means that, as w — oo, the sequence x(w) behaves as equally distributed.

If ¢ is m-times differentiable in (f,t + md) and the lower derivatives of ¢ are continuous on
[t,t + md], a mean-value theorem [8, p. 52, no. 98] for differences and derivatives states that there
exists a J, such that
no(t) = d" " (t + omd),

where Ajp(t) = @(t +d) — ¢(t). It is interesting to look for a difference-derivative theorem which can
express the differences of a smooth function on the sequence {x;(w)} in terms of its derivatives at this
sequence. The following lemma provides such a result.

Lemma 2.1. Let x; = xi(w). If ¢ is a C®-function on [a,b], then, form = 1,2, ...,

A"(xr) = O(w™™). 2.5)m
Moreover,
m
Ap(x) = Y- A 9D (i _g) +O(w™™Y), 2.6)m
g=1
where the coefficients A;’z) satisfy the recurrence relation:
-1
(m) _ m _ N~ (M=) 40 -
Al,k = Axy, Aq,k - Z ( r )Aql,k+merm "Xk, (2.7)m

forq=2,3,..,m.

To prove Lemma 2.1, we need a more detailed investigation on the behaviour of x;(w). We use
the Priifer method to achieve our purpose. For each nontrivial solution y(x; w) of (2.1), we define the
Priifer angle 6(x; w) as follows:

wp'/?(x) cotO(x; w) =
Then 6(x; w) satisfies the differential equation

0'(x;w) = wp'?(x) + Z;)((J;)) sin20(x; w). (2.8)

doi:10.20944/preprints202305.1665.v1
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If we specify the initial condition for 6(x; w) to be 8(a; w) = 6,(w) with 0 < 6,(w) < 7, then, by the
standard results (see e.g., [1, p. 315]), we have

0(xk(w); w) = krt, 29)

and kr < f(x;w) < (k+ 1), x € [xp(w), xgy1(w)]. Let xp = x(w). Integrating both sides of (2.8)
from xj to xx4 1, and using (2.9), we find

X X /
= w/ o pl/z(x)dx+/ H ) sin 20 (x; w)dx. (2.10)
X Xk 4p(x)

Taking the Taylor expansion of (1/f)(x) at x; and using (2.3), we obtain

/Xk+l o2 (x)dx = i 7(1/f)(7)(xk) (Axp) ™ +O0(w™™2). (2.11)
Xk r=0 (1’ + 1)!

The estimate of the second integral in (2.10) is stated as the following lemma. Its proof consists of a
reducible system of integrals which will be given in Appendix.

Lemma 2.2. Let x; = x¢(w). Then, for m = 2,3, ..., we have

X / m—2
/ 100 o w)dx = Y AR (x)w ™ 4 Ry o (%), 2.12),
Xk 4p(x) r=0
where the functions F, depend on f = p~'/2, and
Rya(x;) = O(w™"1). (2.13),

Note that the first two functions F, appeared in (2.12),, are of the forms

j fZ/ _ / (j;;zdx and F = 0. (2.14)

For m = 2,3, ..., using the estimates (2.11), (2.12),, and (2.13),, and multiplying (2.10) by f(xx)/,
we find the estimate for f(xy) :

_ @y &) pym 1N .
flw) =2 L s+ 2 L (AR (e T 0@ ), @15

where the functions g, = f(1/f)"),r = 0,1,2,..,,m. Note that gy = 1. Moreover, if we apply the mth
order difference operator to (2.15),,, then we can find the estimates for differences of the function f(x)
at those zeros. Indeed, we have

Lemma 2.3. Let f(x) and x;, = x(w) as above. Then, for m = 1,2,3, ..., we have
A"x = O(w™™). (2.16),

Moreover, w
A" f(x) = ;A”‘ka +O0(w ™1y, (217)m

The proofs of Lemmas 2.1 and 2.3 will be given in Section 5.

doi:10.20944/preprints202305.1665.v1
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Now, if we apply Lemma 2.1 to the function f(x), then, by (2.17),,, we have the estimate for the
higher differences of x; = x;(w) :

m
LAy = 3 AR PO (X g) + O™ ). (2.18),
q=1
Moreover, using (2.3) and (2.7),,, iterating (2.18),, for m from 1 to M, and then taking w sufficiently

large, we can ensure the monotonicity of the sequence {Axy(w)} by f.

Theorem 2.4. Let x; = x(w) and f(x) = p~1/2(x) be as those mentioned above. If f(x) is M-monotonic on
the interval [a, b, then the sequence {Axy(w)} is asymptotically M-monotonic.

Proof. Since
(=) (x) >0 (x€ab;m=0,1,2,..,M), (2.19)

it suffices to show that
(—1)" AN >0 (g=1,2, ., mm =1,2,.., M), (2.20)m
as w — 00, to conclude that
(—1)"A" y(w) >0, (m=0,1,2,.., M). (2.21)

We prove (2.20) )1 by induction on M. When M = 1, (2.20); reduces to Aglk) > 0, which is true because
Aglk) = Axy, by (2.7)1. Now, suppose that (2.20)n, 1 < N < M, is true. By (2.18)n, we have

NN = LM A D )]+ O,
E

which is nonnegative as w — oo, by induction hypothesis, (2.19) and (2.16)n.1. Thus, by (2.7)N+1,
(—)NANTD — (_1)NAN+1y, > 0,and, for g = 1,2,..,N + 1,

()N HIART = > (N)K—lr-q“A(’) JI(-)N=AN+I=rg ) > o,

K r q—1k+N—r
r=q—1

by induction hypothesis again. This prove (2.20)n41 and thus the theorem. O

Note that, if the factors (—1)" are deleted from the assumptions (2.19), then, by making the
obvious changes in the above proof, the conclusion (2.21) remains valid, provided they are amended
by eliminating the factors (—1)". Thus we have

Theorem 2.5. Let x; = xi(w) and f(x) = p~/2(x) be as those mentioned above. If f(x) is absolutely
M-monotonic on the interval [a, b, then the sequence {Axy(w)} is asymptotically absolutely M-monotonic.

As consequences of Lemma 2.1, Theorems 2.4 and 2.5, we can use the zeros of a solution of (2.1)
to construct sequences whose all mth differences have the same sign.

Corollary 2.6. (a) Let f(x) be M-monotonic on [a,b]. If ¢(x) is also M-monotonic on [a, b], then the sequence
{@(xx)} is asymptotically M-monotonic.
(b) Let f(x) be absolutely M-monotonic on [a,b]. If ¢(x) is also absolutely M-monotonic on [a, ], then the
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sequence { @(xy)} is asymptotically absolutely M-monotonic.

Proof. Since f(x) is M-monotonic on [a, b], we see from the proof of Theorem 2.4 that (2.20)s holds.
On the other hand, the M-monotonicity of ¢(x) on [, b] means that

(=1)"e" (x) >0 (x € [a,b;m=0,1,2,.., M). (2.22)

It now follows from (2.6),, (2.20)p1, (2.22) and (2.5),, that

m
(=1)"A"p(x) = Y [(=1)" 1AV [(=1)79 (x4 )] + O(w ™) > 0,
q=1
forallkand m =0,1,2,..., M, as w — oo. The proof of (b) is similar to that of part (a). O

Note that, by the definition of the function f(x) = p~'/?(x), the conclusion of Theorem 2.4 (resp.,
Theorem 2.5) can be inferred directly from the assumptions on p(x). In fact, (—1)"p("*1) (x) > 0 (resp.,
e 1) (x) < 0)on [a,b], for m = 0,1,2,..., M — 1, imply (—1)" (") (x) > 0 (resp., ™) (x) > 0) on [a, ],
form =1,2,..., M. To examine the assertions, we can proceed by induction on M. For M = 1, by the
facts f(x) = p~1/2(x) and f'(x) = (—1/2)p~3/%(x)p' (x), the assertion is valid. For higher derivatives
of f(x), a general term of f(")(x) would appear as

S = CloJ[p'}" o) - o™ o

with exponentials ay a negative half-integer and a4, ay, ..., &, all nonnegative integers. The induction
is carried through by differentiating S,;. We have

S = Catolo]! 0 o)1 0] - [pJn - Cay [p]20 ][] - [pl e

e Ca o]0 0" -+ [p 7))o o4,

and under the conditions (—1)"p("*1) (x) > 0 (resp., p("+1)(x) < 0) and the negative g, each term
in the last sum has opposite sign (resp., the same sign) as S,. Thus, f" (x) and f"+1)(x) have
alternating signs (resp., the same sign), and then the inductions are complete. Hence we obtain

Corollary 2.7. Let x; = xx(w) be as above. (a) If p’(x) is (M — 1)-monotonic on [a,b], then the sequence
{Axy(w)} is asymptotically M-monotonic.

(b) If —p'(x) is absolutely (M — 1)-monotonic on [a,b], then the sequence {Axy(w)} is asymptotically
absolutely M-monotonic.

Although Corollary 2.7(a) is a partial result included in [4, Theorem 3.3], the techniques employ in
this section are independent of the methods in the series of papers [4, 5, 7] and the results of Hartman
[2, Theorems 18.1, and 20.1,.] It also gives the connection of the quantities between the differences of
the zeros and the coefficient function p(x). However, it might have some numerical interest.

One can find similar results concerned with the critical points of a Sturm-Liouville function of
(2.1). In fact, by letting x; (w) denote the kth critical point of a solution y(x; w) of (2.1) in the interval
[a, b] and noting the definition of the Priifer angle

0 (@) w) = (k— 3)m,

the procedures employed in this section are all valid. Thus if we replace {x;(w)} in Theorems 2.4 and
2.5, and Corollaries 2.6 and 2.7 by {x}(w)}, the conclusions in these Theorems and Corollaries still
hold.
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3. Applications to Bessel Functions.

Let ¢,k () be the kth positive zero of the general Bessel (cylinder) function
Cy(x;a) = Jy(x) cosaw — Yy (x) sina,

where J,(x) and Y, (x) denote the Bessel functions with order v of the first and second kind,
respectively. The main results in this section are stated as follows:

Theorem 3.1. (a) For |v| < 1/2, we have
(=1)"A" ¢ (6) >0 (m=0,1,2,..;k=1,2,3,..).
(b) For 0 < |v| < 1/2, we have

(—1)"A" 2 (@) >0 (m=0,1,2,.;k=1,2,3,..).

vk

The Airy functions (see e.g., [11, p.18]) satisfy the differential equation y” + $y = 0. We consider

a broader class of functions, including the Airy functions, which satisfy the differential equation (see
eg. [12,p. 9709)))

2"+ w?x"z2=0, x€(0,0), (3.1

where 0 < ¥ < oo. These functions are closely related to Bessel functions. Indeed,
z2(x;w) = x12C, Quwx'?; ),  where v =1/(y+2),

is a nontrivial real solution of (3.1). Note that, for each w > 0, the kth positive zeros & (w) of z(x; w)
satisfies the identities

vw(Gr(w)? = cp(a) and  (2vw)* G (w) = e (a).
Moreover, for each w > 0,and m = 0,1, 2, ..., we have
A" ey (a) = 2vwA™ 2 (& (w) V2, (32)

and
A" (a) = (2vw) P A" (). (3.3)

The identities (3.2) and (3.3) are really the key for us to study the regularity behaviour of the Bessel
Zeros.

To prove Theorem 3.1, we consider the family of differential equations:
V' +w?(x+a)y=0 (a>0;0<7 <o), (3.4)

on the interval [0, b]. Let y,(x; w) be a nontrivial real solution of (3.4) and let the sequence {xy(w;a)} be
the zeros of y,(x; w) with the ascending order in [0, b]. Following Theorem 2.4 with f(x) = (x +a)~7/2
and Corollary 2.6(a) with the function ¢(x) = (x +a)~'/?", we have

(—D)"A" x(w;a) >0 (m=0,1,2,.., M), (3.5)

doi:10.20944/preprints202305.1665.v1
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and
(—1)"A"™(xi(w;a) +a) ' >0 (m=0,1,2,.., M), (3.6)

as w — oo. If we specify the initial conditions for the solution y,(x; w) of (3.4) to be
va(Qw) =z(a;w) and y,(0;w) =2 (a;w),

then it is easy to verify that y,(x;w) = z(x +a;w) for x € [0,b], and hence, for each k, x;(w;a) +a
converges to & as a — 07. Thus, for each w > 0, by (3.2) and (3.3), we have

A" 2¢ . (a) = alirgl+ 20wA" 2 (xi (w;a)) %, (3.7)
and
A2V () = ulig1+(2vw)2vAmek(w;a). (3.8)

Recalling (2.10) and (2.12),,43 with the function p(x) = (x +4)7 and denoting x; = x;(w;a), we
have

m+1
w/ (x+a)"?dx =m— Y AR (xp)w "' = Rygr (xg). (3.9)
r=0

Note that v =1/(y +2) and f(x) = (x 4+ a)?~1)/2" By (2.14), we have

2 _
AFy(xy) = 4V16V A+ a) 172,
Thus, (3.9) becomes
1/2v 1407 R - 1
2w (xp +a)? =+ e A(xy +a) - Y AR (x)w — Rypp1(xp). (3.10)

r=1
If we apply the difference operator A" 1o (3.10), by (2.5);+2 and (2.13),,43, then we can find

1-

20wA"™ 2 (xp + a) VP = Am+2(x +a) VP L O(w . (3.11)
161/w
Moreover, multiplying (3.11) by (—1)"w"*3, we have
.
2me+4(_1)mAm+2(xk + u)l/Zv _ %merz(_l)mAerZ(xk + a)fl/2v + O(wil). (3.12)

By (3.12), (3.6), 2.5)42 and 0 < v < 1/2, we have
(=D)"A" 2 (xp +a)V* >0 a5 w — . (3.13)

Now, for each a > 0, if we choose w = w(a) sufficiently large such that (3.13) and (3.5) hold, then, by
(3.7) and (3.8), we have

(=1)"A" ¢ (a) >0 (m=0,1,2,..;k=1,2,3,..), (3.14)

and
(~1)"A" A (0) >0 (m=0,1,2,...k=1,2,3,..). (3.15)

doi:10.20944/preprints202305.1665.v1
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Secondly, according to Y, (x) = (Jy(x)costv — J_,(x))/ sinmtv (see e.g., [12, p. 64]), it is easily to
verify that C_, (x; &) = Cy(x; &« + 7tv), and hence

c_k(a) = cyk(a + 7v).
Thus, for 0 < |v| < 1/2, (3.14) holds and (3.15) holds in the modified form

(—1)"A" 2 (@) >0 (m=0,1,2,..;k=1,2,3,..). (3.16)

Thirdly, for v = 0, any positive zero c,x(«) of C,(x;a) is definable as a continuously increasing
function of the real variable v (see e.g., [12, p. 508]), so that, by an approximating process, (3.14) hold
forall jv] < 1/2.

Finally, since neither {A%c,;(«)} nor {Acﬂ:" (a)} are constant sequences, the results of Lorch,
Szego and Muldoon for completely monotonic sequences ([3, p. 72] or [6, Theorem 2]) guarantee the
strict inequalities of (3.14) and (3.16). This completes the proof of Theorem 3.1.

4. Applications to Classical Orthogonal Polynomials.

Some important classical orthogonal polynomials are related to Sturm-Liouville functions such
as Hermite and Jacobi polynomials. In [3, p. 73], Lorch, Szego and their coworkers conjectured, on
the basis of numerical evidence, that the 6-zeros of the Legendre polynomials, the special cases of
Jacobi polynomials, and the positive zeros of the Hermite polynomials form the sequences whose mth
differences have the constant sign. In this section, we shall apply the results in Sections 2 and 3 to
obtain some partial answers for these conjectures.

4.1. Positive zeros of Hermite polynomials
Let Hy(t) be the Hermite polynomial (see e.g., [11, p.105(5.5.3)]), defined by
Halt) = (<1 ()" @

We consider the Hermite differential equation:
H, —2tH), +2nH, =0,

and the related equation:
u’ 4+ [(2n+1) — tHu = 0. (4.2)

A simple calculation shows that (see e.g., [11, p.105(5.5.2)])
un(t) = e /2H, (1)

is a nontrivial solution of (4.2). From the general theory of orthogonal polynomials, we know that
H,, (t) has precisely n real zeros. By (4.1), we see that for n even, H,(t) is an even function of ¢, and for
n odd, Hy(t) is an odd function of t. Accordingly, all zeros of H,(t) are placed symmetrically with
respect to the origin, and the same phenomenon is clearly true for u,(t). For each n, the positive zeros

of Hy(t) are named by hgn) < hgn) << hE:}z], where [-] is the greatest integer function.

doi:10.20944/preprints202305.1665.v1
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The main result concerned with Hermite polynomials is as follows:
Theorem 4.1. Let h,({") be as above. Then, for each k, we have
AR >0 (m=1,2,..,M), 4.3)

for n sufficiently large.

Proof. For each n, by introducing the variable x = t/+/2n + 1 and letting z, (x) = u,(), equation (4.2)
is transformed into
24+ (2n+1)%(1 — x%)z, = 0.

We denote the kth positive zero of z,(x) by (_",‘,((n), where @',((n) = h,(:l) /v/2n + 1. Thus, we have

AR = anF1ame.

To prove (4.3), we consider the differential equation:
vV +2n+1)2a—-x*)y=0 (a>1Lxe€01]). (4.4)

Letw =2n+1, f(x) = (a — x?)~'/2, and let y, (x; a) be a nontrivial real solution of (4.4) and x,((n) (a)
be the kth positive zero of y,(x;a). Then, by the following fact about f(") (x) :

£ (x) = {a polynomial of x with nonnegative coef ficients}(a — x*)~?m+1)/2,

we know that f (m) (x) > 0 on the interval [0, 1] for m = 1,2,3, ... Thus, by Theorem 2.5, we obtain
A\ (@) >0 (m=1,2,.., M),
for n sufficiently large. If we specify the initial conditions for v, (x; a) to be
yn(0;0) = z4(0) and y,(0;a) = z,(0),

then it is easy to verify that y,(x;a) uniformly converges to z,(x) on the interval [0,1] asa — 17.
Consequently, for k = 1,2, ..., [5], the zero x,((n) (a) converges to é,(cn) as a — 171. Therefore, for k fixed,

At — 1im A"\ (a) > 0,

a—1t k

and thus (4.3) holds. 0

4.2. Zeros of Jacobi polynomials
Givena > —1and b > —1, the Jacobi polynomial P,Sa’b) (x) (see e.g., [11, p.67(4.3.1)]) is defined by

(=1)" d

_\a bplab) — _
(1 x) (]‘+x) PVl (x) Znn! (dx

)n{(l _ x)n+u(1 + x)n—&-b}'

Concerned with the Jacobi polynomials P (x) on the orthogonal interval [—1, 1], if we denote the
Zeros x,((") = x,((") (a,b) of Pyﬁ“"’) (x) with the descending order

1> s> s s o,

doi:10.20944/preprints202305.1665.v1
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then the 6-zeros G,E") = GIE") (a,b), x](cn) = cosG,E"), of P,(l”’b) (cos®) behave the order
0<o <ol <... <ol <.

According to the uniformly convergent theorem [11, Theorem 8.1.1, p.190]:

. _ a, X X, _
nlgrolon lXPy([ b)(COSE) = (E) Ja(x),

we know that

: (n) —
nlg]go nd, "’ (a,b) = jax.

Now, by Theorem 3.1(a), for v = a and &« = 0, we have the following theorem.
Theorem 4.2. For |a| < 1/2 and k fixed, we have
(—1)"A™20" (a,b) >0 (m =0,1,2,.., M),

for n sufficiently large.

5. Proofs of Lemmas 2.1 and 2.3.
In this section we shall prove (2.5)yu, (2.6)n, (2.7)m, (2.16)y and (2.17),, by inductions,

simultaneously.

For m = 1, taking the Taylor expansion of ¢ at x;:

2
(ki) = @(xi) + ¢ (xi) Axg + ¢ (&) (A;k) ,

where x; < {io < x;1, and using (2.3), we have
Ap(xi) = ¢’ (xx) Axg + O(w™2),

and hence (2.5)1, (2.6)1 and (2.7); are valid. If we apply the first order difference operator to (2.15); and
use (2.5); with ¢ = Fj, then we have

Bf(xi) = S8+ 5 A{gi (x) (8x)) + O(w ).
By the fact A{ayBx} = axi1(ABk) + (Aag) Bk, we also have
Af(xp) = E0x + 5581 (1) {Bx1 % + A2 Axi ) + O(w™2)
= YA%(1+O0(w™ 1)) + O(w™2).
Applying (2.5); again to the function f(x), we find that Af(x;) = O(w™!), and then we have
A%xp = O(w™2),

and hence w
Af (x) = ;Azxk +0(w™2).

Thus (2.16); and (2.17); are valid. The validity of (2.16); is the impetus of our induction argument.
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Now, suppose (2.5), (2.6)m, (2.7)m, (2.16), and (2.17),, are fulfilled for m = 1,2, ..., N. If we apply
(2.5)n with ¢(x) = f(x) to (2.17)y, then we have (2.16)n1, that is

AN+1xk _ O(w‘N_l).

Taking the Taylor expansion of ¢ at xj:

N+1 (N+2)
V) (xi) N2 (g, N+2) N+2
= (Axp)P + ———2=2 (A 1
where x; < & yy2 < x¢41, applying the Nth order difference operator to (5.1) and then using (2.16),

we have
N+1

M) = ¥~

AN ) (210 (Ax) "} + O(@™N72). (5:2)
p=1 P

Following the product rule for higher differences, we know that
N o (N N
B (o ) 07007y = 1 (V)80 (- AN (4
r=0

If we replace ¢(x;) by q)(p) (Xg N_r) In (2.5), forr =1,2,...,N, and use (2.16),, form =1,2,..,N +1,
then we obtain
AN{o®) (x)(Ax )P} = O(w N7P) (p=1,2,.., N+1). (5.3)

Thus (5.2) and (5.3) imply (2.5)n-+1. Moreover, we have

ANTo(x) = AN{¢/ (x) Axg} + O(w N 72)

(5.4)
= Zr 0 ( )Ar(P (karN r)AN+1 rxk + O((U _2)'
Applying (2.6), with ¢'(xx, n_,) instead of ¢(xi) forr =1,2,..., N to (5.4), we find
ANFlo(xp) = ¢/ (xkpn) AN
(5.5)

L OOz q k+N LT (e g ) JANFI T + O(w0™N72).
If we change the order of the summation in (5.5) and shift the index g, then we can find
MNTo(xe) = ¢ (xepn) ANy
+ 2N ) (a1 AT, 1 ()AL 4y AN} + 0(w N2,
Thus (2.6)n11 and (2.7)n.1 are valid.

Finally, to prove (2.17)n+1, applying the (N + 1)th order difference operator to (2.15)y.1, we have

AN () = 4500 AN {gr (i) (M) 1

(5.6)
+x Loy AN (x) AR (1) b7 7!+ O(w™N72).

Following the product rule for higher differences again, we have

N-+1
AN (g, () (A1) = Y (M

)Aﬁgr(xk+N+1ﬁ)AN—H_ﬁ(Axk)r—H-
=0
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Using (2.5)p with g;(xx n11-p) replacing ¢(x;) for B = 1,2,...,N + 1, and using (2.16),, for m =
2,....,N +1, we obtain

ANTH gy (x) (Axg) ™1}
= gr(xk+N+1)AN+l(Axk)r+l + Eg;l (Ngl)Aﬁgr(xk+N+1—ﬁ)ANH*ﬁ(Axk)rH (5.7)
= gr(Min+1) (AN T2x) O(w ™) + O(w™N7772).
On the other hand, applying (2.5), to the functions f(x) and F.(x) form = 1,2,..., N + 1, we also have
ANTH f (x) AF () }
= f(xksn41)ANT2E () + ZNH (N;;rl)Aﬁf(xk+N+1—ﬁ)AN+27ﬁFr(xk) (5.8)
=O(w N1 + O(wN72).
Applying the estimates (5.7) and (5.8) to (5.6), we obtain

ANHIf(x) = €A+ 4 (2AN+25)0(w ) + O(w N 2)

(5.9)
= S (14+0(w™)) +O(w™N72).
If we replace ¢(x¢) by f(x¢) in (2.5)n+1, then we have
AN f(x) = O(w ™M), (5.10)
Note that (5.9) and (5.10) imply
%AN”xk = O(w™ N1y, (5.11)

Then by (5.9) and (5.11), we have (2.17)n1. This completes the proofs of Lemmas 2.1 and 2.3.

Appendix A

Recalling f(x) = p~1/?(x) and the differential equation (2.8) for the Priifer angle 6(x; w), we have

!

0 (x;w) = J%{l — f25j> sin26(x; w)}. 6.1)

Then ,

0 r+1pg/
{- sm26}{1 (f’/2a))sin29}w/f ;{ f sin20}70’, (6.2)
and hence
Yt &/ : _ _m—l wiril Y+ N1 (e r+] / —m—1

/xk 4 Sin20dx = EO S /xk (F')+ (sin™+120)8dx + O(w 1), 6.3)

where 0 = 0(x;w), 0 = 0'(x; w) and x; = x;(w).

To prove Lemma 2.2, we introduce the following integrals for a C*-function ¢ which is defined
on [a,b]:
Yk+1 Ly f
Pr[¢] :/ @ -sin"(20) - 0'dx,
X

Qrlel = /:kﬂ @ -sin"(20) - cos(20)dx,

k
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and Xk+1
R[] = / @ -sin”1(260)dx
Xk
where r =0, 1,2, ... Now, (6.3) can be written as
X1 m—1 w—}’—l o
A pr 51n29dx = Z Wpr_,’_l[(f,)r—"_l] + O(w m 1). (64)
k r=0
By integration by parts, we have the reduced formula for P, 1[¢] that
—¢@ -sin"20 - cos26 Xei1 r
P, = P,_ .
r+l[(P] 2(r +1) Xg P 1[(P]+2(r+1)Qr[ ] (6.5)

Introducing 6’ in the same way as we did in (6.2), and using integration by parts and (2.9), we have the
following estimates for Q,[¢]| and R,[¢],

B m—r—3 w—]—l N iy
Qrlp] = — Jg m&ﬂ[(%) ] +O0(w ), (6.6)
and
m—r— (U —j—1 4
RY[(P] = Z i Pr+]+1 [QD]] +O( )r (6-7)
j=0

where ¢; = ¢f(f')/. Applying the estimates (6.6) and (6.7) with suitable integrands to (6.5), and then
collecting the terms with the same order of w in the sum together, we can find

Prialgl =~ R + A Poalel .
m— 7 ﬁ 2 —m-r '
—Tp 7 e Do e P [(@)5-] + O(@™7),
where ¢;, i, = [(¢},)'];,- By (6.8) and (2.9), we have
P _ _A(P(xk> w /5 2 1 / O —m 69
gl = — ﬁ;} B2 Z(:]]+1 Pgi1[(¢")jp—i] +O(w™), (6.9)
and
P mt y=p-2 1 o
R 2 . Pheal(9)y ] + Ol ). (6.10
If we apply (6.1) and (6.7) to the integral Py[¢], then we have
Y1 @ "= w il —m+1
pl=w [ G- L e Beallef D))+ 0w ) (611)
Applying (6.11) to (6.10), we obtain
w w 1
Plgl= 4§ [ S - 5 S Ballaf /) o)

m— —p—2 —m—
Y z,io A2Pgial(9")jpj] +Olw 1)

In (6.4), if we apply (6.8) to the function ¢ = (f’)"*!, and use (6.9) and (6.12) to collect the reductions
of those integrals P,_1[(f')"*!] and P,y g1 [((f’ )”1)}/57 ;1, then all processes of reductions shall be
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stopped, after a finite steps, while the remainders behave as O(w~"~1). This completes the proof of
Lemma 2.2.
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