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Abstract: Artificial Intelligence (AI) models are expected to have a great impact in the manufacturing

industry, optimizing time and resource cost by enabling applications such as predictive maintenance

(PM) of production machines. A necessary condition for this is the availability of high quality data

collected as close as possible to the process in question. With the advent of 5G equipped multi sensor

platforms (MSPs), high sampling rate data can be collected and transmitted for processing in real

time. This poses a data security challenge, since this data may give valuable insight into confidential

business information of companies. Federated learning (FL) enables the training of AI models with

data from multiple sources without it leaving the shop floor, by utilizing distributed computing

resources available on premise. This paper introduces an architecture of FL based on data collected

from 5G MSPs for enabling PM in industrial environments and discusses its potential benefits and

challenges.

Keywords: artificial intelligence; federated learning; predictive maintenance; 5G; smart sensors;

manufacturing; data security; data silos

1. Introduction

The current progress of the Industry 4.0 revolution, generates an unprecedented amount of data

from industrial processes. According to [1], data came to be measured by Terabytes in 2005, Petabytes

in 2010, Exabytes in 2015 and Zettabytes in 2020, meaning roughly a billion times more data within

these 15 years. New advances in Artificial Intelligence (AI) promise to make beneficial use of this

data, by training models for applications in e.g., quality control, processes parameter optimisation

and process forecasting [2]. One important use case is PM according to [3], since the condition of

the manufacturing equipment plays a vital role in the company’s competitiveness. Fining the correct

schedule is difficult however, since maintenance always introduces downtime and cost [4]. "Perfect"

maintenance approaches, where machine is restored to a nearly brand new state, are often expensive

and time consuming [22]. On the other hand, "minimal" maintenance approaches, despite cheaper and

faster, do not decrease the overall failure rate of the machine and can represent risk to personal safety,

product quality and machine (i.e. production) running time [22]. PM assisted by AI models enables

businesses to find the optimal maintenance schedule, by predicting when and which equipment

require maintenance [5].

The performance of an AI model is highly depended on the quality of data used during training

[6]. It is, therefore, necessary to equip the machinery with sensor devices, that are placed as physically

close as possible to the manufacturing process. Sensors are normally attached to mobile, or rotating

parts, therefore the use of wireless technologies in MSPs is often required [23]. Previously, this would

prohibit high frequency measurements, because wireless technologies were not capable of transmitting

the large amounts of data with the necessary low latency. The introduction of 5G technology in
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industrial applications however, allows for far greater data rates with lower latency, enabling the

measurement of e.g. vibrations or acoustic emission [24]. Training AI models requires a large amount

of computing resources [7]. Cloud computing currently works as a catalyst for development and

deployment of scalable Internet of Things (IoT) applications, since it provides a platform for storage,

computation and communication of edge-generated data [25]. Businesses are than required to store

their data on third party servers and transmit them over the public network. This introduces additional

challenges, because public infrastructure is not capable of supporting mass-scale, high-frequency

communication [9], and moving and storing data off premise for cloud computing increases the risk of

data breaches [10].

Federated learning (FL) was first introduced in 2016 [14] for mobile applications in the private

sector and since than has been considered the promising AI technology in terms of privacy [30]. For

its capacity of utilising the distributed computing resources while communicating machine learning

(ML), i.e. deep learning, pipelines through these computing resources, data does not have to move off

premise [31]. Additionally, it enables novel ML models to be trained on a large amount of data from

multiple businesses without them having to share it with third parties, because it is processed by each

business separately. In multiple areas FL applications are been discussed. One of its most promising

applications is it’s fusion with industrial IoT [26]. In the automotive industry, FL-enabled IoT can

check for anomalies in production [27], intelligent transportation systems [28] can be developed and

can provide optimal IoT-device scheduling regarding energy efficiency [29].

Finally, deploying ML models on resource-constrained end-devices poses multiple challenges

[32]. Those devices are mostly powered by microcontrollers. Although microcontroller performance

has made impressive strides, their computational resources and storage capacities are still limited

[33]. Additionally, microcontroller-powered devices are often run without any operating system,

requiring specialised bare metal software. Their main benefits however, are low latency and low

power consumption [34]. It is therefore desirable in some applications that ML or data pre-processing

models (e.g. self-calibration) are deployed on those end-devices, because data can either be processed

immediately at the source without any added communications delay [35].

This paper presents a novel architecture utilising FL with 5G-enabled MSPs for PM, that was

developed as part of the European project Celtic-Next: AI-NET-ANIARA. Subsection 1.1 and 1.2

presents a concise background on FL and PM. Section 2 introduces the infrastructure, including the 5G

MSPs. Section 3 presents the developed architecture of FL-enabled MSPs for PM of machines. Section

4 concludes with a discussion on the benefits and the potential challenges of this setup.

Prior to proceeding to the subsequent section, it is imperative to provide one concise explanation

of the FL and PM techniques. It is suggested that those familiar with these technique may skip this

exposition and proceed directly to section 2.

1.1. Federated learning

From the technical point of view, FL is a decentralized ML technique that delivers ML models

without centralization of data [14]. In other words, instead of centralizing data in a single location

for training, FL is able to train ML models by transmitting the model and training instructions to the

scattered edge infrastructures where data is located. The main objective of this technique is to eliminate

the necessity of sharing (sensible) data for developing ML models with neither data parties nor cloud

infrastructure providers [11]. Therefore, this technique can significantly increase data security and

represents one of the state of the art techniques for privacy-preserving ML.

The training process of FL is different from a conventional ML training. Since data is not

centralized in a central server, the ML model is the one that must be transmitted to the clients.

Once the clients are connected to a central server, one round of the FL training follows these four steps:

1. A central server sends the initial version of a ML model to participating clients. An example ML

model: a neural network with its architecture defining the amount of nodes, activation functions,

amount of hidden-layers, etc.
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2. Each client fits the ML model to its own local data for a predefined number of times (i.e., epochs).

In this step, fitting means to that the ML model recalculates its parameters aiming to minimize

the difference between its predicted outputs and the true labels using a loss function (e.g.,

cross-entropy) and an optimization function (e.g., stochastic gradient descent).
3. Each client sends back only the updated model parameters (not the actual data) and the central

server keeps track of each client’s response, awaiting for the necessary quorum.
4. Once the quorum is achieved, the central server aggregates the updated parameters from each

client using a fusion algorithm and uses this aggregated updated parameters to improve the ML

model.

A round (or communication round) refers to a single iteration of the aforementioned four steps of

the FL training process. The entire FL training process can be composed of multiple rounds and each

one with multiple epochs per client.

1.2. Predictive Maintenance

An overview of the maintenance concept evolution in [12] presents that in the late 1940s the focus

was on fixing equipment after it broke down. This approach, known as corrective maintenance (or

breakdown maintenance), is often reactive and costly, as it involves repairing equipment without

planned downtime. The primary goal is to get the equipment up and running again as quickly

as possible to minimize equipment downtime [45]. As industrialization progressed, equipment

downtime became more expensive and problematic, making corrective maintenance less practical.

In response, maintenance practices evolved to focus on preventing breakdowns from occurring in

the first place. This approach, known as preventive maintenance, involves regularly inspecting and

maintaining equipment to identify and fix potential problems before they lead to breakdowns[46].

Preventive maintenance can be scheduled based on time, usage, or a combination of the two. Although

combinations of corrective and preventive maintenance has been studied [43], they are still considered

economically inefficient approaches, since production equipment would be stopped to constantly

exchange parts even if there still is equipment remaining useful life (RUL) left. In recent years,

technological advancements have enabled maintenance practices that early predict failures [42]. These

practices have become meaningful and imperative to industrial environments [44].

PM can be described as a maintenance scheduling-support technique that is based on monitoring

the current operating condition of the equipment according to [16]. That is, according to the actual

operating status, the equipment’s RUL can be forecasted. In general, RUL forecasting can be

performed by a handful of algorithms, but essentially the ML-based algorithms have shown significant

performance advantage [47]. In PM, ML-based RUL forecasting is trained on historical data acquired

directly on the operating status. Integrated sensors in the various areas gather critical data on the

operating status can be used to sense failure precursors [48]. As soon as enough data is available,

a ML model is trained, extracting information out of this database. Based on this, maintenance

scheduling-support is performed with information on the exact component and exact time, when

maintenance is required. This is highly beneficial for industries for its cost (i.e. maintenance costs

and production costs) reduction potential. Furthermore, it enhances the efficiency by utilizing the

machinery to the full intended life time.

Training ML models for enabling PM applications with good performance isn’t yet trivial. A

whole digital infrastructure - networked sensors and machines, communication protocols, storage

and computational resources - is required, before these models can be trained. A common obstacle

most companies approaching PM face is the necessity to store this enormous amount of data in a

centralized location for ML training [13]. Although the actual approach of using cloud solutions as an

infrastructure provider for enabling data storage and ML training, cloud environments have more than

once failed to provide essential data security assurances [17]. The lack of security of cloud services

leads cloud service contractors to be held accountable for violations of the General Data Protection

Regulation (GDPR) for data leaks. According to the GDPR [19], severe violations imply a fine of up
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to 20 milion euros or up to 4 % of the company’s total global turnover of the preceding fiscal year,

whichever is higher.

According to [18], efficient bearing failure detection through vibration data of a rotating equipment

and an autoencoder-based FL approach could be achieved, while efficiently using network capacity.

Therefore, this paper assumes high potential of utilizing operational data from industrial equipment

for supporting maintenance scheduling through a PM application. From our perspective the RUL

forecasting of rotatory equipment bearing requires a higher degree of data-privacy (and therefore an

FL approach [52]), since confidential process configurations can be derived from the operational data

acquired from the equipment (e.g., current, vibration, and temperature) through model inversion [49],

membership inference [50] and other data-privacy attacks [51]. These threats represent a risk, specially

for industrials, because unauthorized data access not only can allow competitive parties to reverse

engineer equipment parameters, processes and products [49] but can also trigger legal actions against

businesses for violating such data security regulations (e.g. GDPR) [52].

2. Materials and methods

2.1. Materials

The architecture system described was developed using an open-source framework, namely

IBM Federated Learning (IBMFL) [20], as core module for the FL platform. From the hardware side,

the MSP [21] described is developed using the STM32H7 series microcontroller. The programming

language is Embedded C using the STM32 cube IDE. The 5G modules used are the commercially

available Quectel RM500Q modules. Additionally, an NVIDIA Jetson Xavier NX is coupled to the

MSP, providing GPU resources, storage capacity and remote access through tunneling services. The

(edge) cloud infrastructure, i.e. Fraunhofer Edge Cloud (FEC), is implemented within Fraunhofer

IPT’s digital infrastructure and provides storing, computing and communication resources, as well

as management and scalability features. Within the FEC infrastructure, a cluster with four virtual

machines and VPN access is utilized.

The FEC is a cloud computing platform designed to provide computing resources and services

for Internet of Things (IoT) devices and applications at the network edge, which allows faster data

processing, lower latency, and reduced bandwidth consumption. The FEC is based on a distributed

architecture, where computing resources are located closer to the sensors that generate data. This

allows for processing of large amounts of data in real-time and enables real-time decision-making

capabilities for IoT applications. The FEC platform provides a range of services, including data

analytics, ML, security, and resource management.

The FL server, that performs aggregation and hosts the web application (mentioned in section 3.2),

is deployed in a cluster of virtual machines inside the FEC. External parties or clients can access the

web application and the FL services through a private VPN access to the cluster. The resources, that

are available for aggregation services, can be scaled and managed through a resource management

service provided by the FEC alongside the implementation of load balancing algorithms of container

orchestration systems.

2.2. Methods

The development of the architecture was carried out using a mixed-method approach: a desk

research and a survey with stakeholders from an automotive manufacturer. The desk research is

composed in two main elements: a literature review on existing FL-based industrial IoT concepts and

a research of existing tools for technical development of the architecture. The survey with stakeholders

from an automotive manufacturer was performed as an one-to-one interview and involved mainly the

definition of requirements from the industrial domain.

The literature review was performed using the Webster & Watson’s method [37]. After an initial

exploratory search, a search query was defined as: ("industrial Federated Learning architecture" OR
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"industrial IoT architectures" OR "microcontroller-based federated learning architecture"). Mainly

Google Scholar was queried. The search retrieved 131 articles. Of those, a total of 32 were screened in

detail and 5 concepts were selected.

Index Architecture Description

1 [39] Industrial Internet Reference Architecture (IIRA)

2 [36]
A Multi-Agent Approach for optimizing Federated

Learning in Distributed Industrial IoT
3 [38] Industrial Federated Learning (IFL) system

4 [40]
Architecture for federated analysis and learning in the

healthcare domain

5 [41]
Scalable production system for Federated Learning in the

domain of mobile devices

With regards to the elements of a FL system identified in the literature review, multiple existing

tools were identified. Each tool, ML framework and library were analysed and their individual

technical capabilities identified. Further on, these tools were used to develop the FL platform.

The survey with stakeholders took place in August 2022 and provided end-user requirements

for the architecture. These end-user requirements were recorded and can be derived in the following

classes:

• Data security: data storage on-premise
• Required communication protocols: LoRa Network, 5G public network and WiFi connectivity.
• Sampling requirements: vibration sampling of minimum 200Hz
• Feedback signal: maximum feedback velocity
• Services: remote and VPN access to the MSP
• Storage capacity: storing capacity for a minimum of 6 months data
• Battery capacity: battery capacity for a minimum of 1 week MSP-operation

3. Architecture Setup

In this section, the architecture overview will be explained, alongside its components and

interfaces. This architecture for PM application through embedding the FL in the MSPs is represented

in the Figure 1. The envisioned multi-agent environment consists of several MSPs connected to a

central on-premise server. The MSPs communicate data to the on-premise central server, where data

remains stored and the local training services can be run, within the FL party servers. Further on,

the FL party servers deployed on the on-premise central server are longly connected with a cloud

environment, where the FL server is deployed.
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Figure 1. Multi sensor and FL platform training architecture

In this architecture, the FEC is the cloud environment hosting the FL server, the MSP is the

environment hosting data acquisition services and the coupled NVIDIA Jetson Xavier NX hosts the FL

party server. The later runs on premise in the manufacturing environments from vehicle paint-shop

area in an automobile industry. In this scenario, the connection of the on-premise server and the cloud

infrastructure is performed through the VPN access.

MSPs are deployed in bearings of air exchange systems acquiring, pre-processing, communicating

and storing vibration data. These MSPs are connected to the public network through a 5G module,

allowing remote connection, VPN connection to the FEC and, therefore, embedded FL services at any

time.

This architecture, where high frequency vibration data is locally stored and where only ML model

update parameters are transmitted, is expected to deliver less traffic load to the public network as well

as enhance data privacy of parties (i.e. clients).

3.1. Multi sensor platform

Traditionally sensors are integrated into the application that requires monitoring, and the analog

data from these sensors are cabled out to external data acquisition systems. Cabled sensors tend to

obstruct rotating parts and impair data acquisition and the actual process. Therefore, integrating the

sensor and cables into the equipment requires much planning and cost. Specific applications, such as

ML-based PM, require additional sensors integrated into the equipment to extend the feature space of

the dataset.

A wireless solution seems more practical for this application. The approach with a wireless

solution provides another challenge: battery run-time. Since the application typically needs to run for

a long time, like months, the MSP must run for the whole duration before being removed for battery

change. With the increased complexity of additional sensors and data processing for demanding

applications, an energy-efficient MSP is needed.
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The energy-efficient MSP [8] was designed to consist of multiple sensor interfaces and

complemented with hybrid communication connectivity. The MSP has a LoRa module for low-power

transmission and a 5G module for enhanced connectivity with fast communication. The necessary

sensors are integrated using the sensor interface, depending on the application. The core of the

MSP, the microcontroller, has a dual-core processor, which can be selected on the run depending

on the performance/battery run time requirements. The MSP’s software achieves energy efficiency

by optimizing the application with scheduled data acquisition, data processing, analysis, and data

transmission through appropriate communication channels.

Furthermore, the coupled NVIDIA Jetson was setup with four systemctl commands for running

systemd services. One for automatically connect and monitor internet connectivity through the 5G

module. A second for starting a tunneling service, enabling remote access to the NVIDIA Jetsona and

the MSP. A third for connecting to the FEC through VPN. A fourth for managing the interface and

data stream between the MSP and NVIDIA Jetson.

3.2. Federated Learning Platform

This technical concept mainly joined principles from the IIRA [36], IFL system design [38], the a

three-layer collaborative and layered databus architectures [39]. Further more, the FL platform was

developed on top of one of the most advanced open-source frameworks: the IBM Federated Learning

(IBMFL) [20]. This constantly developing framework is currently in enabling multiple ML methods

and fusion algorithms in federated fashion. In addition, IBMFL framework can perform state-of-the-art

encryption methods, e.g., homomorphic encryption using secure multi-party protocols.

In Figure 2, the schema of the FL platform, it’s components, core-services and interactions is

presented.

Figure 2. FL platform and cross-network interactions

The FL server is the element responsible for two main activities: the project management of

decentralized projects and the execution of aggregation services.

Project management is performed through an user-friendly web application deployed in a cloud

environment reachable for the project partners. It is designed for collaborative project development

with data-owner partners and data scientist partners. For this activity two interfaces are foreseen: one

with data-owner parties - through which local training settings can be provided - and one with the data

scientist responsible for developing the ML pipelines. The web application maintains a WebSocket

connection with FL party servers permitting exchange of command line input (CLI) commands

between the FL server and the FL party server, what eases the interaction of data-owners with the

IBMFL framework.

Aggregation services are responsible for distribution of training settings, monitoring the

server-party connection and executing model fusion algorithms iteratively, the vital algorithm of
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FL. Aggregation services are executed when a new training round is triggered in the project and these

services first task is to transmit a non-transitory computer-readable medium that stores instructions

about training settings to the respective FL party servers involved in the project. These decentralized

FL party servers then execute a local training service and register automatically through the CLI

commands to the aggregation service according to these instructions. After configuring the local

training service with the aggregation service, a continuous flask connection allows mutual model

parameters exchange as well as IBMFL commands (e.g. TRAIN, SAVE, SYNC, EVAL).

The FL party servers are responsible for three main activities: the configuration of local training

services with respective aggregation services, the execution of local training services and the iterative

exchange of the partial training results for updated global parameters with the aggregation services.

The configurations arrive at the FL party server immediately after triggering of aggregation

service in the web application. These settings define CLI commands for the local training service

register to the aggregation service, the ML model, the data handling pipelines, the local and global

hyperparameters of each single decentralized project.

After executed, the local training service is responsible for the processing of local data during

model training and exchanging partial training results with the aggregation service. This processing of

local data takes place on the party infrastructure, where the data is safely stored and previously set on

the project management web application by the data-owner. The processing may also be set by the

data-owner to a chosen computational resource available in his network, which must have been also

previously defined in the project management web application. Conclusively, settings for the location

of the data and available computational resource are flexible for data-owner partners to designate.

The iterative exchange of partial training results occurs through the flask connection between the

the local training service and aggregation service in the FL server after the training phase is triggered.

The partial training results of all local training services arrive at the aggregation service one-by-one as

the local processing of the iteration is completed. The lack of parties synchronicity does not affect the

quality of the global model, but does affect the total training time. Aggregation services are allowed

to abandon parties for an iteration round in case of a non-responsive FL party server, ensuring the

rightful use of data-owner resources involved in the project.

4. Conclusions

The adoption of the architecture setup with edge FL in MSPs network for PM offer numerous

advantages to production companies. However, its successful implementation is likely to encounter

several challenges that need to be overcome for seamless operation.

4.1. Adoption advantages

Cutting-edge maintenance strategy

The use of PM approaches itself represent a cost reduction potential for the manufacturing

company. Through the monitoring of rotating equipment components, the maintenance procedure can

be scheduled according to the component condition. On one hand, this approach supports maintenance

intervention by optimizing the life time of the component, what than reduces maintenance costs. On

the other hand, it supports scheduling of the intervention according to the RUL forecast of the ML

model. Further on, the RUL forecast enables the intervention to adhere to production planning

requirements, therefore reducing production downtime costs.

Data privacy and governance

Without the transmission of vibration data to a cloud environment, confidential data is kept safe

on-premise. Nevertheless, the application of FL for training models capable of forecasting RUL of

equipment components, permits to still exploit the potential of operational data without risking, both

data privacy and governance [52].
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Federated Learning Operations

The introduction of a FL platform enables a first step to conduction decentralized learning projects

in manufacturing environments [53]. It centralizes the management of a multi-agent service (i.e. the FL

services) and provides user-friendly features for managing several decentralized projects at the same

time. The FL platform also simplifies the configuration of the local training services for the clients, by

introducing the Websocket connection enabling third parties to configure them as well. Triggering

commands to the FL core framework is also possible through the web application.

4.2. Implementation challenges

Data heterogeneity

Once decentralized data is being acquired by the MSP, the different local requirements of each

data-owner party are expected to result in heterogeneous datasets. Each industrial environment

presents different behaviors and they are expected to be fingerprinted in the data through it’s

distribution, quality and sampling frequency. Training FL models ideally requires similar datasets

in all parties for achieving high model performance and for that achieving comparability between

heterogeneous datasets is most important. An innovative solution for overcoming this challenge is

enabling personalized data preprocessing pipelines on the individual datasets through the FL platform.

By this means it’s expected to enable comparability between heterogeneous datasets and increase

performance model prospects after training.

Network congestion

One of the main challenges of using FL is network congestion. This can occur when many edge

nodes are trying to communicate with the central server at the same time, resulting in a bottleneck

that slows down the training process. Additionally, if some edge nodes have limited bandwidth, they

may be unable to transmit their data to the server quickly, further contributing to congestion. This can

make it difficult to train the model effectively and can also lead to increased latency, which can impact

the user experience. To address these challenges, FL systems need to be designed to handle network

congestion and optimize the communication between edge nodes and the central server.

Network congestion can still be an issue in a data silo FL system, i.e. where the data is stored

on-premise. Due to the limited computing and storage resources available to each edge node, it is

likely that a central on-premise data storage system is employed.

Hardware acceleration

For an application involving AI, including FL, the platform should meet specific hardware

requirements such as computational performance, graphics processing unit, memory bandwidth, data

storage, etc. With the edge computation paradigm, these requirements cannot be met with the standard

system on chip (SoC) or mini PCs and hence needs acceleration. These hardware accelerators can

be in terms of external/onboard co-processors, GPUs, ASICs, or even FPGAs. For example, the new

Nvidia Jetson series System on Chip modules has a CPU and a discrete GPU developed extensively

for Edge AI applications. These modules can make use of the GPU to enhance the AI inference with

GPU-accelerated models without overloading the CPU, making it more real-time and efficient.

Hardware energy consumption

One of the main challenges in developing the wireless MSP for PM and FL is power consumption.

Since the MSP is typically plug-and-play, where it is mostly deployed in environments where access to

a power supply is a challenge. Hence it has to run on battery for a longer time i.e. at least one week on

a single charge (see 2.2). Ideally, a microcontroller with a good amount of peripherals and optimum

processing power, capable of handling simple AI loads while consuming low power (typically less than
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500mW to 1W) is preferred. The communication also follows with ideally using low-power technology

such as LoRa, WiFi and 5G. The software architecture also plays a significant role in determining the

run time. The application has to be programmed taking into the available run time, and processing

requirements and accordingly scheduling the task for the application. With the local FL platform,

the second challenge the MSP faces is to communicate with the aggregation server. A generalized

communication protocol has to be predefined and communicated with all the MSPs so that the data

between sensors and the FL platform can be communicated without data loss. This could be either

sophisticated protocols such as TCP, LwM2M or simple message query protocols such as MQTT or

CoAP with data redundancy feature included.
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