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Abstract: We consider the differential equation y′′ + ω2ρ(x)y = 0 where ω is a positive parameter.

The principal concern here is to find conditions on the function ρ−1/2(x), which ensure that the

consecutive differences of sequences constructed from the zeros of a nontrivial solution of the

equation are regular in sign for ω sufficiently large. In particular, if cνk(α) denotes the kth positive

zero of the general Bessel (cylinder) function Cν(x; α) = Jν(x) cos α − Yν(x) sin α of order ν, and if

|ν| < 1/2, we prove that

(−1)m∆m+2cνk(α) > 0 (m = 0, 1, 2, ...; k = 1, 2, ...),

where ∆ak = ak+1 − ak. This type of inequalities was conjectured by Lorch and Szego in 1963. We

also show that the differences of the zeros of various orthogonal polynomials with higher degrees

possess the sign-regularity.

Keywords: Sturm-Liouville equations; differences; zeros; higher monotonicity; Bessel functions;

orthogonal polynomials

MSC: 34B24; 33C10

1. Introduction

We consider the differential equation

y′′ + ω2ρ(x)y = 0, a ≤ x ≤ b, (1.1)

associated with a positive parameter ω. By a Sturm-Liouville function, we mean a nontrivial real

solution of (1.1). Let {xk(ω)} denote the ascending sequence of the zeros of a Sturm-Liouville function

in the interval [a, b]. The Sturm comparison theorem (see e.g., [1, p.314] or [3, p.56]) states that the

second differences of the sequence {xk(ω)} are all positive if ρ′(x) < 0, and are all negative if ρ′(x) > 0.

Our main purpose here is to go beyond the second differences and to show that higher consecutive

differences of sequences constructed from {xk(ω)} are regular in sign. Lorch and Szego [3] initiated

the study of the sign-regularity of higher differences of the sequences associated with Sturm-Liouville

functions. In particular, if cνk(α) denotes the kth positive zero of the general Bessel (cylinder) function

Cν(x; α) = Jν(x) cos α − Yν(x) sin α,

they proved that, for |ν| > 1/2,

(−1)m∆m+1cνk(α) > 0 (m = 0, 1, 2, ...; k = 1, 2, ...), (1.2)m

and conjectured [3, p.71] on the basis of numerical evidence that, for |ν| < 1/2,

(−1)m∆m+2cνk(α) > 0 (m = 0, 1, 2, ...; k = 1, 2, ...). (1.3)m
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The symbol ∆mak means, as usual, the mth (forward) difference of the sequence {ak}:

∆0ak = ak, ∆mak = ∆m−1ak+1 − ∆m−1ak (m = 1, 2, ...; k = 1, 2, ...).

Note that Cν(x; α) is a solution of the equation

y′′ + q(x)y = 0, x ∈ (0, ∞), (1.4)

with q(x) = 1 − (ν2 − (1/4))x−2. Since q′(x) = 2(ν2 − (1/4))x−3, we see that the Sturm comparison

theorem gives the results (1.2)1 and (1.3)0. They also mentioned in [3] that the signs of the first

M differences of zeros of a Sturm-Liouville function of (1.4) could be inferred from the signs of

q(m)(x), m = 1, 2, ..., M. Muldoon [7] made some progress in (1.3)m. He proved that (1.3)m holds when

1/3 ≤ |ν| < 1/2 ([7, Corollary 4.2]).

Our approach here is based on the ideas and results of [10], where the string equation y′′ +
λρ(x)y = 0 with y(0) = y(1) = 0 was considered. Using the eigenvalues and the nodal points,

we constructed a sequence of piecewise continuous linear functions which converges to ρ−1/2(x)

uniformly on [0, 1]. We also obtained a formula for derivatives of ρ−1/2(x) in terms of the eigenvalues

and the differences of the nodal points.

This paper is organized as follows. In Section 2, we use the zeros xk(ω) of a Sturm-Liouville

function as nodes to obtain a difference-derivative theorem (Lemma 2.1). We also give asymptotic

estimates for ρ−1/2(xk(ω)) as ω → ∞ (Lemma 2.3). Then we are able to express the higher differences

∆m+1xk(ω) in terms of the derivatives of ρ−1/2(x) at those zeros. Moreover, the expression can be used

to determine the regular manner of these differences (Theorems 2.4 and 2.5). Besides, we construct

sequences from xk(ω), whose all mth differences have the same sign (Corollary 2.6). The proofs of

Lemmas 2.1 and 2.3 rely on a system of interlaced inductions, which will be given in Section 5. In

Section 3, we use an approximation process for the zeros of the general Bessel function to prove the

conjecture of Lorh and Szego (Theorem 3.1). In Section 4, the zeros of various orthogonal polynomials

with higher degrees are shown to share similar sign-regularity (Theorems 4.1 and 4.2).

The notation used throughout is standard. A function ϕ(x) is said to be M-monotonic (resp.,

absolutely M-monotonic) on an interval I if

(−1)m ϕm(x) ≥ 0 (resp., ϕm(x) ≥ 0), (x ∈ I; m = 0, 1, ..., M). (1.5)M

If (1.5)M holds for M = ∞, then ϕ(x) is said to be completely (resp., absolutely) monotonic on I. A

sequence {ak(ω)}, depending on a positive parameter ω, is said to be asymptotically M-monotonic

(resp., asymptotically absolutely M-monotonic) if

(−1)m∆mak(ω) ≥ 0 (resp., ∆mak(ω) ≥ 0), (m = 0, 1, 2, ...M; k = 1, 2, ...)

for ω sufficiently large.

2. Main Results

In this section we consider the differential equation

y′′ + ω2ρ(x)y = 0, a ≤ x ≤ b, (2.1)

where ω is a positive parameter. We shall assume throughout that ρ(x) is a positive C∞-function on

the interval [a, b]. The notation f (x) is reserved for the function ρ−1/2(x). Let y(x; ω) be a nontrival

real solution of (2.1), and let x1(ω) < x2(ω) < · · · be the zeros of y(x; ω) in the interval [a, b]. For
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a ≤ x < b, we denote by k(x; ω) the smallest positive interge k such that x ≤ xk(ω). It is known(see

e.g., [9, 10]) that

min
[xk(ω),xk+1(ω)]

f ≤ ω

π
∆xk(ω) ≤ max

[xk(ω),xk+1(ω)]
f . (2.2)

It follows that π min[a,b] f ≤ ω∆xk(ω) ≤ π max[a,b] f . In particular, we have

∆xk(ω) = O(ω−1) as ω → ∞. (2.3)

Thus, by (2.2) and the continuity of f , we obtain f (x) = limω→∞
ω
π ∆xk(x;ω)(ω) and, for any fixed l,

lim
ω→∞

∆xk(x;ω)+l(ω)

∆xk(x;ω)(ω)
= 1. (2.4)

Note that (2.4) means that, as ω → ∞, the sequence xk(ω) behaves as equally distributed.

If ϕ is m-times differentiable in (t, t + md) and the lower derivatives of ϕ are continuous on

[t, t + md], a mean-value theorem [8, p. 52, no. 98] for differences and derivatives states that there

exists a δ, such that

∆m
d ϕ(t) = dm ϕ(m)(t + δmd),

where ∆d ϕ(t) = ϕ(t + d)− ϕ(t). It is interesting to look for a difference-derivative theorem which can

express the differences of a smooth function on the sequence {xk(ω)} in terms of its derivatives at this

sequence. The following lemma provides such a result.

Lemma 2.1. Let xk = xk(ω). If ϕ is a C∞-function on [a, b], then, for m = 1, 2, ...,

∆m ϕ(xk) = O(ω−m). (2.5)m

Moreover,

∆m ϕ(xk) =
m

∑
q=1

A
(m)
q,k ϕ(q)(xk+m−q) + O(ω−m−1), (2.6)m

where the coefficients A
(m)
q,k satisfy the recurrence relation:

A
(m)
1,k = ∆mxk, A

(m)
q,k =

m−1

∑
r=q−1

(

m − 1

r

)

A
(r)
q−1,k+m−1−r∆m−rxk, (2.7)m

for q = 2, 3, ..., m.

To prove Lemma 2.1, we need a more detailed investigation on the behaviour of xk(ω). We use

the Prüfer method to achieve our purpose. For each nontrivial solution y(x; ω) of (2.1), we define the

Prüfer angle θ(x; ω) as follows:

ωρ1/2(x) cot θ(x; ω) =
y′(x; ω)

y(x; ω)
.

Then θ(x; ω) satisfies the differential equation

θ′(x; ω) = ωρ1/2(x) +
ρ′(x)

4ρ(x)
sin 2θ(x; ω). (2.8)
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If we specify the initial condition for θ(x; ω) to be θ(a; ω) = θa(ω) with 0 ≤ θa(ω) < π, then, by the

standard results (see e.g., [1, p. 315]), we have

θ(xk(ω); ω) = kπ, (2.9)

and kπ ≤ θ(x; ω) ≤ (k + 1)π, x ∈ [xk(ω), xk+1(ω)]. Let xk = xk(ω). Integrating both sides of (2.8)

from xk to xk+1, and using (2.9), we find

π = ω

∫ xk+1

xk

ρ1/2(x)dx +
∫ xk+1

xk

ρ′(x)

4ρ(x)
sin 2θ(x; ω)dx. (2.10)

Taking the Taylor expansion of (1/ f )(x) at xk and using (2.3), we obtain

∫ xk+1

xk

ρ1/2(x)dx =
m

∑
r=0

(1/ f )(r)(xk)

(r + 1)!
(∆xk)

r+1 + O(ω−m−2). (2.11)

The estimate of the second integral in (2.10) is stated as the following lemma. Its proof consists of a

reducible system of integrals which will be given in Appendix.

Lemma 2.2. Let xk = xk(ω). Then, for m = 2, 3, ..., we have

∫ xk+1

xk

ρ′(x)

4ρ(x)
sin 2θ(x; ω)dx =

m−2

∑
r=0

∆Fr(xk)ω
−r−1 + Rm−2(xk), (2.12)m

where the functions Fr depend on f = ρ−1/2, and

Rm−2(xk) = O(ω−m−1). (2.13)m

Note that the first two functions Fr appeared in (2.12)m are of the forms

F0 =
f ′

4
−

∫

( f ′)2

8 f
dx and F1 = 0. (2.14)

For m = 2, 3, ..., using the estimates (2.11), (2.12)m and (2.13)m and multiplying (2.10) by f (xk)/π,

we find the estimate for f (xk) :

f (xk) =
ω

π

m

∑
r=0

gr(xk)

(r + 1)!
(∆xk)

r+1 +
1

π

m−2

∑
r=0

( f ∆Fr)(xk)ω
−r−1 + O(ω−m−1), (2.15)m

where the functions gr = f (1/ f )(r), r = 0, 1, 2, ..., m. Note that g0 = 1. Moreover, if we apply the mth

order difference operator to (2.15)m, then we can find the estimates for differences of the function f (x)

at those zeros. Indeed, we have

Lemma 2.3. Let f (x) and xk = xk(ω) as above. Then, for m = 1, 2, 3, ..., we have

∆mxk = O(ω−m). (2.16)m

Moreover,

∆m f (xk) =
ω

π
∆m+1xk + O(ω−m−1). (2.17)m

The proofs of Lemmas 2.1 and 2.3 will be given in Section 5.
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Now, if we apply Lemma 2.1 to the function f (x), then, by (2.17)m, we have the estimate for the

higher differences of xk = xk(ω) :

ω

π
∆m+1xk =

m

∑
q=1

A
(m)
q,k f (q)(xk+m−q) + O(ω−m−1). (2.18)m

Moreover, using (2.3) and (2.7)m, iterating (2.18)m for m from 1 to M, and then taking ω sufficiently

large, we can ensure the monotonicity of the sequence {∆xk(ω)} by f .

Theorem 2.4. Let xk = xk(ω) and f (x) = ρ−1/2(x) be as those mentioned above. If f (x) is M-monotonic on

the interval [a, b], then the sequence {∆xk(ω)} is asymptotically M-monotonic.

Proof. Since

(−1)m f (m)(x) ≥ 0 (x ∈ [a, b]; m = 0, 1, 2, ..., M), (2.19)

it suffices to show that

(−1)m−q A
(m)
q,k ≥ 0 (q = 1, 2, ..., m; m = 1, 2, ..., M), (2.20)M

as ω → ∞, to conclude that

(−1)m∆m+1xk(ω) ≥ 0, (m = 0, 1, 2, ..., M). (2.21)

We prove (2.20)M by induction on M. When M = 1, (2.20)1 reduces to A
(1)
1,k ≥ 0, which is true because

A
(1)
1,k = ∆xk, by (2.7)1. Now, suppose that (2.20)N , 1 ≤ N < M, is true. By (2.18)N , we have

ω

π
(−1)N∆N+1xk =

N

∑
q=1

[(−1)N−q A
(N)
q,k ][(−1)q f (q)(xk+N−q)] + O(ω−N−1),

which is nonnegative as ω → ∞, by induction hypothesis, (2.19) and (2.16)N+1. Thus, by (2.7)N+1,

(−1)N A
(N+1)
1,k = (−1)N∆N+1xk ≥ 0, and , for q = 1, 2, ..., N + 1,

(−1)N+1−q A
(N+1)
q,k =

N

∑
r=q−1

(

N

r

)

[(−1)r−q+1 A
(r)
q−1,k+N−r][(−1)N−r∆N+1−rxk] ≥ 0,

by induction hypothesis again. This prove (2.20)N+1 and thus the theorem. □

Note that, if the factors (−1)m are deleted from the assumptions (2.19), then, by making the

obvious changes in the above proof, the conclusion (2.21) remains valid, provided they are amended

by eliminating the factors (−1)m. Thus we have

Theorem 2.5. Let xk = xk(ω) and f (x) = ρ−1/2(x) be as those mentioned above. If f (x) is absolutely

M-monotonic on the interval [a, b], then the sequence {∆xk(ω)} is asymptotically absolutely M-monotonic.

As consequences of Lemma 2.1, Theorems 2.4 and 2.5, we can use the zeros of a solution of (2.1)

to construct sequences whose all mth differences have the same sign.

Corollary 2.6. (a) Let f (x) be M-monotonic on [a, b]. If ϕ(x) is also M-monotonic on [a, b], then the sequence

{ϕ(xk)} is asymptotically M-monotonic.

(b) Let f (x) be absolutely M-monotonic on [a, b]. If ϕ(x) is also absolutely M-monotonic on [a, b], then the
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sequence {ϕ(xk)} is asymptotically absolutely M-monotonic.

Proof. Since f (x) is M-monotonic on [a, b], we see from the proof of Theorem 2.4 that (2.20)M holds.

On the other hand, the M-monotonicity of ϕ(x) on [a, b] means that

(−1)m ϕ(m)(x) ≥ 0 (x ∈ [a, b]; m = 0, 1, 2, ..., M). (2.22)

It now follows from (2.6)m, (2.20)M, (2.22) and (2.5)m that

(−1)m∆m ϕ(xk) =
m

∑
q=1

[(−1)m−q A
(m)
q,k ][(−1)q ϕ(q)(xk+m−q)] + O(ω−m−1) ≥ 0,

for all k and m = 0, 1, 2, ..., M, as ω → ∞. The proof of (b) is similar to that of part (a). □

Note that, by the definition of the function f (x) = ρ−1/2(x), the conclusion of Theorem 2.4 (resp.,

Theorem 2.5) can be inferred directly from the assumptions on ρ(x). In fact, (−1)mρ(m+1)(x) ≥ 0 (resp.,

ρ(m+1)(x) ≤ 0) on [a, b], for m = 0, 1, 2, ..., M − 1, imply (−1)m f (m)(x) ≥ 0 (resp., f (m)(x) ≥ 0) on [a, b],

for m = 1, 2, ..., M. To examine the assertions, we can proceed by induction on M. For M = 1, by the

facts f (x) = ρ−1/2(x) and f ′(x) = (−1/2)ρ−3/2(x)ρ′(x), the assertion is valid. For higher derivatives

of f (x), a general term of f (m)(x) would appear as

Sm = C[ρ]α0 [ρ′]α1 [ρ′′]α2 · · · [ρ(m)]αm

with exponentials α0 a negative half-integer and α1, α2, ..., αm, all nonnegative integers. The induction

is carried through by differentiating Sm. We have

S′
m = Cα0[ρ]

α0−1[ρ′]α1+1[ρ′′]α2 · · · [ρ(m)]αm + Cα1[ρ]
α0 [ρ′]α1−1[ρ′′]α2+1 · · · [ρ(m)]αm

+ · · ·+ Cαm[ρ]
α0 [ρ′]α1 [ρ′′]α2 · · · [ρ(m)]αm−1[ρ(m+1)],

and under the conditions (−1)mρ(m+1)(x) ≥ 0 (resp., ρ(m+1)(x) ≤ 0) and the negative α0, each term

in the last sum has opposite sign (resp., the same sign) as Sm. Thus, f (m)(x) and f (m+1)(x) have

alternating signs (resp., the same sign), and then the inductions are complete. Hence we obtain

Corollary 2.7. Let xk = xk(ω) be as above. (a) If ρ′(x) is (M − 1)-monotonic on [a, b], then the sequence

{∆xk(ω)} is asymptotically M-monotonic.

(b) If −ρ′(x) is absolutely (M − 1)-monotonic on [a, b], then the sequence {∆xk(ω)} is asymptotically

absolutely M-monotonic.

Although Corollary 2.7(a) is a partial result included in [4, Theorem 3.3], the techniques employ in

this section are independent of the methods in the series of papers [4, 5, 7] and the results of Hartman

[2, Theorems 18.1n and 20.1n.] It also gives the connection of the quantities between the differences of

the zeros and the coefficient function ρ(x). However, it might have some numerical interest.

One can find similar results concerned with the critical points of a Sturm-Liouville function of

(2.1). In fact, by letting x′k(ω) denote the kth critical point of a solution y(x; ω) of (2.1) in the interval

[a, b] and noting the definition of the Prüfer angle

θ(x′k(ω); ω) = (k − 1

2
)π,

the procedures employed in this section are all valid. Thus if we replace {xk(ω)} in Theorems 2.4 and

2.5, and Corollaries 2.6 and 2.7 by {x′k(ω)}, the conclusions in these Theorems and Corollaries still

hold.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 24 May 2023                   doi:10.20944/preprints202305.1665.v1

https://doi.org/10.20944/preprints202305.1665.v1


7 of 15

3. Applications to Bessel Functions.

Let cνk(α) be the kth positive zero of the general Bessel (cylinder) function

Cν(x; α) = Jν(x) cos α − Yν(x) sin α,

where Jν(x) and Yν(x) denote the Bessel functions with order ν of the first and second kind,

respectively. The main results in this section are stated as follows:

Theorem 3.1. (a) For |ν| < 1/2, we have

(−1)m∆m+2cνk(α) > 0 (m = 0, 1, 2, ...; k = 1, 2, 3, ...).

(b) For 0 < |ν| < 1/2, we have

(−1)m∆m+1c
2|ν|
νk (α) > 0 (m = 0, 1, 2, ...; k = 1, 2, 3, ...).

The Airy functions (see e.g., [11, p.18]) satisfy the differential equation y′′ + x
3 y = 0. We consider

a broader class of functions, including the Airy functions, which satisfy the differential equation (see

e.g., [12, p. 97(9)])

z′′ + ω2xγz = 0, x ∈ (0, ∞), (3.1)

where 0 < γ < ∞. These functions are closely related to Bessel functions. Indeed,

z(x; ω) = x1/2Cν(2νωx1/2ν; α), where ν = 1/(γ + 2),

is a nontrivial real solution of (3.1). Note that, for each ω > 0, the kth positive zeros ξk(ω) of z(x; ω)

satisfies the identities

2νω(ξk(ω))1/2ν = cνk(α) and (2νω)2νξk(ω) = c2ν
νk(α).

Moreover, for each ω > 0, and m = 0, 1, 2, ..., we have

∆m+2cνk(α) = 2νω∆m+2(ξk(ω))1/2ν, (3.2)

and

∆m+1c2ν
νk(α) = (2νω)2ν∆m+1ξk(ω). (3.3)

The identities (3.2) and (3.3) are really the key for us to study the regularity behaviour of the Bessel

zeros.

To prove Theorem 3.1, we consider the family of differential equations:

y′′ + ω2(x + a)γy = 0 (a > 0; 0 < γ < ∞), (3.4)

on the interval [0, b]. Let ya(x; ω) be a nontrivial real solution of (3.4) and let the sequence {xk(ω; a)} be

the zeros of ya(x; ω) with the ascending order in [0, b]. Following Theorem 2.4 with f (x) = (x + a)−γ/2

and Corollary 2.6(a) with the function ϕ(x) = (x + a)−1/2ν, we have

(−1)m∆m+1xk(ω; a) ≥ 0 (m = 0, 1, 2, ..., M), (3.5)
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and

(−1)m∆m(xk(ω; a) + a)−1/2ν ≥ 0 (m = 0, 1, 2, ..., M), (3.6)

as ω → ∞. If we specify the initial conditions for the solution ya(x; ω) of (3.4) to be

ya(0; ω) = z(a; ω) and y′a(0; ω) = z′(a; ω),

then it is easy to verify that ya(x; ω) = z(x + a; ω) for x ∈ [0, b], and hence, for each k, xk(ω; a) + a

converges to ξk as a → 0+. Thus, for each ω > 0, by (3.2) and (3.3), we have

∆m+2cνk(α) = lim
a→0+

2νω∆m+2(xk(ω; a))1/2ν, (3.7)

and

∆m+1c2ν
νk(α) = lim

a→0+
(2νω)2ν∆m+1xk(ω; a). (3.8)

Recalling (2.10) and (2.12)m+3 with the function ρ(x) = (x + a)γ and denoting xk = xk(ω; a), we

have

ω

∫ xk+1

xk

(x + a)γ/2dx = π −
m+1

∑
r=0

∆Fr(xk)ω
−r−1 − Rm+1(xk). (3.9)

Note that ν = 1/(γ + 2) and f (x) = (x + a)(2ν−1)/2ν. By (2.14), we have

∆F0(xk) =
4ν2 − 1

16ν
∆(xk + a)−1/2ν.

Thus, (3.9) becomes

2νω∆(xk + a)1/2ν = π +
1 − 4ν2

16νω
∆(xk + a)−1/2ν −

m+1

∑
r=1

∆Fr(xk)ω
−r−1 − Rm+1(xk). (3.10)

If we apply the difference operator ∆m+1 to (3.10), by (2.5)m+2 and (2.13)m+3, then we can find

2νω∆m+2(xk + a)1/2ν =
1 − 4ν2

16νω
∆m+2(xk + a)−1/2ν + O(ω−m−4). (3.11)

Moreover, multiplying (3.11) by (−1)mωm+3, we have

2νωm+4(−1)m∆m+2(xk + a)1/2ν =
1 − 4ν2

16ν
ωm+2(−1)m∆m+2(xk + a)−1/2ν + O(ω−1). (3.12)

By (3.12), (3.6), (2.5)m+2 and 0 < ν < 1/2, we have

(−1)m∆m+2(xk + a)1/2ν ≥ 0 as ω → ∞. (3.13)

Now, for each a > 0, if we choose ω = ω(a) sufficiently large such that (3.13) and (3.5) hold, then, by

(3.7) and (3.8), we have

(−1)m∆m+2cνk(α) ≥ 0 (m = 0, 1, 2, ...; k = 1, 2, 3, ...), (3.14)

and

(−1)m∆m+1c2ν
νk(α) ≥ 0 (m = 0, 1, 2, ...; k = 1, 2, 3, ...). (3.15)
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Secondly, according to Yν(x) = (Jν(x) cos πν − J−ν(x))/ sin πν (see e.g., [12, p. 64]), it is easily to

verify that C−ν(x; α) = Cν(x; α + πν), and hence

c−νk(α) = cνk(α + πν).

Thus, for 0 < |ν| < 1/2, (3.14) holds and (3.15) holds in the modified form

(−1)m∆m+1c
2|ν|
νk (α) ≥ 0 (m = 0, 1, 2, ...; k = 1, 2, 3, ...). (3.16)

Thirdly, for ν = 0, any positive zero cνk(α) of Cν(x; α) is definable as a continuously increasing

function of the real variable ν (see e.g., [12, p. 508]), so that, by an approximating process, (3.14) hold

for all |ν| < 1/2.

Finally, since neither {∆2cνk(α)} nor {∆c
2|ν|
νk (α)} are constant sequences, the results of Lorch,

Szego and Muldoon for completely monotonic sequences ([3, p. 72] or [6, Theorem 2]) guarantee the

strict inequalities of (3.14) and (3.16). This completes the proof of Theorem 3.1.

4. Applications to Classical Orthogonal Polynomials.

Some important classical orthogonal polynomials are related to Sturm-Liouville functions such

as Hermite and Jacobi polynomials. In [3, p. 73], Lorch, Szego and their coworkers conjectured, on

the basis of numerical evidence, that the θ-zeros of the Legendre polynomials, the special cases of

Jacobi polynomials, and the positive zeros of the Hermite polynomials form the sequences whose mth

differences have the constant sign. In this section, we shall apply the results in Sections 2 and 3 to

obtain some partial answers for these conjectures.

4.1. Positive zeros of Hermite polynomials

Let Hn(t) be the Hermite polynomial (see e.g., [11, p.105(5.5.3)]), defined by

Hn(t) = (−1)net2
(

d

dt
)ne−t2

. (4.1)

We consider the Hermite differential equation:

H′′
n − 2tH′

n + 2nHn = 0,

and the related equation:

u′′ + [(2n + 1)− t2]u = 0. (4.2)

A simple calculation shows that (see e.g., [11, p.105(5.5.2)])

un(t) = e−t2/2Hn(t)

is a nontrivial solution of (4.2). From the general theory of orthogonal polynomials, we know that

Hn(t) has precisely n real zeros. By (4.1), we see that for n even, Hn(t) is an even function of t, and for

n odd, Hn(t) is an odd function of t. Accordingly, all zeros of Hn(t) are placed symmetrically with

respect to the origin, and the same phenomenon is clearly true for un(t). For each n, the positive zeros

of Hn(t) are named by h
(n)
1 < h

(n)
2 < · · · < h

(n)
[n/2]

, where [·] is the greatest integer function.
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The main result concerned with Hermite polynomials is as follows:

Theorem 4.1. Let h
(n)
k be as above. Then, for each k, we have

∆mh
(n)
k ≥ 0 (m = 1, 2, ..., M), (4.3)

for n sufficiently large.

Proof. For each n, by introducing the variable x = t/
√

2n + 1 and letting zn(x) = un(t), equation (4.2)

is transformed into

z′′n + (2n + 1)2(1 − x2)zn = 0.

We denote the kth positive zero of zn(x) by ξ
(n)
k , where ξ

(n)
k = h

(n)
k /

√
2n + 1. Thus, we have

∆mh
(n)
k =

√
2n + 1∆mξ

(n)
k .

To prove (4.3), we consider the differential equation:

y′′ + (2n + 1)2(a − x2)y = 0 (a > 1; x ∈ [0, 1]). (4.4)

Let ω = 2n + 1, f (x) = (a − x2)−1/2, and let yn(x; a) be a nontrivial real solution of (4.4) and x
(n)
k (a)

be the kth positive zero of yn(x; a). Then, by the following fact about f (m)(x) :

f (m)(x) = {a polynomial o f x with nonnegative coe f f icients}(a − x2)−(2m+1)/2,

we know that f (m)(x) ≥ 0 on the interval [0, 1] for m = 1, 2, 3, ... Thus, by Theorem 2.5, we obtain

∆mx
(n)
k (a) ≥ 0 (m = 1, 2, ..., M),

for n sufficiently large. If we specify the initial conditions for yn(x; a) to be

yn(0; a) = zn(0) and y′n(0; a) = z′n(0),

then it is easy to verify that yn(x; a) uniformly converges to zn(x) on the interval [0, 1] as a → 1+.

Consequently, for k = 1, 2, ..., [ n
2 ], the zero x

(n)
k (a) converges to ξ

(n)
k as a → 1+. Therefore, for k fixed,

∆mξ
(n)
k = lim

a→1+
∆mx

(n)
k (a) ≥ 0,

and thus (4.3) holds. □

4.2. Zeros of Jacobi polynomials

Given a > −1 and b > −1, the Jacobi polynomial P
(a,b)
n (x) (see e.g., [11, p.67(4.3.1)]) is defined by

(1 − x)a(1 + x)bP
(a,b)
n (x) =

(−1)n

2nn!
(

d

dx
)n{(1 − x)n+a(1 + x)n+b}.

Concerned with the Jacobi polynomials P
(a,b)
n (x) on the orthogonal interval [−1, 1], if we denote the

zeros x
(n)
k = x

(n)
k (a, b) of P

(a,b)
n (x) with the descending order

1 > x
(n)
1 > x

(n)
2 > · · · > x

(n)
n > −1,
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then the θ-zeros θ
(n)
k = θ

(n)
k (a, b), x

(n)
k = cosθ

(n)
k , of P

(a,b)
n (cosθ) behave the order

0 < θ
(n)
1 < θ

(n)
2 < · · · < θ

(n)
n < π.

According to the uniformly convergent theorem [11, Theorem 8.1.1, p.190]:

lim
n→∞

n−αP
(a,b)
n (cos

x

n
) = (

x

2
)−a Ja(x),

we know that

lim
n→∞

nθ
(n)
k (a, b) = jak.

Now, by Theorem 3.1(a), for ν = a and α = 0, we have the following theorem.

Theorem 4.2. For |a| < 1/2 and k fixed, we have

(−1)m∆m+2θ
(n)
k (a, b) ≥ 0 (m = 0, 1, 2, ..., M),

for n sufficiently large.

5. Proofs of Lemmas 2.1 and 2.3.

In this section we shall prove (2.5)m, (2.6)m, (2.7)m, (2.16)m and (2.17)m by inductions,

simultaneously.

For m = 1, taking the Taylor expansion of ϕ at xk:

ϕ(xk+1) = ϕ(xk) + ϕ′(xk)∆xk + ϕ′′(ξk,2)
(∆xk)

2

2
,

where xk ≤ ξk,2 ≤ xk+1, and using (2.3), we have

∆ϕ(xk) = ϕ′(xk)∆xk + O(ω−2),

and hence (2.5)1, (2.6)1 and (2.7)1 are valid. If we apply the first order difference operator to (2.15)2 and

use (2.5)1 with ϕ = F0, then we have

∆ f (xk) =
ω

π
∆2xk +

ω

2!π
∆{g1(xk)(∆xk)

2}+ O(ω−2).

By the fact ∆{αkβk} = αk+1(∆βk) + (∆αk)βk, we also have

∆ f (xk) = ω
π ∆2xk +

ω
2!π g1(xk+1){∆xk+1∆2xk + ∆2xk∆xk}+ O(ω−2)

= ω
π ∆2xk(1 + O(ω−1)) + O(ω−2).

Applying (2.5)1 again to the function f (x), we find that ∆ f (xk) = O(ω−1), and then we have

∆2xk = O(ω−2),

and hence

∆ f (xk) =
ω

π
∆2xk + O(ω−2).

Thus (2.16)2 and (2.17)1 are valid. The validity of (2.16)2 is the impetus of our induction argument.
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Now, suppose (2.5)m, (2.6)m, (2.7)m, (2.16)m and (2.17)m are fulfilled for m = 1, 2, ..., N. If we apply

(2.5)N with ϕ(x) = f (x) to (2.17)N , then we have (2.16)N+1, that is

∆N+1xk = O(ω−N−1).

Taking the Taylor expansion of ϕ at xk:

ϕ(xk+1) = ϕ(xk) +
N+1

∑
p=1

ϕ(p)(xk)

p!
(∆xk)

p +
ϕ(N+2)(ξk,N+2)

(N + 2)!
(∆xk)

N+2, (5.1)

where xk ≤ ξk,N+2 ≤ xk+1, applying the Nth order difference operator to (5.1) and then using (2.16)1,

we have

∆N+1 ϕ(xk) =
N+1

∑
p=1

1

p!
∆N{ϕ(p)(xk)(∆xk)

p}+ O(ω−N−2). (5.2)

Following the product rule for higher differences, we know that

∆N{ϕ(p)(xk)(∆xk)
p} =

N

∑
r=0

(

N

r

)

∆r ϕ(p)(xk+N−r)∆
N−r(∆xk)

p.

If we replace ϕ(xk) by ϕ(p)(xk+N−r) in (2.5)r for r = 1, 2, ..., N, and use (2.16)m for m = 1, 2, ..., N + 1,

then we obtain

∆N{ϕ(p)(xk)(∆xk)
p} = O(ω−N−p) (p = 1, 2, ..., N + 1). (5.3)

Thus (5.2) and (5.3) imply (2.5)N+1. Moreover, we have

∆N+1 ϕ(xk) = ∆N{ϕ′(xk)∆xk}+ O(ω−N−2)

= ∑
N
r=0 (

N
r )∆

r ϕ′(xk+N−r)∆
N+1−rxk + O(ω−N−2).

(5.4)

Applying (2.6)r with ϕ′(xk+N−r) instead of ϕ(xk) for r = 1, 2, ..., N to (5.4), we find

∆N+1 ϕ(xk) = ϕ′(xk+N)∆
N+1xk

+∑
N
r=1 (

N
r ){∑

r
q=1 A

(r)
q,k+N−r ϕ(q+1)(xk+N−q)}∆N+1−rxk + O(ω−N−2).

(5.5)

If we change the order of the summation in (5.5) and shift the index q, then we can find

∆N+1 ϕ(xk) = ϕ′(xk+N)∆
N+1xk

+∑
N+1
q=2 ϕ(q)(xk+N+1−q){∑

N
r=q−1 (

N
r )A

(r)
q−1,k+N−r∆N+1−rxk}+ O(ω−N−2).

Thus (2.6)N+1 and (2.7)N+1 are valid.

Finally, to prove (2.17)N+1, applying the (N + 1)th order difference operator to (2.15)N+1, we have

∆N+1 f (xk) =
ω
π ∑

N+1
r=0

1
(r+1)!

∆N+1{gr(xk)(∆xk)
r+1}

+ 1
π ∑

N−1
r=0 ∆N+1{ f (xk)∆Fr(xk)}ω−r−1 + O(ω−N−2).

(5.6)

Following the product rule for higher differences again, we have

∆N+1{gr(xk)(∆xk)
r+1} =

N+1

∑
β=0

(

N + 1

β

)

∆βgr(xk+N+1−β)∆
N+1−β(∆xk)

r+1.
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Using (2.5)β with gr(xk+N+1−β) replacing ϕ(xk) for β = 1, 2, ..., N + 1, and using (2.16)m for m =

1, 2, ..., N + 1, we obtain

∆N+1{gr(xk)(∆xk)
r+1}

= gr(xk+N+1)∆
N+1(∆xk)

r+1 + ∑
N+1
β=1 (N+1

β )∆βgr(xk+N+1−β)∆
N+1−β(∆xk)

r+1

= gr(xk+N+1)(∆
N+2xk)O(ω−r) + O(ω−N−r−2).

(5.7)

On the other hand, applying (2.5)m to the functions f (x) and Fr(x) for m = 1, 2, ..., N + 1, we also have

∆N+1{ f (xk)∆Fr(xk)}

= f (xk+N+1)∆
N+2Fr(xk) + ∑

N+1
β=1 (N+1

β )∆β f (xk+N+1−β)∆
N+2−βFr(xk)

= O(ω−N−1) + O(ω−N−2).

(5.8)

Applying the estimates (5.7) and (5.8) to (5.6), we obtain

∆N+1 f (xk) = ω
π ∆N+2xk + (ω

π ∆N+2xk)O(ω−1) + O(ω−N−2)

= ω
π ∆N+2xk(1 + O(ω−1)) + O(ω−N−2).

(5.9)

If we replace ϕ(xk) by f (xk) in (2.5)N+1, then we have

∆N+1 f (xk) = O(ω−N−1). (5.10)

Note that (5.9) and (5.10) imply
ω

π
∆N+2xk = O(ω−N−1). (5.11)

Then by (5.9) and (5.11), we have (2.17)N+1. This completes the proofs of Lemmas 2.1 and 2.3.

Appendix A

Recalling f (x) = ρ−1/2(x) and the differential equation (2.8) for the Prüfer angle θ(x; ω), we have

θ′(x; ω) =
ω

f (x)
{1 − f ′(x)

2ω
sin 2θ(x; ω)}. (6.1)

Then

{− f ′

2 f
sin 2θ} θ′

{1 − ( f ′/2ω) sin 2θ}ω/ f
= −

∞

∑
r=0

{ω−1

2
f ′ sin 2θ}r+1θ′, (6.2)

and hence

∫ xk+1

xk

ρ′

4ρ
sin 2θdx = −

m−1

∑
r=0

ω−r−1

2r+1

∫ xk+1

xk

( f ′)r+1(sinr+12θ)θ′dx + O(ω−m−1), (6.3)

where θ = θ(x; ω), θ′ = θ′(x; ω) and xk = xk(ω).

To prove Lemma 2.2, we introduce the following integrals for a C∞-function ϕ which is defined

on [a, b]:

Pr[ϕ] =
∫ xk+1

xk

ϕ · sinr(2θ) · θ′dx,

Qr[ϕ] =
∫ xk+1

xk

ϕ · sinr(2θ) · cos(2θ)dx,
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and

Rr[ϕ] =
∫ xk+1

xk

ϕ · sinr+1(2θ)dx.

where r = 0, 1, 2, ... Now, (6.3) can be written as

∫ xk+1

xk

ρ′

4ρ
sin 2θdx = −

m−1

∑
r=0

ω−r−1

2r+1
Pr+1[( f ′)r+1] + O(ω−m−1). (6.4)

By integration by parts, we have the reduced formula for Pr+1[ϕ] that

Pr+1[ϕ] =
−ϕ · sinr2θ · cos2θ

2(r + 1)
|xk+1
xk

+
r

r + 1
Pr−1[ϕ] +

1

2(r + 1)
Qr[ϕ

′]. (6.5)

Introducing θ′ in the same way as we did in (6.2), and using integration by parts and (2.9), we have the

following estimates for Qr[ϕ] and Rr[ϕ],

Qr[ϕ] = −
m−r−3

∑
j=0

ω−j−1

2j+1(r + j + 1)
Rr+j[(ϕj)

′] + O(ω−m+r), (6.6)

and

Rr[ϕ] =
m−r−3

∑
j=0

ω−j−1

2j
Pr+j+1[ϕj] + O(ω−m+r+1), (6.7)

where ϕj = ϕ f ( f ′)j. Applying the estimates (6.6) and (6.7) with suitable integrands to (6.5), and then

collecting the terms with the same order of ω in the sum together, we can find

Pr+1[ϕ] =
−ϕ·sinr2θ·cos2θ

2(r+1)
|xk+1
xk

+ r
r+1 Pr−1[ϕ]

−∑
m−r−3
β=0

ω−β−2

2β+2(r+1)
∑

β
j=0

1
r+j+1 Pr+β+1[(ϕ′)j,β−j] + O(ω−m+r),

(6.8)

where ϕj1,j2 = [(ϕj1)
′]j2 . By (6.8) and (2.9), we have

P1[ϕ] =
−∆ϕ(xk)

2
−

m−3

∑
β=0

ω−β−2

2β+2

β

∑
j=0

1

j + 1
Pβ+1[(ϕ′)j,β−j] + O(ω−m), (6.9)

and

P2[ϕ] =
P0[ϕ]

2
−

m−4

∑
β=0

ω−β−2

2β+3

β

∑
j=0

1

j + 2
Pβ+2[(ϕ′)j,β−j] + O(ω−m+1). (6.10)

If we apply (6.1) and (6.7) to the integral P0[ϕ], then we have

P0[ϕ] = ω

∫ xk+1

xk

ϕ

f
dx −

m−3

∑
j=0

ω−j−1

2j+1
Pj+1[(ϕ f ′/ f )j] + O(ω−m+1). (6.11)

Applying (6.11) to (6.10), we obtain

P2[ϕ] =
ω
2

∫ xk+1
xk

ϕ
f dx − ∑

m−3
j=0

ω−j−1

2j+2 Pj+1[(ϕ f ′/ f )j]

−∑
m−4
β=0

ω−β−2

2β+3 ∑
β
j=0

1
j+2 Pβ+2[(ϕ′)j,β−j] + O(ω−m−1).

(6.12)

In (6.4), if we apply (6.8) to the function ϕ = ( f ′)r+1, and use (6.9) and (6.12) to collect the reductions

of those integrals Pr−1[( f ′)r+1] and Pr+β+1[(( f ′)r+1)′j,β−j], then all processes of reductions shall be
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stopped, after a finite steps, while the remainders behave as O(ω−m−1). This completes the proof of

Lemma 2.2.
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