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Abstract: The main problem in pursuing multiple extended targets tracking is distinguishing the

origins of the measurements. The association of measurements to the possible origins within the

target’s extent is difficult, especially for the occlusions or the detection blind zone which cause

the intermittent measurements. To solve the problem, a hierarchical network-based tracklets data

association algorithm is proposed. At the low level, the min cost network flow model is used to

extract possible tracklets from the divided measurement set. At the high-level, the trajectories are

estimated from the tracks produced by the previous low level network. The experimental results

show that the hierarchical network-based tracklets data association algorithm outperforms the JPDA

and RFS-based method when the measurement is intermittently unavailable.

Keywords: multiple extended targets; data association; tracklets; min-cost network flow; intermittent

measurements

1. Introduction

Conventional MTT algorithms assume that objects can be represented as points and allow only

a single measurement per sensor scan. However, modern high-resolution sensors have revealed the

existence of targets that can generate multiple measurements per scan. This challenges the suitability of

the conventional point-target assumption. In such scenarios, multi-extended targets tracking (METT)

provides a more appropriate approach as it specifically addresses the tracking of targets that can

produce multiple measurements per scan. The MTT with more measurement per target is called

multiple extended targets tracking (METT)[2].

Data association plays a vital role in multi-target tracking by differentiating between false alarms

and actual targets. Incorrect data association can significantly impact the performance of tracking

multiple targets. For point targets, several methods for data association have been proposed, which can

be found in the referenced source [3]. On the other hand, data association for extended targets involves

the challenging task of matching measurements to specific targets, and this complexity increases

with the number of targets and measurements. To address this, multiple data association techniques

have been developed specifically for multi-extended target tracking (METT) scenarios. It is clear that

data association is critical in multi-target tracking, and its approach and complexity differ between

point targets and extended targets. Specialized data association techniques are necessary for METT

applications.

Vivone introduced a method that incorporates a detector and Joint Probability Data Association

(JPDA) tracker specifically designed for METT [4].Additionally, the multi-detection JPDA (MD-JPDA)

algorithm was developed to address many-to-one associations in high-resolution radar sensors [5].

However, MD-JPDA suffers from high complexity due to exhaustive combinations of measurements.

To mitigate this issue, MD-JIPDA, an extension of MD-JPDA, integrates the existence probability,

reducing complexity [6][7].Another approach by Yang focuses on calculating marginal association

probabilities for METT without relying on exhaustive hypotheses and partitions [8]. Furthermore,

several algorithms based on the random finite sets (RFS) framework have been proposed. These
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include the Probability Hypothesis Density (PHD) filter [9][10], Cardinalized PHD (CPHD) filter

[11], Generalized Labeled Multi-Bernoulli (GLMB) filters[12], and Poisson Multi-Bernoulli Mixture

(PMBM)[13]. These RFS-based methods offer both optimal and suboptimal state estimates for multiple

extended targets. However, it is important to note that tuning parameters for RFS-based methods may

impact system reliability.

In addition, the graphical model formulation is applied to deal with the problem of the METT. Su

presents the belief propagation (BP) algorithm to obtain estimators based on a simplified measurement

set [14]. In order to get rid of the deviation of the extended state estimation, a METT algorithm based

on Loopy Belief Propagation (LBP) is presented in [15].Previously developed METT algorithms rely on

continuous measurement availability.

Intermittent measurements are a common occurrence in practical applications due to occlusions,

detection blind zones (DBZ), and low frame rates caused by radar operation. To handle subsequent

miss-detections, Mahdi proposes the IMM-PHD tracker based on the Probability Hypothesis Density

(PHD) algorithm [16], However, this tracker does not output track labels. Another method, the

multiple-model multiple hypothesis PHD (MM-MH-PHD) filter, adopts a multiple-model approach to

estimate motion states in blind zones [17].In the case of tracking maneuvering targets in blind areas

while considering DBZ masking, the MM-GLMB filter is utilized in [18],incorporating a minimum

detection speed. However, the above work is not suitable for METT.

In this paper, we propose a hierarchical network framework of the METT with intermittent

measurements. The core of our algorithm lies on the association between the reliable tracklets. We

exploit a layered network which with respect to the low-level min-cost flow constructed by the clustered

measurements set and the high-level min-cost flow constructed by these tracklets. By running the

A* algorithm on the low network, we can obtain the reliable tracklets. Then, the minimum cost flow

algorithm is employed to get the long trajectories from the directed acyclic graph. Experimental results

of intermittent measurements show that the hierarchical network-based tracklets algorithm(ET-HT) is

effective. The structure of this paper is as follows.

Section II provides the problem statement, highlighting the need for effective tracking methods.

In Section III, detailed information about the ET-HT algorithm is presented, specifically emphasizing

the ET-HT data association algorithm. The paper further discusses simulation results in Section IV,

demonstrating the effectiveness of the ET-HT algorithm in tracking multiple targets. Finally, Section V

serves as the conclusion, summarizing the key findings and contributions of the document.

2. Problem Formulations

The METT problem aims to estimate states and parameters while dealing with measurements

from multiple extended targets and the presence of clutter. At each time step k, the states of the multiple

extended targets are denoted as Sk = {s1,k, s2,k, .., sNT ,k}, NT representing the number of extended

targets. Each extended target state is defined as si,k = [xi,k, Xi,k]
T . The subset of the state xi,k includes

the centroid’s location mi,k and velocity ṁi,k of the centroid of the target, xi,k = [mi,k, ṁi,k]
T . Xi,k ∈ Rd is

the extension state that describes the size and shape of the i-th target, in this paper, the dimension of the

target extension is set to d = 2. At the time step k, the unordered set of measurements containing the

clutter and target Zk is received by the sensor. Zk = {z1,k, z2,k, ..., zMk ,k}, where Mk = ∑
NT
i Mi,k + MC,k

represents the number of measurements. Mi,k is defined as the total number of measurements that

originates from the i-th extended target. The number of clutter MC,k is Poisson-distributed with mean

λC.

In multiple extended target tracking, the measurements may intermittently be unavailable at

any time. This is due to the occlusions, the detection blind zone or even the low frame rate causes by

the work mode of the radar. To cater for the missing measurement, a binary variable representing

the existence of the extended target is introduced, inspired by [19]. rk = {r1,k, r2,k, ..., rNT ,k}, with

ri,k ∈ {0, 1}, where the values of 0 and 1 correspond to the loss of the data and the measurement set of

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 23 May 2023                   doi:10.20944/preprints202305.1636.v1

https://doi.org/10.20944/preprints202305.1636.v1


3 of 13

the i-th extended target has been successfully received, respectively. The time-homogeneous binary

Markov process has a transition probability matrix given by

π+= ({ri,k+1=n
∣

∣ri,k=m })m,n∈S =

[

1 − qs,i qs,i

p f ,i 1 − p f ,i

]

(1)

where S = {0, 1} is defined as the state space of the Markov process. The parameter p f ,i and qs,i denote

the failure rate and recovery rate, 0 < p f ,i, qs,i < 1 , so that the Markov process {rk}k≥0 is ergodic.

Obviously, a smaller value of p f and a larger value of qs indicate a more reliable measurement received.

Thus, the obtained measurement set of the i-th extended target at the time step k, can be describe as

Zi,k = ri,k

{

zi,k

}Mi,k (2)

The objective of METT is to calculate the maximum probability data association with intermittent

measurements, and recursively estimate the multi-target state given a set of observation.

3. Hierarchical Network-Based Data Association for Multiple Extended Target Tracking

In this paper, we focus on the modeling of multiple extended targets (MET) data association,

utilizing a hierarchical dense neighborhood search approach. To achieve this, the Density-based spatial

clustering algorithm is employed to divide measurements at a specific time into clusters. Subsequently,

a low-level association network is constructed based on the clustering results, enabling the calculation

of tracklets. The association of clusters is formulated as a maximum a posteriori (MAP) problem,

taking into account target initiation, termination, and false trajectories arising from clutter. At a higher

level, the association network estimates trajectories by utilizing the tracklets derived from the low-level

network. The paper presents the flowchart of the ET-HT algorithm in Figure 1, illustrating the stepwise

process.

 Density-based spatial clustering
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Figure 1. The flow chart of Hierarchical network-based tracklets data association for multiple extended

targets tracking with intermittent measurements.

3.1. Pre-Processing

Since the set of measurements includes extended targets and clutter, it is necessary to extract the

measured data of every extended object in one time step. Consider the properties of the measurements

of the extended target that detections are spatially distributed around; the Density-based spatial

clustering algorithm is used to partition the set of measurements into multiple partitions. For the set of

measurement Zk which is received by the sensor at the time k, the set of subpartitions is

Πk = (π1,k, π2,k, . . . πNπ ,k) (3)
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where Nπ is the number of all subpartitions, πi,k represents a single subpartition. Note that the

traditional partition algorithms include distance partition, subpartition, and K-means clustering. These

methods require the specification of the amount of clusters. The density-based spatial clustering can

determine the amount of clusters automatically in this paper, based on the intrinsic structure of the set

of measurements. The details of the implementation can be found in [20].

3.2. Hierarchical Association

The hierarchical association model consists of low and high-level association network,

respectively.

a. low-level association network

Due to the intermittent observations in the extended target tracking system, the extended target

trajectories may be divided into several unconnected tracklets. Let Ti = (τ1
i , τ2

i , . . . , τn
i ) represents the

i-th extended target trajectory, τ
j
i is defined as the j-th tracklet of the i-th target, and the number of

trajectories is unknown. T = (T1, T2, . . . , Tm) is the set of the tracklets. In this section, we denote the

set of subpartitions Π1:k = (Π1, Π2, . . . , Πk) . The low-level association define Π1:k as the input, and

uses the network flow method to generate the tracklets. The key here is to calculate a MAP estimate

for T with a cluster of measurements set Π1:k.

T ∗ = arg max ∏
T

P(T |Π1:k) (4)

We define G(V, E) as a directed acyclic graph, with s denoting the nodes of the graph and n

being the set of edges of the graph. This gives the set of graph nodes V and E, with vi defined as a

subpartition and each edge ej in G(V, E) representing the motion between the subpartitions. In solving

the data association process, we use the concept of network flow to represent fij as a directed flow

variable from node vi to node vj, where fsi and f jn denote the starting flow variable and the ending

flow variable, respectively. Each flow in the graph is subject to the following constraints, firstly, the

sum of the flows arriving at node v is equal to the sum of the flows leaving this node at the same

moment. For any tracklet τ
j
i :

fsi + ∑
j:ji∈E

f ji = ∑
j:ij∈E

fij+ f jn (5)

Secondly, the cost flow network must ensure that nothing other than a single extended object can

be represented at one time. The upper bound of the sum of outgoing flows from node vi is set to 1. For

any node:

∀vi, vj ∑ fij < 1 (6)

Considering that targets can appear or disappear anywhere in the cost-flow network, a source

node and a sink node are introduced in [21], which are respectively connected to the respective nodes.

The source and sink nodes are also subject to a constraint that enforces all the flows starting in s to end

in n.

∑
i

fsi =∑
i

fin (7)

Through the network optimization process, Eq.(4) is transformed into an IP problem, and the

logarithm of the objective function is given by

T ∗ = arg max ∏
T

P(T |Π1:k)

= arg max ∑
T

csi fsi + cij fij+cjn f jn

= arg max ∑
i

csi fsi + ∑
ij

cij fij + ∑
j

cjn f jn

(8)
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where, csi is the flow cost from the source node to the subpartition πi, cij is the flow cost from the

subpartition πi to the subpartitions πj, cjn is the flow cost from the subpartitions πj to the sink node.

Hence, the IP problem can be described as

min ∑
i

csi fsi + ∑
ij

cij fij + ∑
j

cjn f jn

s.t. ∀πi, πj ∑ fij < 1

∀πi, πj fi,j ≥ 0

(9)

The cost can be defined as follows










csi = − log Ps(πi)

cij = − log Pl(πj|πi)

cjn = − log Pn(πj)

(10)

In this paper, the data association problem is transformed into a MAP estimation for T . Given

a set of clustered measurements Π1:k. A * search algorithm is used to solve the problem, and the

optimum trajectory T ∗ is obtained.

b. high-level association network

In this section, we constructed the Tracklet-based network flow framework G∗(V∗, E∗) to obtain

the full trajectory of the extended target. It can be also formulated as a MAP problem.

Ψ∗ = arg max
Ψ

P(Ψ|T ∗)

= arg max
Ψ

P(T ∗|Ψ)P(Ψ)

= arg max
Ψ

∏
T ∗

i ∈T ∗

P(T ∗
i |Ψ) ∏

Ψj∈Ψ

P(Ψj)

(11)

where Ψi denote as the merged trajectory, Ψi = {T ∗
i,0, T ∗

i,1, . . . , T ∗
i,l}. l denote as the number of tracklets

in Ψi, and Ψ = {Ψi} is the merged trajectories set.

Note that the set of linear constraints is familiar to those of Eq. 5 to 7. The only difference is in the

tracklet-based network flow model, where each node represents a tracklet extracted in the low-level

association stage, which is a set of continuous measurements in a batch of time frames.

Assuming that the likelihoods of the input tracklets are conditionally independent given the

merged trajectories set, and each merged trajectory is independent, the cost flow network of the

tracklets given by

P(Ψj) = PΨ(T
∗

i,0) . . . Pl(T
∗

i,l−1|T
∗

i,l)Pt(T
∗

i,l) (12)

where P(Ψj) represents a Markov Chain. Ps(T ∗
i,0) , Pl(T

∗
i,l−1|T

∗
i,l) and Pt(T ∗

i,l) represent the initial

probability, transition probability and terminal probability, respectively.

The link cost between two tracklets is defined as

Pl(T
∗

i |T ∗
j ) = pm(T

∗
i |T ∗

j )pt(T
∗

i |T ∗
j ) (13)

The motion associated probability is defined as

pm(T
∗

i |T ∗
j ) = − ln(N (∆p1, Σ)N (∆p2, Σ)) (14)

∆p1=ptail
i +vtail

i ∆t − phead
j (15)

∆p2=phead
j − vhead

i ∆t − ptail
i (16)
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where ∆t denote as the frame gap between the last detections set of the tracklet T ∗
j and the first

detections set of the tracklet T ∗
i . phead

i and ptail
i are the center position of the first and last detections

set of the tracklet T ∗
i , respectively. vhead

i and vtail
i indicate the estimated speed of the tracklet T ∗

i at the

head and tail, respectively. The motion affinity between two tracklets is shown in Figure 2.

1

tailp
headp

2

head headp v t

tail tailp v t

Figure 2. The motion affinity between two tracklets.

In this case, it is assumed that the error of the predicted location and the central location of the

detection set ∆p1 and ∆p2 follows a Gaussian distribution. The smaller the error between the predicted

position and the actual position of the target to be connected, the greater the motion similarity between

the corresponding track slices will be. The temporal associated cost is defined as:

pt(T
∗

i |T ∗
j )=

{

1,

0,

∆t ∈ [1, ς]

otherwise
(17)

where ς is an upper bound of frame gap. The Initialization probabilities and termination probabilities

for each tracklet are set to be

PΨ(T
∗

i ) = Pt(T
∗

j ) = 1 (18)

Similar to the low-level association, we establish the network flow model based on tracklets to

solve the motion cost and time cost between the tracklets, and use the A* search algorithm to obtain

the optimal trajectories.

3.3. Trajectory Smoothness

In this section, we use the in-coordinate interval Kalman smoothing algorithm to calculate the

extended target’s state. The algorithm consists of forward filtering and backward smoothing. Assume

that the interval between two frames is defined as k(i) = k(0) + i × T, (i = 0, 1, 2, ..., Ml), where T is

the sampling time. At the time k(i)(i = 0, 1, 2, ..., Ml − 1), the Kalman filter only predict the state of

extended target until a new measurement arrives at time k(Ml), the time update is as follows

sk(i)|k(i−1) = Fk(i−1)sk(i−1) (19)

Pk(i)|k(i−1) = Fk(i−1)Pk(i−1)F
T
k(i−1) + wk(i) (20)

where sk(i) denote as the extended target state at the time k(i), Fk(i−1) is the transition matrix. Once the

measurements arrived at the time k(M), the forward filtering step is

sk(Ml)|k(Ml−1) = Fk(Ml−1)sk(Ml−1) (21)

Pk(Ml)|k(Ml−1) = Fk(Ml−1)Pk(Ml−1)F
T
k(Ml−1) + wk(Ml)

(22)

Kk(Ml)
= Pk(Ml)|k(Ml−1)H

T
k(Ml)

[

Hk(Ml)
Pk(Ml)|k(Ml−1)H

T
k(Ml)

+ ek(Ml)

]−1
(23)

sk(Ml)
= sk(Ml)|k(Ml−1) + Kk(Ml)

[z̄k(Ml)
− Hk(Ml)

sk(Ml)|k(Ml−1)] (24)
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Pk(Ml)
=

[

I − Kk(Ml)
Hk(Ml)

]

Pk(Ml)|k(Ml−1) (25)

where z̄k(Ml)
represents the mean of measurements of the extracted extended target at time k(Ml).

Here, the state and covariance matrix at each time are calculated by backward recursive method

starting from the last time kmax, given by

sk|k = Fksk|k+1 (26)

Pk|k = FkPk|k+1FT
k (27)

Jk = Pk|k+1FT
k+1P−1

k|k+1
(28)

sk|kmax
= sk|k + Jk

(

sk+1|kmax
− sk|k+1

)

(29)

Pk|kmax
= Pk|k + Jk

(

Pk+1|kmax
− Pk|k+1

)

JT
k (30)

where sk|kmax
and Pk|kmax

represent the smoothness state estimation and covariance matrix at time k,

respectively. Jk is the smoothness gain matrix.

4. Experimental Results

Case 1: Numerical simulation

In the simulation, the validity of the ET-HT filter is tested. Consider a 2-D surveillance region

which is set as [3000, 10000]m × [0, 6000]m, the clutter intensity ck = 5 × 10−17. The time steps is set

to 30, the sampling period is defined as T = 1s. There are two maneuvering extended targets, and

their initial positions are set to [6000, 4500]m, [3500, 3000]m, respectively. Their start velocities are set to

[0,−150]m/s and [200,−20]m/s. The start time and terminal time in this system are [1, 5]s and [5, 30]s,

respectively. The kinematic state is given by

si,k = Fi,ksi,k−1 + wi,k (31)

where si,k = [xi,k, yi,k, ẋi,k, ẏi,k] is the state variable. xi,k and yi,k represent the location of the targets,

respectively. ẋi,k and ẏi,k represent the velocity of the targets, respectively. Fi,k is the kinematic state

transition matrix of i-th target. wi,k represents the Gaussian process noise of the i-th target with zero

mean and covariance Qi,k, Qi,k = diag[100, 100].

The measurement model is defined as

zi,k = Hksi,k + ei,k (32)

where Hk is the observation matrix, zi,k is defined as the measurements generated by the i-th target at

time k, ei,k denotes as the Gaussian measurement noise of the i-th target with zero mean and covariance

Ri,k, Ri,k = diag[100, 100].

In the simulation, the clutter poisson rate λc is set to 600, then clutter density λcck is 3 × 10−15.

The failure and recovery rate are set to p f = 0.2, qs = 0.8, respectively. The simulated target scenario

with intermittent measurements is shown in Figure 3.
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Figure 3. Target trajectories and measurements.

In our experiment, we take into account the absolute mean number of targets estimation error

(NTE) [24] and the optimal subpattern assignment (OSPA) distance [25] as metrics to evaluate the

performance of the proposed ET-HT filter against the ET-GM-PHD, ET-JPDA, and ET-PMBM filters.

The absolute mean number of targets estimation error is defined as

NTE(Xk, Yk) = E{|Xk| − |Yk|} (33)

where Xk and Yk are two finite subsets, |Xk| and |Yk| represent the potential of the two subsets,

respectively. The OSPA distance between Xk and Yk is defined as the distance between the position

and the potential of the two sets.

OSPA(p, c, Xk, Yk) = (
1

n
( min

π∈∏ n
∑ n

i=1d(c)(xi, yi)
p + cp(m − n)))1/p, n ≤ m (34)

where c is the penalty cost for cardinality mismatch, p is the order of the OSPA metric, 1 < p < ∞,

c > 0. In the simulation, they are set to 10 and 2, respectively.

The OSPA distances and NTEs of four filters are depicted in Figure 4. Comparatively, the ET-HT

filter exhibits lower OSPA distance and NTE values when compared to the other filters. In contrast, the

performance of the ET-JPDA filter is influenced by clutter and necessitates prior knowledge regarding

the number of targets. As the estimation error increases, the OSPA distance and NTE of the ET-JPDA

filter also escalate. On the other hand, the ET-GM-PHD filter leverages the first-order approximate

moment of the multi-target density to convey valuable information about target potential.When the

motion trajectories intersect, the targets are partitioned into one cell, which leads to an increase in the

OSPA distance. Meanwhile, the ET-GM-PHD and ET-PMBM filters require precise models of both

targets and clutter. However, the lack of prior information and the interference of clutter result in a

large discrepancy between the estimated and actual number of targets, which incurs the NTE increases.
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Figure 4. The average OSPA distance and NTE of a single example run, with qs = 0.8, p f = 0.2,

λC = 300.

Figure 5 presents the average OSPA distances and NTEs of the four filters at varying clutter rates.

The ET-HT filter consistently demonstrates smaller average OSPA distance and NTE compared to

the ET-JPDA, ET-PMBM, and ET-GM-PHD filters. To delve further into the influence of intermittent

probability, the investigation extends to different failure rate p f and recovery rate qs. The OSPA

distances and NTEs of the four filters are illustrated in Figures 6(a) and 6(b), respectively, considering

diverse recovery rates in 100 Monte Carlo runs. Likewise, Figures 7(a) and 7(b) depict the OSPA

distances and NTEs of the filters for varying failure rates with 100 Monte Carlo runs.
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Figure 5. The average OSPA distance and NTE for 100 Monte Carlo runs, with qs = 0.8, p f = 0.2.
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Figure 6. The average OSPA distances and NTE of different recovery rates for 100 Monte Carlo runs,

with p f = 0.2, λC = 600.
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Figure 7. The average OSPA distances and NTE of different failure rates for 100 Monte Carlo runs, with

qs = 0.8, λC = 600 .

The results from Figures 6 and 7 clearly demonstrate that the ET-HT filter exhibits superior

tracking performance compared to the ET-GM-PHD, ET-PMBM and ET-JPDA filters irrespective of the

transformation of the measurement recovery and loss rates. This is because the ET-HT filter associates

the tracklets into long tracks through both low-level and high-level associations, thereby reducing the

impact of intermittent measurements.

On the other hand, the results obtained from the ET-JPDA filter suggest that measurement loss

can cause a mismatch between the tracking gate and the measurement, resulting in an increase in

the OSPA distance. Similarly, the results of the ET-PHD filter indicate that some pieces of clutter are

incorrectly identified as targets, leading to errors in estimating the number of targets and an increase

in the NTE. Nonetheless, the presence of clutter affects the division of the measurements, and both the

ET-PMBM filter’s OSPA distance and NTE are larger than those of the ET-HT filter.

Time Complexity

The time complexity of the ET-HT filter consists of two main components, namely the adaptive

spectral clustering algorithm and the worst-case of the search subgraph. The time complexity of the
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former is O(n × (Ntc − ntc)) + O
(

n3
tc

)

+ O(KtcNtc Itc) · O(ntc × (Ntc − ntc)), where Ktc is the number

of nodes in the undirected graph, ntc is the sample points, Ntc is the number of trajectories and Itc

is the iteration number of K-means algorithm. The worst time complexity of searching sub-graph is

O(n2
max) [26].

The time complexity of the ET-JPDA filter is O(Ntc × n2
tc), where Ntc is the initial number of

targets, ntc is the sampling time. The time complexity of the ET-PHD filter is O(Ntc × n2
tc) + O(ntc ×

Mtc × N2
tc × d2

tc), where the parameter Mtc is generally greater than 1000, and dtc is the dimension of

the state vector. The time complexity of the ET-PMBM filter is O(N3
tc × H3

tc) , where Htc represents the

number of hypothetical combinations. The running times of the four filters for 100 Monte Carlo runs

are shown in Table 1.

Table 1. Average running time of four filters.

Filter ET-HT ET-PHD ET-PMBM ET-JPDA

Time(t/s) 10.1369 2232.9 96.3917 1.1254

Case 2 :Real data verification

To evaluate the performance of the proposed data association approach, the ET-HT filter

framework is applied to a scenario from the PETS 2009S0CC [27] dataset. In this dataset, we focus on a

specific scene featuring six pedestrians walking. Their paths intersect at specific frames (295, 305, 345,

365, and 367). Additionally, in frames 319, 339, and 351, the pedestrians are obstructed by a street light,

as illustrated in Figure 8(a). Figure 8(b) shows the extracted measurements.

(a) PETS 2009S0CC dataset

0 100 200 300 400 500 600

x/m

0

100

200

300

400

500 Measurements

(b) Extracting measurements

Figure 8. An example of the PETS2009S0CC dataset. We input the extracted measurement points into

the ET-HT filter. After hierarchical clustering, these measurement points can be regarded as pedestrian

motion trajectories.

We used MatlabR2019b, which is based on an Intel CPU i74770k 3.5 GHz, DDR3 32 GB RAM, to

implement the proposed ET-HT filter, and tested it on 768 x 576 frames. The results of the extended

target tracking are shown in Figure 9.
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Figure 9. The tracking results by the ET-HT filter.

The real data verification has successfully demonstrated the effectiveness of our proposed ET-HT

filter, which is able to accurately correlate targets with intermittent measurements using the ET-HT

filter.

5. Conclusion

This paper proposed a Hierarchical Network-based Tracklets Data Association algorithm, which

can be used in the field of multiple extended target tracking with intermittent measurements. The

low-level extracts all possible tracklets, which are then used to construct a network flow model. A

* search algorithm is used to compute the trajectories of multi-extended targets. Simulation results

show that the ET-HT filter significantly outperforms traditional data association algorithms, and its

performance is unaffected by clutter parameters and intermittent probability. In the future, we plan to

consider observation delay and embed it into multi-object trackers, as well as multi-sensor estimation.
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