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Abstract: As cancer remains resistant to several modes of treatment, novel therapeutics are still under active 

investigation to overcome treatment inefficacy in cancer. Given the high attrition rate of de novo drug discovery, 

drug screening and drug repurposing have offered time- and cost-effective alternative strategies for the 

identification of potentially effective therapeutics. In contrast to large-scale drug screens, computational 

approaches for drug repurposing leverage the increasing amounts of biomedical data to predict candidate 

therapeutic agents prior to testing in biological models. Current studies in drug repurposing for cancer therapy 

prediction have increasingly focused on the prediction of combination therapies, as combination therapies have 

numerous advantages over monotherapies. These include increased effect from synergistic interactions, 

reduced toxicity from lowered drug doses, and a reduced risk of resistance due to multiple non-overlapping 

mechanisms of action. This review provides a summary of several classes of computational methods used for 

drug combination therapy prediction in cancer research, including networks, regression-based machine 

learning, classifier machine learning models, and deep learning approaches, with the goal of presenting current 

progress in the field, particularly to non-computational cancer biologists. We conclude by discussing the need 

for further advancements in technologies that incorporate disease mechanisms, drug characteristics, multi-

omics data, and clinical considerations to generate effective patient-specific drug combinations, as holistic data 

integration will inevitably result in optimal targeted therapeutics for cancer. 

Keywords: computational; drug repurposing; drug repositioning; cancer; combination therapy; 

network biology; machine learning; deep learning; precision oncology 

 

Introduction 

Although novel therapeutic approaches have revolutionized the treatment of cancer, cancer 

remains highly resistant to current therapies, with drug resistance and resultant treatment inefficacy 

responsible for upward to 90% of cancer-related deaths [1–5]. Given the high attrition rate of de novo 

drug discovery, with approximately 90% of drugs failing to pass phase I clinical trials despite average 

investments of $3 billion across 13-15 years per compound, many researchers have turned to drug 

repositioning as a time- and cost-effective alternative [6–8]. Drug repositioning, also referred to as 

drug repurposing, is the practice of identifying novel indications for already FDA-approved drugs 

[9]. Many well-known instances of drug repositioning have occurred as incidental clinical findings. 

One example of this is thalidomide, a drug once advertised to treat morning sickness in pregnant 

women, that was later found to have therapeutic effects in multiple myeloma and metastatic prostate 

cancer [10–12]. However, these serendipitous findings are rare, and as such, many have turned to 

phenotypic drug screening or computational drug repositioning to systematically predict effective 

drug candidates from large-scale drug and disease datasets [9]. While in vitro drug screening assays 

have the advantage of providing direct knowledge of drug effects across various dosages within a 

biological disease model, computational drug repurposing methods can leverage the ever-growing 

amount of available biomedical data to identify novel drug candidates [9,13]. 

Most drug repurposing studies have focused on the identification of single agents to treat a 

target disease. However, for complex and heterogeneous diseases like cancer, it is unlikely that a 

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and 
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting 
from any ideas, methods, instructions, or products referred to in the content.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 23 May 2023                   doi:10.20944/preprints202305.1637.v1

©  2023 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202305.1637.v1
http://creativecommons.org/licenses/by/4.0/


 2 

 

single agent can target every cancer cell or relevant disease pathway, thus resulting in residual 

treatment-resistant cells that can lead to tumor recurrence. Therefore, recent advances in drug 

repositioning efforts for cancer have prioritized the prediction of multi-targeted combination 

therapies to both enhance treatment efficacy and reduce the risk of monotherapy resistance [14,15]. 

Combination therapies also reduce the toxicity of treatment regimens by maintaining therapeutic 

efficacy at lower doses of individual agents within the drug regimen [15].  

Computational drug combination prediction approaches have generally been designed to 

achieve one of two goals: to target parallel disease pathways or to maximize computational scores of 

therapeutic efficacy [16]. As opposed to the multi-pathway approach, which aims to identify non-

overlapping targets to maximize the efficacy and minimize the toxicity of candidate drug treatments, 

computational score-based approaches aim to maximize either the synergy or sensitivity scores of a 

drug combination. Sensitivity refers to the degree of treatment response measured by the percent 

inhibition of cell viability or growth in in vitro experiments [17]. Synergy is a type of drug-drug 

interaction in which the effect of a drug combination is greater than the additive effect of individual 

drugs in the combination [17]. This is the most common goal for drug combination prediction 

approaches, as achieving synergistic interactions may maximize the efficacy of drug treatments. 

Synergy is measured by several metrics, including Loewe additivity, Bliss independence, highest 

single agent (HSA), and the Chou-Talalay method, all of which have been concisely reviewed by 

Pemovska et al. [18].  

This review will discuss computational drug combination prediction methods that aim to 

identify effective multi-drug regimens for cancer across both of these goals (Table 1). First, we 

describe various networks-based methods that examine the relationships between biological entities, 

such as genes, proteins, pathways, and phenotypes, to design combinatorial therapies that target 

optimal disease- and drug-related elements. Then, we review regression-based machine learning 

models that predict missing dose response values (i.e. sensitivity) for synergy calculations in drug 

pairs and multi-drug cocktails. This is followed by a review of classifier-based machine learning 

models capable of predicting new drug combinations through both drug targets and synergy 

calculations. The last category of computational approaches described in this review is deep learning 

methods, which build upon the previously described machine learning models to tackle larger and 

more complex data. We conclude this review with suggestions for future directions by which 

computational drug combination prediction methods may be improved to enhance their utility and 

translation to the clinic. 

Table 1. Summary of computational methods discussed in this review with references to articles 

offering further explanation and examples of these methodologies. 

Method Definition Advantages Disadvantages Example Implementations 

Network 

 

 

 

 

 

 

 

 

Graphical 

representation of 

biological entities, such 

as genes, proteins, 

transcription factors, 

phenotypes, and drugs 

and how they relate to 

one another 

 

 

 

 

Provide a visual 

representation of the 

relationships between 

biological entities, 

which may reveal 

disease physiology or 

drug mechanism of 

action. 

 

Allow for integration 

of several data types. 

Interpretability may 

be difficult to those 

inexperienced in 

network biology. 

 

Drug-target genes 

may not be detected 

due to lack of gene 

expression changes. 

 

Many false-positives 

due to low accuracy of 

 

[19]  

[20] 

[21] 

[22] 

PINet [23] 

[24] 

[25] 

[26] 
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drug-target interaction 

networks. 

Regression 

 

 

 

 

 

 

Subclass of machine 

learning that 

determines whether 

the relationship 

between two variables 

fits a known 

mathematical pattern  

(i.e., linear, 

logarithmic, 

polynomial, etc.) 

 

Higher interpretability 

compared to other 

machine learning 

models due to 

comparatively lower 

model complexity 

 

Capable of fitting data 

to multiple types of 

mathematical patterns 

Requires one to know 

which specific type of 

mathematical pattern 

exists between two 

variables to make 

accurate predictions 

 

 

 

 

[27] 

[28] 

Pairs model [29] 

[30] 

[31] 

Keyboard [32–34] 

 

 

 

Classification 

 

 

 

 

Subclass of machine 

learning that places 

observations in the 

data into specific 

categories 

 

 

 

Highly versatile, as 

several methods fall 

into this subclass 

(logistic regression, 

support vector 

machines, random 

forest, gradient 

boosting, XGBoost) 

Trade-off often exists 

for model accuracy 

and interpretability 

 

 

 

 

[35] 

[17] 

[36] 

[37] 

[38] 

 

 

Deep Learning 

 

 

 

 

 

 

 

 

Subclass of machine 

learning that uses 

multi-layered 

networks composed of 

several processing 

layers to make 

predictions from large 

and complex data 

types 

 

 

 

Can handle large, 

multi-faceted data 

types that often 

overwhelm other 

methods 

 

Can discern significant 

biological relationships 

often overlooked by 

other methods 

 

High accuracy 

 

High tendency of 

overfitting, which 

reduces the 

generalizability of 

these models 

 

Low interpretability, 

giving these types of 

models the reputation 

of being “black boxes” 

 

[39] 

[40] 

DeepSynergy [41] 

GraphSynergy [42] 

AuDNNSynergy [43] 

CCSynergy [44] 

DeepInsight-3D [45] 

MARSY [46] 

 

 

Networks-Based Models 

Given the degree of intercellular heterogeneity in cancer, it is helpful to understand how various 

molecular entities within cancer cells and their microenvironment interact with one another. 

Networks are graphical models that show associations between molecular entities within complex 

systems. These networks consist of nodes, which are units that symbolize molecules like proteins or 
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larger concepts like phenotypes, and edges, which are lines that depict relationships between the 

nodes they connect. There are different categories of networks that represent various types of 

relationships between different entities. For example, protein-protein interaction networks depict 

unique proteins as nodes and the physical interactions between proteins as edges. Edges can also be 

weighted to quantify relationships between nodes in a network. Several network analysis algorithms, 

such as information propagation procedures, have been developed to take advantage of these 

weighted edges and provide further information on systems of interest. The types of networks that 

are most commonly used to identify novel drug repurposing candidates include drug-disease, drug-

target, drug-drug, and protein-protein interaction networks [19]. These networks can be integrated 

into heterogeneous, multi-omic graphs to reveal how therapeutic agents interact with biological 

systems through their direct targets. Additionally, these systems-level interactions can predict 

therapeutic mechanisms of action, adverse events, and alternative applications of FDA-approved 

drugs and potentially synergistic drug combinations. 

Disease modules, which are subnetworks within a biological graph enriched in genes that are 

associated with disease etiology and progression, may be utilized in network-based drug 

combination repurposing [20]. Some network-based methods for drug combination prediction use 

proximity (i.e.,nearest distance between nodes of interest) of drug targets to disease modules within 

a network to predict candidate therapies. This is based on the premise that drug combinations with 

targets contained within the same disease module will have increased efficacy. Cheng et al. created a 

separation metric to determine the distance between the drug-drug-disease modules [22]. After 

comparing six classes of drug-drug-disease relationship combinations, they found that the only class 

that correlated with therapeutic effect was complementary exposure, or the situation in which two 

drugs’ targets overlap that disease module within the interactome, but not with each other [21]. In a 

subsequent work, Federico et al. generated integrated disease networks by combining protein-

protein interactions, gene co-expression, and gene regulation. They then prioritized drug 

combinations for five cancers (breast cancer, hepatocellular carcinoma, prostate adenocarcinoma, 

stomach adenocarcinoma, colon adenocarcinoma, and lung adenocarcinoma) by accounting for the 

drugs’ mechanisms of action, secondary structures, and the drug targets’ shortest paths within the 

network. Drugs whose targets were directly connected were deprioritized due to their overlapping 

neighborhood area based on the work by Cheng et al. This study also introduces the druggability 

map, a unique graphical instrument to prioritize drug repositioning candidates through the 

incorporation of both drug and disease characteristics.   

Although the groups discussed above used network-based approaches to model general drug 

and disease entities to predict candidate combination therapies, another group leveraged patient-

derived drug response to prioritize drug repurposing candidates. Jafari et al. used the Beat AML 

dataset, a cohort of 672 acute myeloid leukemia samples screened for sensitivity to 122 drugs, to 

generate two bipartite networks: a patient similarity network and a drug similarity network [24]. 

Analysis of clusters within the patient similarity network found characteristics and relationships that 

were used to account for patient heterogeneity in downstream analyses. The drug similarity network 

contained two distinct clusters of small molecules. They reasoned that designing combination 

therapies by combining the top candidates from each cluster of the drug similarity network into drug 

pairs may prevent drug resistance and cancer recurrence. Synergy analysis of these inter-cluster drug 

combinations in 135 drug-drug-cell line triplicates validated their model’s predicted regimens as 

highly synergistic across multiple synergy metrics, including Loewe additivity, Bliss independence, 

HSA, and ZIP.  

Given recent revelations on the nature of cancer cell plasticity from single-cell RNA sequencing 

studies, a recent publication from Sarmah et al. aimed to predict drug combination responses using 

a temporal cell state network model [25]. The authors explored the possibility that the types of cancer 

cells within a tumor (i.e. the different cell states across cancer cell populations), the speed by which 

cell state transitions occur, and how drugs affect those transitions may provide valuable information 

on drug combination response to therapy. They explore this hypothesis by testing three kinase 

inhibitors that each target a different cell cycle transition in vitro. They used a Markov model to gauge 
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cell growth and single-agent drug sensitivities and then used this model to predict combinatorial 

drug responses. They calculated synergy using an excess over Bliss analysis, where drug synergy is 

defined by the observed drug response greater than that found by totaling individual drug 

sensitivities. Their results suggest that cell state transition dynamics and prior drug response 

knowledge may inform the response to drug combination therapies.  

Regression-Based Machine Learning Models 

Regression-based machine learning models are often used in combination with prior knowledge 

of known drug sensitivities to predict unknown drug responses or to predict responses to drug 

combinations. These models predict outcomes based on whether a mathematical relationship exists 

between an independent and a dependent variable, with the most basic of these models fitting to a 

linear relationship. Linear models have previously been used to reduce technical noise during the 

production of more robust models, to create full dose-response matrices (matrices that include all 

dose pairs for a drug combination pair over a desired concentration range) by predicting missing 

dosages, and to predict synergistic interactions [28].  Although these matrices are required for many 

synergy calculations, they are difficult to acquire, as manual drug testing becomes costly and 

impractical with numerous combinations and their replicates across various dosages [28].  

One linear model by Amzallag et al. aimed to reduce the noise produced in drug synergy 

prediction algorithms when the single agent data used for these calculations was captured incorrectly 

or incompletely [28]. The authors generated a dataset of 439,000 drug response data points from 

testing all pairwise combinations of 108 drugs across 40 melanoma cell lines. They then applied a 

linear model based on the Bliss independence synergy metric (which assumes that the effect of a 

combination of drugs is equal to the product of the individual drugs) to all cell lines in their dataset. 

They found that both single agent sensitivity values and synergy values showed significantly high 

correlations from their linear model, and they were able to differentiate true synergistic interactions 

from instances of potentiation, where the addition of one drug enhances the effect of another while 

not directly contributing to the effect itself, using a specificity score. 

Alternatively, Zimmer et al. integrated Bliss independence with a regression model to create the 

pairs model, which requires relatively few experiments to estimate the effect of multi-drug cocktails 

[47]. They expanded upon the Bliss formula by employing drug response data of drug pairs to predict 

the effects of higher-order combinations that contain more than two drugs, as they had found that 

the interactions between pairs of drugs often predicted the overall effect of the regimens in which 

those pairs were included. Briefly, the formula for the pairs model smoothly converts between Bliss 

independence and logarithmic regression based on a parameter that defaults to only calculating by 

Bliss independence when equal to 0 and to only by the logarithmic-linear regression model when 

equal to 1. Any parameter value between 0 and 1 would interpolate between the Bliss and regression 

algorithms. This parameter is then adjusted based on the number of drugs in the desired drug 

combination (or cocktail), allowing for high-order drug combinations of up to 6 drugs, while only 

supplying drug pairs data as input. 

Whereas the previously mentioned regression-based models assume that drug interactions fit a 

linear relationship by relying on the Bliss independence metric, Bayesian regression can be applied 

to optimize drug response predictions by assuming drug interactions have nonlinear relationships 

[30]. Bayesian regression allows for the incorporation of uncertainty into models by estimating 

probability distributions over parameters, as opposed to using point estimates of parameters to make 

predictions like linear models. The R programming package Keyboard is a Bayesian regression-based 

approach developed to derive maximum tolerated doses, optimal dose increases and decreases, and 

optimal biological doses for single drug and drug combination experiments from clinical trial data 

[34]. Keyboard combines three previously developed Bayesian-based drug prediction methods into 

its algorithms [31–33]. To predict candidate drug combinations, it considers the drug response profile 

of a patient cohort to a drug combination at two different dose combinations. It then predicts the 

maximum toxicity interval based on the updated data from the distribution of the second dose 

combination. This information allows the model to either increase or decrease doses with each new 
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cohort added to the calculations, which iteratively updates the maximum toxicity interval prediction 

based on the updated posterior distribution. 

Classifier-Based Machine Learning Models 

Whereas machine learning regression-based models aim to predict drug combinations and their 

interactions by assuming these interactions fit a mathematical relationship, classifier-based 

approaches specify mathematical boundaries that classify observations into specific categories based 

on whether they fit into the categories’ specified ranges (e.g., classifying a drug interaction type as 

additive, synergistic, or antagonistic) [17,48]. In the context of cancer drug combination prediction, 

these models have been applied to classify drug combination synergy via multiple modalities, 

including logistic regression, support vector machines, and decision trees. 

Iwata et al. used a logistic regression model that incorporated target proteins and anatomical 

therapeutic chemical codes to predict potentially effective drug combinations for cancer [36]. Logistic 

regression models are probabilistic classifiers that determine the probability that a new observation 

will fall into one of a finite number of categories [17,48]. Iwata et al. used approved drug combinations 

from the FDA Orange Book and KEGG drug databases to train their model, which predicted 142,988 

candidate drug combinations from known drug pairs, including some drug regimens for breast and 

colon cancer [36,49,50]. While the limited complexity of logistic regression classifiers reduces the 

accuracy of these models, it also enhances their interpretability [17,48]. 

A more complex classifier model used for drug combination prediction is the support vector 

machine. Support vector machines (SVMs) are based on kernel functions, which include a variety of 

mathematical functions used to transform data from a lower to higher dimensionality [35]. Cüvitoğlu 

and Işik used this classifier method to identify potentially effective antineoplastic drug pairs using 

single agent gene expression and biological network data [37]. SVMs have also been used in other 

cancer applications, such as in the identification of cancer methylation signatures, in the prediction 

of response to chemotherapy, and for analyzing the risk of treatment resistance and tumor recurrence 

[51–54]. However, the accuracy of SVMs is often still less than that of complex decision tree-based 

models such as random forest or XGBoost [55]. 

Decision trees are a relatively popular classifier machine learning model that takes in data at a 

root node and continues by some test rule, representing a branch, until the model reaches a decision, 

or leaf node [35]. These leaf nodes then further branch into the categories of interest by which 

observations in the data are classified. Approaches based on decision trees include random forest 

models, gradient boosting, and XGBoost [17,48]. These models are all ensemble approaches, meaning 

that each model is a combination of several less complex models, where each sub-model is a decision 

tree. Random forests select a random subset of data from a given dataset, train each model in its 

ensemble independently, and then use the majority decision from each sub-model to place each 

observation into a classification category [56]. While random forest models combine their sub-models 

in parallel, gradient boosting and XGBoost combine their decision trees in series [56,57]. This allows 

each sequential sub-model to improve upon the prediction of the previous sub-model. XGBoost 

additionally applies regularization, expanding how applicable the algorithm is to datasets outside of 

those used to initially train the model, thus enhancing the generalizability of these models compared 

to gradient boosting [57]. 

Celebi et al. compared several machine learning methods to discern which model performed 

best in predicting synergistic anti-cancer drug combinations [38]. Although random forest and 

XGBoost both performed better than linear regression or support vector machines, XGBoost 

outperformed random forest after the models were tuned to maximize their performance, so the 

authors proceeded with XGBoost for all downstream analyses. While decision tree-based methods 

are interpretable and perform well, their accuracy is generally lower than deep learning approaches.  

Deep Learning Models 

Deep learning refers to a subclass of machine learning methods capable of handling large 

amounts of multi-dimensional data that often overwhelms other machine learning methods [40]. 
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Deep learning models are based on units of artificial neural networks, which are multi-layered 

networks composed of several processing layers. These layers allow the model to learn and make 

predictions from complex mathematical functions [39]. Not only can deep learning incorporate larger 

quantities and more complex data types than other machine methods, but this ability to use multi-

faceted data also allows deep learning methods to discern significant biological relationships that 

may not be detected by other machine learning approaches [40]. However, the disadvantage of using 

numerous features in creating a deep learning model is that it may result in overfitting, an issue in 

machine learning where the model is fitted too close to the data set used to train it, and is thus unable 

to generate accurate results for new data sets [58]. Generalizability is thus a concern when developing 

deep learning models. Another limitation of deep learning techniques is simply the lack of adequate 

data for these models, as most deep learning approaches for predicting drug response are trained on 

limited numbers of cell lines. This then inevitably reduces their generalizability to densely 

heterogeneous patient tumors [43]. This is further exemplified by Prasse et al.’s study, which found 

that fine-tuning deep neural networks on patient-derived data improves the accuracy of 

antineoplastic drug response predictions [59]. 

Despite these limitations, deep learning has still been immensely useful for advancing precision 

oncology. Deep learning has not only been used to predict several pharmacodynamic properties for 

drug discovery purposes, such as drug activity and toxicity, but it has also been shown to out-perform 

other machine learning methods for these tasks as well [60–64]. In the context of cancer drug 

combination therapy, there have been several tools developed in recent years to predict potentially 

efficacious drug combination therapies for cancer, using already known antineoplastics or 

repurposing other approved medications for the disease.  

DeepSynergy is regarded as the first deep learning approach developed for the prediction of 

drug combination synergies. DeepSynergy is a feed-forward neural network. It takes the chemical 

descriptors of each drug and the cell line genomic information as inputs to calculate synergy scores 

of drug combinations for cancer cell lines [41]. Another example, CCSynergy is a deep-learning 

approach that uses drug bioactivity profiles from Chemical Checker for drug synergy prediction, and 

the use of CCSynergy to explore the untested combinatorial space revealed a compendium of 

potentially synergistic drug combinations across hundreds of cancer cell lines [44]. More recently, 

MARSY, a deep learning multi-task model that incorporates the gene expression profiles of cancer 

cell lines with drug perturbation profiles (i.e., the changes in gene expression of a cell line after drug 

treatment) was developed to predict synergy scores [46]. While these are currently limited deep 

learning approaches that have been developed for cancer drug combination prediction, more 

methods are in active development that aim to incorporate multi-omic features to identify patient-

specific anti-cancer drug regimens [45]. 

Discussion 

We have described several computational methods developed to predict synergistic drug 

combinations to further precision oncology, including networks and machine-learning methods, such 

as regression models, classifier models, and deep learning frameworks. Each of these methods uses 

mathematical principles to complete various tasks in drug combination therapy prediction. 

Networks-based models allow for the visualization of patterns between drug and disease entities to 

identify candidate targets and therapies. Regression-based approaches can predict missing values in 

dose-response matrices to improve drug synergy calculations. Classifier methods and neural 

networks can predict potential anti-cancer therapies by sorting drug and disease data into categories. 

As these models are intended to perform specific tasks, the purpose of the study must be carefully 

considered when determining which of these methods to implement in one’s own research. As noted 

by the DREAM Challenges, which compared several drug combination prediction tools for precision 

oncology against one another, the specific prediction algorithm matters far less than the principles it 

is based on and how it can be applied [65,66]. 

Although the vast majority of drug combination prediction methods are still in the preclinical 

testing phase, they may soon transition to testing in randomized clinical trials. Recent clinical trials 
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have shown promising results for the future of precision oncology as a whole. For example, the I-

PREDICT and ongoing NCI-comboMATCH trials utilize next-generation sequencing (NGS)-guided 

matching protocols to pair patients to drug combination therapies. The results from the I-PREDICT 

study showed that a higher degree of matching correlated to improved patient outcomes, thus 

supporting the efficacy of precision combination therapy in clinical settings [67,68]. The NCI-MATCH 

study utilized similar NGS methods on patient tumors to identify actionable genomic mutations 

across several cancer types. Although the patients treated by NGS-guided monotherapies showed 

improved progression-free survival compared to unmatched patients, only 3% of patients with 

refractory malignancies carried actionable mutations, demonstrating a need to broaden the scope of 

signature matching for candidate therapies via multi-omics integration [69]. The WINTHER trial was 

the first to match patients to drug combination therapies using a matching score based on both 

genomics and transcriptomics data. Not only was a higher matching score correlated with improved 

progression-free survival, but a significantly larger percentage of the patient cohort was able to be 

matched to targeted therapy regimens compared to the previously discussed NGS-guided trials, thus 

supporting the utility of multi-omics integration in guiding drug therapy prediction for cancer [70]. 

More recent studies have attempted to expand the scope of multi-omics in combination therapy 

prediction even further. REFLECT is a machine learning method that incorporates mutational, copy 

number, transcriptomic, and phosphoproteomics data to generate detailed co-alteration signatures 

for therapy prediction [71]. Another needed advancement for cancer combination therapy prediction 

is methods that can be used to monitor disease progression and response to treatment over time, such 

as Eduati et al.’s approach, which utilizes microfluidics and logic-based models to predict treatments 

for different stages of pancreatic cancer [72]. Other considerations when developing new drug 

combination prediction models include the different interactions that can occur between drug 

combinations across drug dosages [29,73,74], the specificity the predicted drug regimens have for the 

disease over normal tissue [75–77], as well as increased emphasis on prioritizing candidate regimens 

with maximal efficacy and minimal toxicity, as most current studies attempt to maximize the synergy 

of drug combination without regard to the fact that this may compound toxicity as well, reducing the 

tolerability and clinical utility of the proposed therapy [78]. As computational methods improve to 

better incorporate patient-derived multi-omics data, disease-specific context, and pharmacodynamic 

considerations, more comprehensive models can be generated to predict effective drug regimens for 

complex diseases like cancer, reducing drug development time and cost and improving patient 

outcomes.  

Summary: 

● Computational drug repurposing is a time- and cost-effective alternative complementary to de 

novo drug discovery. 

● Combination therapies have numerous advantages over monotherapies, including increased 

effect from synergistic interactions, reduced toxicity from lowered drug doses, and a reduced 

risk of resistance due to multiple non-overlapping mechanisms of action. 

● Computational methods used for drug combination therapy prediction in cancer research 

include networks, regression-based machine learning, classifier machine learning models, and 

deep learning approaches. 

● Advancements in technologies that incorporate disease mechanisms, drug characteristics, multi-

omics data, and clinical considerations are needed to generate effective patient-specific drug 

combinations.  
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