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Abstract: In this work, in spite of Milne’s recommendation using the three-point Newton-Cotes open
formula (Milne’s rule) as a predictor rule and three-point Newton—Cotes closed formula (Simpson’s
rule) as a corrector rule for 4-th differentiable functions with bounded derivatives. There is still
a great need to introduce such formulas in other L7 spaces. Often, we need to approximate real
integrals under the assumptions of the function involved. Because of that, the aim of this work is to
introduce several L? error estimates for the proposed perturbed Milne’s quadrature rule. Numerical
experiments showing that our proposed quadrature rule is better than the classical Milne rule for
certain types of functions are provided as well.
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1. Introduction

There are many attractive methods that are used to approximate real integrals. One of
the oldest and most well-known is the Newton-Cotes closed and open formulas. Particu-
larly, among other famous formulas; Simpson’s rule and Milen’s rule are very interesting
and close to each other. Since each formula involves a bounded error of the fourth degree.
However, it is well-known that Simpson’s rule is of closed Newton-type formula, while
Milne’s formula is of open type. Accordingly, it’s very interesting to test both quadrature
rules in many situations. In the last decades, the modern theory of inequalities are used at
large to verify these quadrature rules (and others) using the Peano-kernel approach.

In terms of Newton—Cotes formulas, Milne’s formula is of open type is parallel to
Simpson’s formula which is of closed type, since they are held under the same conditions.
Suppose g € C*([c,d]), and

Hg(‘l)H = sup ’g(‘l)(s)‘ < 0.
o0 se(c,d)

In terms of inequalities Simpson’s and Milne’s inequalities are read, respectively [1]:

‘dgc{g(c);g(d) +2g<czd)} _/Cdg(s)ds

<D,
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and
d—c 3c+d c+d c+3d d 7(d —c)®
‘ 3 {Zg( 4 )_g( 2 >+2g( 4 )]_/c &) < =515 Hg(4)Hw‘ @)

Attempting to apply the Simpson and/or Milne quadrature rules using lower-order
derivatives is very promising (especially; for certain types of functions) as we obtained
see in this work. Even the Simpson rule is more popular than Milne’s due to several
reasons, however, the Milne quadrature rule has not attracted many researchers. Because
of that, we focus this work on studying the error of the Milne quadrature rule for n-
times differentiable functions by obtaining several L? bounds of this quadrature. At the
same time, the considered approach allows us to see how adding derivatives of the used
nodes of this rule in oscillating the error term. In other words, how the Milne quadrature
rule behaves as a predictor for higher or lower derivatives. In fact, the oscillation of the
proposed quadrature rule raises in general. On the other hand, it is shown numerically
and practically that, for certain types of functions, the error descends sharply, which means
that our approach could be very effective for certain types of functions. Moreover, one
of the most important advantages of our result is that it is verified for p-variation and
Lipschitz functions. Also, since the classical Milne’s quadrature rule (2) cannot be applied
either when the fourth derivative is unbounded or doesn’t exist, therefore the proposed
quadrature could be used alternatively.

For more about Simpson’s quadrature rule and other related results, the reader is
recommended to refer to [2]-[26]. For other types of quadrature rules see [27]-[30] and the
references therein. The book [31], is also recommended for recent and classical methods of
numerical integration.

<

In this work, despite Milne recommends using the three-point Newton—Cotes open
formula as a predictor rule and three-point Newton—Cotes closed formula (Simpson’s rule)
as a corrector rule for 4-th differentiable functions with bounded derivatives. There is still
a great need to introduce such formulas in other L? spaces. Often, we need to approximate
real integrals under the assumptions of the function involved. Because of that, this work
is concentrate to introduce several L? error estimates for the proposed perturbed Milne’s
quadrature rule. Numerical experiments showing that our proposed quadrature rule is
better than the classical Milne rule for certain types of functions are provided as well.

2. Perturbed Milne’s quadrature formula
In order to establish our results we need to recall the following two lemmas.

Lemma 1. [16] Fix 1 < p < co. Assume that g is continuous function on [c, d] and w is of
bounded p-variation on [c,d]. Then [ Cd g(s)dw(s), exists and the inequality:

d

<8l - V (w; p), 3)

c

[ st

holds, where \/¢(w, p), denotes to total p-variation of w over [c, d].

Lemma 2. [16] Let 1 < p < oo. Assume that g € L [c,d]| and w has a Lipschitz property on [c, d].
Then

d 11
| s@u(s)| < Lipy()d—a)" 7 - g1, @

holds.
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From now on, I is a real interval and ¢,d € R with ¢,d € I° the interior of I with ¢ < d.
Define the set ‘I?;,m) to be the set of all m-times continuously differentiable function g whose
m-derivative (m > 1) is absolutely continuous with g(") € LP[c,d] (1 < p < o).

In what follows, we present a primary result involving the expansion of Milne’s rule
for higher-order derivatives using the Peano-kernel approach.

Lemma 3. If g € ‘Bgm)

/Cdg(s)ds = j;:(ize——:)f;{ [(152>€+1 ) (i)ZH] [3(@(??1) +<1)£g(z)<c-|—43dﬂ

, then we have

©)
(-1) +1 ctd d
. o )g“>( ) b [ K@ s

where

L(s—o)", if se {c, 3de]

Be-sB) i e (s

Km(s) - m 7

%(5—2”;d> , if se€ (%,#]

L(s—d)", if se (”fd,d]
forall m > 1.

Proof. We carry out our proof using mathematical induction. For m = 1 we have

s—c, s € {c, 304”}

s — <2, s € (351’1,#}
Ka(t) = - . <# thd}

s—d, s € (”fd,d}

Applying the integration by parts, we get

3c+d

[ rse - ()5 () [ st

ctd

Josy Ka(0)dg(s)

4
_(c+d c+2d c+d 3c+d c+2d 3c+d s i
“\2 T3 B8\ ) s T )8 s _/Mg(s) >
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c+3d

Ka(t)dg(s) =

c+3d 2c+d c+3d c+d 2c+d a+b i
s 3 )8\ "z ) 23 )8 2 _/c;dg(s)ds

and

[ reiste) = (5 )o(5) - Loy st

Adding the above equalities and arranging the resulting terms, simple calculations yield
that

/cdg(S)dS—<d3C)[2g<304+d>_g(CJ2rd)+2 <C+3d>} /Kl i)

Now, assume that (ED holds for m = I. We need to show that it holds form =1 +1, i.e.,
d (d—o¢) 3c+d c+d c+3d
/C 8(s)ds = — [2g< 1 )—g< 7 )+2g< 1 ﬂ (6)
1 l+1 l+1 (+1
C) i 1 ) 3C+d (0) C+3d
+€Z% ({+1)! H(u) +<4> [g )T 4

—_ <(_23+1+ 1) g(f) (C —12— d) } n (_1)m+1 /Cd Kiox (s)g(lﬂ)(S)ds

where

T (s — o)t if se [c, 3“;‘1

I+1
: (s . c+32d) . if se (3C;1‘rdl %}
Kiia(s) = ’

I+1
2c+d : c+d c+3d
(s—5 ) , if se ( ==, }

L (s—d)'*1, if se (<, d]

for alll > 1. Again, using integration by parts, we have

3c+d

3c+d I+1 Sc+d
1 d—c 3c+d 1
[ el ieyds = (z+1)!< i ) g(l)( 4 )_u/c C -9

ctd 1+1 1+1 1+1
: (1) (gyds — ()1 @ =) | (LN o fetdY (5 o (3ctd

1 ct+d

2 a+2b m 1
—”/Sczd <s— 3 )g()(s)ds,
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c+3d

I+1 I+1 I+1
‘ (1+1) ()45 = E=O) | (SN T (eX3d) _ (1N (et
/c;d P od =T (1) ¢ 73 6) ¢ \ 2

1 o 2c+d\/
_ﬂ/m (s— 3 )g(l)(s)ds,

2

and

d —1)! (d—c\"" g (c+3d\ 1 4
Jo Ko Vo = g (555) 6 (S5 - Ll -0

Adding the above identities, we get

[ S () T (5o ()

ol
_w(d—C)l“g()(Cer)Jr( 0 [ Kol s)as

Using the mathematical induction hypothesis, we get
d (d—C)l+l 5 1 1 1 ) 3c+d 1 () c+3d
[sowe =S| () = (6) [l (57) vove (557)

B[ () () e ()
(et (24) } e (24)

6l+1 2 6/+1 (I+ 1)!

- /cd Ki1(s)g!" 1) (s)ds
B Q) () o)
_((—z;fl)g(e)(c;d)} z+1/ Ko ()80 (s)ds

which gives the representation (6). Hence, by mathematical induction (5) holds for all
I>1. O

For convenient representation, we may rewrite (5) such as:
/Cdg(S)ds— d;CPg(SC:d) —g(czd>+2g(c+43d)] 7)
LG (0l () v ()
— ((_;Z+1+ 1) g0 (C—;d> } + (=" /Cd Ko (s)g™ (s)ds

Therefore, we can compute f g(s)ds using a perturbed Milne’s quadrature formula

[ 5665 = M (3) + ) ®
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for all m > 1, where M,,(g) is the perturbed Milne’s rule given by

i 5 ) o) ()
+ Z Ef)fﬂ { [<152>z+1 - (i)ul [g(f)<3czd> + (—1)eg(e)<cz3d>}
_ ((_;);Qg(z)(“;d)}

and &, (g) is the error term given by

d
fm(g)=/c g(s)ds — My (g) = /ICm s)ds (10)
forall m > 1.

Theorem 1. If g™ (m > 1) is continuous on [c,d], such that g'>™)(s) does not change sign on
[c,d]. Then there exists nj € (c,d) such that

2(d—c)™ /1 52m+1 1 )
52m(g) = (Zm + 1)! (42m+1 + 122m+1 - 62m+1>g( m)(ﬂ)‘ (11)

Proof. Since g(2)(s) does not change sign on [c, d], then there exists 7 € (c,d)

Szm(g) = (_1)2m /d ICZm(s)g(zm) (S)ds

2d—c)* /1 52m+1 1
’ 42m+1 + 122m+1 o 62m+1

which completes the proof of the result. [

3. Error estimation(s)

We begin with the following result:

Theorem 2. If g!~1) (I > 1) is a function of bounded p-variation on I. Then, we have the
inequality

&8l < 11{5(6112 C)]l‘\d/(g(’”,r’), (12)

where \/¢ (g(l -1, p), denotes to total p-variation of ¢! =) over [c, d].
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Proof. From (7), we get

o)l <| 1) [ Kilsg e

1| %% l 1] 2c+d\
d — (-1 - _ (-1
< T /C (s—c)dg"(s)| + 11| Jacpa (s 3 ) dg\' =V (s)
1| o c+2d\' (1-1) 1|/ 15 (1-1)
+ﬂ/# <s— . )dg (s) +E/Hfd(s—d)dg (s)
1 AR 1 scrdl E
<3 b V(e h s b2 ()
1 ctod| E 1 ;o
+q oswp fs— =)V (80 p) 4 sup Js—dl' (807, p)
se[d, M epd " se[<M 4] et3d
175(d—o)]" )/ aon
—-l|[ 12 } '\/(3' ).
which proves (12). O
Theorem 3. If g € Q];l_l) (1>1), then
2(d—c) 1 I+1 . 00
o0, re e
a@<y 1
20d—q) T 14 s 1 al,0) if o) e P
m!(lq-}-])% |:4lq+1 + 12lq+1 6lq+1:| Hg Hp,[c,d], if g €L [C/ d]
where g = %, p>1

Proof. From (7), we get

() = (1) [ Kis)50 (e

IN

[ Kio)[s )]s

2 [ it

IN

3c+d ct+d 1
1 4 1 2 C—|—2d
1 1
_‘g()H |\ﬁ/c |S_C|ds+l_[/é)c4d S — ds

_2c+d

c+3d
-7

1 4 ! 1 1
+ﬂ/c;d ds+ﬁ/#|s—d|ds

2d—c)*1] 1 5 g )
< (I+1)1 |4+T + 120+1 g+l | Hg( )‘

7
[0 9)

and this proves the first inequality in (I3).

(13)
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The second inequality in (T3) can be obtained since g(!) € LP[a,b] (1 < p < o), then

|wwm/ﬁ&@@wq%

<([“wors) ([ kors)

3ctd epd I
2d 1
<] .2 / Y oe_ ctad
_Hg Hp l!lc (s —c)"ds + 2eya 3 s| ds
1
c+3d lq q

_zl/q(d—c)”ﬁ 1 +5lq+1_ 1 qH (I)H
Tt CE I

which proves the last inequality in (I3), and thus the proof is established. [

Theorem 4. Let1 < p < oo. If ¢V (I > 1) has Lipschitz property with constant
Lipy, (g(l_l)) , then

1 1
4r Lip g Ip+1 [
&(3)] < u( )M—W“4 — +< 5 “ g >

2. m! l+§(lp+1)% 2t (Ip+1)  6rtli(lp+1)

Proof. Applying Lemma 2] by setting w(s) = K;(s), then we have by triangle inequality,
from (7) we have

1) [ Ko

1 3c4+d B 1 c+d C+2dl -
<[ e-elas e+ gl o (s S5 st
1] e 2c+d\', 4 1| 2 1y (1
A (Y ] 1] [ -

c+2d
3

1
Ip v
ds)
Ip\ 7 d )

r 11 Z
ds) +(d—c)l’”</c+43d(d—s)lpds> }

~ 2Lipy (g'Y) (d—c>1é (d—c)'*7 N oS KA C o
B I! 4 ’+%(1p+1)% 12 (Ip+1)  ertli(lp+1)

1
LipM(g(l*”) d—c\'"7 3 b\ 1 s
— )P — _
< I ( ) > /C (s —c)Pds +l! i s

1( o 2c+d
+ll</c+d S —

2

1
r
s

In this section, we improve some of the previous inequalities, e.g., the first inequality
n (I3) involving L* can be improved by replacing this assumption by S; < ¢ (s) < Ty,

where §; := 1r[1f]g( (s)and 7; := sup g()(s). In this case, @ < Hg(l)H which means
s€lcd] «©

and this proves the desired result. [

4. Other estimations involving norms
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the bounds involving @ is better than H g(’ ) H . If 7; = =& then both assumptions are

equivalent.
To see how this is efficient, let us consider the following result(s):

Theorem 5. If g € %gl), then

2d—c) (1 5 1 (21-1)
€21-1(8)] < oy (@t e Hg _C’ oo’ (14
and
2d—c)?*t [ 1 52t 1
521(g) -C- (21 T 1)! 421+1 + 1221+1 62l+1
20— (1 521+1 1 ol
STy \@em T T Hg( - C‘ o )
forall/ > 1 and any constant C € R.
Proof. Since
d (d—c)'*! n( 1 5t
/C Kals)ds = =51 (1 +(-1) ) A1 T T g
0, if I =odd
— . (16)

if I =even

2d—c)* (1 5i+1 1
TN \@FT T T T el )y

Assume [ is odd and setting I = 2v —1, v > 1. If C € R is any constant then from (]Z[) and
we get

/cd Kav-1(5) |27 (s) = CJds = Eaa(9).

Applying the triangle integral inequality, we get

’/d Kay—-1(s) [g(zv_l)(s) — C} ds

d
< sup ‘g(zvfl)(S)—C"/ |KCay—1(s)|ds
] C

seled
2d—c)® (1 5% 1 w1
= "o (4zz+1zzv‘62v>‘H8” '—c|,

for all v > 1, where

d 2d@—c)® /1 5 1

which gives the desired result (14). The proof of the second inequality (15) follows similarly
by considering | = 2v (v > 1) and omitting the details. [

Next, we improve the first inequality in in the case that ¢ has odd derivatives.
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Corollary 1. Letg € Q?gm). Then there exist constants Sy;, 7, > 0 such that S;, < g(m) (s) <
Tm (m >1),Vs € [c,d], such that

@d—c? (1 5 1
‘521_1(g)| < W ﬁ + @ - @ (7-21—1 - SZZ—l)r (17)

ifmisodd;m=21—-1(1>1),

d—c)¥t (1 52 1
&u(f) - @I+ 1)! \ 421 + 122I+1 g2+l | (Tar — Su)

(d—c)? [ 1 521+1 1
S @t (@ T T (T2 = S2), (18)

and if m is even; m = 20 (¢ > 1).

Proof. We give the proof when m is odd. In the proof of the Theorem 5} set

_ T =Sy

>
C 5 , Vi>1

then

d Toi—1 — Sy
/c Kai—1(s) {3(211)(5) - 21122”} ds = Ey-1(8).

Taking the modulus and applying the triangle inequality, we have

d —
'/ Koi—1(s) {g(z”)(S) - TZ”SZ”} ds‘

2
_ d
< sup [ (@) - AL [Ty s)las
se(c,d] 2 ¢
@d—o? (1 5 1
T \@@ T e (Tar-1 = S21-1)
which holds for all I > 1, since
sup |¢@(s) — Tar-1— Su < Ta-1— S
seled] 2 2

and

d Z(d—C)ZZ 1 521 1
. Wearaits = T @t i )

and this proves (7). The inequality (I8) holds trivially in a similar fashion. [

Remark 1. Clearly, the estimation (T4) improves the first estimation in (I3) by  when m is
odd and thus (T4) is better than (T3).

5. More on LP-Bounds

In this section, we introduce more LP-bounds of the perturbed Milne’s quadrature
rule.
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5.1. Bounds in L?[c,d]
Theorem 6. If g2~V is absolutely continuous on I and ¢g®~1) € L2[c,d] (I > 1). Then,

1

21/2(d — c)ZIf% 1 541 1 2
|521—1(g)| S — + — — — . T(g(zlfl)), (19)
QD41 —1)2 (447112471 et
where
2
(21-2) (g} _ o(21-2)
r(g(”*l)) - Hg<21 1)”2 (g (d)-g <C))
2 d —C 4
foralll > 1.

Proof. Using the identity

[ o[- [ dg“(t)dt] ds

(I-1) _ o(-1) d
- / Ky(s)gW (s)ds — & (dc)z j © /c Ky(s)ds, (20)
and since [ is odd i.e., | = 2v — 1, Vo > 1, then by we have fcd K2y-1(s)ds = 0, so that
reduces to
d
/ Kap—1(s) [g(zv ) . / g (20-1) dt] ds = / Kop_1( 2” 1)(s)ds.
. —

Employing the triangle inequality, we get

d 1 d
(20-1) _ (20-1)
‘ [ K2oa(s) {g -7/ s (t)dt]ds

g2o-1) / gl2o-1) (t)dtH
where,
2@ @37 1 sl q 7
K201l := T (2801 T o801 gdo—1
(20)1(40 — 1)7 L4 12 6
and
21172
(20-2) _ o(20-2)
o 2 (s D(d) - g2 (o))
(20-1) _ _+ (20-1) (2v-1) ||~ _
Hg d—c/c § (t)dtH Hg Hz d—c

=7z,

which gives the required result. [J
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5.2. Bounds in L¥|[c, d|
Theorem 7. If ¢(?) is absolutely continuous on I and g?)) € L?[c,d] (I > 1). Then,

|€2141(8)
. 1
- psm(%) zl/q(di C)zH_% 1 5(21—1)q+1 1
Ty (21 - 1)((21 — 1)g + 1)1 [ T T T g Hg
(21)
for all p, g such that % +% =1p>1
Proof. Repeating the proof of Theorem [} so that from (20) we can conclude
d d
[ @[5V - gt [ D]
c d—c /e
g1 _C/gZIl ds (22)
Now,
d 1 d P
(21-1) (21-1) 5 _ @1-1) .y _ / (21+1)
s - [ /C 200 - o [T (oyas| s
d 1 pd - p
- / — / [g@l D(x) - g@(s)]ds| dx
< 21 1) (21 1)( )‘pdsdx
d—c
< sup (21-1) (x) g(Zl l)( )‘
s€lcd] 7€
Applying [17, Theorem 4] to ¢(?~1), then we have
D -1 1) ‘Pd < ppsinp(%) d—c |, _ctd p./d( (21)(x))pdx
L 1800 =806 [ < 52 5 . (s
Therefore,
pP sin? (E) d )
@=1) () — om0 ()P gy <« T \P) g p./ (21) d
su x s)| dx c x) ) dx,
o | (1) =P 0 e) ' < =) [ (6% )
which gives by 22), that
[ K0 [s® ) - g [ Vs
< Mol Js@ — - [0 spas
>~ 21—-1 q d—c¢ . .
. 1
- pSll’l(Z) 21/q(d _ C)21+% 1 5(21-1)g+1 1 q @
TP ()@ - 1)g 4 1)1 [4FDT T @ T @ s v
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where,

21/a(d — )17 1 5(2I-1)g+1 1 7
+ - ’
(20— 1)1((2 — 1)g + 1)1 |47 120 Nert 6l

K21l ==

and this proves 2I). O

Example 1. In the following numerical experiment, we apply our quadrature rule (13)) for the listed
functions on the interval [0, 1].

| g(t) [MineRule @ | Mu(g) (@) | E.V. |AE (@3 |AEQ@ ]

N 0.81286 081517 | 0.81533 | 0.00015 | 0.00246
| B | 325485 | 321786 | 321744 | 000041 | 0.03740 |
| B | 9368507 | 9267250 | 92.59549 | 0.07700 | 1.08957 |

E. V. := The exact value offo1 g(t)dt

A.E. := The absolute error of our proposed quadrature rule (L3) relative to the exact value.

A.E. @) := The absolute error of the classical Milne’s quadrature rule ) relative to the exact value.
As we can see the quadrature rule gives better approximations than the classical Milne’s

rule @). Moreover, comparing the absolute error of these quadrature rules relative to the exact value
shows that [T3) is much better than (@2).

6. Conclusions

In this work, a perturbed Milne’s quadrature formula is established. Namely, we have

[ s(5)is = Mu(s) + n(2)

for all m > 1, where M,,(g) is the perturbed Milne’s rule given by

= () o5 ()
+ Z gj)fﬂ{l(fz)er (i)m [gw)(%;fd) +(—1)€g(€)<023d>}
_ ((_;Z+1+ ) o0 <Cﬂ;d> }

and &,(g) is the error term given by

Em(g)—/cdg( )ds — Mu(g) = / Ko (5)g™ (s)ds

forall m > 1.

Furthermore, several error estimates involving LP-bounds are proved. One of the
most important advantages of our result is that it is verified for p-variation and Lipschitz
functions (non-differentiable functions). Also, since the classical Milne’s quadrature rule
@) cannot be applied either when the fourth derivative is unbounded or doesn’t exist,
therefore the proposed quadrature (13) could be used alternatively. For example, the
second, third, and fourth derivatives of the function g(t) = 3 sm( ) t € [0,1], don’t
exist. While g is continuous and differentiable on [0,1], and ¢’(0) = 0 and the exact value
of fol g(s)ds = 0.22384. However, by applying the above formula for m = 1, we get
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fol g(s)ds ~ 0.22758, with absolute error = 0.00373. Keeping in mind, that we didn’t use

derivatives in our formula; i.e., since m = 1 then % is conventionally = 0. This is a very
powerful indication that ensures that our result isgbeltter (in some cases) than (@).

Finally, it is convenient to note that other LP-error estimates have been established.
This will be very useful in case of the fourth derivative is unbounded in L*-norm. However,
it could be possible to use other LP-norms and this gives more advantage and strength to
our other obtained results involving LP-norms. Indeed, our approaches cover both cases of
differentiable and non-differentiable functions, for example, is a good example of this
assertion.
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