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Abstract: In recent years, video anomaly detection technology, which can intelligently analyze1

massive video and quickly find abnormal phenomena, has attracted extensive attention with the2

wide application of video surveillance technology. To address the complex and diverse problem3

of abnormal human behavior detection in surveillance videos, a surveillance video abnormal4

behavior detection and localization supervised method based on the deep network model and5

the traditional method is proposed. Specifically, we combined AGMM and YOLACT methods to6

obtain more accurate foreground information by fusing the foreground maps extracted by each7

technique. To further improve the accuracy, we use the PWC-Net technique to extract features of8

the foreground images and input them into an anomaly classification model for classification. The9

proposed method effectively detects and locates the abnormal behavior in the monitoring scene.10

In addition to the aforementioned methods, this paper also employs YOLOv5 and DeepSORT11

networks for object detection and tracking in the video, which allows us to track the detected12

objects for better understanding of the scene in the video. Experiments on the UCSD benchmark13

dataset and the comparison with state-of-the-art schemes prove the advantages of our method.14

Keywords: Anomaly detection;YOLACT; Foreground; PWC-Net; Tracking.15

1. Introduction16

With the continuous population growth, human activities have become increasingly
frequent, and increasing unusual emergencies have occurred, such as gathering and18

fleeing, fighting, and terrorist activities. Public security has become a major problem19

affecting social order. It is not uncommon to see news reports of modern transportation20

being maliciously used as a tool for committing crimes, such as deliberately driving a car21

onto a sidewalk with the intention of hitting pedestrians. According to FOX31 Denver,22

the suspect drove at high speed on the road, causing three victims to be injured, and23

there are also some other similar cases as shown in the Figure 1. With the development24

of social security, surveillance videos have been gradually adopted in ensuring people’s25

safety in public places and for crime prevention [1]. Artificial intelligence and big data26

technologies can further enhance the security capabilities of public places. For example,27

computer vision technology can be used to automatically recognize and analyze surveil-28

lance footage, quickly detect abnormal behavior, and issue warnings. Data mining29

techniques can be used to analyze historical crime data, grasp criminal patterns and30

trends, and provide scientific basis for security decision-making. Intelligent recommen-31

dation algorithms can be used to screen people entering and exiting public places, thus32

achieving the detection and control of suspicious individuals. The application of these33
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technologies can improve the safety of public places, ensuring the personal and property34

security of citizens.35

1 2 3

4 5 6
Figure 1. According to CBS New York (1, 2, 3), a red swerves onto the sidewalk, it is a threat to
public safety. According to WSAZ News Channel 3 (4, 5), a car collided with pedestrians on the
sidewalk and caught fire, causing injuries. According to The Press Democral (6), a vehicle drove
onto the sidewalk and hit people.

Along with the monitoring and control system is more and more huge, huge36

amounts of security video data more and more, and the abnormal event detection in37

video images and the analysis of the causes of accidents, such as business needs people38

to analysis and processing, the need to observe many workers for a long time without39

stopping the surveillance video, task workload is huge. Rely purely on people to observe40

the surveillance videos will lead to poor and false detection in the monitoring, which will41

reduce safety and the practicality of the entire security system, because people cannot42

maintain a high degree of concentration for a long time and require rest [2]. Therefore,43

to enhance the monitoring ability of video surveillance, they should be made to emulate44

the human brain to recognize events and provide early warning and developed to45

become intelligent and reduce the occurrence of all kinds of public hazards. For this46

goal, a technology that can automatically analyze and find abnormal conditions from47

surveillance videos without relying heavily on manpower should be developed, that is,48

video automatic anomaly detection technology.49

Video anomaly behavior detection and localization refers to automatically detecting50

and locating abnormal behavior by utilizing the difference between the representation51

of normal and abnormal behavior features. With the increasing demand for auto-52

mated anomaly detection in various applications, many practical anomaly detection53

frameworks have been proposed. The GMM method has attracted great attention for54

background modeling techniques for detection and location in crowded scenes [7,8].55

The GMM generates a model based on the Gaussian probability density function by56

calculating the intensity, mean, and variance parameters [9]. Sabokrou et al. [10] used57

the GMM model to detect and locate abnormal behaviors in crowded scenes. Leyva58

et al. [11] combined the GMM model , Markov chains, and Bag-of-Words for video59

anomaly detection. Lu et al. [12] merged the Markov random field and the GMM to60

detect abnormal behavior through the calculation of the confidence measure. Marsden61

et al. [13] blended support vector machine (SVM) and the GMM to classify abnormal62

behaviors. Optical flow is an important feature that describes the motion patterns of63

visual features (such as points, objects, and shapes) through the continuous observation64
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of the environment [32]. Yuan et al. [33] proposed an abnormal event detection method65

based on statistical hypothesis testing, which identifies abnormal events as events with66

high scores. In [34], a new feature descriptor, that is, hybrid optical flow histogram, is67

proposed, using sparse reconstruction cost to detect abnormal behavior because sparse68

representation has high recognition rate and stability. Li et al. [35] proposed a novel mo-69

tion feature descriptor, that is, the histogram of maximal optical flow projection, to detect70

abnormal events in crowded scenes, using SVM to classify abnormal frames. As can be71

seen from the above elaboration, surveillance video anomaly detection efficiently detects72

abnormal events from many videos, and it usually consists of three parts: foreground73

extraction and motion target detection, feature extraction, classification and anomaly74

behavior detection, each of which is described in more detail below.75

Traditional motion target detection algorithms mainly include background sub-76

traction method, frame difference, edge detection, and optical flow methods. With77

the development of deep learning in the field of object detection, object detection net-78

works have been widely used in foreground extraction and anomaly behavior detection.79

YOLACT (You Only Look At CoefficienTs) is an object detection technique based on80

instance segmentation, which can output both the position and mask information of81

objects. This method can be used for video anomaly detection because it can accurately82

segment and locate abnormal objects. Methods based on YOLOACT have achieved good83

results in video anomaly detection and have high practical value. Xu et al. [3] proposed84

a real-time video anomaly detection method based on Region Proposal Network and85

YOLACT, which can efficiently detect abnormal behaviors in a scene. Object detection86

and instance segmentation are performed using YOLACT, and multi-level convolutional87

networks are used for feature extraction to achieve fast and accurate anomaly detection.88

Feature extraction is crucial for anomaly behavior detection. The higher the discrim-89

inability of features between normal and abnormal behaviors, the higher the detection90

accuracy. Traditional hand-crafted features represent behavior using manually defined91

low-level visual features (e.g. LUV, Cascade Step Search, OP and HOG), such as using92

Histograms of Oriented Gradients (HOG) to represent human body shape and contour93

information in static images, using optical flow to describe the changes in pixel grayscale94

values between adjacent frames to represent motion information, and using trajectories95

to describe the trajectory of moving targets. Features extracted based on deep learning96

can automatically learn the distribution rules of data from massive datasets, extract more97

robust high-level semantic features, and are less sensitive to crowded scenes. Gradually,98

they have replaced traditional feature extraction techniques.99

Anomaly detection techniques require training a classifier to detect behavior after100

extracting features. For a given specific scene with video data samples, the motion and101

appearance features of video frames or images within video windows are first extracted,102

and a model is built to learn the distribution of normal samples. During testing, the103

extracted features of the test sample are input into the model, and the model judges the104

sample as normal or abnormal anomaly score. Commonly used classifiers include SVM,105

Naive Bayes classifiers and decision tree.106

Deep learning have shown remarkable potential in learning appearance represen-107

tations from images. Methods based on deep learning are widely used in the field of108

computer vision, such as image detection and classification [14,15] and behavior de-109

tection [16–23]. Hu et al. [24] used the deep learning network framework to calculate110

the number of individuals in a population extracted from a picture. Shao et al. [25]111

presented the slicing CNN (S-CNN) for effectively extracting appearance and dynamic112

information in crowd video scenarios. Karen Simonyan and Andrew Zisserman [26]113

proposed a method based on two independent recognition streams; the spatial stream114

extracts action recognition frames from still videos, while the temporal stream is trained115

to recognize actions from motion in the form of dense optical flow and then fuses them.116

Feichtenhofer et al. [27] proposed a new spatio-temporal architecture for two-stream117

networks to spatially and temporally learn the correspondence between highly abstract118
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deep features. Yi et al. [28] proposed Behavior-CNN) to model pedestrian behaviors119

in crowded scenes. Luo et al. [29] used the YOLOv3 target detection network to de-120

tect pedestrians holding sticks, guns, knives and facial shielding. The local resolution121

enhancement network (LDA-Net) proposed by Gong et al. [30] took the foreground122

human body extracted by YOLO network as the input of 3DCNN, so as to extract the123

spatio-temporal characteristics of behaviors and classify normal and abnormal behaviors.124

Zou [31] input the feature vector extracted from YOLO network into LSTM network.125

This structure of CNN and LSTM makes full use of the spatio-temporal fusion features126

of video, thus improving the recognition accuracy.127

Given the success of deep neural network (DNN) in feature representation, the128

features extracted by a DNN represent the appearance and motion pattern in different129

scenes more specifically than the traditional anomaly detection approaches. The pro-130

posed hybrid method, which combines deep learning feature extraction with traditional131

foreground extraction and abnormal behavior detection, is effective in detecting and132

locating abnormal behaviors in crowded scenes. In this paper, we use the adaptive133

Gaussian mixture mode (AGMM) and to YOLOACT extract the foreground and the134

foreground masks as a preprocessing procedure of feature extraction. Then PWC-Net135

is applied to extract the motion information from the foreground map. Furthermore,136

we input the motion information to the classification network to output the anomaly137

score. Finally, this paper proposes a real-time object detection and tracking method138

using YOLOv5 and DeepSORT for surveillance videos. Specifically, after object detection139

is performed using YOLOv5, the results will contain the position and class information140

of each detected object. Then, these object information are fed into DeepSORT, which141

assigns a unique ID to each target and performs real-time tracking of the targets. In the142

subsequent video frames, DeepSORT can accurately predict the position of the targets143

by calculating their motion information and appearance features, achieving continuous144

tracking of the targets. The main contributions of this paper are as follows:145

* This paper fine-tunes the YOLACT network and introduces a mask generation146

module to meet the requirements of the proposed method.147

* This paper combines traditional methods with deep learning networks to extract148

foreground mask images from video frames, thereby enhancing the richness and149

accuracy of the foreground masks.150

* In this paper, PWC-Net is used to extract foreground object features and these151

features are used to train the anomaly detection classifier, resulting in improved152

accuracy of anomaly detection classification.153

* The method proposed in this paper consists of two stages. The first stage involves154

detecting and locating anomalies in video frames, while the second stage focuses155

on tracking the objects in the video frames to facilitate better understanding and156

analysis.157

* This paper adopts a hybrid methods to detect and locate anomalous video frames.158

Specifically, we use deep features to construct the feature space instead of hand-159

crafted features, and then use traditional machine learning methods to detect160

anomalies. By leveraging the strengths of these two approaches, we improve the161

performance of the method.162

The remainder of this paper is organized as follows. Section 2 reviews the related163

works on anomaly detection and localization. Section 3 provides a detailed description164

of the proposed method. First, the framework of the proposed method is introduced.165

Then, the components of surveillance video anomaly detection are discussed. Section 4166

presents the experimental results and comparisons. Finally, the conclusion is presented167

in Section 5.168
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2. Related works169

2.1. Anomaly Detection Analysis170

Video anomaly detection can be divided into local anomalies and global anomalies.171

Local anomalies usually refer to the activity of an individual that deviates significantly172

from its neighboring individuals in a moderately or densely crowded environment.173

Global anomalies refer to the overall abnormality in a specific scene, and the activities174

of individual locals may be normal. Apart from that, there are two more methods for175

anomaly detection. One is the abnormal appearance or motion attributes in videos, and176

the other is the normal appearance or motion attributes in abnormal time or space [36].177

In terms of anomaly types, appearance anomaly refers to spatial anomaly, including178

local anomaly at the pixel level and global anomaly at the frame level. Motion anomaly179

refers to time anomaly, that is, the context anomaly related to time sequence. The task of180

video anomaly detection is to detect the temporal and spatial anomalies in videos [38].181

Given the diversity of abnormal samples, the video anomaly detection method models182

the distribution of normal and abnormal samples and the trained model is used to183

distinguish the different properties of abnormal samples and normal samples to detect184

abnormal samples in the test [37]. Given that the background of surveillance videos in a185

specific scene is often fixed, the video frequency of surveillance is a typical single-scene186

video. The research on video anomaly detection based on a single scene is the focus of187

this paper.188

2.2. The Learning Paradigms for Video Anomaly Detection189

Video anomaly detection has four main learning paradigms, namely, supervised,190

unsupervised, weakly supervised, and self-supervised. This paper mainly introduced191

supervised learning. Supervised learning refers to the process of mapping all data192

samples to labels of different categories through model training, given data samples and193

their corresponding labels. Video anomaly detection uses normal samples, abnormal194

samples, and their corresponding labels to train a binary classifier for anomaly detection.195

There are some supervised anomaly detection methods that have been proposed. Zhou196

et al. [39] proposed a spatial-temporal convolutional neural network (ST-CNN) for197

anomaly detection and localization in crowded scenes. The network uses both spatial and198

temporal information to extract features and classify the scenes as normal or abnormal.199

SABOKROU et al. [40] proposed a approach consists of multiple 3D convolutional neural200

networks (CNNs) cascaded to handle different scales of input data. Each cascaded201

network is trained on a specific subset of the data to optimize its performance. Miao et202

al. [41] proposed an abnormal event detection method based on Support Vector Machines203

(SVM) in video surveillance. The method first extracts motion features from video frames204

using background subtraction and optical flow, and then trains an SVM classifier to205

distinguish between normal and abnormal events. Many methods based on supervised206

learning perform well in video anomaly detection, so we present a supervised learning207

anomaly detection method.208

2.3. Object Detection209

In most cases, the abnormal situations in surveillance videos are usually moving210

objects or targets. However, the large area of background or stationary objects in the211

video makes the abnormal detection process become complex and computationally212

expensive. Additionally, a large amount of noise and redundant information makes213

feature extraction and behavior representation difficult, thereby greatly reducing the214

efficiency and quality of abnormal detection. Therefore, motion object detection is215

an indispensable step in intelligent abnormal detection systems. Traditional motion216

object detection methods include frame difference method, background subtraction217

method, and optical flow method. Background subtraction [44] is a widely used method218

for moving object detection in videos The basic principle of this method is to detect219

moving objects using the difference between the current and reference frames, that is,220

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 24 May 2023                    



6 of 29

the background image or model. Several common background subtraction methods,221

such as mean and median filtering, bimodal backgrounds, long-term scene changes, and222

adaptive Gaussian mixture model, can be used. We select the most common method,223

that is, the adaptive Gaussian mixture model (AGMM). The adaptive Gaussian mixture224

method (AGMM) [45] and [46] can effectively deal with many component models. The225

use of many models is recommended because the range error of individual components226

decreases with the addition of models, thereby decreasing the net range of background227

values. This technique selects a suitable number of Gaussian distributions for each pixel,228

allowing preferable adaptation to scene changes and improving the robustness due to229

changes in brightness.230

With the extension of deep learning in the field of video object extraction, target231

extraction technology has become more efficient and accurate, with a wider range of ap-232

plication prospects. YOLACT based on deep learning is one of the most commonly used233

real-time object detection and instance segmentation techniques, combines target detec-234

tion and instance segmentation by using interactive convolutional networks (Interact235

Convolutional Networks). Specifically, YOLACT uses a loss function called Mask-IoU,236

which optimizes the performance of both target detection and instance segmentation.237

Mask-IoU loss uses intersection over union (IoU) to measure the model’s performance,238

combines the results of target detection and instance segmentation, and minimizes the239

difference between the two. In addition, YOLACT uses a feature pyramid network to240

process feature maps of different scales, improving the model’s ability to detect and241

segment objects of different scales. Overall, YOLACT achieves efficient object detection242

and instance segmentation by combining target detection and instance segmentation243

and using techniques such as Mask-IoU loss and feature pyramid network. Although244

advanced features have good features, low-level features often have advantages that245

high-level features do not have, such as invariance under illumination changes.246

By leveraging the strengths of AGMM for effective foreground and background ex-247

traction and YOLACT for precise object detection and segmentation, this paper provides248

a robust and accurate solution that can handle complex scenes better than using either249

method alone.250

2.4. Feature Extraction251

Efficient extraction of appropriate features plays a crucial role in rapid and accurate252

discrimination of normal and abnormal behavior in video anomaly detection research.253

Researchers have proposed various methods for feature extraction and behavior rep-254

resentation. Manually designed features commonly used for video anomaly detection255

include texture features, color, MoSIFT (Motion Scale Invariant Feature Transform),256

optical flow features, trajectory features, and so on. In practice, optical flow features257

can be used in a wide range of applications. Optical flow is caused by the movement258

of the foreground object, motion of the camera, or both in a scene. Optical flow [47] is259

defined as the apparent motion of a single pixel on the image plane and can calculate260

the motion information of objects between adjacent frames. This motion usually serves261

as a good approximation of the real physical motion projected onto the image plane.262

Optical flow utilizes the change of pixels in the temporal domain and the correlation263

between adjacent frames to detect the corresponding relationship between the previous264

and current frames [48]. Several optical flow methods exist, such as the Horn–Schunck,265

pyramid Lucas–Kanade, and Gunnar Farneback techniques [53]. Bullinger et al. explored266

a different approach in [49]and reported that optical-flow-based tracking techniques267

perform well, especially when the target position in the image is also subject to camera268

motion in addition to the object’s own motion. After obtaining the segmentation masks269

for the various instances present in the current frame, an optical flow method [50–52] is270

applied to predict the position and shape of each instance in the next frame.271

Although hand-designed features extracted by manual design have many theoreti-272

cal justifications, they are too subjective to objectively represent behavior. Additionally,273
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features extracted in this way often rely on databases, meaning that hand-designed274

features may only perform well on certain databases and may not necessarily produce275

the same results on other databases. Features extracted by deep learning can automati-276

cally learn the distribution rules of data from massive datasets, extract more robust and277

high-level semantic features, and are insensitive to crowded scenes. As a result, deep278

learning-based feature extraction methods are gradually replacing traditional feature279

extraction algorithms. Deep learning-based method for motion estimation: using deep280

learning networks to extract image features, and then estimating object motion based on281

the changes in the features, representative methods include FlowNet and PWC-Net [54].282

PWC-Net has been shown to outperform previous state-of-the-art methods on several op-283

tical flow benchmarks, and is widely used in computer vision applications such as video284

analysis. PWC-Net [4] is a deep learning network used for optical flow estimation and285

can be used for video frame anomaly detection. The structure of PWC-Net is simple and286

lightweight, making it suitable for real-time anomaly detection scenarios. By comparing287

the predicted flow with the actual flow, abnormal video frames can be detected. Wu et288

al. [5] proposed a real-time video anomaly detection method using PWC-Net and frame289

difference. The PWC-Net is used for optical flow estimation, and the frame difference290

is used to capture the temporal changes of the video. The proposed method achieves291

real-time performance and outperforms several state-of-the-art methods in terms of292

anomaly detection accuracy. Peng et al. [6] introduced a novel weighted loss function293

that considers both reconstruction error and motion difference to enhance the feature294

representation of normal frames. They also propose a two-stage detection method that295

combines frame-level and pixel-level anomaly scores to improve the detection accuracy.296

In this paper, we used PWC-Net to extract optical flow fields between video frames297

and used these fields to represent motion information. Then, we fed these optical298

flow features into our proposed anomaly detection model for training and prediction.299

Through this method, we can effectively utilize the technology of deep learning to300

improve the accuracy and efficiency of video anomaly detection.301

2.5. Detection Based Tracking302

With the rapid development of deep learning, the object detection performance has303

been greatly improved, and the detection-based tracking (DBT) scheme was developed.304

It has quickly become the mainstream framework and greatly promotes the progress of305

the video behavior detection task. Meanwhile, the joint framework based on detection306

and tracking has attracted the attention of researchers. At present, the most widely used307

DBT techniques with good performance are YOLOv5 and DeepSORT.308

YOLOv5 is a deep learning technique used for object detection, which can quickly309

detect the position and category of multiple objects in an image. The working principle310

of YOLOv5 is to extract features from the input image through a convolutional neural311

network, and then use anchor boxes to predict the pixels on the feature map to determine312

the location and category of objects. DeepSORT [42] is a commonly used method in313

multi-object tracking (MOT) [43], which can track objects in a video and generate the314

object’s motion trajectory. The DeepSORT method is an improvement of the simple315

online and real-time tracking (SORT) method. Using Kalman filtering and the Hungarian316

method, SORT greatly improves the speed and accuracy of multi-target tracking. The317

Kalman filter technique is divided into two processes: prediction and update. In this318

method, the motion state of the target is defined as eight normally distributed vectors.319

In the prediction process, when the target moves, the parameters of the previous frame320

are used to predict the position and speed of the current frame. In the update process, to321

obtain the results predicted by the current model, the two normally distributed states322

of the predicted value and the observed value are linearly weighted. Finally, trajectory323

prediction is realized. In the MOT step, the similarity is calculated to obtain the similarity324

matrix of the current and reference frames. By solving the similarity matrix, the tracks325

predicted by the Kalman filter is matched with those detected in the current frame, the326
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Hungarian method finally achieves the matching of the current and reference frames327

and solves the allocation problem. The most special characteristics of DeepSORT are328

the addition of appearance information, the application of the ReID domain model (an329

appearance model) to extract features, and the reduction of the number of ID switches.330

YOLOv5 and DeepSORT can work in collaboration, with YOLOv5 used to detect331

objects in the video and output their position and category, and DeepSORT used to track332

these objects and generate their motion trajectory using the output from YOLOv5. In333

this way, we can better understand the behavior and relationship of objects in the video.334

3. Proposed Method335

In this paper, we take into account the appearance and dynamics of video surveil-336

lance scenes, as well as their spatial and temporal characteristics. Furthermore, deep337

features have stronger descriptive abilities compared to handcrafted features. Thus,338

in our proposed hybrid method that combines traditional and deep learning methods,339

we use deep features to replace handcrafted features and employ traditional machine340

learning methods to detect anomalies.341

Usually, anomalies refer to an individual’s activity that significantly deviates from342

its neighboring individuals in a densely crowded environment, or to a specific abnormal343

situation in the overall scene, while the activity of local individuals may be normal.344

Therefore, the identification of abnormal appearance and movement patterns is the key345

problem of anomaly detection. Supervised-learning-based feature extraction methods346

have been successful in other tasks. The proposed supervised method involves judging347

video abnormal behavior based on video frame features and classifiers to model normal348

and abnormal patterns, which includes the scene background, appearance, and motion349

of normal and abnormal activities. The flowchart of the proposed detection method is350

presented in Figure 2.351

Figure 2. The flowchart of abnormal behavior detection and localization.

3.1. Object Detection352

Traditional handcrafted features based on manually defined low-level visual fea-353

tures cannot represent complex behaviors and the extracted features are relatively simple,354

resulting in weak generalization ability. On the other hand, deep learning-based feature355

extraction can automatically learn the distribution rules of massive datasets and extract356

more robust high-level semantic features to better represent complex behaviors. How-357

ever, low-level features often have some advantages that high-level features do not have,358

such as invariance under lighting changes, strong interpretability, and the ability to pro-359

vide basic spatial, temporal, and frequency information. Therefore, this paper proposes360

to combine traditional background subtraction methods and the YOLACT network to361

detect and segment foreground images in video frames. Specifically, combining AGMM362
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(Adaptive Gaussian Mixture Model) and YOLACT for video frame object extraction can363

enhance the accuracy and efficiency of the process. AGMM is a background subtraction364

method that models the background by a mixture of Gaussian distributions, and it365

adapts to the scene changes by adjusting the parameters of the distributions. AGMM366

can handle different types of scenes and achieve good results in complex environments367

with moving backgrounds. YOLACT, on the other hand, is a deep learning-based object368

detection and instance segmentation technique that combines target detection and in-369

stance segmentation using interactive convolutional networks (Interact Convolutional370

Networks) and can accurately detect and segment objects in real-time. By combining371

AGMM and YOLACT, we can effectively extract the background and foreground, which372

can not only use traditional methods to extract low-level features but also use deep learn-373

ing to extract high-level semantic features, thus improving the accuracy and robustness374

of video anomaly detection. This method can effectively handle complex scenes and375

achieve better results than using only one method.376

Overall, the combination of AGMM and YOLACT can provide a more robust and377

accurate solution for video frame object extraction. The specific implementation is as378

follows:379

1. The YOLACT technique was used for object detection and instance segmentation380

to obtain the foreground map F1.381

YOLACT is a real-time object detection and instance segmentation technique based382

on deep learning techniques. Its main principle is to combine object detection and383

instance segmentation together by using Interact Convolutional Networks. Specifically,384

YOLACT uses a loss function called Mask-IoU loss, which optimizes the performance385

of both object detection and instance segmentation. The Mask-IoU loss measures the386

model’s performance using the Intersection over Union (IoU) metric, combining the387

results of object detection and instance segmentation and minimizing the difference388

between them. Additionally, YOLACT also uses a Feature Pyramid Network to process389

feature maps of different scales, improving the model’s detection and segmentation390

capabilities for objects of different sizes. In summary, YOLACT achieves efficient object391

detection and instance segmentation by combining object detection and instance seg-392

mentation, using Mask-IoU loss and Feature Pyramid Network, among other techniques.393

The result of the YOLACT is shown in Figure 3.394

Figure 3. Flowchart of the improved YOLACT architecture.

From Figure 3, it can be seen that YOLACT generates foreground images, while
what we need is a foreground mask similar to AGMM. By having a similar data type
distribution for the foreground masks generated by YOLACT and AGMM, it is easier
to fuse them together. Therefore, this paper proposes an improvement to the YOLACT
network by adding a mask generation module. The YOLACT foreground map is a gray
image where each pixel has a single value indicating whether the pixel belongs to the
foreground object or not. In the YOLACT technique, a set of feature maps are obtained by
performing convolution and feature extraction on the input image, and then a Mask Head
network is used to process each feature map to obtain the corresponding foreground
mask, which is the YOLACT foreground map. During the process of generating the
foreground mask, each pixel is thresholded to classify it as foreground or background.
Let the input image be I, the feature map extracted by the YOLACT model, and the
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foreground mask be M. For each position (x, y) in the feature map, the generation of the
foreground mask can be expressed by the following formula:

M(x, y) =

{
255, if Q(x, y) > H;
0, Otherwise.

. (1)

Here, Q(x, y) represents the foreground probability of the pixel corresponding to the
position (x, y) in the feature map, and H is a preset threshold. Specifically, for each
position (x, y) in the feature map, we can calculate its foreground probability Q(x, y)
using the Mask Head network:

Q(x, y) = σ(wT f (x, y)). (2)

Here, w is the parameter of the Mask Head network, f (x, y) represents the feature vector395

corresponding to the position (x, y) in the feature map, and σ represents the sigmoid396

function. Finally, by setting the threshold H, we can convert the foreground probability397

P(x, y) into a gray foreground mask value M(x, y), thereby obtaining the YOLACT398

foreground map, the outcome of improved YOLACT is presented in Figure 3.399

In this paper, the YOLACT network architecture is used for foreground extraction400

from video frames. The model is trained on the COCO dataset for 800,000 epochs with a401

54-layer convolutional neural network.402

2. AGMM is used to process the video frame and get the foreground map F2, the403

foreground mask extraction process using AGMM is illustrated in Figure 4.404

Figure 4. Foreground mask extraction process via AGMM.

Background subtraction is one of the main components of surveillance video be-
havior detection and used as the preprocessing of object classification in this paper. The
background subtraction method based on AGMM [55], which has a good antijamming
capability, especially the illumination change, is adopted. Thus, we select the AGMM
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background subtraction scheme to extract foreground images. A suitable time period T,
and time t are assumed. xt represents a sample, XT=(xt, xt−1, ... , xt−T). For each new
data sample, we both update the model XT and re-estimate the density p(xn|XT , BG).
These samples may contain values for the background (BG) and foreground (FG) objects,
thus the density estimation p(xt

n|XT , FG + BG). The Gaussian mixture model with K
components is expressed as follows:

p(xt|XT , FG + BG) =
K

∑
k=1

fk • G(xt, µk, σ2
k M). (3)

G(xt, µk, σ2
k M) =

K

∑
j

f j,t

(2π)d/2|σj,t M| 12
e−

1
2 (xt−µj,t)∑−j,t 1(xt−µj,t). (4)

Here fk represents non-negative estimated mixing weights, and the kth GMM is
normalized at time t. µk and σk are the estimated mean value and variances of the
Gaussain components, respectively. M is an identity matrix. Given a new data sample
xt at time t, the recursive update equations are as follows:

fk = (1− α) fk + α(ot
m + cT). (5)

µk = µk + ot
m(α/ fk)δk. (6)

σ2
m = σ2

m + ot
m(α/ fk)(δ

T
k δk − σ2

m). (7)

Here δk = xt − µk, α is the learning rate and the value of 1/T is set. For a new
sample, the ownership ot

m is set to 1 for the "close" component with the largest fk and the
others are set to zero. We define that a sample belongs to a component if its Mahalanobis
distance from the component is less than a certain threshold, and the squared distance
from the kth component is calculated as follows:

D =
δT

k δk

σ2
m

. (8)

In turn, the algorithm will generate a new component fk+1 = α, µk+1 = xt and σm+1 =405

σ0, here σ0 is a initial value. This method shortens the processing time and improves406

the segmentation while providing highly specific image features for the next step of407

object detection. AGMM (Adaptive Gaussian Mixture Model) is a foreground extraction408

method based on Gaussian mixture model.409

For each pixel at location (i, j), calculate the Mahalanobis distance (D) between the
pixel’s color and the mean color of each Gaussian component in the mixture model:

D(k) = ||X(i, j)− µ(k)||2/σ(k). (9)

where X(i, j) is the pixel, µ(k) is the mean color of the kth Gaussian component, and σ(k)
is the standard deviation of the kth Gaussian component. Then, the pixel is classified as
foreground if the minimum Mahalanobis distance is smaller than a threshold:

mink(D(k)) < Th. (10)

where Th is the threshold. Otherwise, the pixel is classified as background.410

After initializing the model parameters, for each frame of the image, the foreground411

probability of each pixel is first calculated based on the current model parameters, and412

then the foreground and background pixels are segmented according to a threshold413

to obtain the foreground map. The foreground mask is detected clearly for the UCSD414

ped1 [56] benchmark dataset using AGMM.415

3. For the fusion of two foreground graphs, weighted average can be adopted, as416

shown in the formula. The weight of the YOLACT foreground can be set to a larger417
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value and the weight of the background subtracting foreground can be set to a smaller418

value to preserve the details of the YOLACT foreground.419

Ft = w1 × F1 + w2 × F2. (11)

where w1 = 0.6, w2 = 0.4, and Ft is the fused foreground map.420

4. Finally, YOLACT technique can be used again for target detection and instance421

segmentation for the fused foreground, so as to further improve the accuracy and422

robustness of target detection and segmentation.423

3.2. Feature Learning424

After extracting the foreground masks from the video frames, the next step is425

to perform feature extraction on the foreground images. These features will be used426

to classify the frames as either normal or abnormal, providing valuable information427

for anomaly detection analysis. In video anomaly detection, the efficient detection of428

appropriate features plays an important role in the rapid and accurate identification of429

normal and abnormal behaviors. Feature extraction can performed in two ways. One430

is to manually extract features, and the other is to learn the original video frames to431

obtain deep features. Manual feature extraction methods, despite having numerous432

theoretical justifications, are often influenced by human factors and may not objectively433

represent behavior. Moreover, features extracted through this method often depend434

on the database, meaning that manually designed features may only perform well for435

certain databases and may not yield the same results for others. Traditional video436

behavior detection technology has low accuracy, and shallow learning cannot parse big437

data.438

In contrast, deep learning can overcome these problems well. Deep feature extrac-439

tion through direct learning from data requires only the design of feature extraction440

rules, the manual design of the network structure, and learning rules to obtain deep441

model parameters and extract deep features, thus improving the recognition accuracy442

and the robustness in the process of video behavior detection. The PWC-Net based on443

deep learning is a kind of optical flow estimation technology used to calculate motion in-444

formation between adjacent image frames. When combined with classification methods,445

which can be used for image anomaly detection tasks. PWC-Net (Pyramid, Warping,446

and Cost Volume, with multi-scale and multi-stage architecture) is a state-of-the-art447

method for optical flow estimation, proposed by Sun et al. in 2018. It builds upon the448

FlowNet architecture and introduces several improvements, including: 1). Multi-scale449

processing: the input images are processed at multiple scales to better capture small-scale450

and large-scale motion. 2). Multi-stage processing: the network has multiple stages, each451

of which takes as input the output of the previous stage, allowing for a more fine-grained452

estimation of flow. 3). Cost volume: instead of concatenating the feature maps of the two453

input images, PWC-Net computes a cost volume by computing the dot product between454

each pair of feature vectors. This allows the network to compute the cost of different455

flow hypotheses, which is then used to estimate the final flow field.456
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Figure 5. Flowchart of PWC-Net architecture.

The optical flow vectors can be used as features to construct a classifier, which is457

used to classify input image frames into normal and abnormal categories. The results of458

PWC-Net is shown in Figures 5. During the training of the classifier, image frames with459

typical motion patterns can be used as normal samples, while image frames with atypical460

motion patterns can be used as abnormal samples. Then, the trained classifier can be461

used to classify new input image frames and detect whether anomalies are present.462

3.3. Abnormal Behavior Detection463

Given a new visual sequence, we select abnormal video frames by adopting the
trained classifier model to compute images in the video. And we estimate the likelihood
of P(x, y, t) by verifying the validity of the corresponding spatio-temporal video.

P(x, y, t) = P(It, Dt, Ix, Dy). (12)

where Ix is known feature vector, Dy is the location. It denotes the feature vector of the
observed objection t, and Dt denotes its location. To model the relationship between x, z
from the aspect of spatio-temporal appearance, we estimate the conditional probability
C(It|Ix) by the cosine similarity between It and Ix:

C(It|Ix) =
∑M

i=1 Ixi Iti√
(∑M

i=1 I2
xi)(∑

M
k=i I2

ti)
. (13)

The location similarity between y and t is modeled using a Gaussian function:

G(Dt|Dy) = α · exp(−1
2
(Dt − Dy)

T × (Dz − Dy)). (14)

Dimension of the feature vector is M, Iti is the ith element of t feature vector, exp denotes
natural exponential function, and α is a constant. Assuming that the variables x and y are
conditionally independent and have a uniform prior distribution, it suggests that there
is no prior preference for valid samples in the set. Consequently, the joint likelihood of
the observed object t and the hidden variables x and y can be factorized in the following
way:

P(x, y, t) = γ · C(It|Ix) · G(Dt|Dy). (15)
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The constant γ is used to ensure that the maximum value of P(x, y, t) is limited to a
value smaller than 1. We aim to find the samples x and y that maximize the maximum a
posteriori probability assignment. This can be achieved by using equation (15):

max P(x, y, t) = [max C(It|Ix)]1 · [max G(Dt|Dy)]2. (16)

The first term in equation (16) represents the max inference of spatio-temporal appear-464

ance, while the second term represents the max inference of spatial location. Based465

on the max inference, a sample that appeared only once in the normal fixation set is466

equally likely as samples that appeared multiple times. A large likelihood indicates467

that it is more likely to find x and y in the set to infer the anomaly object t in terms of468

spatio-temporal appearance and spatial location.469

3.4. Tracking470

In addition to anomaly detection, this paper also demonstrated the use of YOLOv5471

and DeepSORT for object detection and tracking in videos. In this paper, firstly, YOLOv5472

is used to detect the position and class information of each target in each frame of the473

video. When the target is detected using YOLOv5, its position and class information can474

be passed to DeepSORT, The DeepSORT parameters are listed in Table 1. DeepSORT uses475

a method based on appearance and motion information to determine the identity of the476

target, using Kalman filtering and the Hungarian technology for multi-object tracking,477

thereby obtaining the trajectory information of the target in the video. It compares the478

currently detected targets with the previously tracked targets to determine whether479

they are the same target and creates new target tracking when necessary. By combining480

YOLOv5 and DeepSORT, this paper achieves accurate detection and tracking of targets in481

videos, providing target position and ID information. The results of the object detection482

and tracking using YOLOv5 and DeepSORT are illustrated in Figure 14 and Figure 15.483

Table 1. DeepSORT parameters setting

DeepSORT parameters Weight

MAX-DIST 0.2
MIN-CONFIDENCE 0.3

NMS-MAX-OVERLAP 0.5
MAX-IOU-DISTANCE 0.7

MAX-AGE 70
N-INIT 3

NN-BUDGET 100

In a word, we propose a method for detecting and locating abnormal behavior in a484

monitoring scene. Firstly, combining the AGMM and YOLACT technologys to obtain485

more accurate foreground information. Then we use the PWC-Net technology to extract486

features of the foreground images and input them into an anomaly classification model487

for classification, which further improves the accuracy of our method. Additionally,488

we employ YOLOv5 and DeepSORT networks for object detection and tracking in the489

video, allowing us to detect different objects present in the video and track them for490

better understanding of the scene. Overall, our proposed method effectively detects and491

locates abnormal behavior in the monitoring scene.492

4. Experiments493

The proposed method is evaluated on the UCSD dataset [57], which means that494

it has labels and ground truth information for the task of abnormal detection and495

localization in crowded scenes, the specific experimental analysis is outlined as follows.496
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4.1. Experimental Basis497

We test the performance of the proposed method on the UCSD anomaly detection498

dataset. The dataset was obtained using a fixed camera mounted at a certain height499

overlooking the walkway. The UCSD dataset contains two subsets, Ped1 and Ped2.500

Both subsets contain the training and test sets. Ped1 contains 34 training and 36 test501

videos, with a frame resolution of 238× 158 pixels. Each video sequence has a frame502

length of 200. Ped2 contains 16 training videos and 12 test videos of pedestrian motion503

videos on the sidewalk with a frame resolution of 360× 240 pixels. The frame length504

of each sequence varies from 120 to 170. Moreover, all the frames in the training set are505

normal frames, containing only pedestrians. In addition to normal objects, the testing506

set also contains abnormal objects. The normal object in each frame is the pedestrian507

walking, and the rest of the behavior is regarded as abnormal behavior, such as cyclists,508

skateboarders, and cars. The UCSD dataset is a challenging local anomaly dataset in509

the crowded field. The low resolution of the objects in Ped1 makes them difficult to510

identify, while the occlusion problem in Ped2 is serious. All the test videos are used511

in this paper to evaluate the scheme. The sample images from the UCSD dataset are512

showen in Figure 6.513

Figure 6. Examples of Ped1 dataset on UCSD.

For the anomaly detection of the video behavior on the UCSD dataset, we select
the commonly accepted criteria for the evaluation of abnormal detection, including the
equal error rate (EER) and the area under curve (AUC). Notably, the lower the EER and
the higher the AUC are, the better the performance is. The two criteria are derived from
the receiver operating characteristic curve (ROC). The ROC is composed of the true
positive rate (TPR) and the false positive rate (FPR), where TPR refers to the correctly
classified positive samples among all the positive samples during the test period, and
FPR defines the number of false positive results among all the negative samples during
the test period. TPR and FPR are as shown expressed as follows:

TPR =
TP

TP + FN
, FPR =

FP
FP + TN

. (17)

where true positive (TP) is the correctly labeled abnormal samples, true negative (TN)514

is the correctly labeled abnormal samples, false negative (FN) is the incorrectly labeled515

normal samples, and false positive (FP) is the incorrectly labeled abnormal samples. In516

this paper, we calculated the TPR and the FPR for generating the ROC curves.517
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4.2. Moving Target Detection and Analysis518

In this paper, the Adaptive Gaussian Mixture Model (AGMM) and YOLACT are519

combined to extract video targets. To make AGMM more suitable for the scenario in this520

paper, we select appropriate experimental parameters. We mainly consider the following521

AGMM parameters for foreground extraction: detect shadows (DS), frames (F), learning522

rate (LR), threshold (T), the number of distributions (K), frame size (FZ), frame per523

second (FPS), and initial variance (IV). These parameters are selected to generate a524

relatively predictable mask for the further processing of object feature detection. For this525

paper, we perform appropriate adjustments and finally obtain the optimization result.526

To achieve the goal, the values of DS, F, LR, T, K, FZ, FPS, and IV are set to Ture, 200527

frames, 0.005, 25, 5, 238× 158, 30, and 15, respectively. The specific experimental results528

are presented in the third and fourth rows of the Figure 8.529

In addition to traditional foreground extraction methods, this paper also employs530

deep learning networks to extract foreground images. The advantage of using YOLACT531

to extract foreground images from video frames lies in its strong real-time performance,532

which enables almost real-time foreground extraction. Moreover, YOLACT has high533

robustness and can adapt to different scenes and complex backgrounds. Using YOLACT534

for foreground extraction from video frames can produce high-quality foreground535

images, thus improving the accuracy and efficiency of subsequent processing. Based536

on the ideas of Mask-RCNN and FCN, YOLACT achieves foreground image extraction537

through multi-level feature fusion and segmentation. Compared to traditional threshold-538

based segmentation methods, YOLACT performs better in handling complex scenes and539

motion blur, resulting in higher quality foreground images. The specific experimental540

results are presented in the fifth and sixth rows of the Figure 8. This paper fine-tunes the541

YOLACT network and introduces a mask generation module to meet the requirements542

of the proposed method. Due to the need for obtaining the foreground mask of grayscale543

images in this paper, a foreground mask generation module was added to the YOLACT544

network to meet the requirements of the technique. Additionally, Otsu foreground545

extraction and adaptive threshold methods were attempted to extract the foreground546

image generated by YOLACT, but the results were not satisfactory (as shown in the547

Figure 7). Therefore, a new foreground mask generation module was designed in548

this paper to generate more ideal mask images based on image features. The specific549

experimental results are presented in the seventh and eighth rows of the Figure 8.550

Frames YOLACT Adaptive Otsu Ours

Figure 7. Foreground mask results display.

Why do we need to fuse these two types of features? Let’s take a look at the551

content shown in Figure 9, both methods have their own limitations. The proposed552

method in this paper aims to fuse AGMM and YOLACT to obtain a more precise and553

comprehensive foreground map. From Figure 8 and Figure 9, it can be observed that the554

AGMM technique has robustness to changes in illumination and can effectively handle555

noise caused by such changes. Moreover, it performs very well for stationary objects556

or scenes with minimal changes. YOLACT technique utilizes deep learning techniques557

to achieve more accurate object detection and segmentation, resulting in high-quality558

foreground images with high precision. As shown in Figure 9, YOLACT can extract more559
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detailed foreground information during object detection, which enhances its accuracy in560

foreground extraction. Meanwhile, it can be observed from Figure 8 that YOLACT has a561

lower recognition rate and may not even recognize low-light targets. However, although562

AGMM extracts a relatively rough foreground, it can identify every minor change in the563

target. Therefore, this paper proposes a fusion of target images extracted by YOLACT564

and AGMM to obtain a rich foreground image with high quality and accuracy. The565

specific experimental results are presented in the ninth and tenth rows of the Figure 8.566

Experimental results demonstrate that the proposed method not only enhances the567

accuracy and completeness of foreground extraction, but also improves the processing568

speed and efficiency while ensuring real-time performance. In summary, the AGMM569

and YOLACT fusion method proposed in this paper leverages the strengths of both570

methods, improves the accuracy and efficiency of foreground extraction, and provides571

precise target features for video surveillance anomaly detection and localization.572

4.3. Target Feature Analysis573

The deep learning model based on PWC-Net optical flow estimation has the char-574

acteristics of strong robustness, high accuracy, and fast speed. The design of PWC-Net575

follows the principles of simplicity and completeness: pyramid processing, image warp-576

ing using optical flow estimation, and the use of cost volume. Projected onto a learnable577

feature pyramid, PWC-Net warps the convolutional neural network features of the578

second image using the current optical flow estimate. It then constructs a cost volume579

using the warped features of the first image and the features, which is processed by the580

CNN to estimate the optical flow. In this paper, PWC-Net is used to extract features581

from the foreground map of video frames, which can obtain more accurate and robust582

feature representations, thereby improving the accuracy and efficiency of the abnormal583

classification model. The experimental results are shown in Figure 10.584

Based on the results shown in Figure 10, PWC-Net demonstrates strong robustness585

against factors such as changes in lighting, occlusion, and motion blur. Additionally,586

PWC-Net uses a pyramid structure and flow propagation to improve the accuracy of587

feature matching and flow estimation. In cases where there is little change between video588

frames, such as in Video15, the target feature map remains almost unchanged. However,589

when abnormal objects appear in the video, the feature transformation of moving targets590

becomes particularly evident, as seen in Video11, Video13, Video14, and Video17. The591

advantage of such features is that they provide clear feature transformations for the input592

classifier to make judgments on abnormal frames, thus providing good information to593

the classifier and improving the classification accuracy.594

4.4. Anomaly Detection Analysis595

In surveillance video anomaly detection, the UCSD dataset is used, where all596

anomalies occur naturally and are not staged for dataset assembly. The dataset is597

divided into two subsets, each corresponding to a different scene. Video clips recorded598

from each scene are segmented into various segments of approximately 200 frames. In599

this study, pedestrians walking normally are defined as normal, while abnormal targets600

include bicyclists, skateboarders, cars, wheelchairs, and small carts, as shown in Figure601

11. To detect anomalous video frames, a ground truth is also created, which includes a602

binary label for each frame indicating whether an anomaly is present. Specifically, 36603

subsets of Peds1 are chosen to provide hand-generated pixel-level binary codes that604

identify regions containing anomalies, as shown in Figure 12. This is done to enable605

performance evaluation of the method’s ability to locate anomalies.606

For video anomaly detection, a binary classifier was trained in this study to detect607

anomalies by using supervised learning to classify behaviors as normal or abnormal608

and assigning corresponding labels. Before modeling, all normal and abnormal data609

must be labeled and tagged using supervised classification methods. To improve the610

accuracy and generalization ability of the video anomaly detection model and enhance611
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O1 O2 O3 O4 O5

O6 O7 O8 O9 O10

AGMM6 AGMM2 AGMM3 AGMM4 AGMM5

AGMM6 AGMM7 AGMM8 AGMM9 AGMM10

YOL1 YOL2 YOL3 YOL4 YOL5

YOL6 YOL7 YOL8 YOL9 YOL10

Bi-YOL1 Bi-YOL2 Bi-YOL3 Bi-YOL4 Bi-YOL5

Bi-YOL6 Bi-YOL7 Bi-YOL8 Bi-YOL9 Bi-YOL10

Target1 Target2 Target3 Target4 Target5

Target6 Target7 Target8 Target9 Target10

Figure 8. Display of the extracted foreground maps from video frames.
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AGMM

YOLACT

AGMM

YOLACT
Figure 9. Comparison of object extraction results using YOLACT and AGMM.

its prediction capability, this study used 107,306 datasets to train a classification model.612

Since videos contain temporal and spatial information, a neural network capable of613

extracting spatiotemporal features is required for anomaly detection. In this study, PWC-614

Net was used to extract features for each detection target and assign corresponding615

labels, which were marked as ′0′ for abnormal behavior and ′1′ for normal targets. The616

anomaly detection results for the UCSD dataset are shown in Figure 13.617

The detection and tracking of moving objects. YOLOv5 focuses on inference618

speed and accuracy. Considering the excellent performance of YOLOv5 in the object619

detection task, YOLOv5 is used as the object detection model of the network. The620

experimental results of YOLOv5-DeepSORT are shown in the fourth row in the Figures621

14 and 15, the fourth row presents the abnormal detection with tracking.622

4.5. Qualitative and Quantitative Analysis623

Qualitative analysis. Figures 14 and 15 show some of the qualitative results of the624

detection of abnormal scenes. The first row of Figures 14 and 15 are the original video625

sequence, the second row of Figures 14 and 15 are foreground mask of raw video frames,626

the third row of Figures 14 and 15 are anomaly frames detected by the classifier and627

marks them with a white boxes. Figure 14 shows a case of a truck driving on a sidewalk628

that the system determines as abnormal behavior. Figure 15 shows that that a cyclist629

riding on the sidewalk is also considered an abnormal behavior because they are not630

allowed to use the sidewalk. As we can see from images in the fourth row, the scheme631

can track all pedestrians with high accuracy.632

The scenes in the UCSD dataset are very diverse, and the people in the scenes633

have different body shapes and viewpoints, increasing the difficulty of the anomaly634

detection task. The defined anomaly measure allows us to identify multiple instances of635

several abnormal events that occur both individually and concurrently with other normal636

activities in the image. The objects causing the anomaly are marked with white boxes for637

identification. The experimental results demonstrate that our proposed method achieves638

high accuracy in classifying various scenes. It can effectively differentiate between639

normal pedestrian behavior and abnormal behaviors, such as those exhibited by cars,640

bicycles, wheelchairs, and skateboards.641

Quantitative evaluation. In the field of abnormal behavior detection, the per-642

formance of method is usually qualitatively evaluated by drawing receiver operating643

characteristic (ROC) curves with different thresholds on anomaly scores or probabilities,644

and quantitatively evaluated by metrics such as recognition accuracy (ACC), area under645
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Video11
P1 P2 P3 P4 P5

Video13
P1 P2 P3 P4 P5

Video14
P1 P2 P3 P4 P5

Video15
P1 P2 P3 P4 P5

Video17
P1 P2 P3 P4 P5

Figure 10. PWC-Net results on the UCSC dataset.
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A B C D E

F G H I J

Figure 11. Abnormal samples on UCSD dataset.

I1 I2 I3 I4 I5

M1 M2 M3 M4 M5

I6 I7 I8 I9 I10

M6 M7 M8 M9 M10

Figure 12. Displaying samples and their corresponding ground truth.

A B C
Figure 13. Abnormal behavior is marked with a white box. A. Normal video frame. B. Abnormal
behavior detection with white box at time t. C. Abnormal behavior detection with white box at
time t + 1.
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Figure 14. Example1 : Experimental results of the proposed method.

Figure 15. Example2 : Experimental results of the proposed method.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 24 May 2023                    



23 of 29

the ROC curve (AUC), and equal error rate (EER). ROC curves use the false positive646

rate (FPR) as the horizontal axis and the true positive rate (TPR) as the vertical axis. The647

FPR refers to the probability of predicting a positive sample among all actual negative648

samples, while the TPR refers to the probability of predicting a positive sample among649

all actual positive samples. Therefore, the closer the ROC curve is to the upper left corner,650

the smaller the EER, and the larger the AUC, indicating better algorithm performance.651

In the field of abnormal behavior detection, it is necessary to detect the time and652

spatial location of abnormal behaviors, which are usually evaluated at two levels: frame-653

level and pixel-level. In the frame-level criterion, if any pixel in a frame is detected654

as abnormal, the frame is considered as an abnormal frame, regardless of whether655

the localization of the abnormal region is accurate or not. In contrast, the pixel-level656

criterion takes into account the spatial localization accuracy, and only when the detected657

abnormal pixels exceed the threshold of the true abnormal label, is the abnormal behavior658

considered to have occurred. Table 2 and Table 3 show the AUC and EER of different659

anomaly detection methods on the UCSD dataset under different evaluation criteria.660

Table 2. Frame-level performance comparison of different methods on UCSD Ped1.

Methods [39] [18] [19] [20] [22] [21] [23] Ours

AUC 085 0.916 0.85 0.895 0.974 null 0.8382 0.9616

EER 0.24 0.148 0.20 null 8 0.143 0.223 0.15

Table 3. Pixel-level performance comparison of different methods on UCSD Ped1.

Methods [39] [18] [19] [20] [22] [21] [23] Ours

AUC 0.87 0.687 0.726 null 0.703 0.9425 null 0.8959

EER null 0.357 null null 0.35 null null 0.39

As shown in Table 2 and Table 3, we find that our supervised methods perform661

much better than the existing schemes. Figure 16 plots the ROC curves of the various662

methods for comparison. By varying the threshold parameter, we can obtain a series of663

anomaly detection results and their corresponding FPRs and TPRs. Thus, the ROC curve664

can be plotted by the series of coordinate points composed of FPRs and TPRs. The ROC665

curves illustrate that our method outperforms the state-of-the-art methods in [57–61] in666

detecting anomalous events on the frame-level evaluation criteria.667
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Figure 16. ROC curves of frame-level on Ped1.

On the basis of the ROC evaluation results, which reflect the accuracy of anomaly668

localization, our method outperforms all the comparing schemes. In addition to the ROC669

curves, the evaluation criteria also include two numerical indices, the AUC and EER in670

the frame-level, and the results are presented in Table 2 and Table 3. In terms of detection,671

the AUC values have increased, indicating that the method can locate anomalies with672

high accuracy. To evaluate the performance of the proposed anomaly representation,673

we compared it with five other recently proposed schemes [57], [58], [59], [60], and [61].674

Below are the performance results compared with those of other state-of-the-art schemes.675

Table 2 and Table 3 show the comparison results of different algorithms on the UCSD676

Ped1 dataset at the frame level. The proposed method achieves a large frame-level AUC,677

which is better than those of the other comparison methods.678

In [60] is just based on temporal anomaly detector is presented. Sikdar et al. [61]679

only considered the temporal and lack the spatial featurethus, the accuracy of abnormal680

behavior detection is relatively low. Mahadevan et al. [57] obtained the errors made681

by the different detector components because anomalies are, by definition, difficult to682

define a priori, and normal events are either unusual or occur in unusual scenes. The683

method in [58] is simpler and requires very little parameter tuning compared with the684

other methods. The method’s generalization ability is relatively poor, but the problem is685

relatively easy to solve. As shown in Figure 16 , we find that our supervised methods686

perform much better than the existing unsupervised schemes.687

5. Conclusion688

In this paper, we proposed a method for detecting and locating abnormal behavior689

in a monitoring scene by combining AGMM and YOLACT techniques to obtain more690

accurate foreground information. The PWC-Net algorithm is then used to extract fea-691

tures of the foreground images, which are fed into an anomaly classification model for692

classification, resulting in improved accuracy. Additionally, YOLOv5 and DeepSORT693

networks are employed for object detection and tracking in the video, respectively. The694

YOLOv5 network is able to detect different objects present in the video, while the Deep-695

SORT network allows for better understanding of the scene in the video. Experimental696

results on the UCSD benchmark dataset demonstrate the effectiveness of our proposed697

method and its superiority over state-of-the-art schemes.698
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YOLOv5 You only look once version 5
GMM Gaussian mixture model
OP Optical flow
STT Spatio-temporal technique
CNN Convolutional neural networks
BoW Bag-of-words
MRF Markov random field
HMOFP Histogram of maximal optical flow projection
AGMM Adaptive gaussian mixture mode
DNN Deep neural network
DeepSORT Deep simple online and realtime tracking
MOT Multiple object tracking
R-CNN Region-based CNN
SSD Single shot multiBox detector
ReID Person Re-identification
FG Foreground
BG Background
UCSD University of California San Diego
ROC Receiver operating characteristic curve
AUC Area under curve
EER Equal error rate
FPS Frame per second
TPR True positive rate
FPR False positive rate
TP True positive
TN True negative
FN False negative
FP False positive
PWC Pyramid, Warping, and Cost Volume
YOLACT You Only Look At CoefficienTs
SVM Support vector machine
HOG Histogram of oriented gradients
S-CNN Slicing CNN
LDA Linear discriminant analysis
LSTM Long short-term memory
ST-CNN Spatial-temporal convolutional neural network
IoU Intersection over union
MoSIFT Motion scale invariant feature transform
DBT detection-based tracking
COCO dataset Microsoft Common Objects in Context
S-CNN Slicing-convolutional neural networks
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