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Abstract: In this work, in spite of Milne’s recommendation using the three-point Newton–Cotes open 1

formula (Milne’s rule) as a predictor rule and three-point Newton–Cotes closed formula (Simpson’s 2

rule) as a corrector rule for 4-th differentiable functions with bounded derivatives. There is still 3

a great need to introduce such formulas in other Lp spaces. Often, we need to approximate real 4

integrals under the assumptions of the function involved. Because of that, the aim of this work is to 5

introduce several Lp error estimates for the proposed perturbed Milne’s quadrature rule. Numerical 6

experiments showing that our proposed quadrature rule is better than the classical Milne rule for 7

certain types of functions are provided as well. 8

Keywords: Milne’s rule, Simpson’s rule, Quadrature rule, Newton–Cotes formulae, Numerical 9

integration, Error estimation. 10
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1. Introduction 12

There are many attractive methods that are used to approximate real integrals. One of 13

the oldest and most well-known is the Newton-Cotes closed and open formulas. Particu- 14

larly, among other famous formulas; Simpson’s rule and Milen’s rule are very interesting 15

and close to each other. Since each formula involves a bounded error of the fourth degree. 16

However, it is well-known that Simpson’s rule is of closed Newton-type formula, while 17

Milne’s formula is of open type. Accordingly, it’s very interesting to test both quadrature 18

rules in many situations. In the last decades, the modern theory of inequalities are used at 19

large to verify these quadrature rules (and others) using the Peano-kernel approach. 20

In terms of Newton–Cotes formulas, Milne’s formula is of open type is parallel to
Simpson’s formula which is of closed type, since they are held under the same conditions.
Suppose g ∈ C4([c, d]), and ∥∥∥g(4)

∥∥∥
∞

:= sup
s∈(c,d)

∣∣∣g(4)(s)∣∣∣ < ∞.

In terms of inequalities Simpson’s and Milne’s inequalities are read, respectively [1]:∣∣∣∣d − c
3

[
g(c) + g(d)

2
+ 2g

(
c + d

2

)]
−
∫ d

c
g(s)ds

∣∣∣∣ ≤ (d − c)5

2880

∥∥∥g(4)
∥∥∥

∞
, (1)
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and∣∣∣∣d − c
3

[
2g
(

3c + d
4

)
− g
(

c + d
2

)
+ 2g

(
c + 3d

4

)]
−
∫ d

c
g(s)ds

∣∣∣∣ ≤ 7(d − c)5

23040

∥∥∥g(4)
∥∥∥

∞
. (2)

Attempting to apply the Simpson and/or Milne quadrature rules using lower-order 21

derivatives is very promising (especially; for certain types of functions) as we obtained 22

see in this work. Even the Simpson rule is more popular than Milne’s due to several 23

reasons, however, the Milne quadrature rule has not attracted many researchers. Because 24

of that, we focus this work on studying the error of the Milne quadrature rule for n- 25

times differentiable functions by obtaining several Lp bounds of this quadrature. At the 26

same time, the considered approach allows us to see how adding derivatives of the used 27

nodes of this rule in oscillating the error term. In other words, how the Milne quadrature 28

rule behaves as a predictor for higher or lower derivatives. In fact, the oscillation of the 29

proposed quadrature rule raises in general. On the other hand, it is shown numerically 30

and practically that, for certain types of functions, the error descends sharply, which means 31

that our approach could be very effective for certain types of functions. Moreover, one 32

of the most important advantages of our result is that it is verified for p-variation and 33

Lipschitz functions. Also, since the classical Milne’s quadrature rule (2) cannot be applied 34

either when the fourth derivative is unbounded or doesn’t exist, therefore the proposed 35

quadrature could be used alternatively. 36

For more about Simpson’s quadrature rule and other related results, the reader is 37

recommended to refer to [2]–[26]. For other types of quadrature rules see [27]–[30] and the 38

references therein. The book [31], is also recommended for recent and classical methods of 39

numerical integration. 40

41

In this work, despite Milne recommends using the three-point Newton–Cotes open 42

formula as a predictor rule and three-point Newton–Cotes closed formula (Simpson’s rule) 43

as a corrector rule for 4-th differentiable functions with bounded derivatives. There is still 44

a great need to introduce such formulas in other Lp spaces. Often, we need to approximate 45

real integrals under the assumptions of the function involved. Because of that, this work 46

is concentrate to introduce several Lp error estimates for the proposed perturbed Milne’s 47

quadrature rule. Numerical experiments showing that our proposed quadrature rule is 48

better than the classical Milne rule for certain types of functions are provided as well. 49

2. Perturbed Milne’s quadrature formula 50

In order to establish our results we need to recall the following two lemmas. 51

Lemma 1. [16] Fix 1 ≤ p < ∞. Assume that g is continuous function on [c, d] and w is of
bounded p–variation on [c, d]. Then

∫ d
c g(s)dw(s), exists and the inequality:

∣∣∣∣∫ d

c
g(s)dw(s)

∣∣∣∣ ≤ ∥g∥∞ ·
d∨
c
(w; p), (3)

holds, where
∨d

c (w, p), denotes to total p-variation of w over [c, d]. 52

Lemma 2. [16] Let 1 ≤ p < ∞. Assume that g ∈ Lp[c, d] and w has a Lipschitz property on [c, d].
Then ∣∣∣∣∫ d

c
g(s)dw(s)

∣∣∣∣ ≤ LipM(w)(d − c)
1− 1

p · ∥g∥p, (4)

holds. 53
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From now on, I is a real interval and c, d ∈ R with c, d ∈ I◦ the interior of I with c < d. 54

Define the set V(m)
p to be the set of all m-times continuously differentiable function g whose 55

m-derivative (m ≥ 1) is absolutely continuous with g(m) ∈ Lp[c, d] (1 ≤ p ≤ ∞). 56

In what follows, we present a primary result involving the expansion of Milne’s rule 57

for higher-order derivatives using the Peano-kernel approach. 58

Lemma 3. If g ∈ V
(m)
1 , then we have

∫ d

c
g(s)ds =

m−1

∑
ℓ=0

(d − c)ℓ+1

(ℓ+ 1)!

{[(
5

12

)ℓ+1
+

(
1
4

)ℓ+1
][

g(ℓ)
(

3c + d
4

)
+ (−1)ℓg(ℓ)

(
c + 3d

4

)]
(5)

−

(
(−1)ℓ + 1

)
6ℓ+1 g(ℓ)

(
c + d

2

)+ (−1)m
∫ d

c
Km(s)g(m)(s)ds

where

Km(s) =



1
m! (s − c)m, if s ∈

[
c, 3c+d

4

]
1

m!

(
s − c+2d

3

)m
, if s ∈

(
3c+d

4 , c+d
2

]
1

m!

(
s − 2c+d

3

)m
, if s ∈

(
c+d

2 , c+3d
4

]
1

m! (s − d)m, if s ∈
(

c+3d
4 , d

]
,

for all m ≥ 1. 59

Proof. We carry out our proof using mathematical induction. For m = 1 we have

K1(t) =



s − c, s ∈
[
c, 3c+d

4

]
s − c+2d

3 , s ∈
(

3c+d
4 , c+d

2

]
s − 2c+d

3 , s ∈
(

c+d
2 , c+3d

4

]
s − d, s ∈

(
c+3d

4 , d
]

.

Applying the integration by parts, we get

∫ 3c+d
4

c
K1(s)dg(s) =

(
d − c

4

)
g
(

3c + d
4

)
−
∫ 3c+d

4

c
g(s)ds,

∫ c+d
2

3c+d
4

K1(t)dg(s)

=

(
c + d

2
− c + 2d

3

)
g
(

c + d
2

)
−
(

3c + d
4

− c + 2d
3

)
g
(

3c + d
4

)
−
∫ c+d

2

3a+b
4

g(s)ds,
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∫ c+3d
4

c+d
2

K1(t)dg(s) =(
c + 3d

4
− 2c + d

3

)
g
(

c + 3d
4

)
−
(

c + d
2

− 2c + d
3

)
g
(

a + b
2

)
−
∫ c+3d

4

c+d
2

g(s)ds,

and ∫ b

c+3d
4

K1(s)dg(s) =
(

d − c
4

)
g
(

c + 3d
4

)
−
∫ b

c+3d
4

g(s)ds.

Adding the above equalities and arranging the resulting terms, simple calculations yield
that∫ d

c
g(s)ds =

(d − c)
3

[
2g
(

3c + d
4

)
− g
(

c + d
2

)
+ 2g

(
c + 3d

4

)]
−
∫ d

c
K1(s)dg(s).

Now, assume that (5) holds for m = l. We need to show that it holds for m = l + 1, i.e.,∫ d

c
g(s)ds =

(d − c)
3

[
2g
(

3c + d
4

)
− g
(

c + d
2

)
+ 2g

(
c + 3d

4

)]
(6)

+
l

∑
ℓ=1

(d − c)ℓ+1

(ℓ+ 1)!

{[(
5
12

)ℓ+1
+

(
1
4

)ℓ+1
][

g(ℓ)
(

3c + d
4

)
+ (−1)ℓg(ℓ)

(
c + 3d

4

)]

−

(
(−1)ℓ + 1

)
6ℓ+1 g(ℓ)

(
c + d

2

)+ (−1)m+1
∫ d

c
Kl+1(s)g(l+1)(s)ds

where

Kl+1(s) =



1
(l+1)! (s − c)l+1, if s ∈

[
c, 3c+d

4

]
1

(l+1)!

(
s − c+2d

3

)l+1
, if s ∈

(
3c+d

4 , c+d
2

]
1

(l+1)!

(
s − 2c+d

3

)l+1
, if s ∈

(
c+d

2 , c+3d
4

]
1

(l+1)! (s − d)l+1, if s ∈
(

c+3d
4 , d

]
,

for all l ≥ 1. Again, using integration by parts, we have

∫ 3c+d
4

c
Km+1(s)g(l+1)(s)ds =

1
(l + 1)!

(
d − c

4

)l+1
g(l)
(

3c + d
4

)
− 1

l!

∫ 3c+d
4

c
(s − c)l g(l)(s)ds,

∫ c+d
2

3c+d
4

Kl+1(s)g(l+1)(s)ds = (−1)l+1 (d − c)l+1

(l + 1)!

[(
1
6

)l+1
g(l)
(

c + d
2

)
−
(

5
12

)l+1
g(l)
(

3c + d
4

)]

− 1
l!

∫ c+d
2

3c+d
4

(
s − a + 2b

3

)m
g(l)(s)ds,

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 23 May 2023                   doi:10.20944/preprints202305.1653.v1

https://doi.org/10.20944/preprints202305.1653.v1


Version May 18, 2023 submitted to Journal Not Specified 6 of 16

∫ c+3d
4

c+d
2

Kl+1(s)g(l+1)(s)ds =
(d − c)l+1

(l + 1)!

[(
5
12

)l+1
g(l)
(

c + 3d
4

)
−
(

1
6

)l+1
g(l)
(

c + d
2

)]

− 1
l!

∫ c+3d
4

c+d
2

(
s − 2c + d

3

)l
g(l)(s)ds,

and∫ d

c+3d
4

Kl+1(s)g(l+1)(s)ds =
(−1)l

(l + 1)!

(
d − c

4

)l+1
g(l)
(

c + 3d
4

)
− 1

l!

∫ d

c+3d
4

(s − d)l g(l)(s)ds,

Adding the above identities, we get

∫ d

c
Kl+1(s)g(l)(s)ds =

(d − c)l+1

(l + 1)!

[(
5

12

)m+1
+

(
1
4

)l+1
][

g(l)
(

3c + d
4

)
+ (−1)l g(l)

(
c + 3d

4

)]

−

[
(−1)l + 1

]
6l+1(l + 1)!

(d − c)l+1g(l)
(

c + d
2

)
+ (−1)l

∫ d

c
Kl+1(s)g(l+1)(s)ds.

Using the mathematical induction hypothesis, we get

∫ d

c
g(s)ds =

(d − c)l+1

(l + 1)!

[(
5

12

)l+1
+

(
1
4

)l+1
][

g(l)
(

3c + d
4

)
+ (−1)l g(l)

(
c + 3d

4

)]

+
l−1

∑
ℓ=0

(d − c)ℓ+1

(ℓ+ 1)!

{[(
5
12

)ℓ+1
+

(
1
4

)ℓ+1
][

g(ℓ)
(

3c + d
4

)
+ (−1)ℓg(ℓ)

(
c + 3d

4

)]

−

(
(−1)ℓ + 1

)
6ℓ+1 g(ℓ)

(
c + d

2

)−

[
(−1)l + 1

]
6l+1(l + 1)!

(d − c)l+1g(l)
(

c + d
2

)

− (−1)l
∫ d

c
Kl+1(s)g(l+1)(s)ds

=
l

∑
ℓ=0

(d − c)ℓ+1

(ℓ+ 1)!

{[(
5

12

)ℓ+1
+

(
1
4

)ℓ+1
][

g(ℓ)
(

3c + d
4

)
+ (−1)ℓg(ℓ)

(
c + 3d

4

)]

−

(
(−1)ℓ + 1

)
6ℓ+1 g(ℓ)

(
c + d

2

)+ (−1)l+1
∫ d

c
Kl+1(s)g(l+1)(s)ds

which gives the representation (6). Hence, by mathematical induction (5) holds for all 60

l ≥ 1. 61

For convenient representation, we may rewrite (5) such as:

∫ d

c
g(s)ds =

d − c
3

[
2g
(

3c + d
4

)
− g
(

c + d
2

)
+ 2g

(
c + 3d

4

)]
(7)

+
l−1

∑
ℓ=1

(d − c)ℓ+1

(ℓ+ 1)!

{[(
5
12

)ℓ+1
+

(
1
4

)ℓ+1
][

g(ℓ)
(

3c + d
4

)
+ (−1)ℓg(ℓ)

(
c + 3d

4

)]

−

(
(−1)ℓ + 1

)
6ℓ+1 g(ℓ)

(
c + d

2

)+ (−1)m
∫ d

c
Km(s)g(m)(s)ds

Therefore, we can compute
∫ d

c g(s)ds using a perturbed Milne’s quadrature formula

∫ d

c
g(s)ds = Mm(g) + Em(g) (8)
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for all m ≥ 1, where Mm(g) is the perturbed Milne’s rule given by

Mm(g) :=
d − c

3

[
2g
(

3c + d
4

)
− g
(

c + d
2

)
+ 2g

(
c + 3d

4

)]
(9)

+
m−1

∑
ℓ=1

(d − c)ℓ+1

(ℓ+ 1)!

{[(
5

12

)ℓ+1
+

(
1
4

)ℓ+1
][

g(ℓ)
(

3c + d
4

)
+ (−1)ℓg(ℓ)

(
c + 3d

4

)]

−

(
(−1)ℓ + 1

)
6ℓ+1 g(ℓ)

(
c + d

2

)
and Em(g) is the error term given by

Em(g) =
∫ d

c
g(s)ds −Mm(g) = (−1)m

∫ d

c
Km(s)g(m)(s)ds (10)

for all m ≥ 1. 62

Theorem 1. If g(2m) (m ≥ 1) is continuous on [c, d], such that g(2m)(s) does not change sign on
[c, d]. Then there exists η ∈ (c, d) such that

E2m(g) =
2(d − c)2m+1

(2m + 1)!

(
1

42m+1 +
52m+1

122m+1 − 1
62m+1

)
g(2m)(η). (11)

Proof. Since g(2m)(s) does not change sign on [c, d], then there exists η ∈ (c, d)

E2m(g) = (−1)2m
∫ d

c
K2m(s)g(2m)(s)ds

= g(2m)(η)
∫ d

c
K2m(s)ds

= g(2m)(η) · 2(d − c)2m+1

(2m + 1)!

(
1

42m+1 +
52m+1

122m+1 − 1
62m+1

)
,

which completes the proof of the result. 63

3. Error estimation(s) 64

We begin with the following result: 65

Theorem 2. If g(l−1) (l ≥ 1) is a function of bounded p-variation on I. Then, we have the
inequality

|El(g)| ≤ 1
l!

[
5(d − c)

12

]l
·

d∨
c

(
g(l−1), p

)
, (12)

where
∨d

c

(
g(l−1), p

)
, denotes to total p-variation of g(l−1) over [c, d]. 66
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Proof. From (7), we get

|El(g)| ≤
∣∣∣∣(−1)l

∫ d

c
Kl(s)dg(l−1)(s)

∣∣∣∣
≤ 1

l!

∣∣∣∣∣
∫ 3c+d

4

c
(s − c)ldg(l−1)(s)

∣∣∣∣∣+ 1
l!

∣∣∣∣∣
∫ c+d

2

3c+d
4

(
s − 2c + d

3

)l
dg(l−1)(s)

∣∣∣∣∣
+

1
l!

∣∣∣∣∣
∫ c+3d

4

c+d
2

(
s − c + 2d

3

)l
dg(l−1)(s)

∣∣∣∣∣+ 1
L!

∣∣∣∣∫ d

c+3d
4

(s − d)ldg(l−1)(s)
∣∣∣∣

≤ 1
l!

sup
s∈[c, 3c+d

4 ]
|s − c|l ·

3c+d
4∨
c

(
g(l−1), p

)
+

1
l!

sup
s∈[ 3c+d

4 , c+d
2 ]

∣∣∣∣s − 2c + d
3

∣∣∣∣l ·
c+d

2∨
3c+d

4

(
g(l−1), p

)

+
1
l!

sup
s∈[ c+d

2 , c+3d
4 ]

∣∣∣∣s − c + 2d
3

∣∣∣∣l ·
c+3d

4∨
c+d

2

(
g(l−1), p

)
+

1
l!

sup
s∈[ c+3d

4 ,d]
|s − d|l ·

d∨
c+3d

4

(
g(l−1), p

)

≤ 1
l!

[
5(d − c)

12

]l
·

d∨
c

(
g(l−1), p

)
,

which proves (12). 67

Theorem 3. If g ∈ V
(l−1)
p (l ≥ 1), then

|El(g)| ≤


2(d−c)l+1

(l+1)!

[
1

4l+1 +
5l+1

12l+1 − 1
6l+1

]∥∥∥g(l)
∥∥∥

∞,[c,d]
, if g(l) ∈ L∞[c, d]

21/q(d−c)l+ 1
q

m!(lq+1)
1
q

[
1

4lq+1 +
5lq+1

12lq+1 − 1
6lq+1

] 1
q
∥∥∥g(l)

∥∥∥
p,[c,d]

, if g(l) ∈ Lp[c, d]

(13)

where q = p
p−1 , p > 1. 68

Proof. From (7), we get

|El(g)| =
∣∣∣∣(−1)l

∫ d

c
Kl(s)g(l)(s)ds

∣∣∣∣
≤
∫ d

c
|Kl(s)|

∣∣∣g(l)(s)∣∣∣ds

≤
∥∥∥g(l)

∥∥∥
∞
·
∫ d

c
|Kl(s)|ds

=
∥∥∥g(l)

∥∥∥
∞
·
[

1
l!

∫ 3c+d
4

c
|s − c|lds +

1
l!

∫ c+d
2

3c+d
4

∣∣∣∣s − c + 2d
3

∣∣∣∣lds

+
1
l!

∫ c+3d
4

c+d
2

∣∣∣∣s − 2c + d
3

∣∣∣∣lds +
1
l!

∫ d

c+3d
4

|s − d|lds

]

≤ 2(d − c)l+1

(l + 1)!

[
1

4l+1 +
5l+1

12l+1 − 1
6l+1

]
·
∥∥∥g(l)

∥∥∥
∞

,

and this proves the first inequality in (13). 69

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 23 May 2023                   doi:10.20944/preprints202305.1653.v1

https://doi.org/10.20944/preprints202305.1653.v1


Version May 18, 2023 submitted to Journal Not Specified 9 of 16

The second inequality in (13) can be obtained since g(l) ∈ Lp[a, b] (1 ≤ p < ∞), then

|El(g)| ≤
∫ d

c
|Kl(s)|

∣∣∣g(l)(s)∣∣∣ds

≤
(∫ d

c
|Kl(s)|qds

) 1
q
(∫ d

c

∣∣∣g(l)(s)∣∣∣pds
) 1

p

≤
∥∥∥g(l)

∥∥∥
p
· 1

l!

[∫ 3c+d
4

c
(s − c)lqds +

∫ c+d
2

3c+d
4

(
c + 2d

3
− s
)lq

ds

+
∫ c+3d

4

c+d
2

(
s − 2c + d

3

)lq
ds +

∫ d

c+3d
4

(d − s)lqds

] 1
q

=
21/q(d − c)l+ 1

q

l!(lq + 1)
1
q

[
1

4lq+1 +
5lq+1

12lq+1 − 1
6lq+1

] 1
q ∥∥∥g(l)

∥∥∥
p

which proves the last inequality in (13), and thus the proof is established. 70

Theorem 4. Let 1 ≤ p < ∞. If g(l−1) (l ≥ 1) has Lipschitz property with constant
LipM

(
g(l−1)

)
, then

|El(g)| ≤
4

1
p LipM

(
g(l−1)

)
2 · m!

(d − c)l+1

 1

4l+ 1
p (lp + 1)

1
p
+

(
5lp+1

12lp+1(lp + 1)
− 1

6lp+1(lp + 1)

) 1
p


Proof. Applying Lemma 2, by setting w(s) = Kl(s), then we have by triangle inequality,
from (7) we have∣∣∣∣(−1)l

∫ d

c
Kl(s)dg(l−1)(s)

∣∣∣∣
≤ 1

l!

∣∣∣∣∣
∫ 3c+d

4

c
(s − c)ldg(l−1)(s)

∣∣∣∣∣+ 1
l!

∣∣∣∣∣
∫ c+d

2

3c+d
4

(
s − c + 2d

3

)l
dg(l−1)(s)

∣∣∣∣∣
+

1
l!

∣∣∣∣∣
∫ c+3d

4

c+d
2

(
s − 2c + d

3

)l
dg(l−1)(s)

∣∣∣∣∣+ 1
l!

∣∣∣∣∫ d

c+3d
4

(s − d)ldg(l−1)(s)
∣∣∣∣

≤
LipM

(
g(l−1)

)
l!

(
d − c

4

)1− 1
p


(∫ 3c+d

4

c
(s − c)lpds

) 1
p

+
1
l!

(∫ c+d
2

3c+d
4

∣∣∣∣s − c + 2d
3

∣∣∣∣lp
ds

) 1
p

+
1
l!

(∫ c+3d
4

c+d
2

∣∣∣∣s − 2c + d
3

∣∣∣∣lp
ds

) 1
p

+ (d − c)
1
p

1
l!

(∫ d

c+3d
4

(d − s)lpds
) 1

p


=

2 LipM

(
g(l−1)

)
l!

(
d − c

4

)1− 1
p

 (d − c)l+ 1
p

4l+ 1
p (lp + 1)

1
p
+

[
5lp+1(d − c)lp+1

12lp+1(lp + 1)
− (d − c)lp+1

6lp+1(lp + 1)

] 1
p
,

and this proves the desired result. 71

4. Other estimations involving norms 72

In this section, we improve some of the previous inequalities, e.g., the first inequality 73

in (13) involving L∞ can be improved by replacing this assumption by Sl ≤ g(l)(s) ≤ Tm, 74

where Sl := inf
s∈[c,d]

g(l)(s) and Tl := sup
s∈[c,d]

g(l)(s). In this case, Tl−Sl
2 ≤

∥∥∥g(l)
∥∥∥

∞
which means 75
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the bounds involving Tl−Sl
2 is better than

∥∥∥g(l)
∥∥∥

∞
. If Tl = −Sl then both assumptions are 76

equivalent. 77

To see how this is efficient, let us consider the following result(s): 78

Theorem 5. If g ∈ V
(l)
1 , then

|E2l−1(g)| ≤ 2(d − c)2l

(2l)!

(
1

42l +
52l

122l −
1

62l

)∥∥∥g(2l−1) − C
∥∥∥

∞
, (14)

and∣∣∣∣∣E2l(g)− C · 2(d − c)2l+1

(2l + 1)!

(
1

42l+1 +
52l+1

122l+1 − 1
62l+1

)∣∣∣∣∣
≤ 2(d − c)2l+1

(2l + 1)!

(
1

42l+1 +
52l+1

122l+1 − 1
62l+1

)∥∥∥g(2l) − C
∥∥∥

∞
, (15)

for all l ≥ 1 and any constant C ∈ R. 79

Proof. Since∫ d

c
Kl(s)ds =

(d − c)l+1

(l + 1)!

(
1 + (−1)l

)( 1
4l+1 +

5l+1

12l+1 − 1
6l+1

)

=


0, if l = odd

2(d−c)l+1

(l+1)!

(
1

4l+1 +
5l+1

12l+1 − 1
6l+1

)
, if l = even

. (16)

Assume l is odd and setting l = 2ν − 1, ν ≥ 1. If C ∈ R is any constant then from (7) and
(16) we get

∫ d

c
K2ν−1(s)

[
g(2ν−1)(s)− C

]
ds = E2ν−1(g).

Applying the triangle integral inequality, we get∣∣∣∣∫ d

c
K2ν−1(s)

[
g(2ν−1)(s)− C

]
ds
∣∣∣∣

≤ sup
s∈[c,d]

∣∣∣g(2ν−1)(s)− C
∣∣∣ · ∫ d

c
|K2ν−1(s)|ds

=
2(d − c)2ν

(2ν)!

(
1

42l +
52ν

122ν
− 1

62ν

)
·
∥∥∥g(2ν−1) − C

∥∥∥
∞

for all ν ≥ 1, where

∫ d

c
|K2ν−1(s)|ds =

2(d − c)2ν

(2ν)!

(
1

42ν
+

52ν

122ν
− 1

62ν

)
which gives the desired result (14). The proof of the second inequality (15) follows similarly 80

by considering l = 2ν (ν ≥ 1) and omitting the details. 81

Next, we improve the first inequality in (13) in the case that g has odd derivatives. 82
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Corollary 1. Let g ∈ V
(m)
1 . Then there exist constants Sm, Tm > 0 such that Sm ≤ g(m)(s) ≤

Tm (m ≥ 1), ∀s ∈ [c, d], such that

|E2l−1(g)| ≤ (d − c)2l

(2l)!

(
1

42l +
52l

122l −
1

62l

)
(T2l−1 − S2l−1), (17)

if m is odd; m = 2l − 1 (l ≥ 1),∣∣∣∣∣E2l( f )− (d − c)2l+1

(2l + 1)!

(
1

42l+1 +
52l+1

122l+1 − 1
62l+1

)
· (T2l − S2l)

∣∣∣∣∣
≤ (d − c)2l+1

(2l + 1)!

(
1

42l+1 +
52l+1

122l+1 − 1
62l+1

)
· (T2l − S2l), (18)

and if m is even; m = 2ℓ (ℓ ≥ 1). 83

Proof. We give the proof when m is odd. In the proof of the Theorem 5, set

C =
T2l−1 − S2l−1

2
, ∀ l ≥ 1

then ∫ d

c
K2l−1(s)

[
g(2l−1)(s)− T2l−1 − S2l−1

2

]
ds = E2l−1(g).

Taking the modulus and applying the triangle inequality, we have∣∣∣∣∫ d

c
K2l−1(s)

[
g(2l−1)(s)− T2l−1 − S2l−1

2

]
ds
∣∣∣∣

≤ sup
s∈[c,d]

∣∣∣∣g(2l−1)(x)− T2l−1 − S2l−1
2

∣∣∣∣ · ∫ d

c
|K2l−1(s)|ds

=
(d − c)2l

(2l)!

(
1

42l +
52l

122l −
1

62l

)
(T2l−1 − S2L−1)

which holds for all l ≥ 1, since

sup
s∈[c,d]

∣∣∣∣g(2l−1)(s)− T2l−1 − S2l−1
2

∣∣∣∣ ≤ T2l−1 − S2l−1
2

and ∫ d

c
|K2l−1(s)|ds =

2(d − c)2l

(2l)!

(
1

42l +
52l

122l −
1

62l

)
,

and this proves (17). The inequality (18) holds trivially in a similar fashion. 84

Remark 1. Clearly, the estimation (14) improves the first estimation in (13) by 1
2 when m is 85

odd and thus (14) is better than (13). 86

5. More on Lp–Bounds 87

In this section, we introduce more Lp–bounds of the perturbed Milne’s quadrature 88

rule. 89
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5.1. Bounds in L2[c, d] 90

Theorem 6. If g(2l−1) is absolutely continuous on I and g(2l−1) ∈ L2[c, d] (l ≥ 1). Then,

|E2l−1(g)| ≤ 21/2(d − c)2l− 1
2

(2l)!(4l − 1)
1
2

[
1

44l−1 +
54l−1

124l−1 − 1
64l−1

] 1
2

·
√

τ
(

g(2l−1)
)
, (19)

where

τ
(

g(2l−1)
)
=
∥∥∥g(2l−1)

∥∥∥2

2
−

(
g(2l−2)(d)− g(2l−2)(c)

)2

d − c
,

for all l ≥ 1. 91

Proof. Using the identity

∫ d

c
Kl(s)

[
g(l)(s)− 1

d − c

∫ d

c
g(l)(t)dt

]
ds

=
∫ d

c
Kl(s)g(l)(s)ds − g(l−1)(d)− g(l−1)(c)

d − c
·
∫ d

c
Kl(s)ds, (20)

and since l is odd i.e., l = 2v − 1, ∀v ≥ 1, then by (16) we have
∫ d

c K2v−1(s)ds = 0, so that
(20) reduces to∫ d

c
K2v−1(s)

[
g(2v−1)(s)− 1

d − c

∫ d

c
g(2v−1)(t)dt

]
ds =

∫ d

c
K2v−1(s)g(2v−1)(s)ds.

Employing the triangle inequality, we get∣∣∣∣∫ d

c
K2v−1(s)

[
g(2v−1)(s)− 1

d − c

∫ d

c
g(2v−1)(t)dt

]
ds
∣∣∣∣

≤ ∥K2v−1∥2

∥∥∥∥g(2v−1) − 1
d − c

∫ d

c
g(2v−1)(t)dt

∥∥∥∥
2

where,

∥K2v−1∥2 :=
21/2(d − c)2v− 1

2

(2v)!(4v − 1)
1
2

[
1

44v−1 +
54v−1

124v−1 − 1
64v−1

] 1
2

and

∥∥∥∥g(2v−1) − 1
d − c

∫ d

c
g(2v−1)(t)dt

∥∥∥∥
2
=

∥∥∥g(2v−1)
∥∥∥2

2
−

(
g(2v−2)(d)− g(2v−2)(c)

)2

d − c


1/2

=
√

τ
(

g(2v−1)
)
,

which gives the required result. 92
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5.2. Bounds in Lp[c, d] 93

Theorem 7. If g(2l) is absolutely continuous on I and g(2l) ∈ Lp[c, d] (l ≥ 1). Then,

|E2l+1(g)|

≤
p sin

(
π
p

)
π p
√

p − 1
· 21/q(d − c)2l+ 1

q

(2l − 1)!((2l − 1)q + 1)
1
q

[
1

4(2l−1)q+1
+

5(2l−1)q+1

12(2l−1)q+1
− 1

6(2l−1)q+1

] 1
q

·
∥∥∥g(2l)

∥∥∥
p
,

(21)

for all p, q such that 1
p + 1

q = 1, p > 1. 94

Proof. Repeating the proof of Theorem 6, so that from (20) we can conclude∣∣∣∣∫ d

c
K2l−1(s)

[
g(2l−1)(x)− 1

d − c

∫ d

c
g(2l−1)(s)ds

]
dx
∣∣∣∣

≤ ∥K2l−1∥q

∥∥∥∥g(2l−1) − 1
d − c

∫ d

c
g(2l−1)(s)ds

∥∥∥∥
p
. (22)

Now,∥∥∥∥g(2l−1) − 1
d − c

∫ d

c
g(2l−1)(s)ds

∥∥∥∥p

p
=
∫ d

c

∣∣∣∣g(2l−1)(x)− 1
d − c

∫ d

c
g(2l+1)(s)ds

∣∣∣∣pds

=
∫ d

c

∣∣∣∣ 1
d − c

∫ d

c

[
g(2l−1)(x)− g(2l−1)(s)

]
ds
∣∣∣∣pdx

≤ 1
d − c

∫ d

c

∫ d

c

∣∣∣g(2l−1)(x)− g(2l−1)(s)
∣∣∣pds dx

≤ sup
s∈[c,d]

∫ d

c

∣∣∣g(2l−1)(x)− g(2l−1)(s)
∣∣∣pdx.

Applying [17, Theorem 4] to g(2l−1), then we have

∫ d

c

∣∣∣g(2l−1)(x)− g(2l−1)(s)
∣∣∣pdx ≤

pp sinp
(

π
p

)
πp(p − 1)

[
d − c

2
+

∣∣∣∣s − c + d
2

∣∣∣∣]p
·
∫ d

c

(
g(2l)(x)

)p
dx.

Therefore,

sup
s∈[c,d]

∫ d

c

∣∣∣g(2l−1)(x)− g(2m−1)(s)
∣∣∣pdx ≤

pp sinp
(

π
p

)
πp(p − 1)

(d − c)p ·
∫ d

c

(
g(2l)(x)

)p
dx,

which gives by (22), that∣∣∣∣∫ d

c
K2l−1(x)

[
g(2l−1)(x)− 1

d − c

∫ d

c
g(2l−1)(s)ds

]
dx
∣∣∣∣

≤ ∥K2l−1∥q

∥∥∥∥g(2l−1) − 1
d − c

∫ d

c
g(2l−1)(s)ds

∥∥∥∥
p

≤
p sin

(
π
p

)
π p
√

p − 1
· 21/q(d − c)2l+ 1

q

(2l − 1)!((2l − 1)q + 1)
1
q

[
1

4(2l−1)q+1
+

5(2l−1)q+1

12(2l−1)q+1
− 1

6(2l−1)q+1

] 1
q

·
∥∥∥g(2l)

∥∥∥
p
,
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where,

∥K2l−1∥q :=
21/q(d − c)2l−1+ 1

q

(2l − 1)!((2l − 1)q + 1)
1
q

[
1

4(2l−1)q+1
+

5(2l−1)q+1

12(2l−1)q+1
− 1

6(2l−1)q+1

] 1
q

,

and this proves (21). 95

Example 1. In the following numerical experiment, we apply our quadrature rule (13) for the listed 96

functions on the interval [0, 1]. 97

g(t) Milne Rule (2) Mm(g) (13) E. V. A. E. (13) A. E. (2)√
4+t7

5+4t2 0.81286 0.81517 0.81533 0.00015 0.00246
√

25+t7

1+2t2+t4 3.25485 3.21786 3.21744 0.00041 0.03740
144+t6

1+2t2+t4 93.68507 92.67250 92.59549 0.07700 1.08957

98

E. V. := The exact value of
∫ 1

0 g(t)dt. 99

A. E. (13) := The absolute error of our proposed quadrature rule (13) relative to the exact value. 100

A. E. (2) := The absolute error of the classical Milne’s quadrature rule (2) relative to the exact value. 101

102

As we can see the quadrature rule (13) gives better approximations than the classical Milne’s 103

rule (2). Moreover, comparing the absolute error of these quadrature rules relative to the exact value 104

shows that (13) is much better than (2). 105

6. Conclusions 106

In this work, a perturbed Milne’s quadrature formula is established. Namely, we have

∫ d

c
g(s)ds = Mm(g) + Em(g)

for all m ≥ 1, where Mm(g) is the perturbed Milne’s rule given by

Mm(g) :=
d − c

3

[
2g
(

3c + d
4

)
− g
(

c + d
2

)
+ 2g

(
c + 3d

4

)]
+

m−1

∑
ℓ=1

(d − c)ℓ+1

(ℓ+ 1)!

{[(
5

12

)ℓ+1
+

(
1
4

)ℓ+1
][

g(ℓ)
(

3c + d
4

)
+ (−1)ℓg(ℓ)

(
c + 3d

4

)]

−

(
(−1)ℓ + 1

)
6ℓ+1 g(ℓ)

(
c + d

2

)
and Em(g) is the error term given by

Em(g) =
∫ d

c
g(s)ds −Mm(g) = (−1)m

∫ d

c
Km(s)g(m)(s)ds

for all m ≥ 1. 107

Furthermore, several error estimates involving Lp-bounds are proved. One of the 108

most important advantages of our result is that it is verified for p-variation and Lipschitz 109

functions (non-differentiable functions). Also, since the classical Milne’s quadrature rule 110

(2) cannot be applied either when the fourth derivative is unbounded or doesn’t exist, 111

therefore the proposed quadrature (13) could be used alternatively. For example, the 112

second, third, and fourth derivatives of the function g(t) = t3 sin
(

1
t

)
, t ∈ [0, 1], don’t 113

exist. While g is continuous and differentiable on [0, 1], and g′(0) = 0 and the exact value 114

of
∫ 1

0 g(s)ds = 0.22384. However, by applying the above formula for m = 1, we get 115
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∫ 1
0 g(s)ds ≈ 0.22758, with absolute error = 0.00373. Keeping in mind, that we didn’t use 116

derivatives in our formula; i.e., since m = 1 then
0
∑
ℓ=1

is conventionally = 0. This is a very 117

powerful indication that ensures that our result is better (in some cases) than (2). 118

Finally, it is convenient to note that other Lp-error estimates have been established. 119

This will be very useful in case of the fourth derivative is unbounded in L∞-norm. However, 120

it could be possible to use other Lp-norms and this gives more advantage and strength to 121

our other obtained results involving Lp-norms. Indeed, our approaches cover both cases of 122

differentiable and non-differentiable functions, for example, (12) is a good example of this 123

assertion. 124
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9. Pečarić, J.; Varošanec, S. Simpson’s formula for functions whose derivatives belong to Lp spaces, 150

Appl. Math. Lett., 14 (2001), 131–135. 151
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