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Abstract: This article introduces ten similarity measures that utilize cosine and cotangent functions to
compare (m,n)-rung orthopair fuzzy sets, this a super class of g-rung orthopair fuzzy sets. Further, we
applied our established weighted similarity measures to medical diagnosis, pattern recognition,and
building material problems and also presented the comparison between established measures with
the existing cosine and cotangent measures of g-rung orthopair, pythagorean and intuitionistic
fuzzy sets. Lastly, we considered a numerical example that demonstrates the effective and scientific
application of these similarity measures in plant leaf disease classification. Furthermore, we present
graphical interpretations to demonstrate the effectiveness of our established measures.

Keywords: (m,n)-rung ortho pair fuzzy sets; cosine similarity measure; pattern recognition; plant
leaf Disease

1. Introduction

The fusion of technology and generalized forms of classical sets is very useful to solve many
real world complex problems which involve the vague and uncertain information. A classical set is
defined by its characteristic function from universe of discourse to two point sets {0,1}. When dealing
with intricate issues that encompass vague and uncertain information, classical set theory falls short.
To handle the vagueness and impreciseness in complex problems, fuzzy sets (FSs) was created by
Zadeh[1] as a generalization of classical sets. the application of FS theory extends to multiple fields,
including control theory, artificial intelligence, pattern recognition , database system and medical
diagnosis. In 1986 Atanassov|[2]created intuitionistic fuzzy sets(IFS)s which is a super class of FSs.
After the occurrence of Atanassov[2] paper, several generalizations of IFSs have been appeared in the
literature. In the year 2013 Yager [3] presented a super class of IFSs called pythagorean fuzzy sets
(PFSs). PESs are more extensive than the IFSs and can describe more imprecise and vague information
in decision making process. In 2017, Yager introduced the g-rung orthopair fuzzy sets (q-ROFSs)
[4]. This innovative approach offers a highly effective and powerful tool to manage imprecise and
uncertain information across a wide range of real-world applications and problems. Later in 2019,
Senapati and Yager [5] developed and introduced the concept of Fermatean fuzzy sets (FFSs), which
is a specific instance of g-ROFSs when q=3. Recently Ibrahim and Alshamari[6] initiated the study
of (m,n-rungorthopair fuzzy sets((m,n)-ROFSs) as a super class of -ROFSs. This concept is also
independently investigated by Jun and hur[7] and AI-Shami[8] with the name of (m,n)-fuzzy sets. The
(m,n)-ROFSs is more flexible and effective as compare to g-ROFSs in handling the uncertainty and
vagueness in MADM and MCDM.

The similarity measure is a crucial metric that can evaluate the degree of similarity between
the two objects, making it an essential tool to distinguish diverse patterns in practical applications.
Researchers like Adlassnig[9], Zwick and colleagues[10], Pappis and Karacapilidis [11], Chen and
colleagues [12,13], Zeng and Li[14], Mitchel[15], and others have extensively studied the similarity
measures between fuzzy sets. Their research explores the potential of fuzzy sets to facilitate the
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development of corresponding applications in areas like image processing, medical diagnosis, pattern
recognition, and decision-making. Since the emergence of interval type-2 fuzzy sets (IFSs), several
similarity measures between IFSs have appeared in these literature [16-30]. Some researchers have
investigated and studied these similarity measures between IFSs based on cosine functions, including
Ye [31,35,37], Shi and Ye [32], Zhau and colleagues[36], and Liu and colleagues[38,39]. Others, such as
Tian [33] and Rajarajeswari and Uma [34], have created similarity measures between IFSs based on
cotangent functions and presented their applications in medical diagnosis.

PFES is a powerful tool for depicting vagueness and impreciseness in MADM and MCDM. In the
recent past many researcher such as Garg [40], Zeng, Li and Qin[41],Peng, Yuan, Yang[42], Husain
and Yang[43], Wei and Wei[44] and others presented different similarity measures between PFSs for
solving MADM problems. Recently different similarity measures between FFSs and their applications
in MADM and MCDM have been appeared in the literature [45-49]. The q-ROFSs is a powerful
mathematical tool for handling uncertain, imprecise, and vague information in real-world problems,
surpassing PFS and FFS in terms of capability. In 2019, Peng and Dai[51] introduced a similarity
measure between q-ROFSs that assessed the quality of classroom teaching. Jan and his colleagues[52]
considered the generalized dice similarity between ROFSs. Farhadinia and his team explored a range
of similarity measures for g-ROFSs. Peng and Liu[54] investigated information measures for g-ROFSs.
Additionally, Liu, Chen, and Peng[55] as well as Wang and his team[56] introduced several similarity
measures between q-ROFSs based on cosine and cotangent functions and explored their properties
and applications. The (m,n)-ROFSs through double universes are more flexible and efficient than
the m-ROFS and n-ROFS in discussing the symmetry between multiple objects. In other words,
(m,n)-ROFSs are capable of more effectively addressing MADM problems, including all q-ROFS
decision-making problems as a special case.

The structure of this article is as follows. In section two, a review is presented on generalized
fuzzy structures along with their cosine and cotangent similarity measures. Section three is devoted
to establishing similarity measures and weighted similarity measures between (m,n)-ROFSs based
on cosine and cotangent functions. Section four compares the newly established similarity measures
for (m,n)-ROFSs with existing measures for q-ROFSs, PFSs, and IFSs based on cosine and cotangent
functions. The comparison is made by considering pattern recognition, medical diagnosis, and building
material problems discussed in the literature. In section five, the established similarity measures are
utilized in the classification of plant leaf disease, and the effectiveness and reasonableness of the
proposed measures are demonstrated. Finally, section six concludes in the article with some closing
remarks.

2. Preliminaries

In this section, we will examine different types of generalized fuzzy structures and the cosine and
cotangent similarity measures that are currently in use for these structures. For the remainder of the
paper, we assume that P is a finite, discrete, and non-empty discourse set consisting of r elements,
denoted as p1, pa, ..., pr-

3. Preliminaries

In this section, we will examine different types of generalized fuzzy structures and the cosine and
cotangent similarity measures that are currently in use for these structures. For the remainder of the
paper, we assume that P is a finite, discrete, and non-empty discourse set consisting of r elements,
denoted as py, p2, ..., Pr-

3.1. Generalized fuzzy structures

Definition 1. Let consider this, P be a fixed set. A structure E = {(p,9(p),ce(p)) : p € P} where,
O : P — [0,1] and g : P — [0, 1] denotes the membership (written as MF) and non-membership function
(written as NMF) of IE, is called :
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(a) Intuitionistic fuzzy set (written as IFS) [2] in P if 0 < Og(p) +cr(p) <1, ¥V peP.
(b) Pythagorean fuzzy set (written as PFS)[3] in P if 0 < (ﬁ]E(p))z + (¢r (p))2 <1, VpeP
(c) Fermatean fuzzy set (written as FFS)[5] inPif 0 < (9g(p))® + (ce(p))* <1, V peP

E(P
(d) q-ROFSs [4]inPif 0 < (Og(p))T+ (¢e(p))? <1, V pePandqgeN.

Definition 2. [6-8] A (m,n)-rung orthopair fuzzy set (written as (m,n)-ROFSs) I in an universe of discourse
P is a structure

E = {(p, (Or(p),ce(p))) : p € P}

where Oy : P — [0,1] and ¢ : P — [0, 1] denotes the MF and NMF of E which satisfies the condition

0 < (@e(p)™+ (Ge(p)" <1

VpePandm,n € N.

Remark 1. [6-8] A (m,n)-ROFSs E in IP coincides with IFS (resp. PFSs , FFSs, g-ROFSs ) if m,n=1,1 ( resp.
mmn=2,2, mn=3,3, mn=q,q).

The family of all (m,n)-ROFSs defined over P will be referred by (m,n) — ROFSs(P).

Definition 3. [6-8] For any (m,n)-ROFSs
E = {{p,%(p),¢e(p)) : p € P},
Ey = {(p, %, (p),cE, (p)) : p € P} and
Ey = {(p, Og,(p), 6k, (p)) : p € P} in P

The subset, equality, union, intersection and complement operations over (m,n) — ROFS(X) are defined
as follow:

(@) By € By < g, (p) < Bk,(p) and g, (p) > GE,(p) Vp € P;
(b) El =E < 191E1 = 19E2 and CE, = GE,/

(P, 85, (p) V Vs, (p),
( E E = 1 2 .
B ¢, (P) Nery(p)) :p €P
@) B mEy =4 (PO (P) Ade(p),

GEI(PQ \/Q]E2<P)>mi peP(’
(e) E° = {{(p, (cr(p))m, (Ve(p))= : p € P}.

Proposition 1. [6-8] Let

Er = {{p, 9%, (p) c&,(p)) : p € P} and
Ey = {(p, %,(p), 6k, (p)) : p € P} be two (m,n)-ROFSs on P. Then:

(a) El U Ez Ez ) El

(b) E; ME, = Ey, mE;.

(c) (E)" =Eq.

(d) (EqUE,)¢ = E{ mES.
(e) (P MEy)® = Ef UES.

Definition 4. For each (m,n)-ROFSs E in P, the degree of indeterminacy membership(written as IMD) g (p)
can be expressed as

m(p) = "5/ (1- 86 (p)" + (ca(p))”
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VpeP

Remark 2. The IDM mtg(p) of p € P to IFS(resp. PFSs, FFSs,q-ROFSs) K is a special case of IDM 1t (p) of
p to (mn)-ROFSs E for m=n=1 (resp. m,n=2,2, mn=3,3, m,n=q,q).

Remark 3. Clearly, for each (m,n)-ROFS E in P,

m+n

g (p) + (Be(p)™ + (ce(p))" =1

VpePl

3.2. Cosine and cotangent similarity measures for generalized fuzzy structures

For the calculation of the degree of proximity between any two objects used the cosine and
cotangent similarity measures, which have been applied in numerus MADM and MCDM methods.
The study of cosine measure between two IFSs [E and F are iniatiated by Ye[31]] in 2011. In 2013 Shi and
Ye[32]created new cosine similarity measures for IFSs which are the extension of the measures proposed
by Ye [31] and applied in fault diagnosis of Turbine. In 2016 Ye[35] created two cosine similarity
measures for IFSs based on cosine functions and applied them in MADM. The Cotangent function
based similarity measures for IFSs was created by Tian[33] and Rajeshwari and Uma [34] in 2013. The
weighted cosine and cotangent similarity measures between IFSs are defined by Ye[31], Shi and Ye[32],
Tian[33] and Rajarajeshwari and Umal[34]. In 2018 Wei and wei[44] proposed cosine and cotangent
measures between two PFSs E = {(p;, 9 (p;), ce(p;)) : pj € P} and F = {{p;, 0r(p;), cr(p;)) : p; € P}
over P = {p;: j = 1,2,..r} which are shown in Table 1.

Table 1. Cosine and cotangent based similarity measures between PFSs [44]

S.N. Similarity measure

1 PEC! E,F)=1 (P;) 2 (pj)+6k (pi)sh(
( = / 1 \/ (8%(p))) (GE(P}))Z\/(%(PJ‘))

2 PRCER)= L M e R Y G s

3 PFCS'(E,F)=} ¥/, cos|5 (max(|9%(p;) — 9%(p)|, Ik (pj) — 6&(pj)))]

4 PFCS* (B F)=; Tj_; cos[ T (195 (p)) — 9%(p))| + sk (p)) — 6&(p))])]

5  PFCS® (E,F)=1 ZLl cos[ 5 (max([9%(p;) — 9% (pj)l, l6&(pj) — 62(p)I, |7 (pj) — 7 (pj)]))]
6  PFCS*(E,F)=1 i_; cos[5 (185 (pj) — 9%(pj)| + 6% (pj) — 62 (p))| + I (p)) — 7 (p))])]

7 PFCT'(E,F)=} T cot[F + F (max(|9%(pj) — 95 (p)l. Ik (1)) — ¢k (pj))]
8  PFCT*(E,F)=; iy cot[ + (105 (p)) — 03 (pp)| + ek (p)) — ¢k (pj)])]
9 PFCT® (E,F)=; Xy cot[§ + F (max(16%(p)) — 0% (pj)l, Ik (pj) — 6:(p)l. 7 (1)) — 7& (pj)])]

10 PFCT* (E,F)=; T}y cot[F + F (163 (p)) — 05 (pj)| + Ik (p)) — ¢k (pi)| + 175 (pj) — 7 (pj)]))]

The weighted cosine and cotangent measures between two PFSs E and F for weighted vector
[w1, w3, ...cq]T satisfying the condition Z;z;wj = 1 are also proposed by Wei and wei[44] which are
shown in Table 2.
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Table 2. Cosine and cotangent based weighted similarity measures between PFSs [44]

S.N. Similarity measure

1 WPFCl E,F) = r ) (%(Pi)%(l’j)+€%(l’;)€%‘
(B F) = Zjer 9l 7500 e (e P ()
)

2 WPECEDLa ol (il’?’ﬁﬁ“”iiﬁ,’? V(oé(pm +<g%(<5;))>)2+<n§<p,>)2]

3 WPFCS' (B F)=Y_; wjcos| 5 (max (9% (p;) — 9%(p)|, 16k (pj) — 6 (pj)]))]

4 WPFCS? (B F)= Y_; wjcos[ T (|85 (pj) — 85(p))| + Ik (pj) — ¢ (pj)])]

5  WPFCS® (E,F) = ©}_; wjcos[ 5 (max (8% (p;) — 8% (pj)|, 6% (1)) — ¢k (P, 7% (p)) — 75(pj)]))]

6 WPFCS4(lE,lF)=Z7:1chos[%(lﬂé(p,) 8% (Pl + ls& (p)) — 6k ()| + |7& (p)) — 7 (p))])]

7 WPFCTY(E,F) = Y wjcot[§ + F (max(|0%(pj) — 0% (p)), 16k (p)) — 65 (pj)))]

8  WPFCT*(E,F) =Y, wjcot[§ + F (9% (p) — 05 (pj)| + sk (p)) — cx(p))])]

9  WPFCT? (E,F)=Z}:1chot[% F(max(|19%(pj) — 05 (P, sk (p)) — & (P, 7% (py) — 7 (p))1))]
10 WPECT* (B, F) = Xl wjcot[§ + §(19%(p)) — 92(p)| + l6& (p)) — 6k (p))| + [7&(p}) — & (pj)])]

In 2019 Wang and his coworkers [56] extended cosine and cotangent measures of similarity for
q-ROFSs which are shown in Table 3 and Table 4. The cosine and cotangent similarity and weighted
similarity measures for IFSs and PFSs are the special cases of corresponding similarity measures
defined by Wang and his coworkers [56]. Recently Kirisci [48] created some cosine similarity measures
for Fermatean fuzzy sets which is a special case of q-ROFSs for q=3.

Table 3. Cosine and cotangent based measures of similarity between q-ROFSs [44]

S.N. Similarity measure

1 ROFCl ]E F 1yvr 8 (Pl)ﬂq(p])"'g (p]>€]1<‘(p)
q— ( )= Z] 1 \/ (0% (p)))2+(c% (1) 2\/(19]F(p/ 2+ (ch(py))2
2 q— ROFCZ(E,F) _1 Z]r;l[ (v (P])ﬂuqr(P/)‘*'QE(P]) J)+”gz£1’])”nqr(ﬁf)) ]

VB8 (p) (e () P+ (e p, ¢ O (py)2+(ch(p) 2+ (b ()2
3 q—ROFCS' (B F) =3 Y/, cos[5 (max(|8f(p;) — 8% (p))l, sk (p)) — c%

(
4  q-ROFCS*(EF)= zylcos[%u (pi) — 0% (p) + ek (p)) — ¢k (p)
5  q—ROFCS® (EF) =1 Y] cos[5 (max(|85(pj) — 95 (pj)l, 6k (pj) — 6k (P, |75 (pj) — 7 (pj) )]
6  q—ROFCS*(E,F)=1¥_; cos|F(|8%(p)) — 04(pj)| + e (p) — ¢k (p)| + |7 (pj) — 7k (py) )]
7 q—ROFCot'(EF) = 12,’1€0t[ F(max (|95 (p) — 8 (pj)|, 16k (py) — ¢ (p))])]
8 g —ROFCoP(E,F) =} LI, cotlF + F (9% (p)) — 8 (pp)| + lsk(pj) — ¢k (pj)D)]

9 q—ROFCoPE,F)= Yi_; cot[§ + F (max(|9g (pj) — 9% (pj), I (p)) — sk (P, I7E(py) — 7 (pj)])]
10 q— ROFCot* (E,F) = } TI_; cot[ T + F (|95 (py) — 8k (pj)| + I6 k(1)) — ¢ (pj)] + |7k (pj) — e (pj)]))]

4
I+
I+
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Table 4. Cosine and cotangent based weighted similarity measures between q-ROFSs [56]

S.N. Similarity measure

1 q— ROFWC1 (]E, IF) — (‘9 (p])ﬂ (p])Jrg%(pj)g%(p,‘)

Yigwj
=1 [W"W )2+ ()2
2 - ROFWC(E,F) =Y, wj| (e (p)) 0

3 q — ROFWCS! (E,F) = Yy wjcos[F

(
4 q—ROFWCS* (EF) = Y_, wjcos[ 5 (18%(pj) — 9 (pj)| + Ik (pj

(

(

(

) —

5  q—ROFWCS® (E,F) = Y}_; wjcos| 5 (max(|85 (p)) — 8%(pj), [ (p) — ¢k (pl, 17 (pj) — me(p)]))]
6 q—ROFWCS* (E,F) = T]_; wjcos[F (19 (pj) — 0k (pj) + ek (p)) — ¢k (p))| + |7f(p) — mie(pj)])]
7 q—ROFWCot"(E,F) = Ty wicot[§ + F (max(|0% (pj) — 05(pj)l. sk (p)) — ¢k (pj))]

8  q— ROFWCot*(E,F) = j:leCOt[I+%(|0]%(p]) (Pl + 16k (p) — 6 (p))]

q — ROFWCot? (]E F)=
Y wjcot[§ + F (max(18%(pj) — 95 (pj)l, sk (pj) — 6 (P, |7 (pj) — i (pj)))]
g — ROFWCot* (E,F) =

10
Y wjcot[§ + F (185 (pj) — 05 (pj)| + e (py) — ok (p)| + |7 (p)) — 7k (p)) )]

4. Cosine and cotangent similarity measures for (m,n)-ROFSs

The (m,n)-ROFSs described by the degree of membership and non-membership, for which sum
of m-th power of membership degree and n-th power of non-membership degree is lies between 0
and 1,is more general than the IFSs , PFSs and q-ROFSs and can describe more vague and imprecise
information. In other words, the (m,n)-ROFSs can deal with the MADM and MCDM problems
which IFSs, PFSs and q-ROFSs cannot and it is clear that IFSs, PFSs, and q-ROFSs are the special
the (m,n)-ROFSs, which indicates (m,n)-ROFSs can be more effective and powerful tool to deal with
vagueness and impreciseness involved in MADM and MCDM problems. In this section we shall
propose the (m,n)-rung orthopair fuzzy cosine similarity measures and (m,n)-rung orthopair fuzzy
cotangent similarity measures under (m,n)-ROFSs environment which are new extensions of the
similarity measures of IFSs, PFSs and q-ROFSs.

4.1. Cosine similarity measures for (m,n)-ROFSs

In this section, a cosine similarity measure and a weighted cosine similarity measure with
(m,n)-ROFSs information are created in an analogous manner to the cosine similarity measure and
weighted cosine similarity measure for IFSs, PFSs and q-ROFSs.

Definition 5. Let P = {py, p2,...pr} be a fixed set. Assume E = {(p;, Or(p;),ce(p;))|p; € P} and F =
{{pj, Or(p;),cr(p;))|p; € P} be two (m,n)-ROFSs of P. Then the (m,n)-ROFSs cosine measure (m,n) —
ROFC! between E and T is defined as:

ROEC! E,F 1 v 19"1(;7;)19'”(?])+€E(P]) (P])
( ) OFC ( ) ZJ 1 \/ﬂm(P] (P; \/(19"1 +(€]F(P]))

)

Remark 4. The cosine measures IFC*(E,F) (resp. PFC'(E,F), ¢ — ROFC'(E,TF)) for IFSs (resp. PESs,
g-ROFSs) are the special cases of cosine similarity measures of (m,n) — ROFC'(E,F) of (m,n)-ROFSs for
mmn=1,1 (resp. m,n=2,2; m,n=q,q).

Proposition 2. Let P = {py, po,...p;} and E,F € (m,n) — ROFS(IP). Then the cosine similarity measure of
(m,n) — ROFC(E, F) satisfies the following conditions:
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(i) 0 < (m,n) — ROFC!(E,F) < 1.
(i) (m,n) — ROFCY(E,F) = (m,n) — ROFC%FI@.
(iii) E=TF = (m,n) — ROFC!(E,F) =

Proof. The proofs of (i) and (ii) are obvious.
(iii) If E = IF . Then 9g(p;) = Or(p;) and ge(p;) = ¢r(p;) forj=1,2,... n. Thus from equation (1) we
obtain that (m,n) — ROFCY(E,F)=1 O

Proposition 3. Let P = {py, pa,..p; } and E,F € (m,n) — ROFS(IP). Then the distance measure of angle
defined as

d(E,F) = arccos((m,n) — ROFC'(E,F))

Meets the specified conditions:

(i) dE,F) >0,
(i) E = F = d(E, F)=0.
(iii) d(E,F) = d(F,E).
(iv) d(E,G) <d(E,F)+d(F,G)ifE €F € G forany G € (m,n) — ROFS(P).

Proof. Proofs of conditions (i),(ii) and (iii) follows from Proposition2. (iv) Suppose that E C F C G for

any (m.n)-ROFS G = {(p;, d7(p;),c1(p;))|p; € P} over P. Since Equation (1) is a sum of terms, it is
appropriate to examine the distance measures based on the angle between the vectors:

d;(E(p;), F(pj)) = arccos((m,n) — ROFC}(E(p;),F(p;))),
d;(E(p;), G(p;)) = arccos((m,n) — ROFC} (E(p;), G(p;))),

d;(F(p;),G(pj)) = arccos((m,n) — ROFC}(F(pj),G(pj))),
(j=1,2,...r). Where,

_ 1 ‘ N — O (p) O (pj)+6k (pj)ck (p))
(m,m) = ROFC;(E(p)). B (Pi) = 7ty (et ey (OF o P R
_ 1 . ) — ‘9m(P;)ﬁm(P])+€]E(P])G7(;(P])
(1m,m) = ROFC; (B(pj). CP)) = 7ty @ o e O ) P G
_ 1 F(p: N — O (p])ﬂm(pj)JrgF(p])g&(p)
(1m,m) = ROFC; (R (py). ClP)) = 7m0+ Gty P Oy o R
For three vectors E(p;) = (9u(p;),ce(p)))  F(p;) = (Or(p)). cr(p))), G(p;) = (dc(pj) , s (p;))
in one plane, if the IE( pj) CF(p;) € G(pj), j=1, 2 ,r. Then by triangle inequality we get that
di(E(p;), G(p;)) < di(E(p;),F(pj)) +d;(F(p;), G(p;))- Comblrung the inequality with equation (1),
we can get d(E,G) < d(E,F) +d(F, (Gr) Hence the distance measure of angle d(E, F) satisfies the

property (iv). O

Now we define (m,n)-ROFSs cosine measure by considering three terms membership
degree(written as MD), non-membership degree(written as NMD), and indeterminacy
membership(written as IMD) of (m,n)-ROFSs.

Definition 6. Let E = {(pj, ﬁ]E(Pj),QE(PjMPj € Pand F = {(p]-, ﬁ]F(pj),gF(p]-)Hpj € P} be two
(m,n)-ROFSs in P. Then (m,n)-rung orthopair fuzzy cosine measure ((m,n) — ROFC?) between E and
F can be expressed as:
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(m,n) — ROFC?(E,F)=

+n

1 (%(Pj)ﬂﬂ?(i’j) + ¢ (pj)er(pj) + NIQTM(P]')NFZ (Pj))
) o _ @)
=1 ((\/(19%1(}7]‘))2 + (i (pj))* + (g2 (Pj))z)(\/(ﬁl?(lﬂj))z + (i (pj))? + (rz? (Pj))z))

Proposition 4. Consider two (m,n)-ROFSs, denoted by E and T, defined over IP. Then the cosine similarity
measure (m,n) — ROFC?(E, F) satisfies the following conditions:

J

(i) 0 < (m,n) — ROFC?(E,F) < 1.
(ii) (m,n) — ROFC?(E,F) = (m,n) — ROFC?(F,E).
(iii) E=TF = (m,n) — ROFC?(E,F) =1.

Remark 5. The cosine measures IFC?(E,F) (resp. PFC%(E,F), g — ROFC?(E,F)) for IFSs (resp. PFSs,
q-ROFSs) are the special cases of cosine similarity measures (m,n) — ROFC?(E,F) of (m,n)-ROFSs for mn=1,1
(resp. m,n=2,2; mn=q,q).

Now we define the (m,n)-ROFSs weighted cosine measures between two (m,n)-ROFSs E and IF by
Considering the weighting vector of the elements in (m,n)-ROFSs.

Definition 7. Let P = {py,p2,...p+} be a fixed set and E,F € (m,n) — ROFS(P). Assume w =
(w1, wy, ..., wy)T, be the weighting vector of the elements pj G =1,2, ... ) satisfies the condition
Z]r»zl wij =1Vwj €0, 1]andj=1,2,...,r. Then the (mmn)-rung orthopair fuzzy weighted cosine
measures (m,n) — ROFWC! and (m,n) — ROFWC? between E and F can be expressed as :

(m,n) — ROFWC(E,F)=

<191%”(p]-)19ﬁ?(;?j) + g%(m)g%(m))

; w; 3)
L (/B2 ()2 + (k)2 (/B ()2 + (sB(p)?))
(m,n) — ROFWC?(E,F) =
(8 )8 (1) + S (p)ep) + e (P (1)) "

m+n

L o
=1 ((\/(191’5"(17]‘))2 + (& (pj))? + (g (Pj))2>(\/(l9fpn(l7j))2 + (5 (p)* + (1 (Pj))z))

When we take the weighting vector w = (%, 1. %)T, then the weighted cosine similarity
measures (m,n) — ROFWC!(E,F) and (m,n) — ROFWC?(E,F) will reduce to cosine similarity

measures (m,n) — ROFCY(E,F) and (m,n) — ROFC?(E, F) respectively.

Remark 6. The weighted cosine similarity measures WIFCK(E,F) (resp. = WPFCK(E,F), q —
ROFWCK(E,T)) for IFSs (resp. PFSs, ¢-ROFSs) are the special cases of weighted cosine similarity measures
(m,n) — ROFWCk(IE,IF) (k=1,2) of (m,n)-ROFSs for m,n=1,1 (resp. m,n=2,2; m,n=q,q).

Example 1. Let P = {py, p2, p3} and

E = {(p1,0.5,0.8), (p2,0.6,0.4), (p3,0.8,0.3)}
F = {(p1,0.7,0.6), (p2,0.8,0.2), (p3,0.4,0.3)}

be two (m,n)-ROFSs over P. Assume m = 4, n=3 and w = (0.20,0.45,0.35)T be a weighting vector of the
elements py, pa, p3. Then (m,n) — ROFWC!(E, F) = 0.8150899 and (m,n) — ROFWC?(E, F) = 0.8610532.
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Proposition 5. Let E and F be two (m,n)-ROFSs over a fixed set P = {p1,pa,...pr}. Assume w =
(w1, wo,. .., wn)T, be the weighting vector of the elements p; (j=1,2, ... ,r) satisfies the condition Z]r-zl w;j =1,
Vwj€l0,1]andj=1,2,...,r. Then the weighted cosine similarity measures (m,n) — ROFWCK(E,F)
(k=1,2) meets the following conditions.

(a) 0 < (m,n) — ROFWCK(E,F) < 1.

(b) (m,n) — ROFWCK(E,F) = (m,n) — ROFWCK(F,E).

(c) E=TF = (m,n) — ROFWCK(E,TF) =1.

4.2. Similarity measures of (m,n)-ROFSs based on cosine Function

This section introduces several (m,n)-ROFSs cosine similarity measures between (m,n)-ROFSs,
which are based on cosine function, and explores their properties.

Definition 8. Let P = {p;:j=1,2,..r} and

E = {(p;, 0(pj),se(pj))|p; € P}
F = {(p;, Or(pj),cr(p;)))Ip; € P}

be two (m,n)-ROFSs over P. Then two (m,n)-ROFSs cosine similarity measures (m,n) — ROF CSk (k=1,2)
between [E and I can be expressed as:

(m,n) — ROFCS!(E,F)=

Ly cos [Z (102 (py) — 02 (P V I () — gﬁ(pm)] )

=1

(m,n) — ROFCS?(E, F)=
Zcos[ ( (pj) — ﬁg(;oj)\+|g%<pj>—g%<pj>l)] ©®)

Proposition 6. Let P = {p1,p2,...,pr} and E,F € (m,n) — ROFS(P). Then the (m,n)-rung orthopair
fuzzy cosine similarity measures (m,n) — ROFCSK(IE, ) (k = 1, 2) meets the following properties:

(a) 0 < (m,n) — ROFCSK(E,F) < 1.

(b) (m,n) — ROFCSK(E,F) =1 < E =TF.

(c) (m,n) — ROFCS*(E,F) = (m,n) — ROFCSX(F,E).

d) IfECF CG,VG € (m,n) — ROFS(P). Then (m,n) — ROFCSK(E,G) < (m,n) — ROFCSK(E, F)
and (m,n) — ROFCSK(E,G) < (m,n) — ROFCSK(F,G).

Proof. (a) The values of cosine functions lie between 0 and 1, which makes it evident.
(b) If E = F foe any two (m,n)-ROFSs E and F in P = {py, p2, ..., pr}. Then for eachj=1,2,... r,
0% (pj) = 0 (pj) and ¢ (pj) = ¢ (p;). It implies that | 85 (p;) — 8 (pj) | =0 and | ¢jz(p;) — ¢k (p;)
| =0. Hence (m,n) — ROFCS*(E,F)=1 for k=1,2. Suppose (m,n) — ROFCS¥(E,F)=1,k=1,2. Then
| O (pj) — ﬂ]’F”(pj) | =0 and | g%(%aj) —¢(pj) | =0, for all j=1,2,...,r. Since cos(0) =1, there are
0% (pj) = 0% (pj).sk(pj) = ¢&(pj) (G=12,...,r). Hence E = F.

(c)Obvious.

(d) If E(p;) € F(p;) € G(pj), ¥ j=12,...,r. Then Og(p;) Or(p;)

< dc(pj) and
QE(P]‘) > Q]F(Pj) > gG(p]-), j=1,2,...r. It follows that ﬁg(pj) < ﬁﬁ?(pj)

ﬁg(pj) and

IN N
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| 0% (pj) — OF (pj) | < | O (pj) — ¢ (pj) |,

| O (pj) — 08 (pj) | < | 9% (pj) — OF(pj) |,

| ¢k (p)) —ck(p)) | <l ck(p)) —s&(p) |,

| e (pj) =6 (p) | < | ci(pj) —s&(pj) |
O

The fact that the cosine function is a decreasing function with the interval [0, 71, therefor we
obtain that (n,1n) — ROFCS¥(E,G) < (m,n) — ROFCS*(E,F), (m,n) — ROFCSK(E,G) < (m,n) —
ROFCSK(F,G) for k =1,2.

Next, we introduce (m,n)-rung orthopair fuzzy cosine measures based on cosine function. These
measures are obtained by considering MD, NMD, and IMD for two (m,n)-ROFSs E and I of PP.

Definition 9. Let P = {p;:j=1,2,..r} and

E = {(p;, Oe(p;),ce(pj)))|p; € P}
F = {{p;, (e (p;),cr(pj)))|p; € P}
be the two (m,n)-ROFSs over IP. Then two (m,n)-ROFSs cosine similarity measures (m,n) — ROF Csk ) (k=3,4)

between [E and I by considering MD, NMD and IMD can be expressed as:
(m,n) — ROFCS®(E,F)=

Zcosl ( p]) ﬂ%”(pj)|,\/|gﬁ]f:(pj) P])\\/|7TE P]) ﬂﬁ(l’j))] (7)

(m,n) — ROFCS*(E,F)=

= Zcos

= (102 (p) — 82(p) | + I62(py) — G2 ()| + I a” (p)) - |n§’?"<p]->|)] ®)

Remark 7. The cosine measures IFCSK(E,F) (resp. PFCSK(E,F), ¢ — ROFWCSK(E,F)) for IFSs (resp.
PFSs, g-ROFSs) are the special cases of cosine measures (m,n) — ROFCS¥(E,F) (k=1,2,3,4) of (m,n)-ROFSs
for mn=1,1 (resp. m,n=2,2; m,n=q,q).

We will now introduce the (m,n)-ROFSs weighted cosine measures between two (m,n)-ROFSs,
which are based on cosine functions. [E and I by taking into account the weighting vector associated
with the elements in (m,n)-ROFSs.

Definition 10. Let E = {(p;, 9e(p;), ce(p;))|pj € P} and F = {(p;, Or(p;),cr(p;))|p; € P} be two

(m,n)-ROFSs in P and w = (w1, ws, ..., wy)T be the weighting vector of the elements piG=12 ...,

1) satisfies the condition Z]r':1 w=1YV wj € [0,1]andj=1, 2, ..., r. Then the (m,n)-ROFSs weighted cosine

measures (m,n) — ROFWCSF, (k=1,2,3,4) between & and T on bases of cosine functions can be represented as :
(m,n) — ROFWCS(E,F)=

P Z%COS l; ( & (pj) = 8% (p)| V ek (pj) — g%(m)l)] ©)
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(m,n) — ROFWCS?(E,F)=

% ) wjeos [Z (|l91"£(Pj) — 05 (pj) + lek(pj) — QE(P]‘)I)] (10)

2

7T ( m+n m+n
2

195 (pj) — 87 (P V Isk(pj) — 6k (pp)| V |mg? (py) — g (Pj)l)} (1)

& (18200 = 92 ()| + 16 (p)) — 2 (p) | + 7 (py) — ngz*"(pm)] (12)

When the weighting vector w; =
ROFWCSK(E, F) = (m,n)-ROFCSK(E, ).

j = 1,2,...r, then for k=1,2,3,4 we have (m,n)-

T

Remark 8. The weighted cosine similarity measures WIFCSK(E,F) (resp. WPFCSK(E,F), q —
ROFWCSK(E,TF)) for IFSs (resp. PFSs, q-ROFSs) are the special cases of weighted cosine measures
(m,n) — ROFWCSK(E, F)(k=1,2,3,4) of (m,n)-ROFSs for m,n=1,1 (resp. m,n=2,2; m,n=q,q).

Example 2. Let P = {p1, p2, p3} and

E = {(p1,0.8,05), (p2,0.4,0.6), (p3,0.3,0.8)}
F = {(p1,0.6,0.7), (p2,02,0.8), (p3,0.4,0.3)}

be two (m,n)-ROFSs over P. Assume m = 4, n=6 and w = (0.25,0.55,0.20)7 be the weights for the elements
p1, P2, p3. Then:

(m,n) — ROFWCS!(E,F) = 0.928372534.
(m,n) — ROFWCS?(E,F) = 0.974350944.
(m,n) — ROFWCS3(E, ) = 0.928372534.
(m,n) — ROFWCS*(E, F) = 0.928372534.

Proposition 7. Assume that there are any two (m,n)-ROFSs E and F in P = {p1,p2,...,pr}, the
(m,n)-ROFSs weighted cosine similarity measures (m,mn)-ROFWCSK (E,F)(k = 1, 2,3,4) should satisfy the
properties (a)—(b):

(a) 0 < (m,n) — ROFWCSK(E,F) < 1.

(b) (m,n) — ROFWCSK(E,F) =1 E =T.

(c) (m,n) — ROFWCSK(E,T)
= (m,n) — ROFWCSK(F, E).

d) IfECF C G,V G € (m,n) — ROFS(P). Then (mn)-ROFWCS (E, G) <(m,n)-ROFWCS* (E,F),
(m,n)-ROFWCSK (E,G) < (m,n)-ROFWCS* (F,G).

4.3. Cotangent based similarity measures for (m,n)-ROFSs

Definition 11. Let P = {py, p2,...pr } and

E={(pj, (9e(pj). ce(p))|p; € P},

F= {{p;, (9¢(pj),sr(pj)))p; € P} be two (m,n)-ROFSs. Then (m,n)-ROFSs cotangent measures
(m,n) — ROFCot! and (m,n) — ROFCot? between E and F are defined as follows:
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(m,n) — ROFCot! (E,F)=
1; cot | 7 + 5 (188 (p)) = 88 (p)| VI (p) - G%(Pj”)] (13)

(m,n) — ROFCot*(E,F)=
1; cot g + % (|l9]1£(19j) — 07 (pp)| + sk (pj) — G’%(m)l)] (14)

We will now incorporate the MD, NMD and IMD - all of which are components of (m,n)-ROFSs -
to define two additional cotangent similarity measures between two (m,n)-ROFSs.

Definition 12. Let P = {p;:j=1,2,...,r} and

E = {(p;, (0e(p;),ce(p;)) : pj € PYF = {{p;, (Or(pj), cr(p;))) : pj € P}

. be two (m,n)-ROFSs in P. Then the (m,n)-ROFSs cotangent similarity measures (m,n) — ROFCot® and
(m,n) — ROFCot* between E and F can be expressed as:
(m,n) — ROFCot3(E,F) =

m+n m+n
2

1+ 7 (00 =9I VIck() — )l VIme () — g WD] 19

: i
— cot
r =

(m,n) — ROFCot* (E,F) =

m+n

1< min mtn
F e T+ 5 (102 — 02 ()| + 16k (py) — 62(pp) | + I7a (py) — ey <pj>|)] (16)

Remark 9. The cotangent measures IFCTX(E,F) (resp. PFCTX(E,F), g — ROFCot*(E,FF)) for IFSs
(resp. PFSs, g-ROFSs) are the special cases of cotangent measures (m,n) — ROFCot*(E,F) (k=1,2,3,4)
of (m,n)-ROEFSs for m,n=1,1 (resp. m,n=2,2; mn=q,q).

We will now introduce the (m,n)-ROFSs weighted cotangent measures between two (m,n)-ROFSs
E and F by taking into account the weighting vector associated with the elements in (m,n)-ROFSs.

Definition 13. Let P = {py, pa,...p,}be a fixed set and B = {(p;, 9e(p;),ce(p;))lp; € P} , F =
P, 0r(pj), cr(pj))|p; € P} be two (m,n)-ROFSs in P. Assume w = (wy, wo, . . ., wy)T be the weighting
vector of the elements pj (ij=1,2,...,r)satisfies the condition Z]r':1 wj =1, Y wj € [01landj=1,2,...,r

Then the (m,n)-ROFSs weighted cotangent measures (m,n) — ROFWCotk (k=1,2,3,4) between E and
F are expressed as follows:

(m,n) — ROFWCot!(E,F)=

T+ 7 (19 = 02l v Ik (p)) —q;(pm)] (17)

.
). wijcot
=
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(m,n) — ROFWCot*(E,F)=
4 T
Zichof 173 (102 (py) — 02 (pp)] + It (py) - 9’]11«‘(Pj)|>] (18)
]:

(m,n) — ROFWCot3(E,F)=

7T ( m+n m+n

%w 19 (pj) — 05 (P V e () — s (pp) |V g™ (pj) — 715 (Pj)|)1 (19)

Zr: w]-cot
j=1

(m,n) — ROFWCot*(E,F) =

m+n

15 (90 — )|+ et () — ) + 5™ () — “’f")] “

.
) wijcot
=1

When we let weighting vector w = (1,1,... )T then (m,n) — ROFWCot*(E,F) coincides with
(m,n) — ROFCot*(E, TF), for k=1,2,3,4.

Example 3. Let X = {p1, p2, p3} and

E = {(p1,04,0.9), (p2,0.9,0.3), (p3,0.9,0.6) }
F = {(p1,0.3,0.7), (p2,0.8,0.3), (p3,0.7,0.4) }

be two (m,n)-ROFSs over P. Assume m =5, n=7 and wi = 0.25, wy = 0.35 and wy =0.40 be the weights for the
elements pq, pa, p3.Then:

(m,n) — ROFWCot! (E, F) = 0.529085874.
(m,n) — ROFWCot*(E,F) = 0.720632612.
(m,n) — ROFWCot*(E,F) = 0.525336422.
(m,n) — ROFWCot*(E,F) = 0.525336422.

Remark 10. The weighted cotangent similarity measures WIFCT*(E,F) (resp. WPFCTX(E,F), q —
ROFWCot(E,TF) ) for IFSs (resp. PFSs, g-ROFSs) are the special cases of weighted cotangent measures
(m,n) — ROFWCotk(]E,IF)(k:I,Z,SA) of (m,n)-ROFSs for m,n=1,1 (resp. m,n=2,2; m,n=q,q).

5. Comparisons of existing similarity measures and proposed similarity measures

In this section, a comparison is made between the existing cosine and cotangent similarity
measures for IFSs, PFSs, and q-ROFSs, and the newly established cosine and cotangent similarity
measures for (m,n)-ROFSs. This comparison is based on the pattern recognition and medical diagnosis
examples of Wei and Wei[44], as well as the building material classification example of Wang and his
colleagues[56].

Example 4. let’s take the example of [44]and the relevant data is presented in Table 5 in which suppose we have
three known patterns E; (i=1,2,3), represented by IFSs E; (i=1,2,3) in the feature space P = {p1, p2, p3}. We
also have an unknown pattern | that needs to be recognized. The weight are considered as w = (0.5,0.3,0.2)7.
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Table 5. Intuitionistic fuzzy data for patterns [44]

Feature Eq E, E; E
p1 (1.0,0.0) (0.8,0.1) (0.6,0.2) (0.5,0.3)
P2 (0.8,0.0) (1.0,0.0) (0.8,0.0) (0.6,0.2)
p3 (0.7,0.1) (09,0.1) (1.0,0.0) (0.8,0.1)

For the given pattern recognition, example for IFSs, Table 6 shows the results of weighted WIFSs
obtained by the wei et. al [44] and Table 7 shows the proposed weighted cosine and cotangent
similarity measures (m,n)-ROFWSs for m = 5 and n = 7, with similar weighted values of 0.5, 0.3, and
0.2,, respectively. Where, it is clearly visible that for all ten weighted similarity measures, (E3, E) has
the largest value, indicating that the unknown pattern E is most similar to E;. Suggesting that the
unknown pattern M is most similar to ;.

Table 6. Weighted intuitionistic fuzzy similarity measures for the data of Table 5

Weighted Similarity measures (E1,E) (E;, E) (Es E)
WIECT 0.9133 09419 0.9711
WIEC? 0.8884 09191  0.9712

WIECS! 0.8364  0.8857  0.9693
WIFCS? 0.8892 09286  0.9736
WIFCS® 0.8364 0.8857  0.9693
WIFCS* 0.8364 0.8857  0.9693
WIFCT? 0.5958  0.6300  0.6696
WIFC# 0.6576  0.6751  0.7520
WIECT3 0.5958  0.6300  0.7903
WIFCT* 0.5958  0.6300  0.7903

Table 7. (m,n)-ROFW similarity measures for the data of Table 5 for m=5n=7

Weighted Similarity measures  (E1,E) (Ey, E) (E3,E)
(m,n) — ROFWCT 0999987 0.999987  0.999988
(m,n) — ROFWC2 0489463  0.655952  0.866716

(m,n) — ROFWCS! 0.495459  0.666520  0.874302
(m,n) — ROFWCS? 0.854733  0.906927  0.966661
(m,n) — ROFWCS? 0495459  0.666520  0.874302
(m,n) — ROFWCS* 0.495459  0.666520  0.874302
(m, n) — ROFWCot' 0367989 0.457421  0.717863
(m,n) — ROFWCot? 0.636302  0.692085  0.842296
(m,n) — ROFWCot® 0367989  0.457421  0.717863
(m,n) — ROFWCot* 0.367989  0.457421 0.717863

Example 5. Consider[44] a set of symptoms S = {s1,52,53,54, 5}, where sy corresponds to Temperature,
sy to Headache, s3 to Stomach Pain, sy to Cough, and ss to Chest Pain. Let Dy (Viral Fever), D, (Malaria),
D5 (Typhoid), Dy (Stomach Problem), and D5 (Chest Problem) be the five possible diagnoses represented by
(m,n) — ROFSs, as shown in Table 8. The weights w = (0.15,0.25,0.20,0.15,0.25)" are assigned to the

symptoms.
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Figure 1. Comparison graph between weighted WIFSs and the proposed weighted (m,n)-ROFWSs. In
this figure it is evident that the value in weighted WIFSs and proposed weighted (m,n)-ROFWSs for
m,n = 5,7 show that [E3 has the largest and most consistent value. This indicates that the unknown
pattern E is most similar to [E3.
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Table 8. Pythagorean fuzzy data for pattern of disease[44]

symptom Dy D, Dy Dy Ds E
S1 (04,0.00 (0.7,0.00 (0.3,03) (0.1,0.7) (0.1,0.8) (0.8,0.1)
So (0.3,0.5) (0.2,0.6) (0.6,0.1) (0.2,0.4) (0.0,0.8) (0.6,0.1)
S3 (0.1,0.7) (0.0,09) (0.2,0.7) (0.0,0.8) (0.2,0.8) (0.2,0.8)
Sy (04,0.3) (0.7,0.00 (0.2,0.6) (0.2,0.7) (0.2,0.8) (0.6,0.1)
S5 (0.1,0.7) (0.1,0.8) (0.1,0.9) (0.2,0.7) (0.8,0.1) (0.1,0.6)

In this medical example containing all values of pythagorean fuzzy sets, Table 9 shows the results
obtained using ten weighted pythagorean similarity measures (WPESs). The calculated results reveal
inconsistencies in (D3, E), (Dy, E), and (D4, E), making it difficult to accurately diagnose the disease.
Therefore, a specific disease should be considered.

Table 9. Weighted pythagorean fuzzy similarity measures for the data of Table 8

Weighted Similarity measures (D, E) (D, E) (D3,E) (Dg,E) (D5 E)

WPFC! 0.8237  0.7840  0.8283  0.3512  0.2360

WPFC? 0.8865 0.8904 0.8116  0.6629  0.5205
WPFCS! 09191 09250 0.8599 0.7627  0.6392
WPFCS? 09623 09554 09449 0.8115  0.7502
WPFCS? 09151 09244 0.8599 0.7601  0.6392
WPFCS* 09151 09244 0.8599 0.7601  0.6392
WPECT! 0.6965 0.6917 0.6623  0.5193  0.4393
WPFECT? 0.7861 0.7802 0.7778  0.5844  0.5210
WPECT? 0.6876  0.6898 0.6623  0.5096  0.4393
WPFCT* 0.6876  0.6898 0.6623  0.5096  0.4393

Table 10 displays the results obtained using the proposed (m,n) — ROFWSs method with m = 4
and n = 6. These results demonstrate that all ten weighted similarity measures identify patient D with
disease D, with the highest degree of weighted similarity between [E and ;. These findings suggest
that the proposed method is reliable and accurate in diagnosing the patient’s disease.
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Table 10. Weighted(m,n)-ROFSs for the data of Table 8 for m=4,n=6

Weighted Similarity measures (D1, E) (Do, E) (D3,E) (Dg,E) (D5, E)
(m,n)-ROFWC! 0.8650 0.7586  0.8545  0.3443  0.2015
(m,n)-ROFWC? 0.9666 09527  0.8921 09208  0.8941
(m,n)-ROFWCS! 0.9603  0.9556  0.8939  0.9207  0.8866
(m,n)-ROFWCS? 0.9896 09877 09720  0.9557  0.9450
(m,n)-ROFWCS3 0.9602 09556  0.8939  0.9207  0.8866
(m,n)-ROFWCS* 0.9602  0.9556  0.8939  0.9207  0.8866
(m,n)-ROFWCot! 0.7951  0.7511 0.7149 07256  0.6619
(m,n)-ROFWCot? 0.8877  0.8589  0.8372  0.7980  0.7523
(m,n)-ROFWCot? 0.7947  0.7511 0.7149  0.7251 0.6619
(m,n)-ROFWCot* 0.7947  0.7511 0.7149  0.7251 0.6619

Upon comparing the results presented in Tables 9 and 10, it becomes evident that the proposed
weighted (m,n) — ROFWSs method is more accurate than the method proposed by Wei et al. [44] in
assigning Disease to the consistent class (D1, E). Therefore, our proposed method is more reliable and
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Figure 2. Comparison graph between weighted WPFSs and the proposed weighted (m,n)-ROWEFSs.

Tudnnd,
Zwaad
TwSMAd
ZuSIMAd
EvSIMNAd
TSI
TN
Z1A0DMAd
£1400M4
A0S
T Ou-{uw)
T2 Ou-{uw)
T U 4 D -1 LY )
ZuwS3M 4 od-(u‘w)
FuS3Md ou-{u )
LoD OU-{uu)
A0 OY-{(u )
E£A001 4 0d-(u'w)
TA00M A Od-(u W)

In this Figure it is evident that the WPFSs values in Table 9 are inconsistent and proposed weighted
(m,n)-ROFWSs for m, n = 4,6 show that ID; has the largest and most consistent values. This indicates
that the Patient E is having the disease to ID; which viral fever.

Example 6. Let us consider[56] a scenario where there are five known building construction materials,
represented by q-ROFSs Z; (i=1,2,3,4,5), in the feature space P = {p1, p2, p3, pa, p5}, as shown in Table
11. We also have an unknown building material 7, that needs to be classified into one of the following classes: Z1,
Zy, 7.3, Ly, Zs. Assuming that the weights w =( 0.15, 0.20,0.25,0.10,0.30), we aim to determine the degree of
similarity between Z3 and K.
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Table 11. q-ortho pair fuzzy data for pattern of material (for q=3)[56]

Feature VA Zy Zs Zy Zs Z
P (0.5,0.8) (0.6,0.7) (0.3,04) (05,03) (04,0.7) (0.7,0.6)
P2 (0.6,04) (0.7,0.3) (0.7,0.5) (0.4,0.4) (0.2,0.6) (0.8,0.2)
p3 (0.8,03) (0.6,0.2) (09,03) (0.6,02) (0504) (04,03)
Pa (0.6,09) (0.8,0.6) (04,08) (04,0.7) (0.5,0.3) (0.7,0.8)
ps (0.1,04) (0.3,0.5) (0.2,0.3) (0.2,0.6) (0.4,0.2) (0.4,0.2)

the results represented in Table 12 indicate that, degree of weighted similarity between Z3 and E is
the largest among the ten weighted similarity measures, for all building materials except § — ROFWCL.
Therefore, based on the principle of maximum weighted The q-ROFSs smililarity, the ten similarity
measures can define the unknown building material E as being similar to the known building material
E,.

Table 12. g-ROF weighted similarity measures for the data of Table 11 for q=3

Weighted similarity measure (21,2)  (Zy,7) (Z3,72) (Z4,7) (Zs,Z)
g — ROFWC! 0.6728  0.7515  0.7553  0.6584  0.7336
g — ROFWC? 0.8457  0.8901 0.8937 0.8406  0.8735
q— ROFWCS! 0.8962 09673 0.8398 09114  0.8976
q— ROFW(CS? 0.9601 0.9838  0.9487  0.9621 0.9464
q— ROFWCS3 0.8962 09673 0.8299  0.8986  0.8910
q— ROFW(CS* 0.8961 0.9693  0.8830  0.8883  0.8830
q— ROFWCot! 0.6740  0.7831 0.6478  0.6735  0.7474
q — ROFWCot? 0.7740  0.8482 0.7700  0.7733  0.8065
q — ROFWCot? 0.6740  0.7831  0.6356  0.6522  0.7324
q— ROFWCot* 0.6727  0.7866  0.6356  0.6389  0.7284

Table 13 shows the results obtained by the proposed weighted similarity measures (m,n) —
ROFWSs for m = 4 and n = 3. Based on these results, it is evident in table [13] that all ten similarity
measures allocate unknown building material E to building material [E,, with the degree of weighted
similarity between E and E; being the largest. This suggests that the proposed weighted (m,n) —
ROFWSs method is accurate in allocating unknown building materials to known building materials.

Table 13. Weighted (m,n)-ROFSs for the data of Table 11 for m=4,n=3.

Weighted similarity measure (24,2)  (Zp,Z) (Z3,Z) (Z4,Z) (Zs,Z)
(m,n) — ROFWC! 07353 07620 07334 05957  0.6426
(m,n) — ROFWC? 0.9008  0.9527 0.8244 0.8947  0.8481
(m,n) — ROFWCS! 09073  0.9648 0.8614 09203  0.8930
(m,n) — ROFWCS? 09661  0.9828  0.9557 09669  0.9417
(m,n) — ROFWCS? 09073  0.9648 0.8503  0.8906  0.8590
(m,n) — ROFWCS* 09073 09648 0.8503  0.8906  0.8590
(m,n) — ROFWCot! 0.6726  0.7819 0.6717  0.6936  0.7215
(m,n) — ROFWCot? 0.7853  0.8515 0.7818  0.7895  0.7803
(m,n) — ROFWCot? 0.6497  0.7664 0.6277  0.6119  0.6500
(m,n) — ROFWCot* 0.6530  0.7704 0.6372  0.6183  0.6603

By comparing the results presented in Tables 12 and 13, it is clear that the proposed weighted
(m,n) — ROFWSs method is more accurate than the method proposed by P. Wang et al. [56] for
assigning unknown building materials to the consistent class (E,,[E). Therefore,our results are more
reliable and accurate.
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Figure 3. Comparison graph between weighted q-ROFWSs and proposed weighted (m,n)-ROWFSs. In
this figure it is represented that, the value of weighted q-ROFWSs for all building materials except for
q — ROFWC!, the degree of weighted similarity between (E3,E) is the largest among in ten weighted
similarity measures and proposed weighted (m,n)-ROFWSs for m = 4,n = 3 show that E3 has the
largest and most consistent value. This indicates that the unknown pattern [E is most similar to 3.

6. Applications of proposed similarity measures in the classification of plant leaf disease

Plants are an integral component of our ecosystem that provides us with vital resources such as
oxygen and food. However, these crucial organisms are vulnerable to various diseases that can have
a significant impact on their growth and survival. One of the most prevalent problems that plants
face is leaf disease, which can result in a considerable reduction in crop yield and quality, significantly
affecting farmers livelihoods and the economy as a whole. This article aims to explore the issue of
plant leaf disease and the measures that can be taken to prevent and manage it. Plant leaf diseases can
be caused by several factors, such as bacteria, fungi, viruses, and other pathogens. Common types of
leaf diseases include powdery mildew, downy mildew, leaf spot, and rust. These diseases can affect
various parts of plants, including leaves, stems, and fruits, leading to discoloration, distortion, and
wilting. In severe cases, the leaves may fall off, leading to stunted growth and reduced yield. Several
factors can facilitate the spread of plant leaf diseases, such as high humidity, poor air circulation,
and contaminated soil or water. Additionally, using infected planting materials and inadequate crop
management practices can also contribute to the spread of these diseases.

plant leaf diseases pose a significant problem that can adversely affect crop yield and quality,
ultimately impacting the livelihoods of farmers and the economy. Preventing and managing
these diseases require a combination of preventive and curative measures, including the use of
disease-resistant plant varieties, good agricultural practices, and judicious use of chemical treatments.
By taking these measures, we can ensure that our plants remain healthy and continue to provide us
with the essential resources we need for our survival.

Tomato plants are susceptible to various leaf diseases that can negatively impact their growth
and yield. Preventing these diseases can be achieved through various methods, including planting
disease-resistant tomato varieties, keeping the soil well-drained, and avoiding overhead watering.
Additionally, it is important to remove any infected plant parts and keep the garden clean to prevent
the spread of disease.

In the next example we proposed the method to classify the plant leaf disease using proposed
cosine and cotangent similarity and weighted similarity measures.
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Example 7. Let us consider, a set of five symptoms q = {41, 92, 93,4, q5 } where q1 = Dark brown leaf, g, =
Brown Leaf, q3 = Yellow leaf,q4 = Patches, qs = spots and a set of five diagnosis Z;(i = 1,2,3,4,5), which are
presented by (m,n)-ROFSs, Z1(Gray leaf spot), Zy(Bacterial Canker), Zs(Bacterial Speck), Zy (Bacterial Spot),
Zs(Early Blight) defined in Table 14 and Consider a sample pattern 7. that will be recognized.

Table 14. (m,n)-ortho pair fuzzy data for pattern of plant leaf disease

Symptom Zq Zy Zs Ly Zs 7
q1 (0.45,0.95) (0.25,0.75) (0.95,0.55) (0.85,0.45) (0.15,0.95) (0.35,0.70)
q2 (0.95,0.35) (0.85,0.25) (0.35,0.85) (0.65,0.45) (0.25,0.65) (0.80,0.30)
q3 (0.95,0.65) (0.75,0.35) (0.95,0.45) (0.15,0.95) (0.95,0.15) (0.70, 0.40)
0 (0.45,0.65) (0.15,095) (0.85,0.15) (0.45,0.75) (0.95,0.55) (0.20,0.90)
qs (0.55,0.95) (0.15,0.85) (0.55,0.35) (0.95,0.15) (0.55,0.95) (0.25,0.80)

For the given plant leaf disease application,the proposed cosine and cotangent similarity measures
for (m,n) — ROFSs for the values m=5,n=7 and m=6,n=10 are shown in Table 15 and Table 16. The
similarity measures for m=7,n=5 and m=6,n=10 values respectively shows consistent and accurate
results, indicating that all ten proposed similarity measures also shows Z; as having the largest value,
suggesting that the sampleZis most similar to Z;.

Table 15. (m,n)-ROF similarity measures for data of Table 14 for m=7,n=5.

Similarity Measure (21,2) (Zy,Z) (Z3,Z) (Z4,2) (Zs,Z)
(m,n)-ROFC! 0.9897 09993 02821 04250 0.6132
(m,n)-ROFC? 0.5495 09802 0.5954 0.6602  0.5617
(m,n)-ROFCS! 0.6733 09836 0.6536  0.7028  0.6630
(m,n)-ROFCS? 09047  0.9958 0.8552  0.8728  0.8472
(m,n)-ROFCS3 0.6400 09836 0.6515  0.7028  0.6598
(m,n)-ROFCS* 0.6400 09836  0.6515  0.7028  0.6598
(m,n)-ROFCot 03917 08477 03889 04705 04105
(m,n)-ROFCot? 0.6402 09194 05816 0.6395  0.5958
(m,n)-ROFCot> 0.3699  0.8477 0.3875 04705  0.4076
(m,n)-ROFCot* 03699  0.8477 03875 04705  0.4076

Table 16. (m,n)-ROF similarity measures for data of Table 14 for m=6,n=10.

Similarity Measure (21,7) (Zy,7) (Z3,72) (Z74,7) (Zs5,7)
(m,n)-ROFC! 0.9698 09996 0.2162 04117  0.6037
(m,n)-ROFC? 0.6335 0.9703  0.6921 0.7239 0.5816
(m,n)-ROFCS! 0.7015 09784 0.7411  0.7358  0.6455
(m,n)-ROFCS? 09185 0.9946  0.8969 09093  0.8682
(m,n)-ROFCS3 0.6903 09784 0.7410 0.7358  0.6394
(m,n)-ROFCS* 0.6903 09784 0.7410 0.7358  0.6394
(m,n)-ROFCot! 0.4195 0.8474  0.5111 0.4871 0.3897
(m,n)-ROFCot? 0.6648 09193  0.6545 0.6832  0.6141
(m,n)-ROFCot3 0.4110 0.8474  0.5111 0.4871 0.3847

(m,n)-ROFCot* 0.4110 0.8474 05111 04871  0.3847
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Figure 4. Results of proposed (m,n)-ROFSs for two Different values of m and n. This figure represents
a graph for ten similarity measures of (m,n)-ROWFs for different m,n = 5,7 and m, n = 6,10, which
shows thatZ, has the largest value. This suggests that the sample Z is most similar to the disease
category of Z.

If we consider the weights of w = (0.10,0.30,0.25, 0.15,0.20)T . The proposed weighted cosine
and cotangent similarity measures (m, n)-ROFWSs for m =7, n = 5,and m = 6, n = 10 are presented
in Table 17 and Table 18 respectively. The accurate and consistent results indicate that all ten proposed
weighted similarity measures also shows Z; as having the largest value, suggesting that the sample Z
is most similar to Z,.

Table 17. weighted (m,n)-ROFSs for data of Table 14 for m=7,n=5.

Weighted similarity Measure (721,72) (Zy,7) (Z3,72) (Z4,7) (Zs,7)
(m,n)-ROFWC! 09897  0.9991 0.3256  0.4690  0.5595
(m,n)-ROFWC2 05483 09815 0.6338 0.6444  0.6225
(m,n)-ROFWCS? 0.6789 09846 0.6832  0.6876  0.7051
(m,n)-ROFW(CS? 09042 0.9961 0.8687  0.8699  0.8710
(m,n)-ROFWCS? 0.6384 0.9846 0.6805 0.6876  0.7020
(m,n)-ROFWCS* 0.6384 09846 0.6805 0.6876  0.7020
(m,n)-ROFWCot! 0.3958  0.8507 0.4105 0.4704  0.4534
(m,n)-ROFWCot? 0.6401  0.9209 0.5972  0.6447  0.6266
(m,n)-ROFWCot3 03696  0.8507 04088 04704  0.4506

(m,n)-ROFWCot* 03696  0.8507 0.4088  0.4704  0.4506
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Table 18. Weighted (m,n)-ROF similarity measures for the data of Table 14 for m,n=6,10.

Weighted similarity Measure (21,Z2)  (Zp,Z) (Z3,Z) (Z4,Z) (Zs,Z)
(m,n)-ROFWC! 09773  0.9998  0.2603  0.4557  0.5556
(m,n)-ROFWC? 06175 0.9740 0.7352  0.7171 0.6258
(m,n)-ROFWCS? 0.6978  0.9805 0.7789  0.7331 0.6828
(m,n)-ROFWCS? 09176 0.9951  0.9099  0.9069  0.8870
(m,n)-ROFWCS? 0.6865  0.9805 0.7788  0.7331 0.6766
(m,n)-ROFWCS* 0.6865 0.9805 0.7788  0.7331 0.6766
(m,n)-ROFWCot! 0.4151 0.8471 05444  0.4931 0.4251
(m,n)-ROFWCot? 0.6624 09196 0.6736  0.6852  0.6430
(m,n)-ROFWCot® 0.4066  0.8471  0.5443  0.4931 0.4200
(m,n)-ROFW Cot* 0.4066  0.8471  0.5443  0.4931 0.4200
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09000
08000
07000
06000
05000
04000
03000
02000
01000
00000
¢ ¥ 2 2 & ¢ 3 % % ¢ - S-S S S S-S
5 % @ @ ¢ @ & & £ ¢ 5 % @ ¢ @ g £ & £ £
Y 4 W & & f FoPOEOC Y24 & %3O}
mn=7,5 B(DLS) EW(DS) EW(D3S) ®W(D4S) W(D59) m,n=6,10

Figure 5. Results of proposed weighted (m,n)-ROFWSs for two different values of m and n. this Figure
represents a graph for ten weighted similarity measures of (m,n)-ROWFs for different m,n = 5,7 and
m,n = 6,10, which shows thatZ, has the largest value. This suggests that the sample Z is most similar
to the disease category of Z,.

7. Discussion

By comparing all the results shown in Table 15, Table 16, Table 17 and Table 18 it is clear that for
four different conditions of m and n, we get the most accurate and consistent result, from which we
can easily classify the sample disease leaf Z as belonging to Disease Z; which is Bacterial canker.

Remark 11. The cosine similarity measures proposed by Ye[31,35] and Shi, Ye[32] and cotangent similarity
measures for IFSs proposed by Tian[33], Rajeshwari and Uma [34] can not classified the plant leaf disease for
(m,n)-rung ortho pair fuzzy information which is not a intuitionistic fuzzy information given in Table 14.

Remark 12. The cosine and cotangent similarity and weighted similarity measures for PFSs respectively listed
in tablel and table 2 are failed to classified the plant leaf disease for (m,n)-ROFSs information which is not
pythagorean fuzzy information given in Table 14.

Remark 13. The cosine and cotangent similarity and weighted similarity measures for g-ROFSs respectively
listed in table3 and table 4 are failed to classified the plant leaf disease for (m,n)-ROFSs information which is not
g-ROFSs information (for q=3) given in Table 14.
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8. Conclusions

The (m,n)-ROFSs is a highly effective generalization of fuzzy structures that is well-suited for
addressing uncertainty and imprecision in decision-making problems. With its m and n parameters,
the (m,n)-ROFS is capable of accommodating a broader range of information than IFS, PFS, FFS, and
q-ROFS for q > 3. This paper presents cosine and cotangent similarity measures, as well as weighted
similarity measures, for (m,n)-ROFSs. The measures established for (m,n)-ROFS information include
those for IFS, PFS, and q-ROFS information as special cases. To assess their effectiveness, we apply
our proposed similarity measures to medical diagnosis, pattern recognition, and building material
problems compare them with existing cosine and cotangent measures for IFSs, PFSs, and q-ROFSs.
Graphical representations are provided to represent the accuracy, reliability and effectiveness of the
established measures. Finally, we present a numerical example to illustrate the practical application of
these similarity measures in plant leaf disease classification. Our findings indicate that our defined
similarity measures are more appropriate and generalizable for real-world problems than existing
measures.
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