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Abstract: This article introduces ten similarity measures that utilize cosine and cotangent functions to

compare (m,n)-rung orthopair fuzzy sets, this a super class of q-rung orthopair fuzzy sets. Further, we

applied our established weighted similarity measures to medical diagnosis, pattern recognition,and

building material problems and also presented the comparison between established measures with

the existing cosine and cotangent measures of q-rung orthopair, pythagorean and intuitionistic

fuzzy sets. Lastly, we considered a numerical example that demonstrates the effective and scientific

application of these similarity measures in plant leaf disease classification. Furthermore, we present

graphical interpretations to demonstrate the effectiveness of our established measures.

Keywords: (m,n)-rung ortho pair fuzzy sets; cosine similarity measure; pattern recognition; plant

leaf Disease

1. Introduction

The fusion of technology and generalized forms of classical sets is very useful to solve many

real world complex problems which involve the vague and uncertain information. A classical set is

defined by its characteristic function from universe of discourse to two point sets {0,1}.When dealing

with intricate issues that encompass vague and uncertain information, classical set theory falls short.

To handle the vagueness and impreciseness in complex problems, fuzzy sets (FSs) was created by

Zadeh[1] as a generalization of classical sets. the application of FS theory extends to multiple fields,

including control theory, artificial intelligence, pattern recognition , database system and medical

diagnosis. In 1986 Atanassov[2]created intuitionistic fuzzy sets(IFS)s which is a super class of FSs.

After the occurrence of Atanassov[2] paper, several generalizations of IFSs have been appeared in the

literature. In the year 2013 Yager [3] presented a super class of IFSs called pythagorean fuzzy sets

(PFSs). PFSs are more extensive than the IFSs and can describe more imprecise and vague information

in decision making process. In 2017, Yager introduced the q-rung orthopair fuzzy sets (q-ROFSs)

[4]. This innovative approach offers a highly effective and powerful tool to manage imprecise and

uncertain information across a wide range of real-world applications and problems. Later in 2019,

Senapati and Yager [5] developed and introduced the concept of Fermatean fuzzy sets (FFSs), which

is a specific instance of q-ROFSs when q=3. Recently Ibrahim and Alshamari[6] initiated the study

of (m,n-rungorthopair fuzzy sets((m,n)-ROFSs) as a super class of q-ROFSs. This concept is also

independently investigated by Jun and hur[7] and AI-Shami[8] with the name of (m,n)-fuzzy sets. The

(m,n)-ROFSs is more flexible and effective as compare to q-ROFSs in handling the uncertainty and

vagueness in MADM and MCDM.

The similarity measure is a crucial metric that can evaluate the degree of similarity between

the two objects, making it an essential tool to distinguish diverse patterns in practical applications.

Researchers like Adlassnig[9], Zwick and colleagues[10], Pappis and Karacapilidis [11], Chen and

colleagues [12,13], Zeng and Li[14], Mitchel[15], and others have extensively studied the similarity

measures between fuzzy sets. Their research explores the potential of fuzzy sets to facilitate the
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development of corresponding applications in areas like image processing, medical diagnosis, pattern

recognition, and decision-making. Since the emergence of interval type-2 fuzzy sets (IFSs), several

similarity measures between IFSs have appeared in these literature [16–30]. Some researchers have

investigated and studied these similarity measures between IFSs based on cosine functions, including

Ye [31,35,37], Shi and Ye [32], Zhau and colleagues[36], and Liu and colleagues[38,39]. Others, such as

Tian [33] and Rajarajeswari and Uma [34], have created similarity measures between IFSs based on

cotangent functions and presented their applications in medical diagnosis.

PFS is a powerful tool for depicting vagueness and impreciseness in MADM and MCDM. In the

recent past many researcher such as Garg [40], Zeng, Li and Qin[41],Peng, Yuan, Yang[42], Husain

and Yang[43], Wei and Wei[44] and others presented different similarity measures between PFSs for

solving MADM problems. Recently different similarity measures between FFSs and their applications

in MADM and MCDM have been appeared in the literature [45–49]. The q-ROFSs is a powerful

mathematical tool for handling uncertain, imprecise, and vague information in real-world problems,

surpassing PFS and FFS in terms of capability. In 2019, Peng and Dai[51] introduced a similarity

measure between q-ROFSs that assessed the quality of classroom teaching. Jan and his colleagues[52]

considered the generalized dice similarity between ROFSs. Farhadinia and his team explored a range

of similarity measures for q-ROFSs. Peng and Liu[54] investigated information measures for q-ROFSs.

Additionally, Liu, Chen, and Peng[55] as well as Wang and his team[56] introduced several similarity

measures between q-ROFSs based on cosine and cotangent functions and explored their properties

and applications. The (m,n)-ROFSs through double universes are more flexible and efficient than

the m-ROFS and n-ROFS in discussing the symmetry between multiple objects. In other words,

(m,n)-ROFSs are capable of more effectively addressing MADM problems, including all q-ROFS

decision-making problems as a special case.

The structure of this article is as follows. In section two, a review is presented on generalized

fuzzy structures along with their cosine and cotangent similarity measures. Section three is devoted

to establishing similarity measures and weighted similarity measures between (m,n)-ROFSs based

on cosine and cotangent functions. Section four compares the newly established similarity measures

for (m,n)-ROFSs with existing measures for q-ROFSs, PFSs, and IFSs based on cosine and cotangent

functions. The comparison is made by considering pattern recognition, medical diagnosis, and building

material problems discussed in the literature. In section five, the established similarity measures are

utilized in the classification of plant leaf disease, and the effectiveness and reasonableness of the

proposed measures are demonstrated. Finally, section six concludes in the article with some closing

remarks.

2. Preliminaries

In this section, we will examine different types of generalized fuzzy structures and the cosine and

cotangent similarity measures that are currently in use for these structures. For the remainder of the

paper, we assume that P is a finite, discrete, and non-empty discourse set consisting of r elements,

denoted as p1, p2, ..., pr.

3. Preliminaries

In this section, we will examine different types of generalized fuzzy structures and the cosine and

cotangent similarity measures that are currently in use for these structures. For the remainder of the

paper, we assume that P is a finite, discrete, and non-empty discourse set consisting of r elements,

denoted as p1, p2, ..., pr.

3.1. Generalized fuzzy structures

Definition 1. Let consider this, P be a fixed set. A structure E = {〈p, ϑE(p), ςE(p)〉 : p ∈ P} where,

ϑE : P → [0, 1] and ςE : P → [0, 1] denotes the membership (written as MF) and non-membership function

(written as NMF) of E, is called :
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(a) Intuitionistic fuzzy set (written as IFS) [2] in P if 0 ≤ ϑE(p) + ςE(p) ≤ 1, ∀ p ∈ P.
(b) Pythagorean fuzzy set (written as PFS)[3] in P if 0 ≤ (ϑE(p))2 + (ςE(p))2 ≤ 1, ∀ p ∈ P.
(c) Fermatean fuzzy set (written as FFS)[5] in P if 0 ≤ (ϑE(p))3 + (ςE(p))3 ≤ 1, ∀ p ∈ P.
(d) q-ROFSs [4] in P if 0 ≤ (ϑE(p))q + (ςE(p))q ≤ 1, ∀ p ∈ P and q ∈ N.

Definition 2. [6–8] A (m,n)-rung orthopair fuzzy set (written as (m,n)-ROFSs) E in an universe of discourse

P is a structure

E = {〈p, (ϑE(p), ςE(p))〉 : p ∈ P}

where ϑE : P → [0, 1] and ςE : P → [0, 1] denotes the MF and NMF of E which satisfies the condition

0 ≤ (ϑE(p))m + (ςE(p))n ≤ 1

∀ p∈ P and m, n ∈ N.

Remark 1. [6–8] A (m,n)-ROFSs E in P coincides with IFS (resp. PFSs , FFSs, q-ROFSs ) if m,n=1,1 ( resp.

m,n=2,2, m,n=3,3, m,n=q,q).

The family of all (m,n)-ROFSs defined over P will be referred by (m, n)− ROFSs(P).

Definition 3. [6–8] For any (m,n)-ROFSs

E = {〈p, ϑE(p), ςE(p)〉 : p ∈ P},

E1 = {〈p, ϑE1
(p), ςE1

(p)〉 : p ∈ P} and

E2 = {〈p, ϑE2
(p), ςE2

(p)〉 : p ∈ P} in P.

The subset, equality, union, intersection and complement operations over (m, n)− ROFS(X) are defined

as follow:

(a) E1 ⋐ E2 ⇔ ϑE1
(p) ≤ ϑE2

(p) and ςE1
(p) ≥ ςE2

(p) ∀ p ∈ P ;
(b) E1 = E2 ⇔ ϑE1

= ϑE2
and ςE1

= ςE2
;

(c) E1 ⋒E2 =

{

〈p, ϑE1
(p)

∨

ϑE2
(p),

ςE1
(p)

∧

ςE2
(p)〉 : p ∈ P

}

;

(d) E1 ⋓E2 =

{

〈p, ϑE1
(p)

∧

ϑE2
(p),

ςE1
(p)

∨

ςE2
(p)〉 : p ∈ P

}

;

(e) Ec = {〈p, (ςE(p))
n
m , (ϑE(p))

m
n : p ∈ P}.

Proposition 1. [6–8] Let

E1 = {〈p, ϑE1
(p), ςE1

(p)〉 : p ∈ P} and

E2 = {〈p, ϑE2
(p), ςE2

(p)〉 : p ∈ P} be two (m,n)-ROFSs on P. Then:

(a) E1 ⋒E2 = E2 ⋒E1.
(b) E1 ⋓E2 = E2 ⋓E1.
(c) (Ec

1)
c = E1.

(d) (E1 ⋒E2)
c = Ec

1 ⋓Ec
2.

(e) (P1 ⋓E2)
c = Ec

1 ⋒Ec
2.

Definition 4. For each (m,n)-ROFSs E in P, the degree of indeterminacy membership(written as IMD) πE(p)

can be expressed as

πE(p) =
m+n

2

√

(1 − ϑE(p))m + (ςE(p))n
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∀ p ∈ P

Remark 2. The IDM πE(p) of p ∈ P to IFS(resp. PFSs, FFSs,q-ROFSs) E is a special case of IDM πE(p) of

p to (m,n)-ROFSs E for m=n=1 (resp. m,n=2,2, m,n=3,3, m,n=q,q).

Remark 3. Clearly, for each (m,n)-ROFS E in P,

π
m+n

2
E

(p) + (ϑE(p))m + (ςE(p))n = 1

∀ p ∈ P.

3.2. Cosine and cotangent similarity measures for generalized fuzzy structures

For the calculation of the degree of proximity between any two objects used the cosine and

cotangent similarity measures, which have been applied in numerus MADM and MCDM methods.

The study of cosine measure between two IFSs E and F are iniatiated by Ye[31]] in 2011. In 2013 Shi and

Ye[32]created new cosine similarity measures for IFSs which are the extension of the measures proposed

by Ye [31] and applied in fault diagnosis of Turbine. In 2016 Ye[35] created two cosine similarity

measures for IFSs based on cosine functions and applied them in MADM. The Cotangent function

based similarity measures for IFSs was created by Tian[33] and Rajeshwari and Uma [34] in 2013. The

weighted cosine and cotangent similarity measures between IFSs are defined by Ye[31], Shi and Ye[32],

Tian[33] and Rajarajeshwari and Uma[34]. In 2018 Wei and wei[44] proposed cosine and cotangent

measures between two PFSs E = {〈pj, ϑE(pj), ςE(pj)〉 : pj ∈ P} and F = {〈pj, ϑF(pj), ςF(pj)〉 : pj ∈ P}
over P = {pj : j = 1, 2, ..r} which are shown in Table 1.

Table 1. Cosine and cotangent based similarity measures between PFSs [44]

S. N. Similarity measure

1 PFC1(E,F )= 1
r ∑

r
j=1

ϑ2
E
(pj)ϑ

2
F
(pj)+ς2

E
(pj)ς

2
F
(pj)√

(ϑ2
E
(pj))2+(ς2

E
(pj))2

√
(ϑ2

F
(pj))2+(ς2

F
(pj))2

2 PFC2(E,F)= 1
r ∑

r
j=1[

(ϑ2
E
(pj)ϑ

2
F
(pj)+ς2

E
(pj)ς

2
F
(pj)+π2

E
(pj)π

2
F
(pj))√

(ϑ2
E
(pj))2+(ς2

E
(pj))2+(π2

E
(pj))2

√
(ϑ2

F
(pj))2+(ς2

F
(pj))2+(π2

F
(pj))2

]

3 PFCS1 (E,F)= 1
r ∑

r
j=1 cos[π

2 (max(|ϑ2
E
(pj)− ϑ2

F
(pj)|, |ς2

E
(pj)− ς2

F
(pj)|))]

4 PFCS2 (E,F)= 1
r ∑

r
j=1 cos[π

4 (|ϑ2
E
(pj)− ϑ2

F
(pj)|+ |ς2

E
(pj)− ς2

F
(pj)|)]

5 PFCS3 (E,F)= 1
r ∑

r
j=1 cos[π

2 (max(|ϑ2
E
(pj)− ϑ2

F
(pj)|, |ς2

E
(pj)− ς2

F
(pj)|, |π2

E
(pj)− π2

F
(pj)|))]

6 PFCS4 (E,F)= 1
r ∑

r
j=1 cos[π

4 (|ϑ2
E
(pj)− ϑ2

F
(pj)|+ |ς2

E
(pj)− ς2

F
(pj)|+ |π2

E
(pj)− π2

F
(pj)|)]

7 PFCT1(E,F)= 1
r ∑

r
j=1 cot[π

4 + π
4 (max(|ϑ2

E
(pj)− ϑ2

F
(pj)|, |ς2

E
(pj)− ς2

F
(pj)|))]

8 PFCT2(E,F)= 1
r ∑

r
j=1 cot[π

4 + π
8 (|ϑ2

E
(pj)− ϑ2

F
(pj)|+ |ς2

E
(pj)− ς2

F
(pj)|)]

9 PFCT3 (E,F)= 1
r ∑

r
j=1 cot[π

4 + π
4 (max(|ϑ2

E
(pj)− ϑ2

F
(pj)|, |ς2

E
(pj)− ς2

F
(pj)|, |π2

E
(pj)− π2

F
(pj)|))]

10 PFCT4 (E,F)= 1
r ∑

r
j=1 cot[π

4 + π
8 (|ϑ2

E
(pj)− ϑ2

F
(pj)|+ |ς2

E
(pj)− ς2

F
(pj)|+ |π2

E
(pj)− π2

F
(pj)|))]

The weighted cosine and cotangent measures between two PFSs E and F for weighted vector

[ω1, ω2, ...ωn]T satisfying the condition Σ
j=r
j=1ωj = 1 are also proposed by Wei and wei[44] which are

shown in Table 2.
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Table 2. Cosine and cotangent based weighted similarity measures between PFSs [44]

S. N. Similarity measure

1 WPFC1(E,F) = ∑
r
j=1 ωj[

(ϑ2
E
(pj)ϑ

2
F
(pj)+ς2

E
(pj)ς

2
F
(pj))√

(ϑ2
E
(pj))2+(ς2

E
(pj))2

√
(ϑ2

F
(pj))2+(ς2

F
(pj))2

]

2 WPFC2(E,F)=∑
r
j=1 ωj[

(ϑ2
E
(pj)ϑ

2
F
(pj)+ς2

E
(pj)ς

2
F
(pj)+π2

E
(pj)π

2
F
(pj))√

(ϑ2
E
(pj))2+(ς2

E
(pj))2+(π2

E
(pj))2

√
(ϑ2

F
(pj))2+(ς2

F
(pj))2+(π2

F
(pj))2

]

3 WPFCS1 (E,F)= ∑
r
j=1 ωjcos[π

2 (max(|ϑ2
E
(pj)− ϑ2

F
(pj)|, |ς2

E
(pj)− ς2

F
(pj)|))]

4 WPFCS2 (E,F)= ∑
r
j=1 ωjcos[π

4 (|ϑ2
E
(pj)− ϑ2

F
(pj)|+ |ς2

E
(pj)− ς2

F
(pj)|)]

5 WPFCS3 (E,F) = ∑
r
j=1 ωjcos[π

2 (max(|ϑ2
E
(pj)− ϑ2

F
(pj)|, |ς2

E
(pj)− ς2

F
(pj)|, |π2

E
(pj)− π2

F
(pj)|))]

6 WPFCS4 (E,F) = ∑
r
j=1 ωjcos[π

4 (|ϑ2
E
(pj)− ϑ2

F
(pj)|+ |ς2

E
(pj)− ς2

F
(pj)|+ |π2

E
(pj)− π2

F
(pj)|)]

7 WPFCT1(E,F) = ∑
r
j=1 ωjcot[π

4 + π
4 (max(|ϑ2

E
(pj)− ϑ2

F
(pj)|, |ς2

E
(pj)− ς2

F
(pj)|))]

8 WPFCT2(E,F) = ∑
r
j=1 ωjcot[π

4 + π
8 (|ϑ2

E
(pj)− ϑ2

F
(pj)|+ |ς2

E
(pj)− ς2

F
(pj)|)]

9 WPFCT3 (E,F) = ∑
r
j=1 ωjcot[π

4 + π
4 (max(|ϑ2

E
(pj)− ϑ2

F
(pj)|, |ς2

E
(pj)− ς2

F
(pj)|, |π2

E
(pj)− π2

F
(pj)|))]

10 WPFCT4 (E,F) = ∑
r
j=1 ωjcot[π

4 + π
8 (|ϑ2

E
(pj)− ϑ2

F
(pj)|+ |ς2

E
(pj)− ς2

F
(pj)|+ |π2

E
(pj)− π2

F
(pj)|)]

In 2019 Wang and his coworkers [56] extended cosine and cotangent measures of similarity for

q-ROFSs which are shown in Table 3 and Table 4. The cosine and cotangent similarity and weighted

similarity measures for IFSs and PFSs are the special cases of corresponding similarity measures

defined by Wang and his coworkers [56]. Recently Kirisci [48] created some cosine similarity measures

for Fermatean fuzzy sets which is a special case of q-ROFSs for q=3.

Table 3. Cosine and cotangent based measures of similarity between q-ROFSs [44]

S. N. Similarity measure

1 q − ROFC1(E,F) = 1
r ∑

r
j=1

ϑ
q
E
(pj)ϑ

q
F
(pj)+ς

q
E
(pj)ς

q
F
(pj)

√

(ϑ
q
E
(pj))2+(ς

q
E
(pj))2

√

(ϑ
q
F
(pj))2+(ς

q
F
(pj))2

2 q − ROFC2(E,F) = 1
r ∑

r
j=1[

(ϑ
q
E
(pj)ϑ

q
F
(pj)+ς

q
E
(pj)ς

q
F
(pj)+π

q
E
(pj)π

q
F
(pj))

√

(ϑ
q
E
(pj))2+(ς

q
E
(pj))2+(π

q
E
(pj))2

√

(ϑ
q
F
(pj))2+(ς

q
F
(pj))2+(π

q
F
(pj))2

]

3 q − ROFCS1 (E,F) = 1
r ∑

r
j=1 cos[π

2 (max(|ϑq
E
(pj)− ϑ

q
F
(pj)|, |ςq

E
(pj)− ς

q
F
(pj)|))]

4 q − ROFCS2 (E,F) = 1
r ∑

r
j=1 cos[π

4 (|ϑ
q
E
(pj)− ϑ

q
F
(pj)|+ |ςq

E
(pj)− ς

q
F
(pj)|)]

5 q − ROFCS3 (E,F) = 1
r ∑

r
j=1 cos[π

2 (max(|ϑq
E
(pj)− ϑ

q
F
(pj)|, |ςq

E
(pj)− ς

q
F
(pj)|, |πq

E
(pj)− π

q
F
(pj)|))]

6 q − ROFCS4 (E,F) = 1
r ∑

r
j=1 cos[π

4 (|ϑ
q
E
(pj)− ϑ

q
F
(pj)|+ |ςq

E
(pj)− ς

q
F
(pj)|+ |πq

E
(pj)− π

q
F
(pj)|)]

7 q − ROFCot1(E,F) = 1
r ∑

r
j=1 cot[π

4 + π
4 (max(|ϑq

E
(pj)− ϑ

q
F
(pj)|, |ςq

E
(pj)− ς

q
F
(pj)|))]

8 q − ROFCot2(E,F) = 1
r ∑

r
j=1 cot[π

4 + π
8 (|ϑ

q
E
(pj)− ϑ

q
F
(pj)|+ |ςq

E
(pj)− ς

q
F
(pj)|)]

9 q − ROFCot3(E,F)= 1
r ∑

r
j=1 cot[π

4 + π
4 (max(|ϑq

E
(pj)− ϑ

q
F
(pj)|, |ςq

E
(pj)− ς

q
F
(pj)|, |πq

E
(pj)− π

q
F
(pj)|))]

10 q − ROFCot4 (E,F) = 1
r ∑

r
j=1 cot[π

4 + π
8 (|ϑ

q
E
(pj)− ϑ

q
F
(pj)|+ |ςq

E
(pj)− ς

q
F
(pj)|+ |πq

E
(pj)− π

q
F
(pj)|))]
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Table 4. Cosine and cotangent based weighted similarity measures between q-ROFSs [56]

S. N. Similarity measure

1 q − ROFWC1(E,F) = ∑
r
j=1 ωj[

(ϑ
q
E
(pj)ϑ

q
F
(pj)+ς

q
E
(pj)ς

q
F
(pj))

√

(ϑ
q
E
(pj))2+(ς

q
E
(pj))2

√

(ϑ
q
F
(pj))2+(ς

q
F
(pj))2

]

2 q − ROFWC2(E,F) = ∑
r
j=1 ωj[

(ϑ
q
E
(pj)ϑ

q
F
(pj)+ς

q
E
(pj)ς

q
F
(pj)+π

q
E
(pj)π

q
F
(pj))

√

(ϑ
q
E
(pj))2+(ς

q
E
(pj))2+(π

q
E
(pj))2

√

(ϑ
q
F
(pj))2+(ς

q
F
(pj))2+(π

q
F
(pj))2

]

3 q − ROFWCS1 (E,F) = ∑
r
j=1 ωjcos[π

2 (max(|ϑq
E
(pj)− ϑ

q
F
(pj)|, |ςq

E
(pj)− ς

q
F
(pj)|))]

4 q − ROFWCS2 (E,F) = ∑
r
j=1 ωjcos[π

4 (|ϑ
q
E
(pj)− ϑ

q
F
(pj)|+ |ςq

E
(pj)− ς

q
F
(pj)|)]

5 q − ROFWCS3 (E,F) = ∑
r
j=1 ωjcos[π

2 (max(|ϑq
E
(pj)− ϑ

q
F
(pj)|, |ςq

E
(pj)− ς

q
F
(pj)|, |πq

E
(pj)− π

q
F
(pj)|))]

6 q − ROFWCS4 (E,F) = ∑
r
j=1 ωjcos[π

4 (|ϑ
q
E
(pj)− ϑ

q
F
(pj)|+ |ςq

E
(pj)− ς

q
F
(pj)|+ |πq

E
(pj)− π

q
F
(pj)|)]

7 q − ROFWCot1(E,F) = ∑
r
j=1 ωjcot[π

4 + π
4 (max(|ϑq

E
(pj)− ϑ

q
F
(pj)|, |ςq

E
(pj)− ς

q
F
(pj)|))]

8 q − ROFWCot2(E,F) = ∑
r
j=1 ωjcot[π

4 + π
8 (|ϑ

q
E
(pj)− ϑ

q
F
(pj)|+ |ςq

E
(pj)− ς

q
F
(pj)|)]

9
q − ROFWCot3 (E,F) =

∑
r
j=1 ωjcot[π

4 + π
4 (max(|ϑq

E
(pj)− ϑ

q
F
(pj)|, |ςq

E
(pj)− ς

q
F
(pj)|, |πq

E
(pj)− π

q
F
(pj)|))]

10
q − ROFWCot4 (E,F) =

∑
r
j=1 ωjcot[π

4 + π
8 (|ϑ

q
E
(pj)− ϑ

q
F
(pj)|+ |ςq

E
(pj)− ς

q
F
(pj)|+ |πq

E
(pj)− π

q
F
(pj)|)]

4. Cosine and cotangent similarity measures for (m,n)-ROFSs

The (m,n)-ROFSs described by the degree of membership and non-membership, for which sum

of m-th power of membership degree and n-th power of non-membership degree is lies between 0

and 1,is more general than the IFSs , PFSs and q-ROFSs and can describe more vague and imprecise

information. In other words, the (m,n)-ROFSs can deal with the MADM and MCDM problems

which IFSs, PFSs and q-ROFSs cannot and it is clear that IFSs, PFSs, and q-ROFSs are the special

the (m,n)-ROFSs, which indicates (m,n)-ROFSs can be more effective and powerful tool to deal with

vagueness and impreciseness involved in MADM and MCDM problems. In this section we shall

propose the (m,n)-rung orthopair fuzzy cosine similarity measures and (m,n)-rung orthopair fuzzy

cotangent similarity measures under (m,n)-ROFSs environment which are new extensions of the

similarity measures of IFSs, PFSs and q-ROFSs.

4.1. Cosine similarity measures for (m,n)-ROFSs

In this section, a cosine similarity measure and a weighted cosine similarity measure with

(m,n)-ROFSs information are created in an analogous manner to the cosine similarity measure and

weighted cosine similarity measure for IFSs, PFSs and q-ROFSs.

Definition 5. Let P = {p1, p2, ...pr} be a fixed set. Assume E = {〈pj, ϑE(pj), ςE(pj)〉|pj ∈ P} and F =

{〈pj, ϑF(pj), ςF(pj)〉|pj ∈ P} be two (m,n)-ROFSs of P. Then the (m,n)-ROFSs cosine measure (m, n)−
ROFC1 between E and F is defined as:

(m, n)− ROFC1(E,F) = 1
r ∑

r
j=1

ϑm
E
(pj)ϑ

m
F
(pj)+ςn

E
(pj)ς

n
F
(pj)√

(ϑm
E
(pj))2+(ςn

E
(pj))2

√
(ϑm

F
(pj))2+(ςn

F
(pj))2

(1)

Remark 4. The cosine measures IFC1(E,F) (resp. PFC1(E,F), q − ROFC1(E,F)) for IFSs (resp. PFSs,

q-ROFSs) are the special cases of cosine similarity measures of (m, n)− ROFC1(E,F) of (m,n)-ROFSs for

m,n=1,1 (resp. m,n=2,2; m,n=q,q).

Proposition 2. Let P = {p1, p2, ...pr} and E,F ∈ (m, n)− ROFS(P). Then the cosine similarity measure of

(m, n)− ROFC1(E,F) satisfies the following conditions:
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(i) 0 ≤ (m, n)− ROFC1(E,F) ≤ 1.
(ii) (m, n)− ROFC1(E,F) = (m, n)− ROFC1(F,E).

(iii) E = F ⇒ (m, n)− ROFC1(E,F) = 1.

Proof. The proofs of (i) and (ii) are obvious.

(iii) If E = F . Then ϑE(pj) = ϑF(pj) and ςE(pj) = ςF(pj) for j= 1,2,. . . n. Thus from equation (1) we

obtain that (m, n)− ROFC1(E,F) = 1

Proposition 3. Let P = {p1, p2, ...pr} and E,F ∈ (m, n)− ROFS(P). Then the distance measure of angle

defined as

d(E,F) = arccos((m, n)− ROFC1(E,F))

Meets the specified conditions:

(i) d(E,F) ≥ 0,
(ii) E = F ⇒ d(E,F)=0.

(iii) d(E,F) = d(F,E).
(iv) d(E,G) ≤ d(E,F) + d(F,G) if E ⋐ F ⋐ G for any G ∈ (m, n)− ROFS(P).

Proof. Proofs of conditions (i),(ii) and (iii) follows from Proposition2. (iv) Suppose that E ⊆ F ⊆ G for

any (m.n)-ROFS G = {〈pj, ϑT(pj), ςT(pj)〉|pj ∈ P} over P. Since Equation (1) is a sum of terms, it is

appropriate to examine the distance measures based on the angle between the vectors:

dj(E(pj),F(pj)) = arccos((m, n)− ROFC1
j (E(pj),F(pj))),

dj(E(pj),G(pj)) = arccos((m, n)− ROFC1
j (E(pj),G(pj))),

dj(F(pj),G(pj)) = arccos((m, n)− ROFC1
j (F(pj),G(pj))),

(j = 1, 2, . . . r). Where,

(m, n)− ROFC1
j (E(pj),F(pj) =

ϑm
E
(pj)ϑ

m
F
(pj)+ςn

E
(pj)ς

n
F
(pj)√

(ϑm
E
(pj))2+(ςn

E
(pj))2

√
(ϑm

F
(pj))2+(ςn

F
(pj))2

(m, n)− ROFC1
j (E(pj),G(pj) =

ϑm
E
(pj)ϑ

m
G
(pj)+ςn

E
(pj)ς

n
G
(pj)√

(ϑm
E
(pj))2+(ςn

E
(pj))2

√
(ϑm

G
(pj))2+(ςn

G
(pj))2

(m, n)− ROFC1
j (F(pj),G(pj) =

ϑm
F
(pj)ϑ

m
G
(pj)+ςn

F
(pj)ς

n
G
(pj)√

(ϑm
F
(pj))2+(ςn

F
(pj))2

√
(ϑm

G
(pj))2+(ςn

G
(pj))2

For three vectors E(pj) = 〈ϑE(pj), ςE(pj)〉 , F(pj) = 〈ϑF(pj), ςF(pj)〉, G(pj) = 〈ϑG(pj) , ςG(pj)〉
in one plane, if the E(pj) ⊆ F(pj) ⊆ G(pj), j = 1, 2, . . . ,r. Then by triangle inequality we get that

dj(E(pj),G(pj)) ≤ dj(E(pj),F(pj)) + dj(F(pj),G(pj)). Combining the inequality with equation (1),

we can get d(E,G) ≤ d(E,F) + d(F,G). Hence the distance measure of angle d(E,F) satisfies the

property (iv).

Now we define (m,n)-ROFSs cosine measure by considering three terms membership

degree(written as MD), non-membership degree(written as NMD), and indeterminacy

membership(written as IMD) of (m,n)-ROFSs.

Definition 6. Let E = {〈pj, ϑE(pj), ςE(pj)〉|pj ∈ P} and F = {〈pj, ϑF(pj), ςF(pj)〉|pj ∈ P} be two

(m,n)-ROFSs in P. Then (m,n)-rung orthopair fuzzy cosine measure ((m, n) − ROFC2) between E and

F can be expressed as:
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(m, n)− ROFC2(E,F)=

1

r

r

∑
j=1

(

ϑm
E
(pj)ϑ

m
F
(pj) + ςn

E
(pj)ς

n
F
(pj) + π

m+n
2

E
(pj)π

m+n
2

F
(pj)

)

(

(

√

(ϑm
E
(pj))2 + (ςn

E
(pj))2 + (π

m+n
2

E
(pj))2)(

√

(ϑm
F
(pj))2 + (ςn

F
(pj))2 + (π

m+n
2

F
(pj))2)

) (2)

Proposition 4. Consider two (m,n)-ROFSs, denoted by E and F, defined over P. Then the cosine similarity

measure (m, n)− ROFC2(E,F) satisfies the following conditions:

(i) 0 ≤ (m, n)− ROFC2(E,F) ≤ 1.
(ii) (m, n)− ROFC2(E,F) = (m, n)− ROFC2(F,E).

(iii) E = F ⇒ (m, n)− ROFC2(E,F) =1.

Remark 5. The cosine measures IFC2(E,F) (resp. PFC2(E,F), q − ROFC2(E,F)) for IFSs (resp. PFSs,

q-ROFSs) are the special cases of cosine similarity measures (m, n)−ROFC2(E,F) of (m,n)-ROFSs for m,n=1,1

(resp. m,n=2,2; m,n=q,q).

Now we define the (m,n)-ROFSs weighted cosine measures between two (m,n)-ROFSs E and F by

Considering the weighting vector of the elements in (m,n)-ROFSs.

Definition 7. Let P = {p1, p2, ...pr} be a fixed set and E,F ∈ (m, n) − ROFS(P). Assume ω =

(ω1, ω2, . . . , ωn)T , be the weighting vector of the elements pj (j = 1, 2, . . . ,r) satisfies the condition

∑
r
j=1 ωj = 1, ∀ ωj ∈ [0, 1] and j = 1, 2, . . . , r . Then the (m,n)-rung orthopair fuzzy weighted cosine

measures (m, n)− ROFWC1 and (m, n)− ROFWC2 between E and F can be expressed as :

(m, n)− ROFWC1(E,F)=

r

∑
j=1

ωj

(

ϑm
E
(pj)ϑ

m
F
(pj) + ςn

E
(pj)ς

n
F
(pj)

)

(

(
√

(ϑm
E
(pj))2 + (ςn

E
(pj))2)(

√

(ϑm
F
(pj))2 + (ςn

F
(pj))2)

) (3)

(m, n)− ROFWC2(E,F) =

r

∑
j=1

ωj

(

ϑm
E
(pj)ϑ

m
F
(pj) + ςn

E
(pj)ς

n
F
(pj) + π

m+n
2

E
(pj)π

m+n
2

F
(pj)

)

(

(

√

(ϑm
E
(pj))2 + (ςn

E
(pj))2 + (π

m+n
2

E
(pj))2)(

√

(ϑm
F
(pj))2 + (ςn

F
(pj))2 + (π

m+n
2

F
(pj))2)

) (4)

When we take the weighting vector ω = ( 1
r , 1

r , . . . , 1
r )

T , then the weighted cosine similarity

measures (m, n) − ROFWC1(E,F) and (m, n) − ROFWC2(E,F) will reduce to cosine similarity

measures (m, n)− ROFC1(E,F) and (m, n)− ROFC2(E,F) respectively.

Remark 6. The weighted cosine similarity measures WIFCk(E,F) (resp. WPFCk(E,F), q −
ROFWCk(E,F)) for IFSs (resp. PFSs, q-ROFSs) are the special cases of weighted cosine similarity measures

(m, n)− ROFWCk(E,F) (k=1,2) of (m,n)-ROFSs for m,n=1,1 (resp. m,n=2,2; m,n=q,q).

Example 1. Let P = {p1, p2, p3} and

E = {(p1, 0.5, 0.8), (p2, 0.6, 0.4), (p3, 0.8, 0.3)}
F = {(p1, 0.7, 0.6), (p2, 0.8, 0.2), (p3, 0.4, 0.3)}

be two (m,n)-ROFSs over P. Assume m = 4, n=3 and ω = (0.20, 0.45, 0.35)T be a weighting vector of the

elements p1, p2, p3. Then (m, n)− ROFWC1(E,F) = 0.8150899 and (m, n)− ROFWC2(E,F) = 0.8610532.
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Proposition 5. Let E and F be two (m,n)-ROFSs over a fixed set P = {p1, p2, ...pr}. Assume ω =

(ω1, ω2, . . . , ωn)T , be the weighting vector of the elements pj (j = 1, 2, . . . ,r) satisfies the condition ∑
r
j=1 ωj = 1,

∀ ωj ∈ [0, 1] and j = 1, 2, . . . , r. Then the weighted cosine similarity measures (m, n) − ROFWCk(E,F)

(k=1,2) meets the following conditions.

(a) 0 ≤ (m, n)− ROFWCk(E,F) ≤ 1.
(b) (m, n)− ROFWCk(E,F) = (m, n)− ROFWCk(F,E).
(c) E = F ⇒ (m, n)− ROFWCk(E,F) =1.

4.2. Similarity measures of (m,n)-ROFSs based on cosine Function

This section introduces several (m,n)-ROFSs cosine similarity measures between (m,n)-ROFSs,

which are based on cosine function, and explores their properties.

Definition 8. Let P = {pj : j = 1, 2, ...r} and

E = {〈pj, (ϑE(pj), ςE(pj))〉|pj ∈ P}
F = {〈pj, (ϑF(pj), ςF(pj))〉|pj ∈ P}

be two (m,n)-ROFSs over P. Then two (m,n)-ROFSs cosine similarity measures (m, n)− ROFCSk (k=1,2)

between E and F can be expressed as:

(m, n)− ROFCS1(E,F)=

1

r

r

∑
j=1

cos

[

π

2

(

|ϑm
E
(pj)− ϑm

F
(pj)| ∨ |ςn

E
(pj)− ςn

F
(pj)|

)

]

(5)

(m, n)− ROFCS2(E,F)=

1

r

r

∑
j=1

cos

[

π

4

(

|ϑm
E
(pj)− ϑm

F
(pj)|+ |ςn

E
(pj)− ςn

F
(pj)|

)

]

(6)

Proposition 6. Let P = {p1, p2, . . . , pr} and E,F ∈ (m, n)− ROFS(P). Then the (m,n)-rung orthopair

fuzzy cosine similarity measures (m, n)− ROFCSk(E,F) (k = 1, 2) meets the following properties:

(a) 0 ≤ (m, n)− ROFCSk(E,F) ≤ 1.
(b) (m, n)− ROFCSk(E,F) = 1 ⇔ E = F.
(c) (m, n)− ROFCSk(E,F) = (m, n)− ROFCSk(F,E).
(d) If E ⊆ F ⊆ G, ∀G ∈ (m, n)− ROFS(P). Then (m, n)− ROFCSk(E,G) ≤ (m, n)− ROFCSk(E,F)

and (m, n)− ROFCSk(E,G) ≤ (m, n)− ROFCSk(F,G).

Proof. (a) The values of cosine functions lie between 0 and 1, which makes it evident.

(b) If E = F foe any two (m,n)-ROFSs E and F in P = {p1, p2, . . . , pr}. Then for each j=1,2,. . . ,r,

ϑm
E
(pj) = ϑm

F
(pj) and ςn

E
(pj) = ςn

F
(pj). It implies that | ϑm

E
(pj)− ϑm

F
(pj) | = 0 and | ςn

E
(pj)− ςn

F
(pj)

| = 0. Hence (m, n) − ROFCSk(E,F)=1 for k=1,2. Suppose (m, n) − ROFCSk(E,F)=1,k=1,2. Then

| ϑm
E
(pj) − ϑm

F
(pj) | =0 and | ςn

E
(pj) − ςn

F
(pj) | = 0, for all j=1,2,. . . ,r. Since cos(0) =1, there are

ϑm
E
(pj) = ϑm

F
(pj),ς

n
E
(pj) = ςn

F
(pj) (j=1,2,. . . ,r). Hence E = F.

(c)Obvious.

(d) If E(pj) ⊆ F(pj) ⊆ G(pj), ∀ j=1,2,. . . ,r. Then ϑE(pj) ≤ ϑF(pj) ≤ ϑG(pj) and

ςE(pj) ≥ ςF(pj) ≥ ςG(pj), j=1,2,. . . ,r. It follows that ϑm
E
(pj) ≤ ϑm

F
(pj) ≤ ϑm

G
(pj) and
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ςn
E
(pj) ≥ ςn

F
(pj) ≥ ςn

G
(pj). Thus we obtain that,

| ϑm
E
(pj)− ϑm

F
(pj) | ≤ | ϑm

E
(pj)− ϑm

G
(pj) | ,

| ϑm
F
(pj)− ϑm

G
(pj) | ≤ | ϑm

E
(pj)− ϑm

G
(pj) |,

| ςn
E
(pj)− ςn

F
(pj) | ≤ | ςn

E
(pj)− ςn

G
(pj) | ,

| ςn
F
(pj)− ςn

G
(pj) | ≤ | ςn

E
(pj)− ςn

G
(pj) |.

The fact that the cosine function is a decreasing function with the interval [0, π
2 ], therefor we

obtain that (m, n) − ROFCSk(E,G) ≤ (m, n) − ROFCSk(E,F), (m, n) − ROFCSk(E,G) ≤ (m, n) −
ROFCSk(F,G) for k =1,2.

Next, we introduce (m,n)-rung orthopair fuzzy cosine measures based on cosine function. These

measures are obtained by considering MD, NMD, and IMD for two (m,n)-ROFSs E and F of P.

Definition 9. Let P = {pj : j = 1, 2, ...r} and

E = {〈pj, (ϑE(pj), ςE(pj))〉|pj ∈ P}
F = {〈pj, (ϑF(pj), ςF(pj))〉|pj ∈ P}

be the two (m,n)-ROFSs over P. Then two (m,n)-ROFSs cosine similarity measures (m, n)− ROFCSk) (k=3,4)

between E and F by considering MD, NMD and IMD can be expressed as:

(m, n)− ROFCS3(E,F)=

1

r

r

∑
j=1

cos

[

π

2

(

|ϑm
E
(pj)− ϑm

F
(pj)|,∨|ςn

E
(pj)− ςn

F
(pj)|,∨|π

m+n
2

E
(pj)− |π

m+n
2

F
(pj)|

)

]

(7)

(m, n)− ROFCS4(E,F)=

1

r

r

∑
j=1

cos

[

π

4

(

|ϑm
E
(pj)− ϑm

F
(pj)|+ |ςn

E
(pj)− ςn

F
(pj)|+ |π

m+n
2

E
(pj)− |π

m+n
2

F
(pj)|

)

]

(8)

Remark 7. The cosine measures IFCSk(E,F) (resp. PFCSk(E,F), q − ROFWCSk(E,F)) for IFSs (resp.

PFSs, q-ROFSs) are the special cases of cosine measures (m, n)− ROFCSk(E,F) (k=1,2,3,4) of (m,n)-ROFSs

for m,n=1,1 (resp. m,n=2,2; m,n=q,q).

We will now introduce the (m,n)-ROFSs weighted cosine measures between two (m,n)-ROFSs,

which are based on cosine functions. E and F by taking into account the weighting vector associated

with the elements in (m,n)-ROFSs.

Definition 10. Let E = {〈pj, ϑE(pj), ςE(pj)〉|pj ∈ P} and F = {〈pj, ϑF(pj), ςF(pj)〉|pj ∈ P} be two

(m,n)-ROFSs in P and ω = (ω1, ω2, . . . , ωr)T be the weighting vector of the elements pj (j = 1, 2, . . . ,

r) satisfies the condition ∑
r
j=1 ω = 1, ∀ ωj ∈ [0, 1] and j = 1, 2, . . . , r. Then the (m,n)-ROFSs weighted cosine

measures (m, n)− ROFWCSk, (k=1,2,3,4) between E and F on bases of cosine functions can be represented as :

(m, n)− ROFWCS1(E,F)=

1

r

r

∑
j=1

ωjcos

[

π

2

(

|ϑm
E
(pj)− ϑm

F
(pj)| ∨ |ςn

E
(pj)− ςn

F
(pj)|

)

]

(9)
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(m, n)− ROFWCS2(E,F)=

1

r

r

∑
j=1

ωjcos

[

π

4

(

|ϑm
E
(pj)− ϑm

F
(pj)|+ |ςn

E
(pj)− ςn

F
(pj)|

)

]

(10)

(m, n)−−ROFWCS3 (E,F) =

1

r

r

∑
j=1

ωjcos

[

π

2

(

|ϑm
E
(pj)− ϑm

F
(pj)| ∨ |ςn

E
(pj)− ςn

F
(pj)| ∨ |π

m+n
2

E
(pj)− π

m+n
2

F
(pj)|

)

]

(11)

(m, n)− ROFWCS4(E,F)=

1

r

r

∑
j=1

ωjcos

[

π

4

(

|ϑm
E
(pj)− ϑm

F
(pj)|+ |ςn

E
(pj)− ςn

F
(pj)|+ |π

m+n
2

E
(pj)− π

m+n
2

F
(pj)|

)

]

(12)

When the weighting vector ωj = 1
r , j = 1, 2, . . . r, then for k=1,2,3,4 we have (m,n)-

ROFWCSk(E,F) = (m,n)-ROFCSk(E,F).

Remark 8. The weighted cosine similarity measures WIFCSk(E,F) (resp. WPFCSk(E,F), q −
ROFWCSk(E,F)) for IFSs (resp. PFSs, q-ROFSs) are the special cases of weighted cosine measures

(m, n)− ROFWCSk(E,F)(k=1,2,3,4) of (m,n)-ROFSs for m,n=1,1 (resp. m,n=2,2; m,n=q,q).

Example 2. Let P = {p1, p2, p3} and

E = {(p1, 0.8, 0.5), (p2, 0.4, 0.6), (p3, 0.3, 0.8)}
F = {(p1, 0.6, 0.7), (p2, 0.2, 0.8), (p3, 0.4, 0.3)}

be two (m,n)-ROFSs over P. Assume m = 4, n=6 and ω = (0.25, 0.55, 0.20)T be the weights for the elements

p1, p2, p3. Then:

(m, n)− ROFWCS1(E,F) = 0.928372534.

(m, n)− ROFWCS2(E,F) = 0.974350944.

(m, n)− ROFWCS3(E,F) = 0.928372534.

(m, n)− ROFWCS4(E,F) = 0.928372534.

Proposition 7. Assume that there are any two (m,n)-ROFSs E and F in P = {p1, p2, . . . , pr}, the

(m,n)-ROFSs weighted cosine similarity measures (m,n)-ROFWCSk (E,F)(k = 1, 2,3,4) should satisfy the

properties (a)–(b):

(a) 0 ≤ (m, n)− ROFWCSk(E,F) ≤ 1.
(b) (m, n)− ROFWCSk(E,F) = 1 ⇔ E = F.
(c) (m, n)− ROFWCSk(E,F)

= (m, n)− ROFWCSk(F,E).
(d) If E ⊆ F ⊆ G, ∀ G ∈ (m, n)− ROFS(P). Then (m,n)-ROFWCSk (E,G) ≤(m,n)-ROFWCSk (E,F),

(m,n)-ROFWCSk (E,G) ≤ (m,n)-ROFWCSk (F,G).

4.3. Cotangent based similarity measures for (m,n)-ROFSs

Definition 11. Let P = {p1, p2, ...pr} and

E= {〈pj, (ϑE(pj), ςE(pj))〉|pj ∈ P} ,

F= {〈pj, (ϑF(pj), ςF(pj))〉|pj ∈ P} be two (m,n)-ROFSs. Then (m,n)-ROFSs cotangent measures

(m, n)− ROFCot1 and (m, n)− ROFCot2 between E and F are defined as follows:
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(m, n)− ROFCot1(E,F)=

1

r

r

∑
j=1

cot

[

π

4
+

π

4

(

|ϑm
E
(pj)− ϑm

F
(pj)| ∨ |ςn

E
(pj)− ςn

F
(pj)|

)

]

(13)

(m, n)− ROFCot2(E,F)=

1

r

r

∑
j=1

cot

[

π

4
+

π

8

(

|ϑm
E
(pj)− ϑm

F
(pj)|+ |ςn

E
(pj)− ςn

F
(pj)|

)

]

(14)

We will now incorporate the MD, NMD and IMD - all of which are components of (m,n)-ROFSs -

to define two additional cotangent similarity measures between two (m,n)-ROFSs.

Definition 12. Let P = {pj : j = 1, 2, . . . , r} and

E = {〈pj, (ϑE(pj), ςE(pj)〉 : pj ∈ P}F = {〈pj, (ϑF(pj), ςF(pj))〉 : pj ∈ P}

. be two (m,n)-ROFSs in P. Then the (m,n)-ROFSs cotangent similarity measures (m, n)− ROFCot3 and

(m, n)− ROFCot4 between E and F can be expressed as:

(m, n)− ROFCot3(E,F) =

1

r

r

∑
j=1

cot

[

π

4
+

π

4

(

|ϑm
E
(pj)− ϑm

F
(pj)| ∨ |ςn

E
(pj)− ςn

F
(pj)| ∨ |π

m+n
2

E
(pj)− π

m+n
2

F
(pj)|

)

]

(15)

(m, n)− ROFCot4 (E,F) =

1

r

r

∑
j=1

cot

[

π

4
+

π

8

(

|ϑm
E
(pj)− ϑm

F
(pj)|+ |ςn

E
(pj)− ςn

F
(pj)|+ |π

m+n
2

E
(pj)− π

m+n
2

F
(pj)|

)

]

(16)

Remark 9. The cotangent measures IFCTk(E,F) (resp. PFCTk(E,F), q − ROFCotk(E,F)) for IFSs

(resp. PFSs, q-ROFSs) are the special cases of cotangent measures (m, n) − ROFCotk(E,F) (k=1,2,3,4)

of (m,n)-ROFSs for m,n=1,1 (resp. m,n=2,2; m,n=q,q).

We will now introduce the (m,n)-ROFSs weighted cotangent measures between two (m,n)-ROFSs

E and F by taking into account the weighting vector associated with the elements in (m,n)-ROFSs.

Definition 13. Let P = {p1, p2, ...pr}be a fixed set and E = {〈pj, ϑE(pj), ςE(pj)〉|pj ∈ P} , F =

{〈pj, ϑF(pj), ςF(pj)〉|pj ∈ P} be two (m,n)-ROFSs in P. Assume ω = (ω1, ω2, . . . , ωr)T be the weighting

vector of the elements pj (j = 1, 2, . . . , r) satisfies the condition ∑
r
j=1 ωj = 1, ∀ ωj ∈ [0,1] and j = 1, 2, . . . , r.

Then the (m,n)-ROFSs weighted cotangent measures (m, n) − ROFWCotk (k=1,2,3,4) between E and

F are expressed as follows:

(m, n)− ROFWCot1(E,F)=

r

∑
j=1

ωjcot

[

π

4
+

π

4

(

|ϑm
E
(pj)− ϑm

F
(pj)| ∨ |ςn

E
(pj)− ςn

F
(pj)|

)

]

(17)
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(m, n)− ROFWCot2(E,F)=

r

∑
j=1

ωjcot

[

π

4
+

π

8

(

|ϑm
E
(pj)− ϑm

F
(pj)|+ |ςn

E
(pj)− ςn

F
(pj)|

)

]

(18)

(m, n)− ROFWCot3(E,F)=

r

∑
j=1

ωjcot

[

π

4
+

π

4

(

|ϑm
E
(pj)− ϑm

F
(pj)| ∨ |ςn

E
(pj)− ςn

F
(pj)| ∨ |π

m+n
2

E
(pj)− π

m+n
2

F
(pj)|

)

]

(19)

(m, n)− ROFWCot4(E,F) =

r

∑
j=1

ωjcot

[

π

4
+

π

8

(

|ϑm
E
(pj)− ϑm

F
(pj)|+ |ςn

E
(pj)− ςn

F
(pj)|+ |π

m+n
2

E
(pj)− π

m+n
2

F
(pj)|

)

]

(20)

When we let weighting vector ω = ( 1
r , 1

r , . . . 1
r )

T , then (m, n)− ROFWCotk(E,F) coincides with

(m, n)− ROFCotk(E,F), for k=1,2,3,4.

Example 3. Let X = {p1, p2, p3} and

E = {(p1, 0.4, 0.9), (p2, 0.9, 0.3), (p3, 0.9, 0.6)}
F = {(p1, 0.3, 0.7), (p2, 0.8, 0.3), (p3, 0.7, 0.4)}

be two (m,n)-ROFSs over P. Assume m = 5, n=7 and ω1 = 0.25, ω2 = 0.35 and ω1 =0.40 be the weights for the

elements p1, p2, p3.Then:

(m, n)− ROFWCot1(E,F) = 0.529085874.

(m, n)− ROFWCot2(E,F) = 0.720632612.

(m, n)− ROFWCot3(E,F) = 0.525336422.

(m, n)− ROFWCot4(E,F) = 0.525336422.

Remark 10. The weighted cotangent similarity measures WIFCTk(E,F) (resp. WPFCTk(E,F), q −
ROFWCotk(E,F) ) for IFSs (resp. PFSs, q-ROFSs) are the special cases of weighted cotangent measures

(m, n)− ROFWCotk(E,F)(k=1,2,3,4) of (m,n)-ROFSs for m,n=1,1 (resp. m,n=2,2; m,n=q,q).

5. Comparisons of existing similarity measures and proposed similarity measures

In this section, a comparison is made between the existing cosine and cotangent similarity

measures for IFSs, PFSs, and q-ROFSs, and the newly established cosine and cotangent similarity

measures for (m,n)-ROFSs. This comparison is based on the pattern recognition and medical diagnosis

examples of Wei and Wei[44], as well as the building material classification example of Wang and his

colleagues[56].

Example 4. let’s take the example of [44]and the relevant data is presented in Table 5 in which suppose we have

three known patterns Ei (i=1,2,3), represented by IFSs Ei (i=1,2,3) in the feature space P = {p1, p2, p3}. We

also have an unknown pattern E that needs to be recognized. The weight are considered as w = (0.5, 0.3, 0.2)T .
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Table 5. Intuitionistic fuzzy data for patterns [44]

Feature E1 E2 E3 E

p1 (1.0, 0.0) (0.8, 0.1) (0.6, 0.2) (0.5, 0.3)
p2 (0.8, 0.0) (1.0, 0.0) (0.8, 0.0) (0.6, 0.2)
p3 (0.7, 0.1) (0.9, 0.1) (1.0, 0.0) (0.8, 0.1)

For the given pattern recognition, example for IFSs, Table 6 shows the results of weighted WIFSs

obtained by the wei et. al [44] and Table 7 shows the proposed weighted cosine and cotangent

similarity measures (m,n)-ROFWSs for m = 5 and n = 7, with similar weighted values of 0.5, 0.3, and

0.2,, respectively. Where, it is clearly visible that for all ten weighted similarity measures, (E3,E) has

the largest value, indicating that the unknown pattern E is most similar to E3. Suggesting that the

unknown pattern M is most similar to E3.

Table 6. Weighted intuitionistic fuzzy similarity measures for the data of Table 5

Weighted Similarity measures (E1,E) (E2,E) (E3,E)

WIFC1 0.9133 0.9419 0.9711

WIFC2 0.8884 0.9191 0.9712

WIFCS1 0.8364 0.8857 0.9693

WIFCS2 0.8892 0.9286 0.9736

WIFCS3 0.8364 0.8857 0.9693

WIFCS4 0.8364 0.8857 0.9693

WIFCT1 0.5958 0.6300 0.6696

WIFCt2 0.6576 0.6751 0.7520

WIFCT3 0.5958 0.6300 0.7903

WIFCT4 0.5958 0.6300 0.7903

Table 7. (m,n)-ROFW similarity measures for the data of Table 5 for m=5,n=7

Weighted Similarity measures (E1,E) (E2,E) (E3,E)

(m, n)− ROFWC1 0.999987 0.999987 0.999988

(m, n)− ROFWC2 0.489463 0.655952 0.866716

(m, n)− ROFWCS1 0.495459 0.666520 0.874302

(m, n)− ROFWCS2 0.854733 0.906927 0.966661

(m, n)− ROFWCS3 0.495459 0.666520 0.874302

(m, n)− ROFWCS4 0.495459 0.666520 0.874302

(m, n)− ROFWCot1 0.367989 0.457421 0.717863

(m, n)− ROFWCot2 0.636302 0.692085 0.842296

(m, n)− ROFWCot3 0.367989 0.457421 0.717863

(m, n)− ROFWCot4 0.367989 0.457421 0.717863

Example 5. Consider[44] a set of symptoms S = {s1, s2, s3, s4, s5}, where s1 corresponds to Temperature,

s2 to Headache, s3 to Stomach Pain, s4 to Cough, and s5 to Chest Pain. Let D1 (Viral Fever), D2 (Malaria),

D3 (Typhoid), D4 (Stomach Problem), and D5 (Chest Problem) be the five possible diagnoses represented by

(m, n) − ROFSs, as shown in Table 8. The weights w = (0.15, 0.25, 0.20, 0.15, 0.25)T are assigned to the

symptoms.
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Figure 1. Comparison graph between weighted WIFSs and the proposed weighted (m,n)-ROFWSs. In

this figure it is evident that the value in weighted WIFSs and proposed weighted (m,n)-ROFWSs for

m, n = 5, 7 show that E3 has the largest and most consistent value. This indicates that the unknown

pattern E is most similar to E3.

Table 8. Pythagorean fuzzy data for pattern of disease[44]

symptom D1 D2 D3 D4 D5 E

s1 (0.4, 0.0) (0.7, 0.0) (0.3, 0.3) (0.1, 0.7) (0.1, 0.8) (0.8, 0.1)
s2 (0.3, 0.5) (0.2, 0.6) (0.6, 0.1) (0.2, 0.4) (0.0, 0.8) (0.6, 0.1)
s3 (0.1, 0.7) (0.0, 0.9) (0.2, 0.7) (0.0, 0.8) (0.2, 0.8) (0.2, 0.8)
s4 (0.4, 0.3) (0.7, 0.0) (0.2, 0.6) (0.2, 0.7) (0.2, 0.8) (0.6, 0.1)
s5 (0.1, 0.7) (0.1, 0.8) (0.1, 0.9) (0.2, 0.7) (0.8, 0.1) (0.1, 0.6)

In this medical example containing all values of pythagorean fuzzy sets, Table 9 shows the results

obtained using ten weighted pythagorean similarity measures (WPFSs). The calculated results reveal

inconsistencies in (D3,E), (D2,E), and (D1,E), making it difficult to accurately diagnose the disease.

Therefore, a specific disease should be considered.

Table 9. Weighted pythagorean fuzzy similarity measures for the data of Table 8

Weighted Similarity measures (D1,E) (D2,E) (D3,E) (D4,E) (D5,E)

WPFC1 0.8237 0.7840 0.8283 0.3512 0.2360
WPFC2 0.8865 0.8904 0.8116 0.6629 0.5205

WPFCS1 0.9191 0.9250 0.8599 0.7627 0.6392
WPFCS2 0.9623 0.9554 0.9449 0.8115 0.7502
WPFCS3 0.9151 0.9244 0.8599 0.7601 0.6392

WPFCS4 0.9151 0.9244 0.8599 0.7601 0.6392

WPFCT1 0.6965 0.6917 0.6623 0.5193 0.4393
WPFCT2 0.7861 0.7802 0.7778 0.5844 0.5210
WPFCT3 0.6876 0.6898 0.6623 0.5096 0.4393

WPFCT4 0.6876 0.6898 0.6623 0.5096 0.4393

Table 10 displays the results obtained using the proposed (m, n)− ROFWSs method with m = 4

and n = 6. These results demonstrate that all ten weighted similarity measures identify patient D with

disease D1, with the highest degree of weighted similarity between E and D1. These findings suggest

that the proposed method is reliable and accurate in diagnosing the patient’s disease.
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Table 10. Weighted(m,n)-ROFSs for the data of Table 8 for m=4,n=6

Weighted Similarity measures (D1,E) (D2,E) (D3,E) (D4,E) (D5,E)

(m,n)-ROFWC1 0.8650 0.7586 0.8545 0.3443 0.2015
(m,n)-ROFWC2 0.9666 0.9527 0.8921 0.9208 0.8941

(m,n)-ROFWCS1 0.9603 0.9556 0.8939 0.9207 0.8866
(m,n)-ROFWCS2 0.9896 0.9877 0.9720 0.9557 0.9450
(m,n)-ROFWCS3 0.9602 0.9556 0.8939 0.9207 0.8866

(m,n)-ROFWCS4 0.9602 0.9556 0.8939 0.9207 0.8866

(m,n)-ROFWCot1 0.7951 0.7511 0.7149 0.7256 0.6619
(m,n)-ROFWCot2 0.8877 0.8589 0.8372 0.7980 0.7523
(m,n)-ROFWCot3 0.7947 0.7511 0.7149 0.7251 0.6619

(m,n)-ROFWCot4 0.7947 0.7511 0.7149 0.7251 0.6619

Upon comparing the results presented in Tables 9 and 10, it becomes evident that the proposed

weighted (m, n)− ROFWSs method is more accurate than the method proposed by Wei et al. [44] in

assigning Disease to the consistent class (D1,E). Therefore, our proposed method is more reliable and

accurate.

Figure 2. Comparison graph between weighted WPFSs and the proposed weighted (m,n)-ROWFSs.

In this Figure it is evident that the WPFSs values in Table 9 are inconsistent and proposed weighted

(m,n)-ROFWSs for m, n = 4, 6 show that D1 has the largest and most consistent values. This indicates

that the Patient E is having the disease to D1 which viral fever.

Example 6. Let us consider[56] a scenario where there are five known building construction materials,

represented by q-ROFSs Zi (i=1,2,3,4,5), in the feature space P = {p1, p2, p3, p4, p5}, as shown in Table

11. We also have an unknown building material Z that needs to be classified into one of the following classes: Z1,

Z2, Z3, Z4, Z5. Assuming that the weights w =( 0.15, 0.20,0.25,0.10,0.30)T , we aim to determine the degree of

similarity between Z3 and E.
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Table 11. q-ortho pair fuzzy data for pattern of material (for q=3)[56]

Feature Z1 Z2 Z3 Z4 Z5 Z

p1 (0.5, 0.8) (0.6, 0.7) (0.3, 0.4) (0.5, 0.3) (0.4, 0.7) (0.7, 0.6)
p2 (0.6, 0.4) (0.7, 0.3) (0.7, 0.5) (0.4, 0.4) (0.2, 0.6) (0.8, 0.2)
p3 (0.8, 0.3) (0.6, 0.2) (0.9, 0.3) (0.6, 0.2) (0.5, 0.4) (0.4, 0.3)
p4 (0.6, 0.9) (0.8, 0.6) (0.4, 0.8) (0.4, 0.7) (0.5, 0.3) (0.7, 0.8)
p5 (0.1, 0.4) (0.3, 0.5) (0.2, 0.3) (0.2, 0.6) (0.4, 0.2) (0.4, 0.2)

the results represented in Table 12 indicate that, degree of weighted similarity between Z3 and E is

the largest among the ten weighted similarity measures, for all building materials except q − ROFWC1.

Therefore, based on the principle of maximum weighted The q-ROFSs smililarity, the ten similarity

measures can define the unknown building material E as being similar to the known building material

E2.

Table 12. q-ROF weighted similarity measures for the data of Table 11 for q=3

Weighted similarity measure (Z1,Z) (Z2,Z) (Z3,Z) (Z4,Z) (Z5,Z)

q − ROFWC1 0.6728 0.7515 0.7553 0.6584 0.7336
q − ROFWC2 0.8457 0.8901 0.8937 0.8406 0.8735

q − ROFWCS1 0.8962 0.9673 0.8398 0.9114 0.8976
q − ROFWCS2 0.9601 0.9838 0.9487 0.9621 0.9464
q − ROFWCS3 0.8962 0.9673 0.8299 0.8986 0.8910

q − ROFWCS4 0.8961 0.9693 0.8830 0.8883 0.8830

q − ROFWCot1 0.6740 0.7831 0.6478 0.6735 0.7474
q − ROFWCot2 0.7740 0.8482 0.7700 0.7733 0.8065
q − ROFWCot3 0.6740 0.7831 0.6356 0.6522 0.7324

q − ROFWCot4 0.6727 0.7866 0.6356 0.6389 0.7284

Table 13 shows the results obtained by the proposed weighted similarity measures (m, n) −
ROFWSs for m = 4 and n = 3. Based on these results, it is evident in table [13] that all ten similarity

measures allocate unknown building material E to building material E2, with the degree of weighted

similarity between E and E2 being the largest. This suggests that the proposed weighted (m, n)−
ROFWSs method is accurate in allocating unknown building materials to known building materials.

Table 13. Weighted (m,n)-ROFSs for the data of Table 11 for m=4,n=3.

Weighted similarity measure (Z1,Z) (Z2,Z) (Z3,Z) (Z4,Z) (Z5,Z)

(m, n)− ROFWC1 0.7353 0.7620 0.7334 0.5957 0.6426
(m, n)− ROFWC2 0.9008 0.9527 0.8244 0.8947 0.8481

(m, n)− ROFWCS1 0.9073 0.9648 0.8614 0.9203 0.8930
(m, n)− ROFWCS2 0.9661 0.9828 0.9557 0.9669 0.9417
(m, n)− ROFWCS3 0.9073 0.9648 0.8503 0.8906 0.8590

(m, n)− ROFWCS4 0.9073 0.9648 0.8503 0.8906 0.8590

(m, n)− ROFWCot1 0.6726 0.7819 0.6717 0.6936 0.7215
(m, n)− ROFWCot2 0.7853 0.8515 0.7818 0.7895 0.7803
(m, n)− ROFWCot3 0.6497 0.7664 0.6277 0.6119 0.6500

(m, n)− ROFWCot4 0.6530 0.7704 0.6372 0.6183 0.6603

By comparing the results presented in Tables 12 and 13, it is clear that the proposed weighted

(m, n) − ROFWSs method is more accurate than the method proposed by P. Wang et al. [56] for

assigning unknown building materials to the consistent class (E2,E). Therefore,our results are more

reliable and accurate.
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Figure 3. Comparison graph between weighted q-ROFWSs and proposed weighted (m,n)-ROWFSs. In

this figure it is represented that, the value of weighted q-ROFWSs for all building materials except for

q − ROFWC1, the degree of weighted similarity between (E3,E) is the largest among in ten weighted

similarity measures and proposed weighted (m,n)-ROFWSs for m = 4, n = 3 show that E3 has the

largest and most consistent value. This indicates that the unknown pattern E is most similar to E3.

6. Applications of proposed similarity measures in the classification of plant leaf disease

Plants are an integral component of our ecosystem that provides us with vital resources such as

oxygen and food. However, these crucial organisms are vulnerable to various diseases that can have

a significant impact on their growth and survival. One of the most prevalent problems that plants

face is leaf disease, which can result in a considerable reduction in crop yield and quality, significantly

affecting farmers livelihoods and the economy as a whole. This article aims to explore the issue of

plant leaf disease and the measures that can be taken to prevent and manage it. Plant leaf diseases can

be caused by several factors, such as bacteria, fungi, viruses, and other pathogens. Common types of

leaf diseases include powdery mildew, downy mildew, leaf spot, and rust. These diseases can affect

various parts of plants, including leaves, stems, and fruits, leading to discoloration, distortion, and

wilting. In severe cases, the leaves may fall off, leading to stunted growth and reduced yield. Several

factors can facilitate the spread of plant leaf diseases, such as high humidity, poor air circulation,

and contaminated soil or water. Additionally, using infected planting materials and inadequate crop

management practices can also contribute to the spread of these diseases.

plant leaf diseases pose a significant problem that can adversely affect crop yield and quality,

ultimately impacting the livelihoods of farmers and the economy. Preventing and managing

these diseases require a combination of preventive and curative measures, including the use of

disease-resistant plant varieties, good agricultural practices, and judicious use of chemical treatments.

By taking these measures, we can ensure that our plants remain healthy and continue to provide us

with the essential resources we need for our survival.

Tomato plants are susceptible to various leaf diseases that can negatively impact their growth

and yield. Preventing these diseases can be achieved through various methods, including planting

disease-resistant tomato varieties, keeping the soil well-drained, and avoiding overhead watering.

Additionally, it is important to remove any infected plant parts and keep the garden clean to prevent

the spread of disease.

In the next example we proposed the method to classify the plant leaf disease using proposed

cosine and cotangent similarity and weighted similarity measures.
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Example 7. Let us consider, a set of five symptoms q = {q1, q2, q3, q4, q5} where q1 = Dark brown leaf, q2 =

Brown Leaf, q3 = Yellow leaf,q4 = Patches, q5 = spots and a set of five diagnosis Zi(i = 1, 2, 3, 4, 5), which are

presented by (m,n)-ROFSs, Z1(Gray leaf spot), Z2(Bacterial Canker), Z3(Bacterial Speck), Z4 (Bacterial Spot),

Z5(Early Blight) defined in Table 14 and Consider a sample pattern Z that will be recognized.

Table 14. (m,n)-ortho pair fuzzy data for pattern of plant leaf disease

Symptom Z1 Z2 Z3 Z4 Z5 Z

q1 (0.45, 0.95) (0.25, 0.75) (0.95, 0.55) (0.85, 0.45) (0.15, 0.95) (0.35, 0.70)
q2 (0.95, 0.35) (0.85, 0.25) (0.35, 0.85) (0.65, 0.45) (0.25, 0.65) (0.80, 0.30)
q3 (0.95, 0.65) (0.75, 0.35) (0.95, 0.45) (0.15, 0.95) (0.95, 0.15) (0.70, 0.40)
q4 (0.45, 0.65) (0.15, 0.95) (0.85, 0.15) (0.45, 0.75) (0.95, 0.55) (0.20, 0.90)
q5 (0.55, 0.95) (0.15, 0.85) (0.55, 0.35) (0.95, 0.15) (0.55, 0.95) (0.25, 0.80)

For the given plant leaf disease application,the proposed cosine and cotangent similarity measures

for (m, n)− ROFSs for the values m=5,n=7 and m=6,n=10 are shown in Table 15 and Table 16. The

similarity measures for m=7,n=5 and m=6,n=10 values respectively shows consistent and accurate

results, indicating that all ten proposed similarity measures also shows Z2 as having the largest value,

suggesting that the sampleZis most similar to Z2.

Table 15. (m,n)-ROF similarity measures for data of Table 14 for m=7,n=5.

Similarity Measure (Z1,Z) (Z2,Z) (Z3,Z) (Z4,Z) (Z5,Z)

(m,n)-ROFC1 0.9897 0.9993 0.2821 0.4250 0.6132
(m,n)-ROFC2 0.5495 0.9802 0.5954 0.6602 0.5617

(m,n)-ROFCS1 0.6733 0.9836 0.6536 0.7028 0.6630
(m,n)-ROFCS2 0.9047 0.9958 0.8552 0.8728 0.8472
(m,n)-ROFCS3 0.6400 0.9836 0.6515 0.7028 0.6598

(m,n)-ROFCS4 0.6400 0.9836 0.6515 0.7028 0.6598

(m,n)-ROFCot1 0.3917 0.8477 0.3889 0.4705 0.4105
(m,n)-ROFCot2 0.6402 0.9194 0.5816 0.6395 0.5958
(m,n)-ROFCot3 0.3699 0.8477 0.3875 0.4705 0.4076

(m,n)-ROFCot4 0.3699 0.8477 0.3875 0.4705 0.4076

Table 16. (m,n)-ROF similarity measures for data of Table 14 for m=6,n=10.

Similarity Measure (Z1,Z) (Z2,Z) (Z3,Z) (Z4,Z) (Z5,Z)

(m,n)-ROFC1 0.9698 0.9996 0.2162 0.4117 0.6037
(m,n)-ROFC2 0.6335 0.9703 0.6921 0.7239 0.5816

(m,n)-ROFCS1 0.7015 0.9784 0.7411 0.7358 0.6455
(m,n)-ROFCS2 0.9185 0.9946 0.8969 0.9093 0.8682
(m,n)-ROFCS3 0.6903 0.9784 0.7410 0.7358 0.6394

(m,n)-ROFCS4 0.6903 0.9784 0.7410 0.7358 0.6394

(m,n)-ROFCot1 0.4195 0.8474 0.5111 0.4871 0.3897
(m,n)-ROFCot2 0.6648 0.9193 0.6545 0.6832 0.6141
(m,n)-ROFCot3 0.4110 0.8474 0.5111 0.4871 0.3847

(m,n)-ROFCot4 0.4110 0.8474 0.5111 0.4871 0.3847
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Figure 4. Results of proposed (m,n)-ROFSs for two Different values of m and n. This figure represents

a graph for ten similarity measures of (m,n)-ROWFs for different m, n = 5, 7 and m, n = 6, 10, which

shows thatZ2 has the largest value. This suggests that the sample Z is most similar to the disease

category of Z2.

If we consider the weights of w = (0.10, 0.30, 0.25, 0.15, 0.20)T . The proposed weighted cosine

and cotangent similarity measures (m, n)-ROFWSs for m = 7, n = 5,and m = 6, n = 10 are presented

in Table 17 and Table 18 respectively. The accurate and consistent results indicate that all ten proposed

weighted similarity measures also shows Z2 as having the largest value, suggesting that the sample Z

is most similar to Z2.

Table 17. weighted (m,n)-ROFSs for data of Table 14 for m=7,n=5.

Weighted similarity Measure (Z1,Z) (Z2,Z) (Z3,Z) (Z4,Z) (Z5,Z)

(m,n)-ROFWC1 0.9897 0.9991 0.3256 0.4690 0.5595
(m,n)-ROFWC2 0.5483 0.9815 0.6338 0.6444 0.6225

(m,n)-ROFWCS1 0.6789 0.9846 0.6832 0.6876 0.7051
(m,n)-ROFWCS2 0.9042 0.9961 0.8687 0.8699 0.8710
(m,n)-ROFWCS3 0.6384 0.9846 0.6805 0.6876 0.7020

(m,n)-ROFWCS4 0.6384 0.9846 0.6805 0.6876 0.7020

(m,n)-ROFWCot1 0.3958 0.8507 0.4105 0.4704 0.4534
(m,n)-ROFWCot2 0.6401 0.9209 0.5972 0.6447 0.6266
(m,n)-ROFWCot3 0.3696 0.8507 0.4088 0.4704 0.4506

(m,n)-ROFWCot4 0.3696 0.8507 0.4088 0.4704 0.4506
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Table 18. Weighted (m,n)-ROF similarity measures for the data of Table 14 for m,n=6,10.

Weighted similarity Measure (Z1,Z) (Z2,Z) (Z3,Z) (Z4,Z) (Z5,Z)

(m,n)-ROFWC1 0.9773 0.9998 0.2603 0.4557 0.5556
(m,n)-ROFWC2 0.6175 0.9740 0.7352 0.7171 0.6258

(m,n)-ROFWCS1 0.6978 0.9805 0.7789 0.7331 0.6828
(m,n)-ROFWCS2 0.9176 0.9951 0.9099 0.9069 0.8870
(m,n)-ROFWCS3 0.6865 0.9805 0.7788 0.7331 0.6766

(m,n)-ROFWCS4 0.6865 0.9805 0.7788 0.7331 0.6766

(m,n)-ROFWCot1 0.4151 0.8471 0.5444 0.4931 0.4251
(m,n)-ROFWCot2 0.6624 0.9196 0.6736 0.6852 0.6430
(m,n)-ROFWCot3 0.4066 0.8471 0.5443 0.4931 0.4200

(m,n)-ROFWCot4 0.4066 0.8471 0.5443 0.4931 0.4200

Figure 5. Results of proposed weighted (m,n)-ROFWSs for two different values of m and n. this Figure

represents a graph for ten weighted similarity measures of (m,n)-ROWFs for different m, n = 5, 7 and

m, n = 6, 10, which shows thatZ2 has the largest value. This suggests that the sample Z is most similar

to the disease category of Z2.

7. Discussion

By comparing all the results shown in Table 15, Table 16, Table 17 and Table 18 it is clear that for

four different conditions of m and n, we get the most accurate and consistent result, from which we

can easily classify the sample disease leaf Z as belonging to Disease Z2 which is Bacterial canker.

Remark 11. The cosine similarity measures proposed by Ye[31,35] and Shi, Ye[32] and cotangent similarity

measures for IFSs proposed by Tian[33], Rajeshwari and Uma [34] can not classified the plant leaf disease for

(m,n)-rung ortho pair fuzzy information which is not a intuitionistic fuzzy information given in Table 14.

Remark 12. The cosine and cotangent similarity and weighted similarity measures for PFSs respectively listed

in table1 and table 2 are failed to classified the plant leaf disease for (m,n)-ROFSs information which is not

pythagorean fuzzy information given in Table 14.

Remark 13. The cosine and cotangent similarity and weighted similarity measures for q-ROFSs respectively

listed in table3 and table 4 are failed to classified the plant leaf disease for (m,n)-ROFSs information which is not

q-ROFSs information (for q=3) given in Table 14.
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8. Conclusions

The (m,n)-ROFSs is a highly effective generalization of fuzzy structures that is well-suited for

addressing uncertainty and imprecision in decision-making problems. With its m and n parameters,

the (m,n)-ROFS is capable of accommodating a broader range of information than IFS, PFS, FFS, and

q-ROFS for q > 3. This paper presents cosine and cotangent similarity measures, as well as weighted

similarity measures, for (m,n)-ROFSs. The measures established for (m,n)-ROFS information include

those for IFS, PFS, and q-ROFS information as special cases. To assess their effectiveness, we apply

our proposed similarity measures to medical diagnosis, pattern recognition, and building material

problems compare them with existing cosine and cotangent measures for IFSs, PFSs, and q-ROFSs.

Graphical representations are provided to represent the accuracy, reliability and effectiveness of the

established measures. Finally, we present a numerical example to illustrate the practical application of

these similarity measures in plant leaf disease classification. Our findings indicate that our defined

similarity measures are more appropriate and generalizable for real-world problems than existing

measures.
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