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Abstract: Finding anomalies in the real-time system is recognized as one of most challeng-

ing study in information security. It has so many applications like IoT, and Stock-Market. 

In any IoT system the data generated are real-time, and temporal in nature. Since due to 

the extreme exposure to Internet and interconnectivity of devices, the IoT systems often 

face issues like fraud, anomalies, intrusions etc. Discovering anomaly in such domain can 

be interesting. Clustering and rough set theory have been tried in many cases. Consider-

ing the time-stamp associated with IoT data, time-dependent patterns like periodic clus-

ters can be generated which could be helpful for the efficient detection of anomalies by 

providing more in-depth analysis of the system. In this paper, a mixed method comprising 

of nano topology, a modified k-means clustering and an interval superimposition tech-

nique is used for finding fuzzy periodic clusters in the subspace generated by the nano 

topology. For every clusters there will be an associated sequence of time-intervals where 

it exists. The sequence time-intervals accompanying with each clusters may exhibit some 

remarkable patterns. For example, there may exist different types of periodicity namely 

yearly, monthly, daily, and hourly etc. For finding such fuzzy periodicity, an operation 

called interval-superimposition has been used. The time-intervals associated with each 

cluster are superimposed if they have reasonable overlapping. Each superimposed time-

interval generates a fuzzy time-interval. The data instances are thought to be anomalous 

if they either belong to sparse clusters or don't belong to any clusters. The efficacy of the 

method can be assessed by means of both time-complexity analysis and comparative stud-

ies with existing clustering-based anomaly detection algorithms with a real-life and a syn-

thetic dataset. It can been found experimentally that our method can extract anomaly with 

98% of accuracy and it runs cubic time approximately. 

Keywords: Anomaly detection, Information system, High-dimensional data, Dominance 

relation, CORE of attribute set, Distance function, k-means algorithm. 

 

1. Introduction 

Over the previous few years Internet of Things (IoT) networks have brought signifi-

cant changes in the individual life, society and industry [1,2]. The IoT devices consists of 

huge number of sensors generating data over time [3] and as a result, the availability of 

streaming, time-series data is expanding exponentially. However, with the involvement 

of wide range of information and communication technology, IoT networks are exposed 

various security threats [4, 5]. In other words, for an IoT system or the system that relies 
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on it, there is a huge security and privacy challenges [6, 7]. The challenges are in the form 

anomaly, fraud, intrusion or any other illegitimate activities that jeopardise the integrity 

of the system [8]. Although the IoT system can be reasonably protected by the defence 

mechanisms currently in place, malicious attackers are becoming more adept at breaking 

into networks. Again in the event inside attack it is more challenging to be prevented 

real-time. Therefore, identifying anomalies in such a system can provide actionable in-

formation in dire situations for which there are no trustworthy solutions [9-18]. Here, a 

new and reliable clustering-based method is put forth to address the problem. 

Unsupervised learning techniques like clustering [19] are widely used to determine 

the distribution of data and patterns. It has recently been employed in anomaly detection 

as well as other branches like psychology and social science, where it has long been used 

extensively [20, 21]. Static clustering and dynamic clustering are the two primary catego-

ries of clustering techniques. Static clustering primarily targets static datasets that are 

prepared before the algorithm is applied. Dynamic clustering is necessary in some appli-

cations using real-time data, such as cloud computing, IoT, finance, and stock markets. A 

hierarchical approach that may be applied to both static and dynamic datasets was pro-

posed by the authors in [22]. Several incremental clustering algorithms were put forth by 

the authors in [23] in order to process new records or data instances as and when they are 

added. 

There are mainly two problems encounter while dealing with anomalies in any real-

time system like IoT, namely, the high-dimensionality of the data and the real-time de-

tection of anomaly. Anomalies are often hard to find at high dimensionality. For that rea-

son, more data are necessary to properly generalise as the number of attributes or features 

rises, data sparsity results. Data sparsity is brought on by these additional attributes or a 

sizable amount of noise from several irrelevant attributes that obscure the real anomalies. 

The term "curse of dimensionality" [24, 25] is a well-known one used to describe the issue. 

As a result, it is discovered that numerous traditional anomaly detection methods [26–

28] are inappropriate for high-dimensional data because they lose their effectiveness. [29] 

suggested a method for high-dimensional and categorical data anomaly detection. Simi-

lar works were presented in [30–33] Again, any real-time system like IoT generates real-

time data.  In such systems anomalies can be temporal or contextual [34] in nature, 

where the temporal order of the data is significant. To put it another way, a data instance 

can only be anomalous inside a particular temporal context, or more accurately, within a 

time-frame. Some of such anomalies can be periodic in nature i.e. occur after certain time-

period of time. These anomalies are frequently difficult to detect. The development of an 

early warning system is one of the key applications of such abnormalities. In view of the 

above scenario, it is necessary to design an effective algorithm that locates clusters in the 

subspace of high-dimensional IoT data and detects anomalies in real-time.     

Pawlak proposed rough set theory [35] to address the ambiguity and uncertainty that 

can be found in any dataset. Thivagar et al. [36, 37], gave the notion of nano topological 

space in terms of the two approximations and generated CORE, a subset of attribute set 

of conditional attributes used for medical diagnosis. The same notion can be used for 

generating subset of high-dimensional IoT data 
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A comparison of five-time series anomaly detection techniques was done by the 

authors of [38]. Similar efforts were mentioned in [39-47]. The insider threat, which 

creates significant issues for the cyber security of industrial control systems, was 

addressed by the authors of [48]. A random forest-based strategy for online anomaly 

detection was presented by Zhao et al. [49]. In [50–52], the authors offered fuzzy-based 

approaches for real-time anomaly detection. In [53], the authors suggested a fuzzy neural 

network approach with the goal of identifying anomalies in significant cyberattacks. An 

effective real-time clustering-based anomaly detection system was described by the 

authors in [54]. 

Most of the algorithms discussed above have some limitations. For example, some 

are inefficient in finding anomaly from high-dimensional data and others are unable find 

real-time anomaly. Although there exist few algorithms [7-9, 15, 18, 29, 34, 38, 42, 43] 

which efficiently detects the real-time anomaly, but a few actually addressed the 

periodicity of the real-time dataset. In real-time system the data generated continuously 

over a period of time which is the life-span of the dataset. Over the life-span of the dataset, 

there may be data instances of similar nature, occurs periodically. Considering the time 

attribute associated with IoT data as calendar dates 

(year_month_day_hour_minute_second), the periodic clusters can be generated where 

period of a cluster can be represented as sequence of life-spans of clusters. In other words, 

in such system it would be interesting to observe whether the clusters or anomalies 

generated are periodic nature or not. This information can be useful for prediction 

anomalies in any IoT system. In [55], the authors proposed a calendar-based periodic 

patterns from super-market datasets. With the help of an interval superimposition 

operation [56-58], the algorithm found match ratio which was then used to generate fully, 

partially and fuzzy [59] periodic patterns.    

In this article, the problems of high-dimensionality, real-time and periodicity has 

been addressed efficiently and an algorithm is proposed which can generate fully 

periodic, partially periodic and fuzzy periodic clusters. It is named as RFPSCA. The 

algorithm uses notion of rough set theory and k-means clustering algorithm to generate 

clusters along with their sequence of life-spans then the interval superimposition is 

applied on life-spans to generate the periodicity of clusters. The objective of the paper is 

as follows: 

Firstly, a dominance relation is defined on the dataset [60].  

Secondly, an interval superimposition operation is defined and a match ratio in terms of 

interval superimposition is defined. 

Finally, a new clustering-based method is proposed to generate periodic, partially 

periodic and fuzzy periodic clusters in the subspace of the dataset. 

Thus, the RFPSCA first uses rough set theoretical approach to find a lower 

dimensional space by removing irrelevant attributes. Then the dynamic k-means 

clustering algorithm is applied on it to find the clusters along with their list of life-spans. 

At the end of this stage, each cluster will have a list of life-spans describing its period. 
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Then the interval superimposition operation is applied on the list of life-spans to generate 

superimposed time-intervals along with its match ratio [55, 56]. Match ratio will 

determine whether the corresponding cluster is fully periodic or partially periodic. Also, 

applying a nice method [56, 57] on superimposed intervals fuzzy time interval can be 

generated. This way from each periodic (fully/partially) cluster fuzzy periodic clusters 

can be generated. Then, RFPSCA’s time-complexity is estimated. Lastly, a detailed 

comparative analysis is conducted with existing well-known clustering-based methods 

[9, 10, 19, 46, 54, 61, 62, 63] using MATLAB implementation with Kitsune Network Attack 

[64] and KDDCUP’99 [65] datasets. The results efficaciously validate our technique. 

The structure of the paper is as follows. In Section 2, it is discussed how this field 

has recently advanced. In Section 3, the problem definition is presented. Section 4 covers 

the proposal method (RFPSCA). Section 5 discusses the time-complexity. Section 6 of the 

paper contains the experiments, results, and analysis, and Section 7 of the paper contains 

the conclusions, limitations, and future directions. 

2. Related Works 

Since last couple of years IoT networks have become popular to upgrade substan-

tially living standard of individual life, contributing the development of society and in-

dustry [1,2]. The IoT devices are generating data exponentially over time [3]. But, due to 

the involvement of Internet and other communication technology, IoT networks are al-

ways open to various security threats [4-6]. So, for any IoT system or the system which 

uses IoT devices the security and privacy challenges [7] are major cause of concern. Some 

of the common challenges for any IoT systems are in the form anomaly, fraud, intrusion 

or any other illegitimate activities that jeopardise the integrity of the system [8]. Although 

reasonable protection for IoT exist currently, but malicious attackers are becoming smart 

enough at breaking into networks. In [9], the authors proposed a hybrid algorithm using 

both partitioning and agglomerative hierarchical clustering for real-time anomaly detec-

tion. In [10], the author used a merge function in k-means algorithm to generate anoma-

lies from mixed attribute-dataset. In [11], the authors put forwarded an agglomerative 

hierarchical model for the detection anomaly in network dataset. [12] built a rough set-

based classification model for anomaly detection Applying automatic labelling for super-

vised learning, an anomaly detection scheme was proposed in [13]. An unsupervised ap-

proach for IoT anomaly detection was presented in [14]. In [15], the authors offered an 

efficient algorithm for online anomaly detection using self-supervised approach. In [16], 

the authors used correlation laws to detect anomalies. In [17], the authors proposed a new 

method incorporating neural process on semi-supervised anomaly detection model. In 

[18], the authors proposed an online anomaly detection paradigm which satisfies two key 

conditions: generality and scalability.  

In [19], clustering paradigm was discussed in detail. Cheng et. al. [20], proposed a 

unified metric defined mixed attributes to generate clusters. In [21], the authors offered 

an agglomerative hierarchical model for clustering periodic patterns. In [22], the authors 

proposed a hierarchical clustering approach for both static and dynamic datasets. The 

authors of [23] offered many incremental clustering techniques that could handle newly 

added records or data instances. There are mainly two problems encounter while dealing 
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with anomalies in any real-time system, namely, the high-dimensionality and the real-

time detection of anomaly. In [24], the authors used on-class support vector machine for 

effectively detecting anomaly from high-dimensional data. In [25], the authors intro-

duced a survey on contemporary anomaly detection paradigms. Kaya et. al.  [26] ana-

lysed different methodologies for the communication patterns recognition. In [27], the 

authors suggested an efficient scheme for detection high-dimensional anomalies. In l28] 

the authors addressed the high-dimensionality and proposed an unsupervised method 

for anomaly detection in such data. A nice algorithm for anomaly detection in high-di-

mensional and categorical data was proposed in [29]. Taking into account the compact-

ness and separation clusters, a nice anomaly detection algorithm was presented in [30]. 

In [31], the authors offered an R-based implementation density-based clustering algo-

rithm. In [32], the authors presented a hybrid approach consisting of semi-supervised 

approach for anomaly detection in high-dimensional data. In [33], the authors proposed 

a mixed approach consisting of rough set theory and density-based clustering algorithm 

for the anomaly detection in high-dimensional data. In [34], the authors addressed issue 

of temporality of anomaly and proposed a clustering-based system for real-time anomaly 

detection in streaming data.     

Rough set theory as tool to deal the ambiguity and uncertainty occurring any real-

system was proposed by Pawlak [35]. In [36], the authors applied the rough set theory to 

produce nano topology. In [ 37], the authors applied the notion nano topology for medical 

diagnosis. The same notion was used for attribute reduction high-dimensional IoT data 

[33]. The authors carried out comparative analyses of five-time series anomaly detection 

methods in [38]. Alghawli [39], proposed an efficient algorithm for detection abnormal 

telecommunication traffic. In [40], the authors offered an anomaly detection model based 

on data mining approach. In [41-43], the authors carried out a widespread survey on 

anomaly detection appraoches for high-dimensional big data. Halstead et. al. [44], 

proposed a method using diverse meta-features for identifying recurring concept drift in 

data streams. In [45], the authors put forwarded a classification two-layered model for 

the online anomaly detection of highly unreliable data. In [46], the authors presented a 

scheme for online detection of anomaly in data stream. In [47], the authors proposed to 

evaluate cyber-risk for operation technology system. In [48], the authors discussed insider 

threat, which creates significant issues for the cyber security of industrial control systems. 

Zhao et al. [49] presented an online anomaly detection model based on random forest 

method. Izakian et. al. [50], proposed to introduce fuzzy in anomaly detection by 

proposing a fuzzy c-means-based technique. Similar works were reported in [51, 52]. 

Souza et. al. [53], presented a fuzzy neural network-based approach for detecting 

anomalies in massive cyberattacks. In [54], the authors presented an effective clustering-

based real-time anomaly detection system. Mahanta et. al. [55], proposed a calendar-

based periodic patterns from super-market datasets. In [56], the authors used an interval 

operation called interval superimposition to find the solution of a fuzzy linear equation. 

In [58], the authors proposed a lemma call Glivenko-Cantelli lemma. Using the lemma on 

superimposed intervals [56], fuzzy interval [57, 59] can be generated. In [60], the authors 
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proposed a dominance relation on conditional attributes to generate set-valued ordered 

information systems. 

3. Problem Definitions 

In below, we present some important terms and definitions used in this paper. 

Definition 3.1 

Quadruple S=(U, A, V, f), where U is a non-empty finite set of objects, A is a finite set of attributes, 

V=Va, Va being domain of the attribute aA defines a set-valued information system [60]. A 

function f:UA→P(V) is defined as  xU, aA, 1 ≤ f(x, a) Va. Also we take, the attribute set 

A={C{d}; C{d}=; C, the set of conditional and d the decision attributes}. 

Definition 3.2 

If the domain of a conditional attribute can be arranged in ascending or descending order of 

preferences, then such attribute is called as criterion [36]. If every conditional attribute is a 

criterion, then the information system is known as set-valued ordered information system [60]. 

Definition 3.3 

The attribute is an inclusion criterion if the values of some objects in U under a conditional 

attribute can be sorted according to inclusion increasing or decreasing preferences [60].  

Definition 3.4  

Let us assume a set-valued ordered information system having inclusion increasing preference. 

Also let us define a relation 𝑅𝐴
≥ [60] as  

        𝑅𝐴
≥ = {(𝑦, 𝑥) ∈ 𝑈 × 𝑈: 𝑓(𝑦, 𝑎) ≥ 𝑓(𝑥, 𝑎)∀𝑎 ∈ 𝐴} [see eg [46]]                (1) 

𝑅𝐴
≥  is said to be the dominance relation on U. When (𝑦, 𝑥) ∈ 𝑅𝐴

≥ then 𝑦 ≥𝐴 𝑥, that means y is 

at least as good as x with reference to A. 

Property 1 

The inclusion dominance relation 𝑅𝐴
≥ [60] is i) reflexive, ii) unsymmetric, and iii) transitive. 

Definition 3.5 

For xU, we define the dominance class [36, 37] of x as 

         [𝑥]𝐴
≥ = {𝑦𝜖𝑈: (𝑦, 𝑥)𝜖𝑅𝐴

≥}={𝑦𝜖𝑈: 𝑓(𝑦, 𝑎) ≥ 𝑓(𝑥, 𝑎), ∀𝑎 𝜖 𝑈}                (2) 

where 𝑈𝐴
≥ = {[𝑥]𝐴

≥ : 𝑥 𝜖 𝑈} is the family of dominance classes. 

Remark1 

𝑈𝐴
≥ is never be a partition of U, rather creates a covering of U, that is U= [𝑥]𝐴

≥ . 

Definition 3.6  

For a given set-valued ordered information system S ={U, A, V, f} and for X  U, the upper 

approximation and lower approximation of X are respectively expressed as [36, 37] 

  𝑈𝐴
≥(𝑋) = {𝑥𝜖𝑈: [𝑥]𝐴

≥ ∩ 𝑋 ≠ 𝜙}                              (3) 

And 𝐿𝐴
≥(𝑋) = {𝑥𝜖𝑈: [𝑥]𝐴

≥  ⊆ 𝑋}                              (4) 

Also the boundary region of X is given by  

 𝐵𝐴
≥(𝑋) = 𝑈𝐴

≥(𝑋) − 𝐿𝐴
≥(𝑋)                          (5) 

Definition 3.7 
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For a set-valued ordered information system S, B ( A) is termed as criterion reduction of S if 

𝑅𝐴
≥ = 𝑅𝐵

≥ and 𝑅𝑀
≥ ≠ 𝑅𝐴

≥ for any M  A. In otherward, a minimal attribute set B is a criterion 

reduction of S if 𝑅𝐴
≥ = 𝑅𝐵

≥ [36, 37].  

Definition 3.8 

CORE(A) is given by CORE(A) = {𝑎𝜖𝐴: 𝑅𝐴
≥ ≠ 𝑅𝐴−{𝑎}

≥ } [see eg [36, 37]]   

Definition 3.9 

Let𝑅𝐶
≥ be a dominance relation on U, then 𝜏𝐶

≥(𝑋) = {𝑈, 𝜙, 𝑈𝐶
≥(𝑋), 𝐿𝐶

≥ (𝑋), 𝐵𝐶
≥(𝑋)} forms a nano 

topology [36, 37] on U with respect to X. And  𝛽𝐶
≥(𝑋) = {𝑈, 𝑈𝐶

≥(𝑋), 𝐿𝐶
≥ (𝑋)} is the basis for 𝜏𝐶

≥(𝑋). 

Furthermore, Core(C)= {𝑎𝜖𝐶: 𝛽𝐶
≥ ≠ 𝛽𝐶−{𝑎}

≥ }=∩red(C) where red(C) denotes the criterion reduction.    

Definition 3.10  

Consider an information system S=(U, A, V, f) consisting of m entities or objects x1, x2,...xm. Let 

the attribute set A has n members. Then, S is expressed as an m×n matrix with rows as objects and 

columns as attributes. Attributes can be designated as dimensions.  

Definition 3.11 

Let us consider ai=(ai1, ai2,…ain) as the ai’s numeric attribute, then the distance d(ai, Cj) between ai; 

i=1,2,..n and cluster Cj; j=1,2,…k is defined as follows.
 

 
=

=

−

−
k

t

ti

jcia

ca
ji Cad

1

2

2

),(
                               (6) 

where cj is the Cj,’s centroid and d(xa, Cj)[0, 1]. 

Definition 3.12 Support and core of a fuzzy set.  

The support of a fuzzy set A in X is the crisp set containing every element of X with membership 

grades greater than zero in A and is notified by S(A) = {x  X; μA(x) > 0}, whereas the core of A 

in X is the crisp set containing every element of X with membership grades 1 in A [see e.g., [59]]. 

Obviously core [t1, t2] = [t1, t2], since a closed interval [t1, t2] is an equi-fuzzy interval with mem-

bership 1 [see e.g., [56, 57, 59]]. 

Definition 3.13 Set Superimposition. 

Set superimposition (S), an operation, was proposed in [56] as follows; 

A1 (S) A2 = (A1 − A2)(1/2) (+) (A1 A2)(1) (+)(A2 − A1)(1/2)                    (7) 

(

7

) 

where (A1 − A2)(1/2)) and (A2 − A1)(1/2) are fuzzy sets [57, 59] with constant membership value (1/2), 

and (+) signifies union of disjoint sets. To elaborate it, let A1 = [s1, t1] and A2 = [s2, t2] are two real 

intervals such that A1A2  ϕ, we will get a superimposed part. When two intervals are superim-

posed, each interval contributes a half of its value to the superimposed interval, so from Equation 

(7) we obtain 

[s1, t1](S)[s2, t2] = [s(1),t(2)](1/2) (+) [s(2),t(1)](1) (+) (s(1),t(2)](1/2)                     (8)                  

(

8

) 

where s(1) = min(s1, s2), s(2) = max(s1, s2), t(1) = min(t1, t2), and t(2) = max(t1, t2).The superimposition 

process is presented using Figure 1-3 below. 
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 Figure 1: Interval [1, 4] 
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 Figure 3: Superimposed interval [1, 3](1/2) + [3, 4](1) + [4, 6](1/2) 

 
 

Similarly, three intervals [s1, t1], [s2, t2], and [s3, t3], (with non-empty intersection) are superimposed to get the following expression. 

[s1, t1](S)[s2, t2](S)[s3,t3]=[s(1),s(2)](1/3) (+)[s(2),s(3)](2/3) (+) [s(3),t(1)](1) (+) [t(1),t(2)](2/3) (+)[t(2),t(3)](1/3)   (9) 

where the sequence {s(i); i = 1, 2, 3} arranged from {si; i = 1, 2, 3} in increasing order of magnitude and {t(i); i = 1, 2, 3} is also 
arranged from {ti; i = 1, 2, 3} in the similar fashion.  

Let [si ,ti], i = 1,2,…,n, be n real intervals with  
n

i

ii ts
1

,
=

  ϕ .Using generalization (9) gives as follows. 

  [s1, t1](S) [s2, t2](S) ... (S)[sn, tn] = [s(1), s(2)] (1/n) (+) [s(2), s(3)](2/n) (+) ... (+) [s(r), s(r+1)](r/n) (+) ... (+) 

[s(n),t(1)](1)(+)[t(1),t(2)]((n−1)/n)(+)...(+)[t(n-r),t(n-r+1)](r/n)(+)...(+)[t(n-2),t(n-1)](2/n)(+)[t(n-1),t(n)](1/n) 
(10) 

In (10), the sequence {s(i)} is organized from {si} in increasing order of magnitude for i = 1,2,… n 
and similarly {t(i)} is also organized from {ti} in increasing order of magnitude [57]. It is to be 
noted here that the membership functions are the mixture of empirical probability distribution 
function and complementary probability distribution function given as follows 

𝛾1(𝑥) = {

      0,                           𝑥 <  𝑠(1)  
𝑟−1

𝑚
,              𝑠(𝑟 − 1) < 𝑥 < 𝑠(𝑟)

   1,         𝑥 >  𝑠(𝑚)                  

                                              (11) 

And 

𝛾2(𝑥) = {

     1,                   𝑥 <  𝑡(1)  

1 −
𝑟−1

𝑛
,   𝑡(𝑟 − 1) < 𝑥 < 𝑡(𝑟)

        0,      𝑥 >  𝑡(𝑛)                  

                                       (12)                                    

(

1

2

) 
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The membership function of the fuzzy interval [57, 59] will be provided to us by Equations 
(11) and (12), which together use the Glivenko-Cantelli Lemma of order statistics [58].  
Definition 3.14 Match ratio 

If n be the number of periods in the life-span of dataset (no. of years/months/days etc.) and 

m be the number of time-intervals in the list of life-spans of any cluster, then m/n is called match 

ratio. Obviously, 0 ≤ m/n ≤ 1. For m/n  1, the corresponding cluster is partially periodic and for 

m/nv=1, fully periodic. 

4. Proposed Algorithm 

For detecting anomalies, a partitioning subspace clustering approach is employed. 

The method first uses rough set theoretic approach for attribute or dimension reduction 

and then uses dynamic k-means clustering approach for finding clusters along with their 

life-spans. Each cluster will have a sequence of time intervals representing its life-spans. 

Then, interval superimposition-based approach is employed to find the periodic clusters 

along with the noises. The propose method is as follows. Here the dataset S=(U, A) is an 

information system consisting of both conditional attributes and decision attributes. First 

of all, the data pre-processing techniques is employed to convert the information system 

as set-valued ordered information system. Then, a dominance relation is generated on 

the ordered information system. With reference to the dominance relation, a nano 

topology and its basis is generated. Then the criterion reduction process is used to 

generate CORE(A) as a subset of attribute set A and new information system E=(U, 

CORE(A)) on U is formed which is a lower dimensional space. The pseudocode of the 

algorithm for the criterion reduction is given below. 

Algorithm1: Subspace Generation 

Input. (U, A): the information system, where the attribute set A is divided into C-condi-

tional attributes and D-decision attributes, consisting of n objects,  

Output: Subspace of (U, A)  

Step1. Generate a dominance relation 𝑅𝐶
≥ on U corresponding to C and XU. 

Step2. Generate the nano topology 𝜏𝐶
≥(𝑋) and its basis 𝛽𝐶

≥(𝑋) 

Step3. for each xC, find  𝜏𝐶−{𝑥}
≥ (𝑋) and 𝛽𝐶−{𝑥}

≥ (𝑋) 

Step4.    if (𝛽𝐶
≥(𝑋) = 𝛽𝐶−{𝑥}

≥ (𝑋)) 

Step5.        then drop x from C,  

Step6.    else form criterion reduction 

Step7.   end for 

Step8. generate CORE(C)={criterion reductions} 

Step9. Generate subspace of the given information system. 

 

The above algorithm supplies the CORE of the attribute set by removing insignificant 

attributes which gives us a subspace E=(U, CORE(A)) of the given information system 

S=(U, A). Then a dynamic k-means is applied on E. The algorithm is as follows. Following 

is an explanation of the algorithm: First of all, it randomly picks first k –data instances 

from the CORE(A) as k-clusters-centroid with associated time-stamp (time of generation) 

as start-time of their life-spans. For each cluster, a last-time and a list is maintained to keep 

last time-stamp and life-span of each cluster respectively. Initially start-time =last-time. If 
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a data instance is added to a cluster based on how far away from the cluster centroid it 

is, its current time-stamp (current-time) is added to the life span to obtain an updated life 

span, provided that the time gap between the cluster's last-time and the data instance cur-

rent-time is within a predetermined range, such as tmax. Otherwise, a new life-span will 

start by setting current-time as start-time and the previous life-span of the cluster will be 

closed with last-time as end of the life-span. The life-span of the cluster will be put to the 

list maintained for it if its length is more than a specified length (say tmin). The life spans 

of the earlier and later clusters are updated if a data instance switches from one cluster to 

another during the execution process. For instance, if the time stamp on the outgoing data 

instance is either the start-time or end-time of the preceding cluster, the life-span of the 

prior cluster is updated by using the next or previous cluster time-stamp. Updates are 

made to the cluster-centroids also. Again, the life spans of the former and later clusters 

will not change if the time stamp of the outgoing data instance falls within those life 

spans, but the cluster centroids will be modified. Similar to this, if the time stamp of a 

data instance migrating from one cluster to another falls outside the later cluster's life-

span, the cluster-centroid is updated and the later cluster's life-span is updated as well, 

provided that the time gap between the two clusters is within a certain limit (tmax). The 

pseudocode of the algorithm is given below.  

Algorithm2: Dynamic k-means clustering algorithm 

____________________________________________________________________________ 

Input. E: Information system consisting n objects and attribute set CORE(A)  A, tmax: the 

maximum time-gap of consecutive time-stamp, tmin: the minimum length of life-span. 

Output. Set of clusters where each cluster is associated with a sequence of time intervals 

as its life-spans 

Step1. Given d1-dimensional dataset CORE(A) 

Step2. Select C[i]={x[i], tp[i]}; i=1,2,..k, where x[i] be the data instances or means of clusters, 

tp[i] points to list of time-intervals each maintained for every cluster contains time-

stamps (start-time) of x[i] and start-time = last-time initially    

Step3. for each incoming data instance x with current time-stamp current-time  

Step3. { if d(x, Cj) ≤ d(x, Ci), i  j; i =1, 2,…k 

Step4.    {Add x to Cj 

Step5.     Update mean(Cj) 

Step6.      if (current-time – last-time[j]≤ tmax) 

Step7.          {if(last-time[j] ≤ current-time) 

Step8.          extend life-span(Cj) by setting last-time[j] = current-time 

Step9.           else go to Step3 

Step10.          }  

Step11.          else if(last-time[j] - start-time≥ tmin   

Step12.       {Add [start-time[j], last-time[j]] to tp[j]  

Step13.        set last-time[j] = start-time[j] = current-time 

Step14.       } 

Step15.     }    
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Step16.   } 

Step17. if (assign does not occur) go to step19 

Step18 else go to Step3  

Step19. Output cluster set  

 

Here each output cluster in the final output cluster set is having a sequence of time-

intervals describing its life-span. It should be noted that only clusters with life-spans of 

at least tmin are provided by algorithm2.  

For each cluster with sufficient number of time intervals as its life-spans, the 

following procedure is applied to find periodic clusters from the interval list. The interval 

superimposition operation is to keep the information about the periods. The interval 

superimposition is used only if the periods have overlapping or non-empty intersection. 

Throughout algorithm3 execution, a list of superimposed time periods is maintained. The 

total number of periods of any clusters is taken as n (number of Years/Months etc.). To 

determine whether a new crisp time-interval can be superimposed on already 

superimposed time-interval or not. it is checked whether the interval has non-empty 

intersection with the core of superimposed time interval or not (the definition of core is 

given in Section 3). If it has then the superimposition process is computed to get a new 

superimposed time interval and membership values are reconstructed accordingly. The 

list of superimposed time intervals is initially empty. A full pass through the time interval 

list of a cluster is conducted during algorithm3 execution. When it switches to a new time 

interval, it determines if it can be superimposed on any of the previously obtained 

superimposed intervals. If so, the superimposition process is performed, which updates 

the relevant superimposed time interval. This interval is added as a new entry to the list 

if it does not superimpose with any of the previously acquired superimposed time 

intervals (kept as a list). Finally, each superimposed time intervals is examined to 

determine the number of time intervals superimposed in one place and kept using a 

counter (m). At the beginning of superimposition process of an interval the value of m is 

taken as 1. If an interval is superimposed the interval, then m is updated by adding 1 to 

it. At the execution for a cluster the match ratio is obtained with help of m and n. If match 

ratio is found to be 1, the corresponding cluster is fully periodic else partially periodic. 

Each superimposed time intervals produces a fuzzy time interval. This way, the fuzzy 

periodic clusters can be obtained. The pseudocode for the process is given below. 

 

Algorithm3: algorithm for finding periodic(fully/partially) and fuzzy periodic 

clusters. 

 ____________________________________________________________________________ 

Step1. For each cluster c with list of line-spans L. 

Step2. initially Lc=null // Lc is the list of superimposed intervals    

Step3. lt = L.get()      // lt points to the 1st time interval (life-span) in L  

Step4. Lc = append(lt) 

Step5. m=1          // m = number of intervals superimposed 
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Step6. while((lt=L.get())!=null) 

Step7. {flag = 0  

Step8.  while ((lct =L.get())!=null) 

Step9.    if (compsuperimp(lt, lct)  

Step10.    flag =1  

Step11.      if (flag == 0) 

Step12.     Lc.append(lt)     }  

Step13.    }   

Step14.  }  

Step15.   compsupeimp(lt, lct) 

Step16. if(intersect(lct, lt)!=null)   

Step17.  { superimp(lct, lt)    

Step18.   m++ 

Step19.   return 1 

Step20.   } 

Step21  return 0  

Step22. match ratio = m/n // n = number periods in the whole dataset. 

Step23. if (match=1) 

Step24. the cluster c is fully periodic 

Step25. else partially periodic 

Step26. generate fuzzy intervals from superimposed intervals to get fuzzy periodic clus-

ters. 

Step27. End      

 

The function compsuperimp(lt, lct) initially finds the intersection between lt and the 

core of lct. If it is found to be non-empty, the function computes the superimposition 

process by reconstructing the membership values. If lt has been superimposed on lct it 

returns 1 else otherwise returns 0. get () and append () are functions operating on time 

interval lists to get a pointer to the next time interval in a list and to append a time interval 

into a list respectively. For each cluster, a counter (m) is also kept in order to keep track 

of how many time intervals are superimposed in one place. The match ratio is computed 

with the help of m. If the match ratio is found to be 1, the corresponding cluster is fully 

periodic else partially periodic. Finally, the fuzzy intervals can be generated with the help 

of superimposed intervals to get fuzzy periodic patterns The flowchart for the proposed 

method is described in Figure 4 below. 

 

 

 

 

 

 

 

start 

set-valued ordered information system 

CORE 

Generate k clusters with set of sequence of lite-spans (time-

interval) using dynamic k-means clustering algorithms   
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Figure 4: Flowchart of the proposed method (RFPSCA) 

Anomalies are data instances or groups of data instances that either belong to sparse clusters 

or don't fit the defined life-spans. As a result, a data instance may be anomalous depending on both 

its generation time and its distance from clusters. 

5. Complexity Analysis 

For generating dominance classes and corresponding classes, the algorithm needs to 

compare values of all the possible pairs of objects from U in all dimensions, there can be 

at most UUC number of comparison. So, the computational complexity for step1 is 

O(n2.d), where U=n, and C=d. For generating the nano topology, the lower 

approximation and approximation of the set has to be generated, which takes 

computational time O(X.U). So the total computational cost of step1 and step2 is 

O(n2.d+X.U)= O(n2.d) which is the worst-case complexity. From step3 for loop starts and 

it runs over the at most all the attribute set. The computation of step 4 to step7 takes 

constant time say O(k1), where k1=constant. Therefore, the computational cost from step3 

to step8 is O(k1d). Similarly, that of step9 and 10 is also constant say O(k2), where 

k2=constant. The overall complexity of algorithm1 is O(n2.d + k1d+ k2)=O(n2.d). For finding 

complexity of Algorithm2, the following steps are taken. Let k (≤ n) be number of clusters. 

The computational cost of centroid is O(n + n.k.d1) = O(n.k.d1), where d1 (≤d), is the 

dimension of the CORE. Also, O(2n.k) = O(n.k) is the time required compute the minimum 

distance and time-gap for each cluster. The cost of updating cluster-mean and life-span 

is O(2k). The total cost of algorithm2 is O(i(n.k.d1 + n.k + k)) = O(i.n.k.d1) = O(n3) as i (≤ n), 

the number of iterations, k ≤ n, and d1 is considerably small. The worst-case complexity of 

the whole method is O(n2.d + n3). For finding time-complexity of Algorithm3, we proceed 

as follows. Let n1 be the size of sequence of time-intervals associated with a cluster and n2 

be the average number of time-intervals superimposed. For each time-interval of a cluster, 

it is required to make pass through the list of superimposed time-intervals to check 

whether the corresponding time-interval can be superimposed on any of the available 

superimposed time-intervals or not. For this the intersection of the current time-interval 

with the core of the superimposed time-interval is computed which requires O(1) time. If 

the current time-interval superimposes then its boundaries are to be inserted into two 

For each clusters with a sequence of time-intervals  

Apply the interval superimposition on the sequence of time-intervals to 

generate superimposed intervals  

Calculate match ratio 

The corresponding cluster is partially 

periodic 

The corresponding cluster is fully periodic 

end 

if (match ratio=1)  

Generate fuzzy time-intervals from 

superimposed time-intervals 
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sorted arrays used to keep the end points of the superimposed time-intervals (one sorted 

array for left end points and other for right end points). Now, searching in a sorted array 

requires O(log n1) time and insertion needs O(n1) time. The two end points requires 

O(2(log n1 + n1)) = O(n1) time. For one cluster the process requires O(n1 .p .n2) time, where 

p is size of the list superimposed time-intervals. But p = O(n1), and n2 = O(n1); the overall 

time-complexity in the worst-case is O(n13). For k clusters, the total time-complexity in 

worst-case is O(k .n13). Therefore, the worst-case complexity of the whole method is 

O((n2.d + n3) + k .n13). Also k = O(n), which gives the time-complexity as O(n2.d + n3 + n .n13) 

= O(n3 + n .n13), as d ≤ n, which is the time-complexity of the method in worst-case. Since 

the time-complexity of the method depending on n and n1, and not depending on d 

(dimension). It runs mostly cubic time. The algorithm looks efficient for finding 

anomalies in high-dimensional data 

6. Experimental Analysis and Results. 

In this Section the experimental studies are conducted and comparative analysis of the 

proposed method is performed against ten different clustering-based anomaly detection 

algorithms namely k-means [19], IF (Isolation Forest) [61, 62], SC (Spectral Clustering) 

[54], HDBSCAN (hierarchical density-based spatial clustering of applications with noise) 

[63], ACA (Agglomerative Clustering Algorithm) [54], LOF (Local Outlier Factor) [54], 

SSWLOFCC (streaming sliding window local outlier factor coreset clustering algorithm) 

[54], PCM (Partitioning Clustering with Merging) [10], OnCAD (Online Clustering and 

Anomaly Detection) [46], and MCA (Mixed Clustering Algorithm) [9]. The dataset 

employed for the experiment is Kitsune Network Attack dataset [64] and 

KDDCUP’99dataset [65], collected through the UCI machine repository. The Kitsune 

dataset [64] is a multi-variate, sequential, time-series dataset with real and temporal 

attributes. It has 27,170,754 data instances and its number of attributes is 115. Whereas, 

KDDCUP’99 [65] is a multi-variate dataset with numeric, categorical and temporal 

attributes. It has 4,898,431 data instances and its number of attributes is 41.     

The proposed method is implemented using MATLAB. The implementation process 

consists of three stages, input data pre-processing, periodic subspace clustering, and 

testing. First of all, the method accepts the input data converts it to set-valued matrix. The 

matrix representation of the dataset is the information system. Since rough set can’t deal 

with continuous attribute, so they are discretized at the same. The algorithm1 is then 

applied to find the subset of the attribute set by removing the insignificant attributes and 

by using the concept of dominance relation, nano topology and its basis. The algorithm1 

gives subset as CORE of the attribute set. Then the algorithm2 is applied on CORE to find 

clusters along with the set of sequence time-intervals where each cluster is associated 

with a sequence time intervals describing its life-span. For, the efficient implementation, 

two parameters namely tmin (minimum length of a life-span = 180 minutes) and tmax 

(maximum time-gap between two consecutive time-stamps associated with a cluster =20 

minutes) are to be specified. Then the algorithm3 is applied the clusters to generate 

periodic, partially periodic and fuzzy periodic clusters. The performances of the method 

along with afore-mentioned methods in terms of accuracies in detection rate are recorded. 
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The details of the outcomes of the investigations are presented both in the tabular form 

and graphically in Tables 1 and graphically in Figures 5-11 respectively below. 

Table 1: Comparative performances analysis of proposed method with some well-known existing methods 

Algorithms Accuracy Execution time Periodic clus-

ters obtained KDDCUP’99 

(41 attributes) 

Kitsune 

(115 attributes) 

KDDCUP’99 

(41 attributes) 

Kitsune 

(115 attributes) 

1 k-means 95% 86% 28 95  

2 IF model 84% 74% 19 64.5  

3 SC 61.1% 65.3% 44 149.5  

4 HDBSCAN 24.1% 38.5% 95 150  

5 ACA 82% 72% 16 54.4  

6 LOF 94.7% 90.2% 14 47.6  

7 SSWLOFCC 95.6% 93.9 12 40  

8 PCM 86% 76% 26 88  

9 OnCAD 97% 84% 30 102  

10 MICA 98% 98% 28 68  

11 

 

Proposed 

Approach 

(RFPSCA) 

98% 98.3% 58 88.5 √ 

  

 

 

Figure 5: Comparative analysis of RFPSCA with other existing methods in terms of ac-

curacy of detection 
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Figure 6: Comparative analysis of RFPSCA with other existing methods in terms of exe-

cution time 

 

Figure 7: Comparative analysis of all the 11 methods in terms of accuracy using 

KDDCUP’99 
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Figure 8: Comparative analysis of all the 11 methods in terms of accuracy using Kitsune 

dataset. 

 

Figure 9: Comparative analysis of all the 11 methods in terms of execution time using 

KDDCUP’99 

 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 23 May 2023                   doi:10.20944/preprints202305.1654.v1

https://doi.org/10.20944/preprints202305.1654.v1


 

 

 

Figure 10: Comparative analysis of all the 11 methods in terms of execution time using 

KDDCUP’99 

 

 

 

 

Figure 11: Comparative analysis of RFPSCA with other existing methods in terms of 

both accuracy and execution time 

 

It following observations can be drawn from the obtained results.  

The k-means algorithm is reasonably good as per as the accuracy of anomaly 

detection is concern. However, it is sensitive to both the dataset and the dimensions. It is 

also sensitive to the distribution of the dataset in the plane. It cannot supply periodic 

clusters 
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The IF model is reasonably good in terms of the accuracy of the anomaly detection, 

however, it is efficient up to a certain dimensional dataset and beyond which its efficacy 

decreases rapidly. It cannot supply periodic clusters. 

The SC algorithm is not good in terms of both the accuracy of anomaly detection and 

the execution time. It is not applicable for finding periodic clusters 

The HDBSCAN is very poor both in terms both the accuracy of detection and the 

execution. Though it works very good in lower dimensional data, its performance 

decreases with respect to increment in the dimension of dataset. It is not applicable for 

finding periodic clusters. 

The ACA is reasonably good in terms of both the accuracy of anomaly detection and 

the execution time, however it is very sensitive to the order of input to the algorithm. It 

not useful in determining periodic clusters. 

The LOF algorithm is quite better in terms of both the accuracy of anomaly detection 

and the execution time. However, it has similar issues like k-means algorithm. 

The SSWLOFCC is a better algorithm as per as real-time anomaly detection is concern. 

Its performance does not depend much on the size of the dataset. However, its execution 

increases with increment of the dimension as well as the size of the dataset. It also cannot 

extract periodic clusters. 

The PCM is an algorithm consisting of both k-means and hierarchical agglomerative 

approaches. However, its performance decreases with the increase of the size of the da-

taset and the dimension. As its performance heavily depends on both the algorithm. It 

cannot be used for finding periodic clusters.  

The OnCAD has a problem dimensionality. Its accuracy of the anomaly detection 

and the execution time fall rapidly with the increase of the data size and dimensions. It 

cannot find periodic clusters. 

The MICA is very good as per as the accuracy of anomaly detection is concern. It has 

the accuracy of 98% which is quite impressive. It execution time is also reasonably good. 

However, it cannot be used for finding periodic clusters. 

The proposed algorithm (RFPSCA) is very good as per as the accuracy of anomaly 

detection is concern. Its detection rate is almost same for both the datasets with different 

sizes and dimensions. Its accuracy of the detection rate is 98% and 98.3% for KDDCUP’99 

[65] and Kitsune [64] datasets respectively. It has the ability to extract periodic clusters 

which others cannot. Though, its execution time is little more than that of others, the rate 

of increase is reasonably less. Extra time requires is the time of finding subspace and ex-

tracting periodicity. Thus, the execution time of RFPSCA depends mostly on the dataset 

sizes and the number of periods associated with a cluster as its life-span. 

Moreover, the RFPSCA’s time-complexity is compared in contradiction of that of k-

means [19], IF model [61, 62], SC Algorithm [54], HDBSCAN algorithm [63], ACA Algo-

rithm [54], LOF algorithm [54], SSWLOFCC algorithm [54], PCM algorithm [10], OnCAD 

algorithm [46], and MCA Algorithm [9]. The results are presented graphically in Figure 

12 and 13. It has been found that most of the aforesaid algorithms not only depends on 

dataset sizes but also on dimension of the dataset. In fact, some are inefficient in high-
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dimensional data and other efficacy decreases with the increase of dataset’s size and di-

mension. However, RFPSCA depends mostly on size of dataset and is a bit dependent on 

the sequence of time-intervals associated with every clusters which is negligible factor. 

So, RFPSCA runs mostly in cubic time. 

 

 

Figure 12: Comparative analysis of all the aforesaid methods in terms of time-complex-

ity  

  

Figure 13: Comparative analysis of all the aforesaid methods in terms of time-

complexity 

7. Conclusions, Limitations and Lines for Future works 

7.1 Conclusions.  

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 23 May 2023                   doi:10.20944/preprints202305.1654.v1

https://doi.org/10.20944/preprints202305.1654.v1


 

In this article, a clustering-based method for finding IoT anomalies in a subspace is 

given. The method first uses, nano topology-based attribute reduction approach for find-

ing subspace as a CORE. Then, a dynamic k-means clustering approach is employed to 

find k-clusters in the subspace. It is to be mentioned here that the clusters obtained by the 

aforesaid approach will have k-number of sequence time-intervals where each cluster is 

associated with a sequence describing its life-span. Then, using an interval superimposi-

tion method a match for each cluster is computed which determines whether the cluster 

is fully or partially period. The set of superimposed time-intervals will give fuzzy time 

intervals. At the end, the method supplies fuzzy periodic clusters in the subspace. Since 

the obtained clusters are periodic nature, they provide more detail information about the 

nature of the data instances. The anomalies would be mostly doubtful instances which 

do not belongs any of the periodic clusters. The proposed method is named as RFPSCA. 

The time-complexity of the method is computed and found to be O(n3 + n .n13) in worst-

case, where n = the number of instances and n1 = the maximum number of intervals asso-

ciated with any cluster. Obviously n1 is very small in comparison to n. Therefore, the 

method runs in cubic time approximately. 

For finding efficacy further, ten well-known clustering-based algorithm taken and a 

detailed comparative analysis is conducted against RFPSCA with two well-known da-

tasets namely KDDCUP’99 [65] and Kitsune [64] Network anomaly detection datasets. 

RFPSCA is found be efficient than others for detecting anomalies in high-dimensional 

data. Experimentally, it has been found that that RFPSCA can extract anomaly with 

around 98% of accuracy. 

7.2 Limitations and Future directions of work  

The proposed RFPSCA has some limitations. Firstly, it is unable to deal with 

continuous data as since rough set is inefficient to handle continuous data. Secondly, 

since the method is partitioning-based approach uses k-means algorithm, it has the 

similar issues like k-means algorithm in finding anomalies. For example, the centroid of 

any cluster can be pulled by anomalies or there may be a cluster of anomalies extracted 

by the method which looks like normal cluster. Finally, the method cannot detect 

anomalies from temporal interval data. 

Future works can be possible in the following lines 

Method other than k-means approach can be employed for efficient IoT anomaly de-

tection. 

Effective method can be proposed to deal with continuous attributes or temporal 

interval dataset. 
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