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We present a hierarchical reinforcement learning (RL) architecture that employs various
low-level agents to act in the trading environment, i.e. the market. The highest level agent
selects among a group of specialised agents, and then the selected agent decides when to sell
or buy a single asset for some period. This period can be variable according to a termination
function. We hypothesized that due to different market regimes, more than one single agent
is needed when trying to learn from such heterogeneous data, and instead, multiple agents
will perform better, with each one specialising in a subset of the data. We use k — means
clustering to partition the data and train each agent with a different cluster. Partitioning
the input data also helps model-based RL (MBRL), where models can be heterogeneous.
We also add two simple decision-making models to the set of low-level agents, diversifying
the pool of available agents and thus increasing overall behaviour flexibility. We perform
multiple experiments showing the strengths of a hierarchical approach and test various
prediction models at both levels. We also use a risk-based reward at the high level, which
transforms the overall problem into a risk-return optimization. This type of reward shows
a significant reduction in risk while minimally reducing profits. Overall, the hierarchical
approach shows significant promise, especially when the pool of low-level agents is highly
diverse.

1. Introduction

Since its inception in 2015 [1], deep reinforcement learning (DRL) has found many
applications in a wide set of domains [2]. In recent years the use in trading has become
quite popular, at least in academia (for an overview, see [3] or [4]).

The most interest lies with the portfolio optimization problem (see, for example, [5-7]
for some modern approaches), which can leverage multiple assets both in uptrend and
downtrend. In single-asset trading, there is too much risk involved, as argued in, for
example, [8], if the asset goes down, then the best option is to hold. Also, if the market is
in a strong bull trend, it is hard to beat it, see for example a recent confirmation of this by
[9]. The market (in this case, the single asset) often changes regimes regarding volatility,
trend, smoothness, etc. There have been many works showing and modeling this, see for
example, works mentioning trading and market regime switch (e.g., [10,11]).

The applied methodology pursued by many researchers working in DRL for trading
(if not all) is to evaluate the agent for some short period (test mode) and then retrain it to
deal with another test period. Moreover, the training must occur before the testing so the
agent can catch the current market dynamics.

This workflow is cumbersome and introduces additional constraints and computa-
tional costs. Moreover, the uncertainty about the change in the market regime and timing
still needs to be addressed in real-time. We thus propose an alternative method, where a
hierarchical system decides which of the regimes the market is in and assigns the most
appropriate behaviour by selecting a low-level agent to act in the actual market, i.e., buy
and sell the asset. We delve more into the architecture in subsequent sections. We now
proceed to the RL problem formulation.

The reinforcement learning problem is usually formulated as a Markov Decision
Process (MDP)[12], which is a discrete stochastic control process for decision-making in
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environments with uncertainty (there are also continuous MDPs [13]). Formally, a discrete

MDP is given by:

*  Saset of discrete states the agent can be in, often called the state space

. A a set of discrete actions the agent can take in the environment, also referred to as
the action space

*  pa(s,s’) which is the probability of being in state s at timestep ¢, taking an action a
and then being in s at timestep t + 1. This formulation is also known as the transition
function.

*  14(s,s"), which is the reward function, similarly dependent on a the current action, and
s, the current state and is given by the environment when in the next state s’. Usually,
the policy of selecting an action a when in state s is denoted by 7(a|s) and is often
probabilistic.

In dynamic programming, which is somewhat the precursor of RL, where the transition

function and reward function are given or known, two equations are employed alterna-

tively:

e toupdate a value function V(s) which encodes how good it is to be in state s

* and to update the policy which reflects the value function and it is taken to be the
action which maximizes this value function estimate, known as the greedy policy for V

Formally:
V(s) = Y pals,s)ra(s,s) + V()]

1
7t(s) = argmax, Z/:pﬂ(s, s)[ra(s,s) + 7V (s')] @)

where 1 is called the discount factor and 0 < ¢ < 1. A commonly used RL alternative is to
use a state-action value function where now we have two identifiers, s and a, where p and
r are unknown:

Q(s,a) =) _pals,s')[ra(s,s") + - max Q(s',a)] )

with the model-free, the iterative version given by (which is, in a sense, an approximation
of the above equation with the greedy policy selection step included):

Qnew(sra) = Qold(sfa) +a- [1’,1 +7- meQ(S/,a) - Qold(sra)] (3)

There are two classes of algorithms for RL, value function algorithms, which try to
estimate the state-value function V accurately, or the state-action value function Q (Q-
Learning), and policy algorithms which look directly at optimizing 7t (policy gradient),
bypassing the value function estimation (others are using both methods, e.g., actor-critic).

On a different set of axes, there are model-based RL agents that model and learn the
transition function p(s,s’) and are model-free, which do not explicitly model the transition
function. Model-based RL implies the existence of a simulation of the environment with
which the agent can interact without incurring the cost associated with or benefiting from
the precision of the real environment. If a model can learn accurately and efficiently, then
the advantages of having a model are apparent; knowing the possible outcomes of some
actions without actually taking them enables long-term planning and significantly enhances
the agent’s capabilities.

Instead of using the summation over all possible following states to get a value for Q,
we concatenate the prediction of the next state(s) to the current state, effectively adding
another identifier to the Q function, which is the predicted future. This approach is more
efficient and less accurate but still uses the information from the prediction. Moreover, it
can be applied to any reinforcement learning algorithm with minimum overhead. This
methodology has been used with the same purpose, see, for example, [14]. This technique
could be classified by [15] as implicit model-based RL, where we do not explicitly model
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the transition function and the planning procedure, but we use the prediction as part of the
RL agent representation.

2. Related work

The idea of having an environment model has been used in the past quite effectively,
both with analytical gradients [16] in the linear regime, and even neural networks [17]
in the nonlinear. As long as a model can learn to some degree of accuracy, and it is
not too computationally intensive to do so, then the use of a model generally improves
performance and sample efficiency. Moreover, it gives the ability to generate or roll out
future trajectories.

This ability is instrumental in trading, where accurate predictions could greatly en-
hance profits, especially if they are multi-step. A couple of recent works combine DRL
and MB methods for trading [14,18]. In [18], they use a sequence-to-sequence RNN-MDN
(mixture density network, [19]) to model the transition model based on latent states given
by a convolutional autoencoder. They show that the performance of an agent trained on
the transition model is very similar to the one trained on the actual data, with the ability
to explore the transition model and exploit it using the real environment. In the second
work [14] using model-based prediction with DRL for trading, the authors use a Nonlinear
DyBM (Dynamic Boltzmann Machine) to make predictions and embed these into the state
of the agent; they call it infused prediction module.

On the other end, hierarchical RL enables the partitioning of the state space in some
meaningful way (usually done automatically) and solving different problems individually
with the so-called skills or options, sub-policies directly interacting with the environment.
A higher-level agent chooses between these sub-policies according to some criteria and
stops them according to some termination function, simultaneously giving goals and re-
wards to the low-level agents. Some of the new approaches to HRL using deep networks
can be found in [20-22]; however, the concepts are much older, see [23,24]. For a more
detailed overview, see [25]. The goal is to learn specific behaviours well while combining
the learned solutions adaptively. Hierarchical RL methods hold promise for general arti-
ficial intelligence. In trading, they have been used successfully, for example, in portfolio
management [26,27], but not in the single asset case.

The association of hierarchy with model-based RL seems fruitful; however, only a
few works exist combining the two. It has been mentioned as the promise for the future
in [28] but more from a philosophical or cognitive point of view than from a practical, ap-
plied to a real-world problem. More recently, the association has been done in [29], which
uses inductive logic programming to devise a transition model. It combines symbolic
representations by employing an additional symbolic MDP, which augments the state with
boolean predicates, which can be goals, the relationship of objects, events, or properties in
the environment. The rewards for the low-level agent are augmented with some positive
number if the agent reaches the subgoal given by the high-level agent (using the symbolic
transition model), which uses as a reward the accumulated environmental rewards when
the low-level agent reaches the subgoal and small penalizing factors for giving immature
and unlearnable tasks as subgoals. The high-level agent alternates interacting with the en-
vironment and the simulated transition model, which results in increased sample efficiency.
The overall agent is tested on two hard environments for flat agents (not using hierarchy),
showing good performance. It is unclear if for both, but for one environment (involving
a robot reaching several circles in a specific order), the HRL uses a tabular Q-learning for
the high-level agent and a PPO agent for the low-level. Even though it is partly a symbolic
approach and thus significantly engineered, it shows the potential of combining hierarchy
and explicitly learning a transition model.

Our architecture is similar to the options framework [30], where an option is defined
by:

* |, aset of initial states from which an option o can be started, with I, € S
* 71, a policy which is followed for the duration of the option


https://doi.org/10.20944/preprints202305.1532.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 May 2023 doi:10.20944/preprints202305.1532.v1

* j a termination function that governs the termination of the policy when certain
conditions are met

We describe our architecture and how the above points correspond to it.

3. Overview

We combine the model-based approach with a hierarchical structure, such that we use
a high-level agent to select among a set of pretrained low-level agents, then act for several
steps in the environment. These steps are governed by some termination function , which
in the simplest case is given by:

Bt(s) =

{0 if t%k # 0 @

1 otherwise

where % is the modulo operator, s is the current state, f is the current timestep in
the environment, and k is some value significantly larger than 1; this is the resolution at
which the high-level agent sees the world, the subsampling factor. We set k = 30 (we
test for k = {10,30,50}). The options’ policies are the actual low-level policies pretrained
beforehand or simple strategies governed by some technical indicators (like moving average
crossover or mean reversion strategy). We use 5 PPO agents and two simple strategies. The
initiations sets are all the same for all low-level agents and are constituted by this reduced
set S, which comprises every k" element of S, with S = {x¢|x € S, t%k = 0}.

The high-level agent is endowed with a classification mechanism C, which clusters
incoming series into different classes and feeds different agents with samples from these
different clusters. This mechanism is analog to the subgoal discovery problem [31,32],
where a similar processing exists, where the high-level agents find attractive states for
the low-level agent to reach. Because the environment is different in our c, reaching the
subgoal does not have any real meaning to it. We use k — means [33] from the Python
library tslearn ! for clustering the time series, with an episode length of 50 and 5 clusters.
We tested more clustering algorithms, but they all gave similar results, so we chose the
simplest one. We also tested more values for the number of clusters, but we chose a small
one that showed the significant trends one can see in a market.

We already see how model-based prediction can help. By assigning an agent to act
for the next window, we have to classify it as being in one of the clusters, which means we
first have to predict it and then classify this prediction to match the agent. We denote by
f the prediction function for the high level and by g the prediction function for the low
level. For f we use a deep autoregressive model using recurrent neural networks [34] from
the Python library gluonts %, which is a probabilistic time-series library focused on deep
learning models. For g we use a Dynamic Boltzmann Machine® which is generally good for
1-step prediction and also has a constant training time.

For the RL part, we use RLIib *, which is a Python RL library that scales very well on
multiple CPU cores and machines. It also has the latest state-of-the-art algorithms and RL
tricks implemented and ready to use.

3.1. Data

We sample data at 1 hour (1h) frequency and use 4000 data points for training the
low-level, 8500 points for training the high-level (including the previous 4000), and 10000
points for testing (BTCUSDT taken from Binance, 2019-10-23 07:00:00 - 2022-01-30 21:00:00).
For details on the data splits see Figure 10. For training the low level we sample episodes
of length 50. For the high-level, we use 1500 (which amounts to 50 decision points for the

https:/ /github.com/tslearn-team/tslearn/
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high-level agent since it acts every 30 steps). For each performance measurement, we take
30 random samples.

Here we deviate from the general literature, where the test sets are much smaller than
the training sets, and often each testing set has to be preceded by a training set due to what
is considered a requirement due to the nature of the market and its different regimes. It
is assumed that for an agent to perform well on some data, it needs to be trained on the
period right before that. Because we deal with the different regimes in another way (by
employing heterogeneous agents), we can train systems that perform well on an extensive
testing set and do not need to be trained multiple times for each testing period. Our agents
are general enough to deal well with any market regime.

For the low level, the data is concatenated as x¢—n:t = [p}_,,.;; pi‘,n:t,‘ pi,n:t; Pi_ et Vinit),
where p;_,,+ corresponds to the last 1 steps of the respective price return (open, high, low,

close). By price return we mean that p; = % — 1. v; is the volume associated with
: : : ; . ___volume;
timestep ¢, and is also a normalized difference: v; = Solume, 5 1

3.2. Architecture

After we tried running multiple types of agents on the various parts of the dataset
and obtaining poor performance, we noticed that the performance was correlated with the
training data; thus, we concluded that partitioning the data in some meaningful way might
be fruitful. We describe this next.

The preprocessing for the high-level agent is done by the clustering mechanism, where
we classify each running episode in one of the existing clusters (c; € {0,1,2,3,4}) and feed
as state the last # such classifications. To select the low-level agent to act, we consider this
representation more appropriate since the classes represent the expertise of each agent in
some sense. Moreover, neighbouring episodes will have the same class, thus inducing
smoothness in the representation and thus action selection, which is in line with our goals.
We show the overall architecture of our learning system in Figure 1.

x[t:t+f]

Prediction
Model HL

N
1 \
.

Low-Level Low-Level
trained on trained on
class 0 class 1

xa[t+1] Xn[t+1]
Prediction Prediction Prediction
Model LL Model LL Model LL

Figure 1. Depiction of the overall architecture.

Low-Level
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Figure 2. State representation for the high-level agent.

The low-level prediction did not improve much (or at all, the results were inconclusive)
the performance of the low-level agents; thus, we do not include it in the final results.
Looking at the low-level prediction in Figure 5b, a more accurate prediction model is
needed. For the high-level state, we tried multiple approaches:

*  using raw returns as in the low-level agent

*  using the recent performance of each individual agent in its own simulated environ-
ment (similar to [7]) and concatenating these for all agents

*  using concatenated samples from the prediction model instead of median or mean

*  using the result of the classification of the recent past and the prediction, applying C

The best version used both classification and prediction, see Figure 7. In general, larger

state spaces induce more variability, in our experience, which is also what happened when

using raw samples from the prediction model. We show the full algorithm in Algorithm 1.

Data: x;—,,.t, high-level agent hl, pretrained low-level agents II;, prediction
functions f and g, classification C

while episode < max_episodes do

t < random episode start

while t < horizon do

Xe:t+m < f(Xe—n:t) /* prediction
high-level */

Srtrm — C(Xetym) /* classification
future */

Ctn:t < C(Xt—n:t) /* classification
past */

i < hl.compute_action([c;—p:¢; €:t4m]) /* high-level
selects low-level */

jet

while 8; # 1 do

Xp11 = §(Xt—n:t) /* prediction
low-level */

action = ll;.compute_action|X;—:¢; X;41]

t—t+1

Xi_n:t, r}l = env.step(action) /% action in the

environment */
end
ril’ — thc:j r]l(l /* cumulative reward */

end

end
Algorithm 1: Hierarchical model-based deep reinforcement learning for trading in
evaluation mode.
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Figure 4. Performance of the low-level agents, each trained on one cluster.

3.2.1. Clustering as preprocessing for the high-level agent

We endow the high-level agent with a preprocessing module that can cluster the
incoming time series into a specific cluster (one of 5 discovered beforehand when clustering
the training set, see Figure 3).

We denote by sj, the state of the high-level agent. The state at timestep ¢ is given by
sp = [ct_n;t ; Et;t+m] where ¢;_;.; is a vector of the last n classifications, where each point
c;—; with 0 <7 < n denotes the classification of the episode which ends at t —i. €.¢4 is
the prediction of the following episodes classes by the classification, which is fed with the
prediction of the next timesteps. Thus, each point ¢}, j with 0 < j < m, is the classification
of the (predicted) episode ending at ¢ + j. Because the high-level takes decisions at a coarser
data granularity, having such a multiple-step prediction model makes sense. We use a
DeepAR model for our multiple-step prediction, which generally keeps the shape of the
future trend but lacks minute precision, which is what we needed. We show example
predictions in Figure 5a.

3.2.2. Pretraining the low-level agents

We pretrain the low-level agents on specific data clusters, so each one specializes in
one type of trend. We show the clusters and their means in Figure 3. We see that the 5
clusters catch some of the main trends in the market.

We show Figure 4 the best performance of individual agents on the test set consist-
ing of 15000 points (21 months). We select the best one (among 24 trials) for each class
for comparison. We perform 30 repetitions for each and depict the mean and standard
deviation.

3.3. Prediction

In the context of RL, prediction assumes the existence of a model of the environment
with which the agent can interact without incurring the losses associated with the real
environment. This complete model comprises state and reward models, predicting the
following states and rewards. We are only interested in the state model, as the reward
model is completely dependent on the state model. In the sense that if we know the next
state (price) we can easily compute the rewards, given the action taken.
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(a) Multi-step prediction of the high-level agent. (b) One step prediction of the low-level agent.
Figure 5. Sample predictions.

For the low-level, we tested with the true values instead of the predictions to see if
the performance improved. We noticed a significant improvement. We repeated the value
of the future step 10 times and then concatenated this to the state vector for the low level as
a way of biasing the agent, such that this future value has a more considerable influence
on the decision (having a single value did not seem to work too well). So it is clear that
accurate predictions can significantly improve performance and training time. We thus add
a 1-step prediction for each of the OHLCYV time series, thus having five different prediction
models for each agent. As we mentioned, this does not improve performance conclusively.

For the high-level agent, the representation is in terms of classes (0 to 4), and thus the
prediction should be the same. We also note that the history window size has now doubled
compared to the low-level since an episode now defines every point ending at that point.
So we predict multiple steps into the future and look at more steps into the past. We show
an example in Figure 2.

3.4. Rewards

The rewards for the low-level agent are given by the usual profit and loss (PnL). We
also standardize the rewards, subtracting the running mean and dividing by the running
standard deviation of the current episode at each step. We do this operation for all types of
rewards used and all agents.

For the high-level agent, we feed the cumulative profit and loss for each low-level
episode, while for the low-level, we feed the realized PnL (profit and loss):

t
A=yl with il = price, —buy_price, ®)
k

where buy_pricey is the first open buy price, see Section 7.1.

3.5. Termination function and diversification

By looking at the low-level agents’ pretraining performance, we can draw some
conclusions:

¢ if alarge loss has been incurred, there are chances that this is a period of losses for this
agent (and not only; we see that some periods of losses coincide for all agents). Thus
we add a hold action for the high-level agent.

¢  recent agent performance could be relevant for the immediate future

* agents are not complementary, but combining more of them can bring improved
performance

* improving diversification in the low-level dynamics might improve overall perfor-
mance

We hypothesized that the termination function would be necessary for trading and
that the overall strategy could be improved by learning when to terminate, but it seems not.
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We tested with multiple values (10, 30, 300), and the difference is small, especially among
lower values. We settled on 30 as the value, which seemed more robust.

4. Experiments and results

Firstly, we have also to mention the usual RL instability in training and emphasize
how best hyperparameters were different in each selection (for the pretrained agents or
the hierarchical agent), so running multiple trials with different configurations of hyper-
parameters at each experimental stage is critical for obtaining reasonable solutions. We
evaluate 30 samples for each curve after an initial run of 24 trials and selecting the best
hyperparameter configuration. A significant improvement was also adding the ability
to hold (or do nothing) for the high-level agent, thus for a more extended period (the
terminating value k), which makes sense because, as we saw from the low-level pretraining,
there are extended periods where it is better to do nothing, as it is almost impossible to be
profitable.

Performance gains were hard to obtain with this setup, due to the fact that agents
were not very dissimilar when making profits, thus we wanted to add more agents, but
with different trading dynamics. We proceed to describe these steps.

4.1. Hierarchy with two simple strategies

We test two basic strategies, a mean reversion and a moving average crossover, which
can be considered a momentum strategy. Figure 6a shows the performance of the two basic
strategies. We then check to see if using a DRL agent to select between the two strategies is
of any help. We also add the hold option for the agent to choose from three discrete actions.
We show the performance of the DRL agent (we use a PPO agent as before) in Figure 6b.
We see that performance is indeed better than each of the two individual strategies. We use
a minimal [64, 32] network with a relu activation function. We try three decision intervals
for the PPO: every step, once in 5 steps (PPO 5), and once in 10 steps (PPO 10).

The mean reversion strategy uses two indicators, a Relative Strength Index indicator
with an exponential moving window working on a period of 6 hours and a moving average
on a period of 20 hours. The strategy buys if the RSI value is less than some threshold (40
in our case) and the price value is less than the lower Bollinger band and sells if the RSI
value is higher than some threshold (60 in our case) and the current price is higher than the
higher Bollinger. The higher and lower Bollinger thresholds are at 2 x ¢, with sigma the
rolling standard deviation of the time series (on the same period as the mean, 20 hours).
The strategy holds or does nothing if none of the above conditions are met.

The moving average crossover strategy is even more straightforward. We have two
different moving averages (in our case, one works on a 100 hours window and the other on
a 400 hours window), and when the shorter one surpasses the lower one, it is a buy signal,
and when the reverse is the case, that is a sell signal.

(a) Mean reversion and Moving average crossover () PPO selecting between the two strategies.
strategies.

Performance of PPO selecting among the simple strategies

Portfolio value over time for two simple strategies

24001 — MACrossover

MeanReversion

2200
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1000{ A
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Figure 6. Performance of a hierarchical agent (PPO) using two basic strategies as low-level agents.
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We see that these models can be leveraged to perform better when combined through
an additional layer of decision-making. Thus, we include these 2 simple models in our final
set of low-level agents. The results in Figures 7 and 8 are obtained with this setup

4.2. Risk-return optimization

The Markowitz model implies that one wants to minimize risk and maximize returns,
and a hierarchical approach lends itself naturally to such a dual optimization. We thus test
this approach as well, with the high-level agent optimizing for risk. The conditional value
rewards the high-level at risk, or CVaR. To define the CVaR, we first need to define the
Value at Risk (VaR).

VaR, Value at Risk is a measure describing how much value is at risk during a specific
period and its probability of occurrence. Many critics have criticized this as being unin-
formative or giving a false measure of certainty and security where there should be none.
Some of the main arguments against using VaR is that it is a measure of describing rare
events that are hard to describe.

Formally, let X be profits (positive) and losses (negative) random variable (rv) associ-
ated with some distribution. The VaR at level « € (0,1) gives the smallest number y such
that the probability that Y := —X is not larger than y is at least 1 — «. We denote this as
VaR,(X), and the most general definition is given by:

VaRy(X) = —inf{x e R: Fx(x) > a} = F;l(l —u) (6)

The function Fy is the cumulative distribution function (cdf) of the random variable X (for
any rv, its cdf is well defined). There are multiple ways of computing the VaR:

¢  either by looking at past returns, assuming that future outcomes will be similar to past
ones

* by assuming a parametric distribution of the returns, like a Gaussian

* by using Monte Carlo simulations of predicted returns

We use the first method as it is the simplest and quite efficient. We use « = 0.05.
CVaR, Conditional Value at Risk is a measure related to VaR but more comprehensive as it
looks at the expected value beyond the VaR threshold:

CVaR,(X) = —% /0 " Var, (X)dy @)

If we assume that the distribution is continuous, than this is equivalent to the conditional
tail expectation given by:
E[-X|X < —VaRy(X)] ®)

CVaR is also known as the expected shortfall and can be seen as describing the average loss
case when the losses are severe (they only occur a percent of the time).

When comparing the original version, using a cumulative return for the high-level,
versus the risk-return version, using CVaR as a reward, we get a significant difference, with
a larger Sharpe ratio for the CVaR agent (running a t-test between the two populations,
gave a p-value of 0.02, so the null hypothesis can be rejected, i.e., the two populations
means are not equal).
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Figure 8. Cumulative rewards versus CVaR.

To evaluate the performance of the risk-return model, we compute the monthly Sharpe
ratio, which will be independent of the frequency of trading or data used. Otherwise,
we risk sampling bias, with the Sharpe ratio dependent on the period length used for
calculation. The monthly Sharpe ratio is computed as follows:

1 n
with R =~ Y (Ri—Ry) and
i=1

R,
Oe

S

Uez\/ ! i(Ri—Rf—Re)2 ©)

where R, is the average monthly excess return, R; is the return of the portfolio in month
i, and Ry is the risk-free excess return (which can be taken to vary each month but which
we keep constant for simplicity) and 7 is the number of months. The risk-free return is
generally quite low (initially taken as the return of US bonds); we take it as 5%.
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5. Conclusion

Both hierarchy and prediction can improve performance significantly. Even though
we haven't seen any performance benefit from adding one-step prediction at the low-level,
we have tested to see if good prediction does improve performance and ideed it is so,
using true values instead of predictions does provide positive results. This means that the
prediction model used for the low-level is insufficient.

For the high-level we saw that prediction used in conjunction to incrementally classi-
fying predictions does offer significant performance improvements, even though neither
of the two methods used separately offered any improvements. Moreover, we saw that
changing the reward of the high-level to a risk-based measure like CVaR, transforms the
whole problem into a risk-return optimization where the low-level is getting rewarded
for increased returns and the high-level receives rewards for lowering the risk (or the risk
measure).

6. Future directions

The current work can be extended by considering specific goals the high-level might
give the low-level, like, for example, a desired (approximate) number of trades or desired
amount of risk to seek for the period (Sharpe ratio or Sortino ratio). The closer to the goal,
the bigger the reward for the low-level. In this way, the behaviour of the low-level agents
can be constructed to specific desiderata.

One interesting behaviour which could be enacted in this type of architecture is for one
agent to control the learning of the other (meta-learning), where, for example, the high-level
control of a parameter & € R with the reward of the low-level being ary + (1 — a)r>.

Other ways the hierarchical decision-making setup can be further leveraged is to
devise complementary low-level agents, where the trading dynamics is as different as
possible while still retaining reasonable performance individually. Moreover, training one
level of agents with some risk-measure and the other with the returns has not been explored
fully in this article. For example, one could try using the risk-measure in the low-level
and the returns for the high-level. Or alternatively, train them in the same time, without
pretraining of the low-level. However, this is usually computationally more intensive and
more unstable, adding to the usual instability of RL training.

In this article we showed how leveraging hierarchy and prediction for trading a single
asset can significantly improve performance both in terms of overall returns and the Sharpe
ratio. We used a much larger testing set to avoid the sampling bias usually encountered
in such scenarios (cherry picking), and showed that even simple strategies like the mean
reversion or moving average crossover can be leveraged with the help of an additional
decision-making layer.

Furthermore, natural hierarchical structures seen in the usual portfolio management
literature (e.g. asset classes, based on industry type or country) could be mapped to such
a hierarchical system in a straightforward manner, providing a consistent way of dealing
with heterogeneous assets.
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Figure 10. Data splits.

7. Appendix
7.1. Implementation details

We use a simple trading environment with a fixed quantity size for each buy and sell
(e.g., 0.01 for BTCUSDT). We start with an initial balance of 1000USDT. We use a FIFO (first
in first out) order queue, meaning that when we have multiple buys opened, we close the
first one (first in) if a sell operation is requested. We do not allow selling short. We use
transaction fees of 1%; however, recently, Bitstamp has introduced 0% trading fees for all
coins for up to 1000USD or equivalent °).

Because we only trade at the closing price of the hour in our simulations, the close
moment of the open operation can be further optimized, and thus profits can significantly
increase. We leave this for further work. The hierarchical approach can be easily extended
to support another layer of decision-making at a smaller timescale.

We only take the close price (ohlev) for the high-level model and predict the following
50 steps with DeepAR. We use the high-level model predictions in the high-level training
regime such that the agent should learn when and how much to use the model if the
predictions are off sometimes. One could say that this allows the RL agent to learn a policy
based on the prediction model and its errors.

Actions distribution for high - 24
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‘1 .
‘ 7
|
3
4 6
5

Figure 9. Action distribution for the best HRL model.

5 https://blog.bitstamp.net/post/bitstamps-summer-of-discovery-is-underway-with-0-trading-fee-for-all-

coins/
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7.2. Hyperparameters

Table 1. DeepAR prediction model

Table 2. DyBM prediction model

Parameter Value
num_cells 64
num_layers 2
dropout_rate 0.3
prediction_length 50
Parameter Value
delay 2
decay 0.9
prediction_length 1
AdaGrad rate 1.0
AdaGrad delta le-6

Parameter Value

n_clusters 5
max_iter 50

metric euclidean
tolerance le-6

Table 3. K-means clustering

Parameter Value

use_critic True

use GAE True

GAE lambda 1.0

kl_coeff 0.2
rollout_fragment_length 200

train_batch_size 200
sgd_minibatch_size 128
shuffle_sequences True

num_sgd_iter 30

Ir_schedule None

vf_loss_coeff 1.0

entropy_coeff schedule  grid_search([[1, 0.1], [500000, 0.0001]])
clip_param 0.3

kl_target 0.01

batch_mode truncate_episodes
vf_clip_param grid_search([1, 10])
clip_param grid_search([0.1, 0.2])
grad_clip grid_search([1, 10])

learning_rate_schedule

neural_network

Table 4. Proximal Policy Optimization

grid_search([[[1, 1e-4], [500000, 1e-5]],

[[1, 1e-3], [500000, 1e-4]],
[[1, 1e-3], [500000, 1e-5]]])
[1024, 512]
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