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Abstract: Accurately predicting the power of solar power generation can greatly reduce the impact 
of the randomness and volatility of power generation on the stability of the power grid system, 
which is beneficial for the balanced operation and optimized dispatch of the power grid system, 
and reduces operating costs. Solar PV power generation depends on weather conditions, which are 
prone to large fluctuations under different weather conditions. Its power generation is characterized 
by randomness, volatility and intermittency. Recently, the demand for further investigation and 
effective use on the uncertainty of short-term solar PV power generation prediction has been getting 
increasing attention in many application of renewable energy sources. In order to improve the 
predictive accuracy of output power of solar PV power generation and develop a precise predictive 
model, the authors worked predictive algorithms for the output power of a solar PV power 
generation system. Moreover, since short-term solar PV power forecasting is one of the important 
aspects for optimizing the operation and control of renewable energy systems and electricity 
markets, this review focuses on the predictive models of solar PV power generation, which can be 
verified in the daily planning and operation of a smart grid system. In addition, the predictive 
methods in the reviewed literature are classified according to the input data source used for accurate 
predictive models, and the case studies and examples proposed are analyzed in detail. The 
contributions, advantages and disadvantages of the predictive probabilistic methods are compared. 
Finally, the future studies of short-term solar PV power forecasting is proposed. 

Keywords: predictive models; weather research and forecasting (WRF); solar irradiance forecasting; 
solar PV power forecasting; renewable energy sources 

 

1. Introduction 

The energy crisis, air pollution, global warming and other environmental issues have stimulated 
the development of renewable energy, which is expected to account for about 40% of energy 
consumption by 2030 [1]. Solar PV power generation refers to a power generation device that uses 
PV module modules to directly convert solar energy into electricity energy. This is a novel and highly 
promising energy comprehensive utilization method, with the advantages of low environmental 
pollution, no pollution of air and water resources, no noise pollution, being able to adapt to local 
conditions, low installation cost, and on-site consumption when connected to the power grid. It can 
achieve the coexistence of power generation and consumption, and is currently one of the most 
promising PV technologies. According to Rethink Energy data, in the first three seasons of 2022, the 
global installed solar energy capacity increased by 54GW, a year-on-year increase of 37.8%. The total 
installed capacity in the first nine months of this year is about 142.5GW. Forecast shows that the 
annual installed capacity will reach 222GW [2,3]. According to the latest report from the European 
Photovoltaic Association SPE, the installed capacity of new devices in the 27 EU countries in 2022 
was 41.4GW, a new increase of 28.1GW compared to last year, achieving a year-on-year increase of 
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47%. By 2022, the cumulative installed capacity is expected to reach 208.9GW. According to the 
statistical data released by the National Energy Administration of China, the new installed capacity 
of power in 2022 was 87.41 GW, and by 2022, the cumulative installed capacity of power was 396.261 
GW.  

The prediction of power generation has been carried out very early due to the early 
establishment of a large number of solar observation stations in Europe and the United States, more 
assistance of advanced technology and equipment, and the accumulation of sufficient historical data. 
The main work is to use different predictive models to improve the forecasting accuracy, and part of 
the work is to summarize existing methods or analyze their economic benefits. The methods for 
realizing PV power generation forecasting are mainly divided into traditional predictive methods in 
physics and statistics, novel forecasting methods using machine learning, optimization algorithms, 
and deep learning as well as hybrid models. 

More recently, in the Artificial Intelligence (AI) or Neural Networks (NNs) approaches, a new 
short-term PV predictive method based on the Artificial Neural Network (ANN) or Recurrent neural 
network (RNN) has been proposed. This method employs dynamic artificial neural networks to 
predict solar radiation and temperature, thereby achieving prediction of solar power energy output 
[4–8,10,12]. Sudden change of solar radiation near the surface are extracted from the ground based 
cloud images sampling technology combined with the Similar day-based and ANN based 
approaches ensures accuracy in solar radiation prediction [9,11,13]. Lima et al. (2020) used AI 
methods in a new adaptive topology based on the Portfolio Theory (PT) technology to make short-
term predictions of effective solar PV power generation for global solar radiation [14]. 

Next, some solar PV power generation forecasting models based on machine learning or 
optimization algorithms such as Support Vector Machine (SVM), Support Vector Regression (SVR), 
Extreme Learning Machine (ELM), Gradient boosting decision tree (GBDT), Adaptive boosting 
Learning (ABL), etc. has proposed [15–33], which use a large amount of satellite images and data. 
Compared with traditional time series analysis, the forecasting accuracy has significantly improved. 
Ziyabari et al. (2022) used the a novel multi-range attentive gated current residual network 
(ResAttGRU) model and meteorological data, clear sky index, and solar Ireland to predict short term 
solar radiation [34]. This model also proposes a strong multi time scale in the proposed architecture, 
and GRU can utilize temporal information at a lower computational cost than the popular Long Short 
Term Memory (LSTM). Doubleday et al. (2021) established a utility scale photovoltaic (PV) plants at 
multiple time horizons based on the Bayesian model averaging (BMA) algorithm and numerical 
weather forecasting (NWP), and obtained a probabilistic solar power forecasting model [35]. 

In addition, deep learning methods such as long-term short-term memory (LSTM) network 
model, recursive short-term memory network (Rec LSTM), convolutive long-term short-term 
memory (Conv LSTM), multi-step CNN stacked LSTM model, etc. [36–56] are used to predict solar 
PV output power. Talat et al. (2021) proposed a new multi-layer feedforward neural network 
(MFFNN) for solar PV power generation forecasting considering thermal effects and environmental 
conditions [57]. The results obtained from the MFFNN-MVO and MFFNN-GA models were studied 
through environmental temperature, wind speed, and solar irradiance. Jebley et al. (2021) established 
a multilayer perceptron (MLP) model, which is a network composed of multi-layer interconnected 
nodes combined with the clear sky index to achieve the classification of environmental factors, and 
then optimized the weight of the multi-layer perceptron through the artificial bee colony algorithm 
to achieve the prediction of solar PV output power. This nonlinear forecasting model has a better 
effect than the linear forecasting model since the output power is intermittent and random [58]. 

Moreover, there are some forecasting works using hybrid and ensemble models. Ma et al. (2021-
2022) proposed new forecasting models such as VMD-LSTM-RVM, CNN-LSTM-MLP, MC-WT- 
CBiLSTM depth, NARX-CVM, Wavelet-adversial deep, GBRT-Med- KDE Model, TG-A-CNN-LSTM, 
etc. and implemented interval forecasting for microgrids, providing a good solution for energy 
management of microgrids [59–63]. Meng et al. (2021) proposed a new hybrid wavelet-adversial deep 
model for power generation forecasting using satellite and Global horizontal radiation (GHI) 
forecasting. This method integrates a wavelet neural network model with a three-stage adaptive 
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modification solution of DA to improve the algorithm's ability to modify in local and global search, 
and has relatively reliable forecasting results [64]. Wang et al. (2022) proposed a hybrid LSTM-SVR-
BO model that combines machine learning methods and statistical methods, and conducted 
comparative tests on multiple time dimensions to better reflect the accuracy of experimental results, 
and verified the advantages of the proposed method, which can achieve better forecasting results 
than a single model [65]. Zhang et al. (2022) proposed the hybrid Gradient Boosting Regression Tree-
Median and Kernel Density Estimation (GBRT-Med-KDE) model. This study proposes a short-term 
solar power interval prediction method for solar PV power generation, which effectively predicts 
global solar radiation. This method can obtain more reliable and stable interval forecasting results 
[66]. Du et al. (2022) proposed a forecasting model based on Theory guided and attention based CNN-
LSTM(TG-A-CNN-LSTM), which can ignore meteorological data such as temperature and wind 
speed. In the training process, data mismatch and boundary constraints are introduced into the loss 
function, and positive constraints are used to limit the output of the model. This model demonstrates 
the better forecasting accuracy, stability and robustness for solar PV power generation compared to 
a single forecasting model [67]. Furthermore, Ghasvarian Jahromi et al. (2020) proposed some 
forecasting works using statistical methods such as Hidden Markov model (HMM), Similarity-based 
forecasting models (SBFMs), and Kalman filtering (KF), and applied them to probability forecasting 
of solar power generation [68,69]. Mutavhatsindi et al. (2021) achieved good results in predicting the 
production of solar power plants using the Quantitative Regression Average (QRA) regression model 
based on meteorological data [70,71]. 

To date, several review papers on solar PV power forecasting have been studied. Maciel, 
Rajagukguk, et al. (2021) outlined short-term methods for predicting solar PV power generation. In 
addition to using different forecasting methods to improve forecasting performance, another part of 
the works is to summarize and analyze the existing PV power generation forecasting methods in 
recent years based on time scales, forecasting models, and output data [72–74]. Wu et al. (2022) 
summarized machine learning, deep learning, algorithm optimization and hybrid forecasting models 
to achieve the modeling and forecasting of meteorological factors. Of these methods, the solar radiant 
intensity is a key parameter, and its forecasting results will directly affect the output power of PV 
power stations [75,76]. Furthermore, Sudharshan and Mohamad Radzi summarized 161 and 306 
related papers respectively, introducing various combinations, influencing factors, issues, limitations, 
and suggestions for achieving solar PV power generation prediction of hybrid ANN, machine 
learning methods or algorithm optimization [77,78]. 

This review work intends to provide a clear and concise understanding of the different 
predictive models for solar radiation and solar PV power generation forecasting. To satisfy the 
requirements of large-scale solar PV power grid integration and further improve the forecasting 
accuracy of a short-term solar PV power generation, it is necessary to develop a short-term solar PV 
power forecasting model based on the state-of-the art hybrid AI algorithms to accomplish accurate, 
robust and efficient solar PV power forecasting. The main contribution of this paper is to review the 
impact of different irradiance forecasting techniques for solar PV power prediction as follows: 

1. This paper discusses a systematic understanding of the selection and application scope of 
various prediction models, including AI or Neural Networks (NNs), machine learning models or 
algorithm optimization, deep learning models, hybrid AI models, and probability models. 

2. This paper summarizes the current trends in solar PV power forecasting techniques, including 
the advantages and disadvantages, and contributions of various solar PV power forecasting models. 
Some important metrics as time resolution, model type, accuracy and parameters are presented. 

3. These models have different predictive capabilities, and the weights of each model are 
updated in real time to improve the comprehensive predictive capabilities of the models, and have a 
good application prospect in solar PV power forecasting.  

4. The paper reviews and analyzes case studies and examples in the literature that accurately 
predict short-term solar PV power forecasting with uncertainty and stochasticity.  

Finally, the paper draws a conclusion, and the existing issues in the methodologies. Future 
research directions are prospected. 
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2. Reviews for the development of literature on solar PV power forecasting models 

Improving the predictive accuracy of solar PV power generation is conducive to the optimal 
dispatching of microgrids. This paper analyzes the multi-time scale optimal dispatching model of 
microgrids, which can effectively deal with the risks brought by Solar PV power prediction errors to 
system operation and realize optimal dispatching of solar PV microgrid systems. Then, starting from 
the necessity of improving the predictive accuracy of solar PV power generation, the impact of 
different predictive accuracy of solar PV output power on the optimal dispatch of microgrids is 
analyzed, and it is shown that the predictive accuracy of solar PV power generation can be achieved. 
The optimized scheduling that is more in line with the actual operation proves the practicability and 
necessity of improving the forecasting accuracy of power generation. 

2.1. Forecasting techniques 

Previously, there were some review articles with a wide scope (prediction techniques, sources 
of input databases, statistical metrics, temporal and spatial coverage, etc.) In recent years, relevant 
scholars have conducted theoretical research and practical simulation. This paper works a 
comprehensive review of the novel techniques for predicting solar PV power generation. Figure 1 
shows the predictive model of solar PV power generation. The advantage of these methods as (AI or 
Neural networks (NNs), machine learning or optimization algorithms, deep-Learning, hybrid models 
and other statistical analysis methods) is that the amount of training data can be greatly reduced, and 
it also avoids excessive weighting of individual data.  

 

Figure 1. Short-term solar PV power generation prediction model. 

2.2. Literature classification based on methods 

Modern solar PV power generation forecasting methods mainly include AI neural network, 
support vector machine, wavelet analysis, hybrid and ensemble model forecasting, etc. The neural 
network has the characteristics of self-reasoning, self-organization and information memory. It has 
also strong fitting ability, complex mapping ability, fault tolerance and learning ability, and is suitable 
for dealing with a large number of unstructured and strongly dynamic regular problems. The 
relationship between solar PV power generation and time is usually random and non-linear because 
variations in solar radiation are affected by external conditions such as temperature, relative 
humidity, rainfall, rainfall hours, sunshine hours, and full-day sunshine. The neural networks (ANNs) 
are the most used machine learning techniques in short-term solar PV power forecasting. Hybrid 
predictive models are designed by combining two or three deep learning techniques or combining 
optimization algorithms with AI methods. It addresses the aforementioned shortcomings of a single 
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predictive model by finding optimal features, hyperparameters, and training algorithms. The review 
works on solar PV power generation forecasting for time resolution, model type, accuracy and 
parameter used are presented in the Table 1. 

Table 1. The model type, accuracy and parameters for the reviewed works. 

Ref Method Model type Parameter Used Accuracy 

[4] 
AI or Neural 
networks (NNs) 

Principal component analysis 

(PCA), artificial neural networks 

(ANN) with the outputs using 

Mixture DOE (MDOE) 

Instantaneous temperature (◦C),  

Instantaneous humidity (%),  

Instantaneous precipitation (◦C), 

Instantaneous pressure (hPa),  

Wind speed(m/s), Wind direction(◦),  

Wind gust(m/s) and Radiation(KJ/m2). 

MAPE= 10.45%, SD=7.34 

for summer; 

MAPE=9.29%, SD=7.23 

for autumn;  

MAPE=9.11%, SD=5.55 

for winter;  

MAPE=6.75%, SD=6.47 

for spring 

[5] 
AI or Neural 
networks (NNs) Artificial neural networks (ANN) 

Relative Humidity 

Solar Radiation 

Temperature 

Wind Speed 

RMSE=86.466 

MAE=8.409 

[6] 
AI or Neural 
networks (NNs) Recurrent neural network (RNN) 

Temperature 

Humidity 

Wind Speed 

MRE(%)= 3.87 

MAE(kW)= 7.75 

nRMSE (%)=5.69 

[7] 
AI or Neural 
networks (NNs) Artificial neural network (ANN); 

National Renewable Energy Laboratory  

Irradiance, Temperature, Wind Speed, 

Wind Pressure 

MAPE(%)=1.8 

MSE=3.19×10e−10 

 

[8] 
AI or Neural
networks (NNs) 

Feedforward backpropagation 

neural network (FFBPNN) 

method 

Daily average temperature, daily average 

humidity, daily average wind speed, daily 

total sunshine duration, and daily average 

Global solar irradiation (GSI) 

MAPE=7.066%, 

nMAE=3.629%,  

nRMSE= 4.673%, and 

MAE =5.256% 

[9] 
AI or Neural 
networks (NNs) BP neural network 

Cloud-based images, historical data of solar 

radiation 

MAE= 46.1W 

MAPE= 7.8%. 

[10] 
AI or Neural 
networks (NNs) Artificial neural network (ANN) 

Radiation, temperature, wind speed, and 

humidity  

Classification accuracy% 

=97.53% 

[11] 
AI or Neural 
networks (NNs) 

Neural Network Prediction 

Model 

Temp., wind Speed, wind direction, 

humidity, total amount of cloud, insolation 
MAPE(%) =12.94%  

[12] 
AI or Neural 
networks (NNs) 

Artificial Neural Network Relative humidity, solar radiation, 

temperature and wind speed 

RMSE=86.466(W) 

MAE=8.409 

[13] 
AI or Neural 
networks (NNs) 

Similar day-based and ANN-

based approaches 

Extra-terrestrial radiation 

Cloud cover factor 

Temperature 

MAPE = 21.37%  

nRMSE = 30.99% 

[14] 
AI or Neural 
networks (NNs) 

AI methods based on the 

Portfolio Theory (PT)  

Solar irradiance  

Air temperature 

MAPE= 4.52% 
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[15] 

Machine learning 
or optimization 
algorithms RNN-LSTM Model 

Solar radiation, module temperature, and 

ambient temperature 

 

RNN-LSTM (p-si) 

RMSE=26.85 

RNN-LSTM (m-si) 

RMSE=19.78 

R2=0.9943 

[16] 

Machine learning or 
optimization 
algorithms 

Gradient boosting decision tree 

(GBDT) 

Temperature (◦C) 

Atmospheric pressure (kPa) 

Relative humidity (%) 

Wind speed (m/s) 

Total solar radiation (0.01 MJ/m2) 

MAE(MWh)=6.02 

MAPE(%)=3.30 

RMSE(MWh)=6.73 

[17] 

Machine learning 
or optimization 
algorithms 

Adaptive extreme learning 

machine model 

(a)Global horizontal irradiance(GHI) 

(b)Temperature (c)Relative humidity  

MAE=0.2444  

MSE=0.1727 

RMSE=0.3012 

[18] 

Machine learning or 
optimization 
algorithms 

Transparent Open Box (TOB) 

machine-learning method 
Solar radiation, wind velocity and air pressure 

RMSE = 1175 MW and R2 

= 0.9804;  

RMSE = 1632 MW and R2 

= 0.9609 

[19] 

Machine learning 
or optimization 
algorithms 

Clouds and Sun Detection 

Algorithm 
Image acquisition, image processing 

Sun coverage between 5 

and 6 s. 

Standard error level in 

range of 10–20%. 

[20] 

Machine learning 
or optimization 
algorithms 

Adaptive boosting Learning 

Model 

Solar power (MW), solar irradiance (W/m2) 

and model temperature (K) 

RMSE =25.77 

MAE=30.28 

[21] 

Machine learning 
or optimization 
algorithms 

Extreme learning machine with a 

forgetting mechanism (FOS-

ELM) 

PV Data, Weather data, Noise variance 
nRMSE=0.952, 

MAPE=1.549 

[22] 

Machine learning 
or optimization 
algorithms 

Regression-Based Ensemble 

Method 

Irradiance, temperature, precipitation, 

humidity, wind speed 

MRE=4.362%, 

MAE=87.242 kW, and 

R2=0.933 

[23] 

Machine learning 
or optimization 
algorithms Machine learning (ML)-based 

Ambient temperature, relative humidity, 

wind speed, wind direction, solar irradiation , 

and precipitation 

MSE=0.15. 

[24] 

Machine learning 
or optimization 
algorithms 

Spatio-temporal autoregressive 

model (STVAR) 
Global horizontal irradiance (GHI) 

rMAE (%)=13.13, 

rMBE (%)=-2.99,  

rRMSE (%)=21.8 

[25] 

Machine learning or 
optimization 
algorithms 

Support vector machine (SVM) 

and Gaussian process regression 

(GPR) models 

Solar PV panel temperature, ambient 

temperature, solar flux, time of the day and 

relative humidity. 

RMSE=7.967,MAE=5.302 

and R2=0.98 

[26] 

Machine learning or 
optimization 
algorithms 

Multi-kernel random vector 

functional link neural network 

(MK-RVFLN) 

Historical solar power data 

MAPE (%)=2.29,  

RMSE (MW)=0.738, 

MAE (MW)=0.343 
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[27] 

Machine learning or 
optimization 
algorithms 

An adaptive k-means and Gru 

machine learning model 

Temperature, dew time, humidity, wind 

speed, wind direction, azimuth angle, 

visibility, pressure, wind-chill index, calorific 

value, precipitation, weather type 

RMSE=8.15 

MAPE/(%)=0.04 

[28] 

Machine learning 
or optimization 
algorithms 

Choice of random forest 

regression 

Global horizontal irradiation, relative 

humidity, ambient air temperature, cloud 

cover, and the generation of electricity more 

than 20 items 

R2=0.94 

MAE=5.12 kWh 

RMSE=34.59 kWh 

[29] 

Machine learning or 
optimization 
algorithms 

Support Vector Regression- 

Based Model 

 power 

Hourly Standard Solar Irradiance (SSI), 

Online Weather Condition (OWC)  

Cloud Cover (CC) 

nRMSE=2.841% 

MAPE=10.776% 

[30] 

Machine learning 
or optimization 
algorithms 

Hybrid-classification-regression 

forecasting engine 

Forecasted/lagged values of weather 

parameters, lagged solar power values, and 

calendar data 

MAE= 0.078 

MAPE=14.1 

MSE=0.014 

[31] 

Machine learning 
or optimization 
algorithms 

Frequency-Domain 

Decomposition and 

Convolutional neural network 

(CNN) 

PV power data MAPE=0.1778 

RMSE= 1.1757 

R2=0.9438 

[32] 

Machine learning 
or optimization 
algorithms Regions of interest (ROIs) 

Precise cloud distribution information nRMSE= 5.573 

nMAE= 2.362 

MASE= 0.644 

[33] 

Machine learning 
or optimization 
algorithms 

Adaptive learning neural 

networks 

Solar irradiation, temperature, wind speed 

and humidity. 

RMSE=143.7483(W/m2) 

MAE= 67.2620(W/m2) 

MBE=4.5844(W/m2) 

[34] 

Machine learning 
or optimization 
algorithms 

A novel multibranch attentive 

gated recurrent residual network 

(ResAttGRU) 

Clear Sky Index, 

Solar Irradiance 

RMSE=0.049(W/m2) 

MAE= 0.031(W/m2) 

R2=0.99 

[35] 

Machine learning 
or optimization 
algorithms 

Bayesian model averaging 

(BMA) 

Numerical weather prediction (NWP) SS’s of at least 12% 

 

[36] 
Deep-Learning The encoder–decoder LSTM 

network 

Air temperature (◦C),  

Relative humidity (%) 

Global irradiance on the Horizontal plane 

(W/m2 ) 

Beam/direct irradiance 

Diffuse irradiance on the horizontal plane 

Extraterrestrial irradiation  

MAPE (%)=39.47% 

RMSE (W/m2 )=99.22% 

MAE (W/m2 )=67.69% 

nRMSE =0.27 

[37] Deep-Learning 
Deep-Learning-Based Adaptive 

Model 

Temperature, dew point, wind speed, and 

cloud cover. 
nRMSE=0.3058 

[38] Deep-Learning 
Multistep CNN-Stacked LSTM 

Model 

Solar irradiance, plane of array (POA) 

irradiance 

nRMSE = 0.11 

RMSE = 0.36 
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[39] Deep-Learning LSTM-dropout Model 

(a) cloudy index (b) visibility 

(c) temperature (d) dew point (e) humidity (f) 

wind speed (g)atmospheric pressure (h) 

altimeter (i) solar output power. 

RMSE = 0.01 

MAE=0.0756 

MAPE=0.05711 

R2=0.90668 

[40] Deep-Learning SCNN–LSTM model 
Direct normal irradiance (DNI), solar zenith 

angle, relative humidity, and air mass 

nRMSE=23.47%  

Forecast skill= 24.51% 

[41] Deep-Learning 

Artificial neural network (ANN) 

and Long-Term Short Memory 

(LSTM) network models 

Air temperature, relative humidity, 

atmospheric pressure, wind speed, wind 

direction, maximum wind speed, 

precipitation (rain), month, hour, minute, 

Global Horizontal Irradiance (GHI) 

MAPE = 19.5% 

[42] Deep-Learning 
LSTM and ANFIS learning 

models 

Direct and diffuse short-wave radiation, 

evapo-transpiration, vapor pressure deficit at 

2 m, relative humidity, sunshine duration, 

and soil temperature 

RMSE=0.04–0.8 

MSE=0.0016–0.64  

MAE =0.034–0.86 

[43] Deep-Learning 
Opaque deep-learning solar 

forecast models 

Total column liquid water, Total column ice 

water, Surface pressure, Relative humidity, 

Total cloud cover, U&V wind component, 

temperature, Surface solar radiation 

downwards, Surface thermal radiation 

downwards, Top net solar radiation, Total 

precipitation. 

MAE=0.050 ± 0.002 

RMSE=0.098 ± 0.003 

[44] Deep-Learning VM-based forecast models Solar radiation and temperature 
Accuracy factor increase 

27%. 

[45] Deep-Learning 

A fluctuation pattern prediction 

(FPP)-LSTM model 

FPR-LSTM  

The ultrashort-term power prediction was 

performed with the cloud distribution 

features and historical power data as input 

RMSE=6.675% 

MAE=4.768% 

COR=0.9055 

[46] Deep-Learning 
Long Short-Term Memory 

(LSTM) network 

PV inverter Energy meter Data logger, 

Weather data acquisition 

RMSE= 0.512 

[47] Deep-Learning 
Long Short-Term Memory 

(LSTM) network 

Samples, time steps and features RMSE= 15.59 kW 

MAE= 8.36 kW 

[48] Deep-Learning 

Convolutional autoencoder 

(CAE) based sky image 

prediction models 

Precise cloud distribution information SSIM=1.012 

MSE=0.712 

[49] Deep-Learning 

Long short-term memory 

(LSTM) neural network 

Temperature, relative humidity, wind speed 

and precipitable water. 

The approximate numerical solar irradiance 

RMSE= 0.71MW 

MAE= 0.36MW 

MAPE=22.31% 

[50] Deep-Learning 
Recursive long short-term 

memory network (Rec-LSTM) 

General weather information nRMSE= 15.25% 

WMAPE=68.47% 

[51] Deep-Learning 
Convolutional long short-term 

memory (Conv-LSTM) 

Multi-point regional data consolidation RMSE never increases 

more than 15% 
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17 sensors were laid on the island of Oahu 

(Hawaii) covering an area of roughly 1km2 

from March 2010 to October 2011. 

[52] Deep-Learning 

Convolutional neural network 

(CNN) and LSTM recurrent 

neural network 

General weather information RMSE= 2.095MW 

MAE= 1.028MW 

 

[53] Deep-Learning 

A spatial-temporal graph neural 

network(GNN) is then proposed 

to deal with the graph 

Precise cloud distribution information RMSE= 6.945k 

MAE= 3.565k 

MAPE=1.286% 

[54] Deep-Learning 

Time-series long short-term 

memory (LSTM) network, 

convolutional LSTM 

(ConvLSTM), 

Historical hourly solar radiation nRMSE= 4.05% 

[55] Deep-Learning 

Long Short Term Memory 

(LSTM) 

Mean solar radiation and air temperature for 

a region 

RMSE= 317.4 

MAE=236.35 

MAPE=2.17 

[56] Deep-Learning 

Long Short-Term Memory 

(LSTM) 

Weather temperature (◦ C) 

Global horizontal radiation (W/m2)  

PV power history data 

MAPE =6.02 

[57] Deep-Learning 

The multi layer feed forward 

neural network (MFFNN) 

multiverse optimization (MVO) 

Wind speed 

Solar irradiance  

Ambient temperature. 

nRMSE=5.95E-03 

MSE=2.16E-05 

MAE=9.44E-05 

R2=0.994045813 

[58] Deep-Learning 

Multi layer Perceptron (MLP) Temperature, humidity, wind speed; wind 

direction, pressure 

Solar radiation 

Solar energy 

MAE=0.03(J/m2)  

MSE=0.006(J/m2)  

RMSE=0.08(J/m2) 

[59] 
Hybrid model 
forecasting VMD-LSTM-RVM Model  power history data 

MAPE%=5.12 

RMSE(kW)=4.80 

[60] 
Hybrid model 
forecasting 

Covariance Matrix Adaptive 

Evolution Strategies (CMAES) 

with Extreme Gradient Boosting 

(XGB) and Multi-Adaptive 

Regression Splines (MARS) 

models 

Wind velocity, maximum and minimum 

weather humidity, maximum and minimum 

weather temperature, vapor pressure deficit 

and evaporation 

RMSE=4.9% 

[61] 
Hybrid model 
forecasting 

CNN-LSTM-MLP hybrid fusion 

model 

Temperature, rainfall, evaporation, vapour 

pressure, relative humidity 

𝑟 ≈ 0.930, RMSE ≈ 2.338 

MJm−2day−1, MAE ≈ 1.69 

MJm−2day−1 

[62] 
Hybrid model 
forecasting MC-WT-CBiLSTM depth model Global level irradiance and temperature 

MAE=18.13 

RMSE=27.98 

R2=0.99 
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SMAPE=10.97 

MAPE=15.63 

[63] 
Hybrid model 
forecasting NARX-CVM Hybrid Model 

Temperature, solar radiation, relative 

humidity, wind speed, and pressure 
Forecasting skills =34%  

[64] 
Hybrid model 
forecasting 

Hybrid wavelet-adversarial deep 

model 
Global horizontal irradiance (GHI) 

RMSE=0.0895, 

MAPE=0.0531 

[65] 
Hybrid model 
forecasting Hybrid LSTM-SVR-BO model. PV power history data 

RMSE(MW)=9.321, 

MAE(MW)=4.588, 

AbsDEV(%)=0.174 

[66] 
Hybrid model 
forecasting GBRT-Med-KDE Model 

Wind speed, temperature (Celsius), and 

relative humidity. 

MAE=0.05, RMSE=0.08, 

R2(%)=99.75, 

MAPE=0.055, 

SMAPE=0.028. 

[67] 
Hybrid model 
forecasting 

Theory-guided and attention-

based CNN-LSTM (TG-A-CNN-

LSTM) 

Neglect the meteorological data, such as 

temperature and wind speed. 

RMSE=11.07 

MAE = 4.98 

R2 =0.94 

[68] 
Other statistical 
analysis methods Hidden Markov model (HMM) Solar historical data 

nMAE=2.84, 

nRMSE=6.05, 

MAPE=13.46 and 

Correlation coefficient= 

0.975. 

[69] 
Other statistical 
analysis methods 

Similarity-based forecasting 

models (SBFMs) 

Temperature, humidity, dew point, and wind 

speed 

RMSE= 15.3% 

MAE=826.2W 

MRE=10.8% 

[70] 
Other statistical 
analysis methods Kalman filtering (KF) 

Irradiance, temperature, relative humidity, 

and the solar zenith angle 

RMSE= 156.42(39.88%) 

nRMSE= 12.71% 

 

 

[71] 
Other statistical 
analysis methods 

Quantile regression averaging 

(QRA) 

Temperature, wind speed, relative humidity, 

barometric pressure, wind direction standard 

deviation, rainfall 

RMSE= 88.600 

MAE= 52.034 

 

2.3. Summary of forecasting techniques  

A literature review is conducted using the (1) Web of Science, (2) IEEE Xplore, (3) MDPI, and (4) 
Google Scholar database from 2020 to 2023 for publications on short-term solar PV power prediction. 
In the past three years, the number of research in this field has significantly increased, consistent with 
the global growth of solar power generation. This indicates that these predictive technologies of solar 
PV power generation are becoming more important as their penetration rate in the power grid 
increases. These models are mainly divided into five categories: artificial intelligence or neural 
networks (NN), machine learning models (ML) or algorithm optimization, deep learning models 
(DL), hybrid artificial intelligence models, and probability models. A list of all papers is presented in 
the references. 
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2.3.1. Distribution of input data for the reviewed works 

It is found from the reviewed literature that solar power generation can be predicted through 
different input source databases as shown in Figure 1. Figure 2 presents the distribution of the five 
database input sources, of which the models using meteorological records [79–81] or numerical 
weather prediction (NWP) [82–84] are dominant, accounting for 49% and 25% respectively. In several 
studies, there was 15% of the power generation information shared from nearby PV power plants 
[56,59,85], 6% of the studies used satellite images as input source data [86,87], and some studies 
combined with sky images are very promising, which account for 5% although further work is 
needed to correctly identify cloud layers [88–91]. When considering their spatial resolution and the 
temporal level at which they are applied, NWP, satellite images, and sky images are plotted based 
on their spatial resolution, while statistical methods are represented based on their spatial range. If 
inputs from NWP models, satellite or sky images are input into statistical prediction models, the 
spatial range of statistical methods will be expanded. 

 

Figure 2. Ratio of input data for the reviewed works. 

2.3.2. Distribution of forecasting methods for the reviewed works 

Figure 3 shows the distribution of studies analyzed regarding the technique used. We found that 
16% included artificial intelligence or neural network (NN) models, 31% included machine learning 
models or algorithm optimizations, 34% included deep learning models (DL), 13% included mixed 
artificial intelligence models, and probability models accounting for 6%. This choice is limited to 
publications in 2020 or later, as the purpose of this work is to focus on the latest trends and 
developments in solar power energy forecasting. As seen, the most common approach among the 
papers reviewed is AI techniques, especially deep-learning, machine learning or optimization 
algorithms accounting for the 34% and 31% of the studies respectively. 

 
Figure 3. Distribution of forecasting methods for the reviewed works. 

49%
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2.3.3. Statistical metrics for the reviewed works 

There are many methods to determine errors in solar power generation prediction, and Table 3 
uses various statistical metrics to describe the accuracy of different short-term solar power generation 
prediction models in the past three years. In Figure 4, we have developed and proposed many 
methods for calculating errors, such as RMSE, MAE, MAPE, nRMSE, R^2, MSE, MRE, nMAE, MBE, 
SMAPE, MASE, and WMAPE, and attempted to present the error values as completely as possible in 
this paper for the study of future short-term solar power generation prediction that needs to be 
improved and evaluated. The most commonly used method for counting error in the literature of 
short-term solar power generation prediction are RMSE, MAE, and MAPE, with their respective 
proportions of 25%, 22%, and 17%. The Root Mean Square Error (RMSE) is most commonly used 
since it describes the measurement of the average distribution of errors. RMSE is a good method for 
describing prediction errors because it does not consider the difficulties of prediction under different 
meteorological conditions. In addition, most predictive models tend to use some variants of RMSE to 
evaluate the performance of their predictive models. 

 

Figure 4. Proportion of statistical metrics for the reviewed works. 

The research on the above short-term solar PV power generation shows that the accuracy of 
traditional single prediction models is far from sufficient, such as BP neural networks [9], SVM, [12,25] 
etc. It is easy to fall into local optimal solutions, thereby reducing prediction accuracy. Deep learning 
networks (DL) are neural networks with many hidden layers, which can actively and 
comprehensively grasp the abstract features of samples by using layer by layer training and learning 
methods to form a feature space [83,86]. It overcomes the shortcomings of BP neural network and 
SVM, thereby effectively improving prediction accuracy. In addition, due to machine learning 
techniques such as extreme learning machines, where the input weights and hidden layer thresholds 
can be randomly set, the calculated hidden layer output weights can have significant fluctuations, 
leading to unstable prediction results. In order to reduce prediction errors, particle swarm 
optimization algorithm has strong global search ability and simple optimization, overcoming the 
disadvantage of the extreme learning machine model that the output weights are prone to random 
fluctuations [17,19]. A forgetting mechanism or adaptive extreme learning machines is employed to 
optimize the number of neurons in the hidden layer within a certain range to solve the problem of 
poor generalization ability of extreme learning machines [21,84]. Due to the advantages and 
disadvantages of different prediction models, hybrid prediction methods optimize the data 
processing results of different models based on specific strategies to obtain better solar PV power 
generation prediction results and ultimately improve the predictive accuracy [90,97]. It was found 
that hybrid prediction methods have the optimization characteristics of prediction results. These 
models fully leverage the advantages of various hybrid prediction models, effectively overcoming 
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the poor adaptability and low prediction accuracy of individual models, and providing a more 
practical reference for the optimization and dispatch of PV microgrids. 

2.4. Scientific contributions and comparison of reviewed works 

In the past decade, the studies on solar PV power generation prediction have become more and 
more popular. This paper remarks the contribution of the recent progressive solar PV power 
forecasting technology, and explores the advantages and disadvantages of various solar PV power 
forecasting models in the past three years as shown in the Table 2. These forecasting models have 
different forecasting capabilities, update the weights of each model in real time, improve the 
comprehensive forecasting capability of the model, and have good application prospects in solar PV 
power generation forecasting. 

Table 2. Main contributions, advantages and disadvantages of reviewed works for solar PV power 
forecasting. 

Work 

Date of 

publication 

and Location 

Main contribution Advantages Disadvantages 

[4] 
December, 

2022 

The versatility of the proposed approach 

allows the choice of parameters in a systematic 

way and reduces the search space and the 

number of experimental simulations, saving 

computational resources and time without 

losing statistical reliability 

-The approach separates the 

data into seasons of the year 

and considers multiple climatic 

variables for each period.  

-The dimensionality reduction 

of climate variables is 

performed through PCA.  

Increasing dimensions 

of the input vector. 

 

[5] August, 2021 

To accommodate uncertain weather, a daily 

clustering method based on statistical features 

as daily average, maximum, and standard 

deviation of PV power is applied in the data 

sets. 

-The forecasting results of 

ANN, DNN, SVR, LSTM, and 

CNN were combined by the 

RNN meta-learner to construct 

the ensemble model. 

-Higher stability 

-Time-consuming;  

-Complex computation 

process;  

-Increasing dimensions 

of the input vector  

[6] March, 2020 

-Forecasting errors are relatively large in 

unusual weather conditions.  

-The forecasting precision can be improved by 

enlarging training samples, performing 

subdivision, and imposing manual 

intervention. 

Reducing the risk of over-fitting 

by balancing decision trees 

-Increasing dimensions 

of the input vector;  

-Adjusting the 

parameters of abnormal 

weather 

[7] October 2021 

-The proposed model requires only the set of 

dates specifying forecasting period as the input 

for prediction purposes.  

-Being able to predict PV power for different 

time spans rather than only for a fixed period 

in the presence of the historical weather data . 

-A simplified application of the 

already trained ANN is 

introduced  

-Photovoltaic (PV) output can 

be predicted without the real-

time current weather data. 

-Increasing dimensions 

of the input vector 

-Statistics of daily solar 

energy over the years 
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[8] June, 2020 

It is more appropriate for meteorological data 

that belong to a specific region to obtain an 

accurate forecasting model and results. 

Being a promising alternative 

for accurate power forecasting 

of the actual PV power plants. 

The chaotic nature of 

meteorological 

parameters causes a 

decrease in ANN model 

forecast accuracy.  

[9] 
September, 

2021 

1. By calculating the displacement vector of the 

cloud on the ground-based cloud images, the 

moving trajectory of the cloud can be 

estimated, so as to accurately predict the 

occurrence of sun occlusion. 

2. A new ultra-short-term solar radiation 

prediction model is designed, and especially 

suitable for the prediction of sudden change of 

solar radiation near the surface in cloudy 

weather conditions. Its time scale is 5 min. 

-Combined with the features of 

ground-based cloud images, the 

prediction accuracy is greatly 

improved. 

-By the digital image 

processing, 13 features that 

affect the solar radiation near 

the surface are extracted from 

the ground-based cloud 

images. 

In cloudy weather 

conditions, the ultra-

short- term forecasting 

is very difficult because 

there are no rules for 

clouds to block the sun. 

[10] March, 2020 

In power plant determination studies, which 

regions are more appropriate can be 

determined by using the proposed model. 

Extra costs for installation and 

measurement can be eliminated. 

Long mathematical 

processes 

[11] 
November, 

2022 

The amount of input and calculation of the 

neural network model is reduced to streamline 

the hidden layer stage, establishing a power 

generation prediction model capable of fast 

and accurate prediction. 

To create a predictive model 

including non-linearly related 

variables. 

Improvements in the 

prediction accuracy of 

performance. 

[12] July, 2021 

Supervised learning algorithms are employed 

to predict the power generated from 

meteorological variables since renewable 

power generation systems present a wide 

variation due to meteorological conditions. 

The actual electricity generation 

values in the PV installation 

were compared with the 

predictions made by different 

methods (ANN, KNN, LR and 

SVM).  

This database size 

limits the prediction 

horizon of the models. 

[13] 
November, 

2020 

The similar hour-based approach and the 

hybrid method have demonstrated better 

performance than widely employed 

forecasting techniques 

The outputs of both forecasting 

methods are dynamically 

weighted, according to the type 

of the day (sunny, cloudy and 

overcast) and the MAE. 

Increasing dimensions 

of the input vector  

 

[14] January, 2020 

PT takes advantage of diversified forecast 

assets: when one of the assets shows prediction 

errors, these are offset by another asset. 

Integration of AI methods in a 

new adaptive topology based 

on the Portfolio Theory (PT) is 

proposed hereby to improve 

solar forecasts. 

-Increasing dimensions 

of the input vector  

-Multi-method 

evaluation 
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[15] March, 2022 

-A deep learning algorithm (RNN-LSTM) is 

proposed for hour-ahead forecasting of output 

PV power for three independent PV plants on 

yearly basis for a four-year period.  

-Annual hour-ahead forecasting of PV output 

power using SVR, GPR and ANN 

-Different LSTM structures are also 

investigated with RNN to determine the most 

feasible structure 

-ANFIS is performed to 

compare with the proposed 

technique (RNN-LSTM).  

-Better forecasting accuracy and 

performance 

It is difficult to adjust 

the LSTM parameters, 

and determine whether 

it converges.  

[16] October, 2021 

Predicting PV power for different time spans in 

the presence of the historical weather data. 

 

The proposed model requires 

only the set of dates specifying 

forecasting period and multiple 

inputs . 

The modeling would 

take a longer time due 

to large amount of 

historical data.  

[17] October, 2022 

The extreme learning machine method uses 

approximated sigmoid and hyper-tangent 

functions to ensure faster computational time 

and more straightforward microcontroller 

implementation. 

Feed Forward Neural Network 

based PSO completes the search 

when the optimal weight is 

calculated. 

Using PSO to select the 

parameters of adaptive 

extreme learning 

machine will make the 

computation time 

longer. 

[18] June, 2020 

Offering potential to assist system operators 

and regulator in better planning solar and wind 

power contributions to power supply 

networks. 

Using a longer time period of 

prior data could lead to further 

improvements for TOB’s short-

term forecasting accuracy . 

More work is required 

on larger datasets (i.e., 

for multiple years) to 

confirm that. 

[19] June, 2021 

Decreasing the predicted amount of generated 

energy to avoid wrong optimistic predictions 

to affect the stability of a virtual power plant. 

Improving accuracy and 

resolution of irradiance 

prediction for the next hour 

interval. 

It is necessary to obtain 

a curve of the 

percentage of the 

uncovered sun with 

clouds for in the next 

hour. 

[20] 
November, 

2021 

Bringing originality to predicts 10 days ahead 

solar power generation. 

They are trained with accurate 

ratio of training and testing to 

have best forecast accuracy with 

minimal error. 

Individual model 

would not be enough to 

have sharp accuracy.  

[21] 
November, 

2021 

Assisting the energy dispatching unit list 

producing strategies while also providing 

temporal and spatial compensation and 

integrated power regulation, which are crucial 

for the stability and security of energy systems 

and also their continuous optimization. 

The FOS-ELM approach may 

expand accuracy while also 

reducing the training time. 

The level of uncertainty 

in PV generation is 

strongly related to the 

chaotic nature of 

weather schemes. 

[22] June, 2022 
-Utilizing a new PV forecasting structure that 

incorporates K-means clustering, RF models, 

The proposed ensemble 

forecasting strategies are much 

Increasing the accuracy 

by recalculating the 
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and the regression-based method with LASSO 

and Ridge regularization to increase 

forecasting accuracy. 

-Determining the five optimal sets of weight 

coefficients and which model predictors are 

significant. 

more accurate than single 

forecasting models. 

weight of the 

individual prediction 

model for each new 

input sample. 

[23] October, 2021 

Seven well-known machine learning 

algorithms were successfully applied to solar 

PV system data from Abha to predict the 

generated power. 

The prediction error of the 

algorithms was relatively low. 

RF was the worst in 

terms of MSE. 

[24] 
November, 

2022 

STVAR model showed a good predictive 

performance for a time scale from 5 min to 1 h. 

The design and component 

sizing of PV power plants. 

The strength and limits 

of the irradiance 

forecasting model 

(STVAR model) are 

consequently imposed 

on the final PV 

forecasting results. 

[25] 
November, 

2021 

Machine learning (ML) models can be utilized 

as rapid tool for predicting the suitable 

performance of the power of any solar PV 

panel. 

Approving the high reliability 

and accuracy of Matern 5/2 GPR 

model. 

-Squared exponential 

GPR exhibited poor 

performance due to the 

complex relationship 

between the dielectric 

permittivity and the 

input parameters. 

-Cubic SVM exhibited 

poor performance due 

to the complex 

relationship between 

the input parameters 

and the PV panel power 

[26] June, 2019 

-The randomness of the RVFLN technique is 

mitigated for fast learning and accurate 

forecasting by implementing the kernel matrix 

-Different kernel functions are investigated to 

achieve better prediction accuracy and two best 

kernel functions are combined together to 

attain more actual solar power prediction  

-The randomly selected kernel parameters are 

optimally tuned by an efficient optimization 

technique, thereby imparting a more accurate 

shorter time interval solar power prediction. 

Reducing computational time 

and complexity of the model. 

MK-RVFLN is the 

choice of parameters 

which affects the 

accuracy of the 

prediction technique. 
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[27] 
September, 

2022 

The adaptive k-means is used to cluster the 

initial training set and the power on the 

forecast day. 

Gru network has better effect, 

better robustness, and less 

error. 

Increasing dimensions 

of the input vector  

[28] May, 2022 

Horizontal global irradiation and water 

saturation deficit have a strong proportional. 

 

Development of seven machine 

learning models for the 

prediction of PV power 

generation. 

Increasing dimensions 

of the input vector 

[29] February, 2022 

PSO-based algorithm is adapted for the 

selection of dominant SVR-based model 

parameters and improvement of performance. 

Reaching better performance of 

the forecast algorithm. 

 

Using algorithm bar 

parameters will lead to 

longer operation time. 

[30] April, 2022 

A new solar power prediction method, 

composed of a feature selecting/clustering 

approach and a hybrid classification-regression 

forecasting engine 

-The forecasting computation is 

faster by using two subsets. Each 

of these two subsets is separately 

trained by a forecasting engine. 

-The final solar power prediction 

is obtained by a relevancy-based 

combination of these two 

forecasts. 

-Increasing dimensions 

of the input vector  

-The internal 

parameters of the 

subset need to be well 

selected. 

[31] August, 2021 

Raw data is subtracted from the correlation 

between the the decomposition components 

and raw data to obtain the optimal frequency 

demarcation points for decomposition 

components. 

A CNN is used to forecast the 

low-frequency and high-

frequency components, and the 

final forecasting result is 

obtained by addition 

reconstruction. 

Use of FFT for data 

preprocessing is less 

applicable than the 

general data pre-

processing method 

 

[32] January, 2022 

An end-to-end short-term forecasting model is 

proposed to take satellite images as inputs, 

learning the cloud motion characteristics from 

stacked optical flow maps. 

-Better performance of the 

forecast algorithm. 

-Sky image technology 

with cloud motion 

-The extremely large 

sizes of satellite images 

can lead to a heavy 

computational burden. 

-Complex computation 

process. 

[33] 
November, 

2020. 

Unlike existing adaptive iterative methods, the 

proposed approach does not rely on the labels 

of the test data in the updating process. 

As weather changes, the model 

can dynamically adjust its 

structure to adapt to the latest 

weather conditions. 

-Complex computation 

process; 

-Parameter adjustment 

required 

[34] February, 2022 

The proposed multibranch ResAttGRU is 

capable of modeling data at various 

resolutions, extracting hierarchical features, 

and capturing short- and long-term 

dependencies. 

Accelerating the learning 

process, and reduce overfitting 

by leveraging shared 

representations as the auxiliary 

information. 

-Complex computation 

process; 

-Parameter adjustment 

required 

[35] January, 2021 
-BMA’s mixture-model approach mitigates 

under dispersion of the raw ensemble to 

-BMA is a kernel dressing 

technique for NWP ensembles -

-Increasing dimensions 

of the input vector  
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significantly improve forecast calibration. -

Consistently outperforming an ensemble 

model output statistics (EMOS) parametric 

approach from the literature. 

A weighted sum of member-

specific probability density 

functions. 

[36] June, 2022 

-A series of experiments applying advanced 

deep-learning-based forecasting techniques 

were conducted, achieving high statistical 

accuracy forecasts.  

-Solar irradiation data were categorized by 

each month during the year, resulting in a 

monthly time-series dateset, which is more 

significance for high-performance forecasting.  

-A walk-forward validation forecast strategy in 

combination with a recursive multi step and a 

multiple-output forecast strategy was 

implemented  

-Use of fixed-sized internal 

representation in the core of the 

model 

-Significantly improving short- 

term solar irradiation forecasts.  

 

More LSTM parameter 

settings require to be 

adjusted 

 

[37] May, 2022 

-The proposed model showed promising 

forecasting performance compared to 

benchmark models such as convolutional 

neural network (CNN)-LSTM and 

nonclustering-based site-specific LSTMs.  

-The model achieved less forecasting error for 

solar stations having significant solar 

variability. 

-The performance of CB-LSTM 

was robust under differing 

conditions. 

-CB-LSTM achieved better 

forecasting performance than 

that of M-LSTM and ST-LSTM 

for all climatic zones and 

regions. 

-High error in terms of 

NRMSE in Idukki 

station. 

[38] March, 2022 

The proposed stacked architecture and the 

incorporation of drop-out layers are helpful for 

accuracy improvement in the PV prediction 

model. 

The multi-step CNN-stacked 

LSTM with drop-out deep 

learning method for improved 

effectiveness as compared to 

other traditional solar irradiance 

forecasting. 

-Complex structure and 

hardware requirement. 

 

[39] July, 2020 

Validating the performance of the proposed 

approach through a detail comparative 

analysis with several other contemporary ML 

approaches such as linear regression (LR), 

ridge regression (RR), least absolute shrinkage 

and selection operator (LASSO) and elastic net 

(ENET) methods 

-Outperforming with respect to 

all selected performance 

criterion.  

-Effectively confirming the 

likelihood and practicality of the 

proposed model. 

It is failed to achieve the 

accuracy of the proposed 

WT-LSTM-dropout 

model. 

[40] 
December, 

2021 

-A Siamese CNN was developed to 

automatically extract the features of continuous 

total sky images, where the Siamese structure 

The prediction accuracy was 

improved by comparing to other 

models.  

It is required to 

improve the prediction 

accuracy, especially 
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reduced the model training time by sharing part 

parameters of the model;  

-SCNN-LSTM was used to effectively fuse the 

time-series features of images and 

meteorological data to improve the DNI 

prediction accuracy. 

under partly cloudy or 

cloudy days. 

[41] March, 2022 

-Optimizing the prediction performance of the 

ANN and LSTM models to improve the 

accuracy rates of these models. 

The ANN and LSTM models 

using the reduced Input Set 

demonstrated the same 

prediction accuracy as the seven 

exogenous variables in the 

complete Input Set. 

-It requires a larger 

amount of training data  

-Higher computational 

cost and training time 

for the models. 

[42] March, 2022 

-The parameters of solar radiation, direct 
short-wave radiation, diffuse short-wave 
radiation, and temperature always have a very 
high degree of influence on solar radiation 
forecasting. 
-Evapotranspiration, sunshine duration and 
humidity showed a remarkable influence in 
west-central Jordan 
-Other parameters like cloud cover, snowfall 
amount, wind speed, and total precipitation 
amount have no influence in Jordan on the 
solar radiation prediction. 

-Abilities of adaptation 

-Nonlinearity 

-Rapid learning 

Too many twenty-four 

solar radiation 

metrological 

parameters (inputs to 

the ML or DL 

algorithms). 

[43] August, 2022 

-These simple improvements can ensure higher 

accuracy and stability of opaque models. 

-The LSTM-AE model is proposed as the 

benchmark of deep-learning solar forecast. -

Comprehensive evaluation studies are 

conducted to evaluate different forecast 

performances. 

The proposed deep-learning AE 

model is recommend as an 

efficient method for day-ahead 

NWP-based PV power forecast 

due to the highest accuracy. 

The day-ahead forecast 

accuracy will decrease 

sharply for each model 

without NWP and its 

improvement using 

deep-learning is quite 

limited. 

[44] June, 2021 

-The proposed TESDL short-term prediction 

algorithm has excellent capacity and 

robustness for generalization 

-Achieving an outstanding predictive 

efficiency. 

The costs for control, initial 

hardware part costs, and 

extended-lasting maintenance 

of potential PV farms could be 

minimized by the proposed 

TESDL algorithm. 

Mismatch losses pose a 

significant problem 

since the performance 

in the worst 

circumstances of the 

entire PV array is 

calculated by the lowest 

powered solar panel.  

[45] 
September, 

2022 

FPP model based on convolutional neural 

network is used to predict future PV power 

fluctuation patterns with historical satellite 

images as input. 

Reaching better performance of 

the forecast algorithm. 

 

-Complex computation 

process;  

-Use of cloud 

computing 

[46] January, 2021 

the network forecasting results can 

successfully approximate to the expected 

outputs and the intra-hour ramping is well 

captured. 

Reaching better performance of 

the forecast algorithm. 

 

It is difficult to adjust 

the LSTM parameters 

and determine whether 

it converges. 
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[47] October, 2022 

It was observed that the LSTM-Autoencoder 

model was the best performing one in terms of 

reliability for the investigated models. 

-Data normalization 

-Reaching better performance of 

the forecast algorithm. 

It is difficult to adjust the 

LSTM parameters, and 

determine if it 

converges. 

[48] August, 2021 

Precise cloud distribution information is 

mainly achieved by ground-based total sky 

image. 

-Particle image velocimetry and 

Fourier phase correlation theory 

are introduced to build the 

benchmark models. 

-Sky image technology 

-The feature of 3-D CAE 

models could not find 

well. 

-Increasing dimensions 

of the input vector  

[49] October, 2020 

This highlights the significance of the proposed 

synthetic forecast, and promote a more efficient 

utilization of the publicly available type of sky 

forecast to achieve a more reliable PV 

generation prediction. 

The performance of the 

proposed model is investigated 

using different intraday 

horizon lengths in different 

seasons. 

-Complex computation 

process;  

 

[50] 
November, 

2022 

Proposing an integrated missing-data tolerant 

model for probabilistic PV power generation 

forecasting. 

-Dealing with data missing 

scenarios at both offline and 

online stages. 

-Data tolerance 

-Increasing dimensions 

of the input vector  

-Computing time is too 

long 

[51] January, 2021 

Several Artificial Neural Networks are trained 

as a basis for predicting solar irradiance on 

several locations at the same time.  

A family of deep learning 

models for solar irradiance 

forecasting comply with the 

aforementioned features, i.e. 

flexibility and robustness. 

-Increasing dimensions 

of the input vector  

 

[52] 
September, 

2020 

The CNN model is leveraged to discover the 

nonlinear features and invariant structures in 

the previous output power data, thereby 

facilitating the prediction of PV power. 

-CNN was use to preprocess the 

data 

-Reaching better performance 

of the forecast algorithm. 

-Increasing dimensions 

of the input vector  

-Computing time is too 

long 

[53] May, 2022 

By simulating the cloud motion using bi-

directional extrapolation, a directed graph is 

generated representing the pixel values from 

multiple frames of historical images. 

GNN is more flexible for 

varying sizes of input in order 

to be able to handle dynamic 

ROIs. 

Increasing dimensions 

of the input vector 

 

[54] 
December, 

2021 

The performance of forecasting models 

depends largely on the quality of the training 

data, the size of data, the meteorological 

condition of the location where the data were 

obtained, and the duration or horizon of 

measured solar irradiance. 

-Ten-year dataset is a great 

improvement in the accuracy of 

the solar irradiance forecast 

techniques.  

-It is considered the best result 

obtained in this work. 

-Complex computation 

process; 

-Parameter adjustment 

required 

[55] March, 2022 

A deep learning technique based on the Long 

Short-Term Memory (LSTM) algorithm is 

evaluated with respect to its ability to forecast 

solar power data. 

Focusing on research and 

development in multiple 

models to arrive at predictions 

with high suitability. 

-Complex computation 

process; 

-Parameter adjustment 

required 
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[56] March, 2022 

-The comparison is then used to minimize 

uncertainty by implementing grid search 

technique. 

-Comparing the effects of different data 

segmentations (three-months to one-day) 

-Varying time-horizons (14-

days to 5-mins) to compare the 

effects of seasonal and periodic 

variations on time- series data 

and PV output forecast. 

It is difficult to adjust 

the LSTM parameters, 

and determine whether 

it converges. 

[57] August, 2021 

The numbers of neurons in the hidden layers, 

weights, and biases of the proposed ANNs 

were optimized with MVO and GA. 

The multilayer feedforward 

neural network (MFFNN) was 

used to investigate its accuracy 

through the results obtained 

from MFFNN-MVO and the 

MFFNN-GA models. 

-Increasing dimensions 

of the input vector  

 

[58] February, 2021 

-The relevance of the studied models was 

evaluated for real-time and short-term solar 

energy forecasting to ensure optimized 

management and security requirements by 

using an integral solution based on a single tool 

and an appropriate predictive model. 

ANN has shown good 

performance for both real-time 

and short-term predictions. 

-Increasing dimensions 

of the input vector  

 

[59] June, 2021 

The prediction model has higher prediction 

accuracy and relatively small overall 

fluctuations. 

VMD decomposition technology 

is used to decompose the PV 

power sequence to reduce the 

complexity and non-stationarity 

of the raw data. 

Prediction error and 

fluctuation are large.  

[60] August, 2022 

-It can serve as an alternative tool to provide 

reliable predictions. 

-Providing a promising method for predicting 

daily solar radiation as evidenced by the 

performance at the stations analyzed.  

The interchangeability of 

optimization algorithms and 

machine learning models. 

-Computational 

complexity 

[61] August, 2022 

-Development of a new hybrid DL model, 

which process the input data with a sequential 

application of Slime Mould Algorithm (SMA) 

for feature selection, CNN, LSTM network, 

CNN and a final processing with a MLP 

-Overcoming the shortcomings mentioned 

above to obtain a more accurate GSR 

prediction. 

A novel DL-based hybrid model 

that overcomes the above 

limitations and produces 

accurate GSR predictions. 

-Incorporating different 

design of predictor data 

decomposition 

methods. 

-Complex computation 

process; 

[62] January, 2022 

The various methods combined with the MC-

WT-CBiLSTM model have the effect of 

improving the prediction ability. 

-The wavelet transform 

preprocessing step effectively 

reduces the data complexity -

Improving the prediction ability 

of the multichannel CNN-

BiLSTM model. 

-The generalization 

ability for the most 

forecasting methods is 

poor 

-Only achieve good 

results in a small range. 
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[63] April, 2022 

The development methodology in this work 

can be applied anywhere. 

-The forecasting skills of the 

hybrid model are about 34% 

against the NAR model. 

-About 42% against the 

Persistence model. 

A forecasting model 

should not be including 

redundant or irrelevant 

variables to avoid 

spurious results. 

[64] April, 2021 

Proposing a three-phase adaptive modification 

solution for DA to increase the algorithm 

capabilities in both the local and global 

searches. 

The proposed hybrid deep 

model is equipped by a 

powerful decomposing 

mechanism which helps to 

provide simpler signals with 

less complexity. 

The negative effect of 

long-time windows on 

the prediction results. 

[65] 
September, 

2022 

-A comparative test is conducted in multiple 

time dimensions to better reflect the accuracy 

of experimental results 

-Verifying the superiority of the proposed 

method. 

The prediction accuracy and 

prediction stability are 

improved by about 15% on 

average compared to the other 

prediction models. 

BO algorithm is used 

for tuning parameters, 

which also increases the 

time cost for training 

models. 

[66] 
September, 

2022 

Proposing an ensemble interval prediction for 

solar power generation that obtains prediction 

intervals with higher quality than other 

methods. 

Obtaining more reliable and 

stable interval prediction 

results. 

The KDE method takes 

a longer total 

computational time 

than other methods. 

[67] 
November, 

2022 

-In the training process, data mismatch and 

boundary constraint are incorporated into the 

loss function. 

-The positive constraint is utilized to restrict 

the output of the model. 

The performance of prediction 

models with sparse data is 

tested to illustrate the stability 

and robustness of TG-A-CNN- 

LSTM. 

It is difficult to adjust 

the LSTM parameters 

and determine whether 

it converges. 

[68] July, 2020 

-Providing better accuracy than other 

examined methods 

-Working with a better computational cost. 

Outperforming other examined 

methods in terms of accuracy 

and computational time. 

Prediction accuracy can 

be increased with other 

new effective 

techniques. 

[69] June, 2020 

Similarity-based forecasting models (SBFMs) 

are advocated to forecast PV power in high 

temporal resolution using low temporal 

resolution weather variables. 

The PV power generation 

forecasting for the next day 

with five-minute temporal 

resolution can significantly 

yield accurate results. 

-Increasing dimensions 

of the input vector  

 

[70] August, 2021 

Being generalized to find the optimal prediction 

given that the available measurements are 

mapped by an affine transformation. 

WRF forecasts of irradiance, 

temperature, relative humidity, 

and the solar zenith angle were 

selected as highly relevant 

inputs of the model. 

-Complex computation 

process; 

-Parameter adjustment 

required 
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[71] 
November, 

2020 

Forecast combination of machine learning 

models is done using convex combination and 

quantile regression averaging (QRA). 

It is found that the predictive 

performance is significant on the 

Diebold Mariano and Giacomini 

-White tests. 

-Increasing dimensions 

of the input vector  

3. The state-of-the-art approaches for short-term solar PV power forecasting  

The short-term solar PV power forecasting model is discussed in depth as shown in Figure 5. 
The latest approaches of short-term solar PV power forecasting in the past three years are reviewed 
to provide an important reference in solar PV power grid integration. In order to improve the 
accuracy of solar PV power forecasting, this paper gives a detailed overview of the contributions, 
advantages and disadvantages of various delivered solar PV power forecasting models and future 
research works. These advanced forecasting models can be approximately classified into artificial 
intelligence/neural networks (NN), machine learning or optimization algorithms, deep learning, 
hybrid and ensemble forecasting models, and other statistical analysis methods. The proposed novel 
short-term solar PV power forecasting models provide very useful information for power system 
operation and control with high renewable energy penetration. 

 

Figure 5. Classification of the novel short-term solar PV power forecasting techniques. 

3.1. Insolation Prediction for solar PV power Generation 

A solar cell is a converter that directly converts solar light energy into electrical energy due to 
the PV effect. Photodiodes will convert the sun's light energy into electrical energy, which can be 
connected in series and parallel to form a battery array to increase output. The simplified solar PV 
power generation model is represented by equation (3-1): 

kSPP t

sbS ⋅⋅=  (3.1) 

Among them,
SP is the electric energy obtained from solar energy (W),

sbP is the total capacity of 

solar cells (unit:W), tS is the accumulated sunlight in an hour ( ), k is the solar module design 

coefficient (no unit) and in the solar PV power generation, tS  is the main factor affecting power 
generation output and also the main variable in predicting solar PV power generation. The day-ahead 
power generation prediction of solar energy is relatively clear and stable, and its influence mainly 
lies in the amount of solar radiation. Using the meteorological data provided by Taiwan Power 
Company as input variables of the solar irradiance-related information database, such as air 
temperature, relative humidity, precipitation, precipitation hours, sunshine hours, and global solar 
irradiance are provided; the output variable is the solar radiation of the next hour, and the solar 
radiation of the solar PV power generation in the previous 24 hours is predicted based on the novel 
short-term solar PV power generation prediction techniques as shown in Figure 5.  

3.2. Data mining technique 

Data mining technique is used for data processing, and more meaningful data are selected from 
the database as modeling data. The problem to be dealt with by data mining is to find meaningful 

2W/m
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hidden information in a big database. Power generation forecasts are similar to solar energy. Data 
mining is used for data processing, and more meaningful data are selected from the database as 
modeling data, as shown in Figure 6. 

 

Figure 6. Flowchart of Data mining technique (DMT). 

3.3. Hourly-similarity (HS) based method 

The reference data selection method based on the hourly- similarity (HS) forecasting method is 
to introduce the concept of the horizontal axis and the vertical axis of time, which is called the hour 
of the prediction day to be forecasted as the prediction hour. Firstly, the prediction day is used to find 
weather information of the reference day as the day before and the next day (the day after). The 
reference hours are selected from the prediction hour and the reference day. The reference hours are 
the hours before and after the prediction hour. These reference hours are used as reference data. The 
reference hours of the hourly-similarity prediction method are selected from the hypothetical case 
demonstration, as shown in Figure 7. 

 
Figure 7. Schematic diagram of selection of reference data for Similar-day prediction method. 

Demonstration of how to select reference data: Assuming that 12:00 on the prediction day is the 
prediction hour, then the reference hours includes 11:00 on the current day, 11-13:00 on the previous 
day, and 12-13:00 on the prediction day. A total of 6 pieces of data are selected for reference hours 
(collectively referred to as reference data). 

Figure 7 shows the data types in data mining for the similar-day prediction method, and the 
data mining steps are that 

Step 1: Select the database range and reference day from the prediction hour.  
Step 2: Determine the reference data from the prediction hour and reference day.  
Step 3: Normalize the data first, and then perform sequence similarity searching for each layer 

based on the reference hours of each layer. Each reference hours has its own set of sorted data.  
Step 4: Integrate a set of data from the same layer, and all the integrated data are modeling data. 
The reference data of the hourly-similarity (HS) based prediction method is selected from the 

hypothetical case demonstration, such as equation (3-2) 
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where, 
rmdNr ,−

is the reference data for the similar hour, m=[0, 1] and { }1,,1 −+∈ tttr  is the concept 

of horizontal axis and vertical axis of time at the similar hour. figures out the degree of similarity of 
the data. L is the number of selections at the similar hour, and

DMTH is the training data selected at 

the similar hour, as shown in equations (3-3) and (3-4) 
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After data mining, the modeling data is selected by the hourly-similarity (HS) based prediction 
method. The modeling data includes training data and test data. The training data is the integrated 
data after sequencing the data (The sequencing data does not include reference data), and the 
reference data is used as the test material. The modeling data selected by data mining can be started 
to train the modeling of various state-of-the-art approaches for short-term solar PV power forecasting . 

3.4. Internet of Things (IOT) Technology 

The data of solar PV power generation and several environmental sensor are collected to store 
in the Raspberry Pi database and corresponding data tables by use the Internet of Things technology. 
Through the Raspberry Pi environment, a Python crawler program can be developed to grab the 
weather forecast information from the local environmental observatory of the Central Meteorological 
Bureau and store the weather forecast information in the database. The Raspberry Pi is also applied 
to set up the human-machine interface, and display it in the website form, while watching it remotely 
via the Internet. Furthermore, the collection progress is checked to confirm the hardware operation 
status, and collect data stably [92–94]. 

After long-term data collection, the amount of data required for the input layer parameters of 
the neural network has been obtained, data tables such as solar PV power generation data and 
environmental sensor data are exported from the database management system, and first brought 
into the model to train the input parameters of the fuzzy neural network, while performing data 
preprocessing. After the data preprocessing is completed, the data is divided into a training group 
and a test group. The training group data is used to continuously train the internal parameters of the 
neural network, and then the proposed method is verified by the test group. The feasibility and 
accuracy of the data collection framework is shown in Figure 8. 

 
Figure 8. Configuration diagram of the IOT Technology prediction system. 

mr
k,i

N
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3.5. Sky image-based methods 

Automatic identification of clouds, cloud matching, cloud area correction based on ground cloud 
images, and estimation of cloud movement direction are achieved, so as to make accurate judgments 
on clouds that are about to cover the sun and improve the accuracy and speed of big data feature 
prediction for solar PV power generation. Next, efficient pixel-sensitive prediction models can be 
developed based on satellite imagery to track cloud shape and motion, study satellite measurements 
and high-resolution cloud images (e.g., images from ground-based sky cameras). In addition, these 
cloud image information correlation features are comprehensively used into classification and 
prediction, while verifying the feasibility of the model by different data sets [95]. 

Based on the dynamic sky image, the characteristics of the cloud layer are extracted to estimate 
the future cloud movement path by use of the object tracking algorithm, and then calculate the cloud 
cover to the sun according to the cloud movement path. Finally, the change of insolation is estimated 
through the Long Short-Term Memory (LSTM) network. The paper appears with the aim of finding 
out a method for predicting the movement path of cloud covers, and at the same time estimates the 
sun's shading of cloud piles, forecasting power variation due to the changes in insolation through the 
Long Short-Term Memory (LSTM) network so that provides power dispatchers or EMS (Energy 
Management System) in advance to effectively respond to the impact of cloud clusters shading the 
sun on the grid [96,97]. 

The schematic diagram for sky image-based methods is shown in Figure 9. The system 
configuration can be divided into three parts, among which D1 is the part for analyzing the 
characteristics of all-sky clouds covering the sun and predicting the movement path of cloud clusters; 
D2 is the part for extracting the characteristics of ground-based all-sky pyranometers; D3 is the part 
for predicting the solar irradiance and the solar PV power generation. Part D1 in Figure 9 is to design 
a predictive method for the moving path of the cloud layers through the whole sky image and the 
moving path of the sun, and deduce the moving path of the cloud layers. The moving path of the 
cloud layer takes into account the moving path of the sun. For sun shading conditions. the predictive 
path of cloud layer movement is regarded as the future information and the real-time value for 
insolation observation of the ground-based all-sky pyranometer in part D2. The input of the 
intelligent learning network is used to deduce the change of insolation, and the variation of solar PV 
power generation can be obtained according to the power and insolation curve (PV power curve) of 
the solar PV module.  

 

Figure 9. Schematic diagram for sky image-based methods. 

In recent years, various research institutions and scholars have adopted different cutting-edge 
methods to improve the power fluctuations and randomness in the power prediction of solar power 
generation, as well as the possible errors and omissions in the original data, and achieved certain 
results. But there are still some problems to be solved. First of all, in the future, the sample space can 
be further expanded, and the diurnal insolation and the dimension of data samples can be increased 
to predict the diversity of solar data. According to the solar power generation data with different 
characteristics, the prediction model is further optimized to increase the applicability of the model. 
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Secondly, according to the characteristics of the existing hybrid model, the parameter optimization 
method is further improved to ensure that the prediction model has high prediction accuracy at 
different time sampling rates, making it suitable for different prediction situations. The overview 
work for future solar PV forecasting studies will be reported in the next section.  

4. Future studies and development 

As an important subsystem of smart management systems for micro grids, Solar PV power 
generation prediction systems play a vital role in the development of solar energy. Due to the close 
relationship between solar radiation and meteorological conditions such as season, cloudy and sunny 
days, and day and night, novel predictive methods of solar PV power output have been developed 
in the past few years for the balanced operation and optimized dispatch of the power grid system. 
These methods have been used in experiments, and some results have been achieved to solve the 
intermittent and random power problems in solar PV power generation prediction, as well as 
possible errors and omissions in the original input data. Based on the latest advances in AI neural 
network, machine learning, and deep learning methods, this paper examines the temporal resolution, 
parameters used, accuracy, and research limitations, and reviews the contributions, advantages, and 
disadvantages of the latest hybrid prediction models to development of solar PV power generation. 
However, there are still some issues that need to be improved. The following works are the main 
aspects that can be further studied:  

1) In terms of weather variables prediction: Recent investigations only selects a meteorological 
station based on historical survey data. However, the meteorological information in different regions 
is inevitably different. Therefore, considering the impact of geographical environment, weather, or 
climate related factors where the meteorological station is located will definitely improve the 
accuracy of solar radiation prediction; In addition, additional meteorological and site determination 
factors such as temperature, humidity, precision, pressure, and solar radiation, etc. for solar radiation 
forecasting are required to explore the impact of these factors on the prediction results, and even 
incorporate them as input factors into future meteorological data from the Meteorological Bureau to 
improve prediction accuracy. 

2) Modeling the prediction algorithms through cloud images: Cloud areas based on ground 
cloud images are automatically identified, matched, and corrected, estimating the direction of cloud 
movement, and making accurate judgments about clouds that are about to cover the sun. It is 
necessary to improve the accuracy and speed of feature prediction for big data of solar PV power 
generation. Next, efficient pixel sensitive prediction models are developed based on satellite images 
to track the shape and motion of clouds, and study satellite measurements and high-resolution cloud 
images (such as images from ground sky cameras). These correlation features of cloud image 
information are comprehensively utilize into classification and prediction for which different data 
sets are applied to verify the feasibility of the model. New hybrid models or multiple optimization 
algorithms including cloud information for predictive models are also integrated to improve the 
model and improve their prediction accuracy. 

3) In terms of solar PV power generation forecasting:Weather forecasting is selected based on 
data characteristics, adding machine learning or optimization algorithms to the solar PV power 
generation prediction model such as some optimization algorithms with RNN-LSTM to optimize 
superparameters and enhance its prediction accuracy. These deep learning (DL) models or ensemble 
models (EM) are implemented for solar PV power generation forecasting to provide more stable 
power to the grid. 

4) Performing data preprocessing or data features analysis: By data preprocessing and clustering 
analysis of initial training sets to predict solar PV power generation, the accuracy of the prediction 
model is significantly improved. Secondly, the computing cost is reduced, the regression accuracy is 
significantly improved, and its own features are effectively found for prediction through 
preprocessing and correlation analysis of input data. Compared with general data preprocessing 
methods, further optimize data preprocessing to improve the applicability of FFT methods.  
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5) Improvement of inaccurate or missing data: To expand the basis of irradiance prediction 
methods for predicting the power capacity of new solar power plants without data, we explore 
prediction methods that can handle repeated and frequent continuous multipoint data loss, for 
example, extracting data suitable for the target domain from different data domains, or using data 
from other regions as a supplement when training data for the target location is insufficient. 
Therefore, it is practical significance to improve short-term solar PV prediction of inaccurate or 
missing data. 

6) Integration with power system:Accurate PV power generation forecasting is very important 
for the scheduling and regulation of power systems after grid connection, and its results can be 
integrated into the entire energy management system or utilities to improve grid performance and 
achieve a higher level of renewable energy integration. Secondly, variations in power generation can 
have an impact on the voltage and frequency of the power system at any time, solving the problems 
of economic dispatch, grid integration, and mismanagement of power management systems caused 
by the variability of solar energy. Furthermore, based on the basic viewpoint of large-scale or 
distributed solar PV systems, load forecasting, demand response applications, aggregate capacity 
prediction, and dispatch of a large number of distributed solar PV systems are obtained; Combined 
with pumped storage power stations, adjustable biomass power stations, or PV battery systems, it 
can stably transmit solar PV power generation and improve the flexibility of power dispatching. 

5. Conclusion 

This paper first presents the significance of using solar PV power in energy conservation and 
emission reduction issues, as well as the technical challenges faced in predicting solar PV power 
generation. The necessity of developing the prediction systems of solar PV power generation and 
improving the model’s accuracy is clarified. Some existing physical and statistical learning methods 
have deficiencies such as high modeling costs and large input data requirements when performing 
predictions, while traditional machine learning methods have problems being difficult to process 
missing data, being easy to occur overfitting and ignoring the correlation of attributes in the dataset. 
This paper further reports many of the most novel prediction models for PV power generation based 
on deep learning or hybrid models that integrate multiple meteorological factors. By analyzing the 
mean square error (MSE) value and the determination coefficient (R-Squared) value, it is proved that 
the proposed method has further improved the prediction accuracy compared to previous prediction 
methods. Secondly, this paper introduces the current study situation of solar PV power generation 
forecasting from a global perspective. Most of these efforts cover the field of short-term PV power 
generation forecasting, which has grown significantly in the past few years. These advanced solar 
short-term PV power generation prediction models have been classified, and compared in terms of 
temporal resolution, parameters used, accuracy, and research limitations. In addition, this paper 
reviews the latest progress for short-term solar PV power generation based on artificial intelligence 
methods, emphasizing their contributions to model development, their advantages and 
disadvantages as well as future studies and development. The contributions of this review works are 
as follows: 

(1) Evaluate the most advanced algorithms in short-term solar PV power generation forecasting; 
(2) Evaluate the accuracy, advantages, and disadvantages of various new AI hybrid models; 
(3) Existing challenges and issues are discussed, such as short-term solar PV power generation 

data diversity, algorithm structure, hyperparametric adjusting, optimization integration and AI 
hybrid issues; 

(4) The development and future possibilities of efficient short-term solar PV power generation 
prediction methods based on artificial intelligence are proposed. It provides future research 
directions and challenges for existing short-term solar PV power generation prediction methods; 

(5) Explore the impact of meteorological information and cloud image information, improving 
data preprocessing or data feature selection and analysis, data inaccuracy or loss. The distribution of 
the database input sources, forecasting methods, and predictive error metrics is analyzed and 
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effectively utilizing machine learning or optimization algorithms and deep learning models on 
improving the accuracy of existing models are discussed to increase the forecasting accuracy; 

(6) Improving the prediction accuracy of short-term solar PV power generation is beneficial to 
the optimal scheduling of microgrids and integration with the optimization of power systems. 
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Abbreviations 

PV Photovoltaic 
AI Artificial intelligence 
ANFIS Adaptive-Network-based Fuzzy Inference Systems 
ANN Artificial neural network 
BNN Backpropagation neural network 
CNN Convolutional neural network 
RNN Regression neural network 
LSTM Long-short term memory 
CLSTM Convolutional-Long short term memory 
SVM Support vector machine 
SVR Support Vector Regression 
GBDT Gradient boosting decision tree 
ELM Extreme Learning Machine 
GHI Global horizontal irradiance 
ABL Adaptive boosting Learning 
TOB Transparent Open Box 
FOS-ELM Extreme learning machine with a forgetting mechanism 
ResAttGRU Multibranch attentive gated current residual network 
BMA Bayesian model averaging 
Rec_LSTM Recursive long short-term memory network 
STVAR Spatio-temporal autoregressive model 
GPR Gaussian process regression 
MK-RVFLN Multi-kernel random vector functional link neural network 
GRU Gate recurrent units- A variant of LSTM 
Conv LSTM Convolutional long-term short-term memory 
MFFNN Multi-layer feedforward neural network 
MVO Multiverse optimization 
GA Genetic algorithm 
MLP Multi layer Perceptron 
VMD Variational mode decomposition 
RVM Relevance Vector Machine 
CMAES Covariance Matrix Adaptive Evolution Strategies 
XGB Extreme Gradient Boosting 
MARS Multi-Adaptive Regression Splines 
MC-WT-
CBiLSTM 

Multichannel, wavelet transform combining convolutional neural network and 
bidirectional long short-term memory 
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NARX-CVM Nonlinear autoregressive with exogenous inputs and corrective vector multiplier 
LSTM-SVR-BO  Long short-term memory-Support vector regression-Bayesian Optimization 
GBRT-Med-KDE Gradient boosting regression tree-Median-Kernel density estimation 
TG-A-CNN-
LSTM 

Theory-guided and attention-based CNN-LSTM 

HMM Hidden Markov model 
SBFMs Similarity-based forecasting models 
KF Kalman filtering 
QRA Quantile regression averaging 
MRE Mean relative error 
MAE Mean absolute error 
MASE Mean absolute scaled error 
WMAPE Weight mean absolute percentage error 
MBE Mean bias error 
MSE Mean squared error 
RMSE Root mean squared error 
MAPE Mean absolute percent error 
SMAPE Symmetric mean absolute percentage error 
nMAE Normalized mean absolute error 
nMBE Normalized mean bias error 
nRMSE Normalized root mean squared error 
R2 Fitting coefficient 
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