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We present a hierarchical reinforcement learning (RL) architecture that employs various 1

low-level agents to act in the trading environment, i.e. the market. The highest level agent 2

selects among a group of specialised agents, and then the selected agent decides when to sell 3

or buy a single asset for some period. This period can be variable according to a termination 4

function. We hypothesized that due to different market regimes, more than one single agent 5

is needed when trying to learn from such heterogeneous data, and instead, multiple agents 6

will perform better, with each one specialising in a subset of the data. We use k−means 7

clustering to partition the data and train each agent with a different cluster. Partitioning 8

the input data also helps model-based RL (MBRL), where models can be heterogeneous. 9

We also add two simple decision-making models to the set of low-level agents, diversifying 10

the pool of available agents and thus increasing overall behaviour flexibility. We perform 11

multiple experiments showing the strengths of a hierarchical approach and test various 12

prediction models at both levels. We also use a risk-based reward at the high level, which 13

transforms the overall problem into a risk-return optimization. This type of reward shows 14

a significant reduction in risk while minimally reducing profits. Overall, the hierarchical 15

approach shows significant promise, especially when the pool of low-level agents is highly 16

diverse. 17

1. Introduction 18

Since its inception in 2015 [1], deep reinforcement learning (DRL) has found many 19

applications in a wide set of domains [2]. In recent years the use in trading has become 20

quite popular, at least in academia (for an overview, see [3] or [4]). 21

The most interest lies with the portfolio optimization problem (see, for example, [5–7] 22

for some modern approaches), which can leverage multiple assets both in uptrend and 23

downtrend. In single-asset trading, there is too much risk involved, as argued in, for 24

example, [8], if the asset goes down, then the best option is to hold. Also, if the market is 25

in a strong bull trend, it is hard to beat it, see for example a recent confirmation of this by 26

[9]. The market (in this case, the single asset) often changes regimes regarding volatility, 27

trend, smoothness, etc. There have been many works showing and modeling this, see for 28

example, works mentioning trading and market regime switch (e.g., [10,11]). 29

The applied methodology pursued by many researchers working in DRL for trading 30

(if not all) is to evaluate the agent for some short period (test mode) and then retrain it to 31

deal with another test period. Moreover, the training must occur before the testing so the 32

agent can catch the current market dynamics. 33

This workflow is cumbersome and introduces additional constraints and computa- 34

tional costs. Moreover, the uncertainty about the change in the market regime and timing 35

still needs to be addressed in real-time. We thus propose an alternative method, where a 36

hierarchical system decides which of the regimes the market is in and assigns the most 37

appropriate behaviour by selecting a low-level agent to act in the actual market, i.e., buy 38

and sell the asset. We delve more into the architecture in subsequent sections. We now 39

proceed to the RL problem formulation. 40

The reinforcement learning problem is usually formulated as a Markov Decision 41

Process (MDP)[12], which is a discrete stochastic control process for decision-making in 42
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environments with uncertainty (there are also continuous MDPs [13]). Formally, a discrete 43

MDP is given by: 44

• S a set of discrete states the agent can be in, often called the state space 45

• A a set of discrete actions the agent can take in the environment, also referred to as 46

the action space 47

• pa(s, s′) which is the probability of being in state s at timestep t, taking an action a 48

and then being in s′ at timestep t + 1. This formulation is also known as the transition 49

function. 50

• ra(s, s′), which is the reward function, similarly dependent on a the current action, and 51

s, the current state and is given by the environment when in the next state s′. Usually, 52

the policy of selecting an action a when in state s is denoted by π(a|s) and is often 53

probabilistic. 54

In dynamic programming, which is somewhat the precursor of RL, where the transition 55

function and reward function are given or known, two equations are employed alterna- 56

tively: 57

• to update a value function V(s) which encodes how good it is to be in state s 58

• and to update the policy which reflects the value function and it is taken to be the 59

action which maximizes this value function estimate, known as the greedy policy for V 60

Formally: 61

V(s) = ∑
s′

pπ(s, s′)[rπ(s, s′) + γV(s′)]

π(s) = argmaxa ∑
s′

pa(s, s′)[ra(s, s′) + γV(s′)]
(1)

where γ is called the discount factor and 0 ≤ γ ≤ 1. A commonly used RL alternative is to 62

use a state-action value function where now we have two identifiers, s and a, where p and 63

r are unknown: 64

Q(s, a) = ∑
s′

pa(s, s′)[ra(s, s′) + γ ·max
a

Q(s′, a)] (2)

with the model-free, the iterative version given by (which is, in a sense, an approximation 65

of the above equation with the greedy policy selection step included): 66

Qnew(s, a) = Qold(s, a) + α · [ra + γ ·max
a

Q(s′, a)−Qold(s, a)] (3)

There are two classes of algorithms for RL, value function algorithms, which try to 67

estimate the state-value function V accurately, or the state-action value function Q (Q- 68

Learning), and policy algorithms which look directly at optimizing π (policy gradient), 69

bypassing the value function estimation (others are using both methods, e.g., actor-critic). 70

On a different set of axes, there are model-based RL agents that model and learn the 71

transition function p(s, s′) and are model-free, which do not explicitly model the transition 72

function. Model-based RL implies the existence of a simulation of the environment with 73

which the agent can interact without incurring the cost associated with or benefiting from 74

the precision of the real environment. If a model can learn accurately and efficiently, then 75

the advantages of having a model are apparent; knowing the possible outcomes of some 76

actions without actually taking them enables long-term planning and significantly enhances 77

the agent’s capabilities. 78

Instead of using the summation over all possible following states to get a value for Q, 79

we concatenate the prediction of the next state(s) to the current state, effectively adding 80

another identifier to the Q function, which is the predicted future. This approach is more 81

efficient and less accurate but still uses the information from the prediction. Moreover, it 82

can be applied to any reinforcement learning algorithm with minimum overhead. This 83

methodology has been used with the same purpose, see, for example, [14]. This technique 84

could be classified by [15] as implicit model-based RL, where we do not explicitly model 85
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the transition function and the planning procedure, but we use the prediction as part of the 86

RL agent representation. 87

2. Related work 88

The idea of having an environment model has been used in the past quite effectively, 89

both with analytical gradients [16] in the linear regime, and even neural networks [17] 90

in the nonlinear. As long as a model can learn to some degree of accuracy, and it is 91

not too computationally intensive to do so, then the use of a model generally improves 92

performance and sample efficiency. Moreover, it gives the ability to generate or roll out 93

future trajectories. 94

This ability is instrumental in trading, where accurate predictions could greatly en- 95

hance profits, especially if they are multi-step. A couple of recent works combine DRL 96

and MB methods for trading [14,18]. In [18], they use a sequence-to-sequence RNN-MDN 97

(mixture density network, [19]) to model the transition model based on latent states given 98

by a convolutional autoencoder. They show that the performance of an agent trained on 99

the transition model is very similar to the one trained on the actual data, with the ability 100

to explore the transition model and exploit it using the real environment. In the second 101

work [14] using model-based prediction with DRL for trading, the authors use a Nonlinear 102

DyBM (Dynamic Boltzmann Machine) to make predictions and embed these into the state 103

of the agent; they call it infused prediction module. 104

On the other end, hierarchical RL enables the partitioning of the state space in some 105

meaningful way (usually done automatically) and solving different problems individually 106

with the so-called skills or options, sub-policies directly interacting with the environment. 107

A higher-level agent chooses between these sub-policies according to some criteria and 108

stops them according to some termination function, simultaneously giving goals and re- 109

wards to the low-level agents. Some of the new approaches to HRL using deep networks 110

can be found in [20–22]; however, the concepts are much older, see [23,24]. For a more 111

detailed overview, see [25]. The goal is to learn specific behaviours well while combining 112

the learned solutions adaptively. Hierarchical RL methods hold promise for general arti- 113

ficial intelligence. In trading, they have been used successfully, for example, in portfolio 114

management [26,27], but not in the single asset case. 115

The association of hierarchy with model-based RL seems fruitful; however, only a 116

few works exist combining the two. It has been mentioned as the promise for the future 117

in [28] but more from a philosophical or cognitive point of view than from a practical, ap- 118

plied to a real-world problem. More recently, the association has been done in [29], which 119

uses inductive logic programming to devise a transition model. It combines symbolic 120

representations by employing an additional symbolic MDP, which augments the state with 121

boolean predicates, which can be goals, the relationship of objects, events, or properties in 122

the environment. The rewards for the low-level agent are augmented with some positive 123

number if the agent reaches the subgoal given by the high-level agent (using the symbolic 124

transition model), which uses as a reward the accumulated environmental rewards when 125

the low-level agent reaches the subgoal and small penalizing factors for giving immature 126

and unlearnable tasks as subgoals. The high-level agent alternates interacting with the en- 127

vironment and the simulated transition model, which results in increased sample efficiency. 128

The overall agent is tested on two hard environments for flat agents (not using hierarchy), 129

showing good performance. It is unclear if for both, but for one environment (involving 130

a robot reaching several circles in a specific order), the HRL uses a tabular Q-learning for 131

the high-level agent and a PPO agent for the low-level. Even though it is partly a symbolic 132

approach and thus significantly engineered, it shows the potential of combining hierarchy 133

and explicitly learning a transition model. 134

Our architecture is similar to the options framework [30], where an option is defined 135

by: 136

• Io a set of initial states from which an option o can be started, with Io ∈ S 137

• πo a policy which is followed for the duration of the option 138
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• β a termination function that governs the termination of the policy when certain 139

conditions are met 140

We describe our architecture and how the above points correspond to it. 141

3. Overview 142

We combine the model-based approach with a hierarchical structure, such that we use 143

a high-level agent to select among a set of pretrained low-level agents, then act for several 144

steps in the environment. These steps are governed by some termination function β, which 145

in the simplest case is given by: 146

βt(s) =

{
0 if t%k ̸= 0
1 otherwise

(4)

where % is the modulo operator, s is the current state, t is the current timestep in 147

the environment, and k is some value significantly larger than 1; this is the resolution at 148

which the high-level agent sees the world, the subsampling factor. We set k = 30 (we 149

test for k = {10, 30, 50}). The options’ policies are the actual low-level policies pretrained 150

beforehand or simple strategies governed by some technical indicators (like moving average 151

crossover or mean reversion strategy). We use 5 PPO agents and two simple strategies. The 152

initiations sets are all the same for all low-level agents and are constituted by this reduced 153

set Ŝ , which comprises every kth element of S , with Ŝ = {xt|xt ∈ S , t%k = 0}. 154

The high-level agent is endowed with a classification mechanism C, which clusters 155

incoming series into different classes and feeds different agents with samples from these 156

different clusters. This mechanism is analog to the subgoal discovery problem [31,32], 157

where a similar processing exists, where the high-level agents find attractive states for 158

the low-level agent to reach. Because the environment is different in our c, reaching the 159

subgoal does not have any real meaning to it. We use k − means [33] from the Python 160

library tslearn 1 for clustering the time series, with an episode length of 50 and 5 clusters. 161

We tested more clustering algorithms, but they all gave similar results, so we chose the 162

simplest one. We also tested more values for the number of clusters, but we chose a small 163

one that showed the significant trends one can see in a market. 164

We already see how model-based prediction can help. By assigning an agent to act 165

for the next window, we have to classify it as being in one of the clusters, which means we 166

first have to predict it and then classify this prediction to match the agent. We denote by 167

f the prediction function for the high level and by g the prediction function for the low 168

level. For f we use a deep autoregressive model using recurrent neural networks [34] from 169

the Python library gluonts 2, which is a probabilistic time-series library focused on deep 170

learning models. For g we use a Dynamic Boltzmann Machine3 which is generally good for 171

1-step prediction and also has a constant training time. 172

For the RL part, we use RLlib 4, which is a Python RL library that scales very well on 173

multiple CPU cores and machines. It also has the latest state-of-the-art algorithms and RL 174

tricks implemented and ready to use. 175

3.1. Data 176

We sample data at 1 hour (1h) frequency and use 4000 data points for training the 177

low-level, 8500 points for training the high-level (including the previous 4000), and 10000 178

points for testing (BTCUSDT taken from Binance, 2019-10-23 07:00:00 - 2022-01-30 21:00:00). 179

For details on the data splits see Figure 10. For training the low level we sample episodes 180

of length 50. For the high-level, we use 1500 (which amounts to 50 decision points for the 181

1 https://github.com/tslearn-team/tslearn/
2 https://ts.gluon.ai/
3 https://github.com/ibm-research-tokyo/dybm
4 https://github.com/ray-project/ray/tree/master/rllib
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high-level agent since it acts every 30 steps). For each performance measurement, we take 182

30 random samples. 183

Here we deviate from the general literature, where the test sets are much smaller than 184

the training sets, and often each testing set has to be preceded by a training set due to what 185

is considered a requirement due to the nature of the market and its different regimes. It 186

is assumed that for an agent to perform well on some data, it needs to be trained on the 187

period right before that. Because we deal with the different regimes in another way (by 188

employing heterogeneous agents), we can train systems that perform well on an extensive 189

testing set and do not need to be trained multiple times for each testing period. Our agents 190

are general enough to deal well with any market regime. 191

For the low level, the data is concatenated as xt−n:t = [po
t−n:t; ph

t−n:t; pl
t−n:t; pc

t−n:t; vt−n:t], 192

where pt−n:t corresponds to the last n steps of the respective price return (open, high, low, 193

close). By price return we mean that pt =
pricet

pricet−1
− 1. vt is the volume associated with 194

timestep t, and is also a normalized difference: vt =
volumet

volumet−1
− 1. 195

3.2. Architecture 196

After we tried running multiple types of agents on the various parts of the dataset 197

and obtaining poor performance, we noticed that the performance was correlated with the 198

training data; thus, we concluded that partitioning the data in some meaningful way might 199

be fruitful. We describe this next. 200

The preprocessing for the high-level agent is done by the clustering mechanism, where 201

we classify each running episode in one of the existing clusters (ci ∈ {0, 1, 2, 3, 4}) and feed 202

as state the last n such classifications. To select the low-level agent to act, we consider this 203

representation more appropriate since the classes represent the expertise of each agent in 204

some sense. Moreover, neighbouring episodes will have the same class, thus inducing 205

smoothness in the representation and thus action selection, which is in line with our goals. 206

We show the overall architecture of our learning system in Figure 1. 207

Environment

x[t-n:t]

x[t-n:t]

c[t-n:t]

c[t:t+f]

x[t:t+f]

a

x0[t+1]

Low
 Level

High level

High-Level
Classification 

after clustering

Prediction 
Model HL

Low-Level 
trained on 
class 0

Low-Level 
trained on 

class 1

Low-Level 
trained on 
class n

Prediction
Model LL

...

Prediction
Model LL

x1[t+1] xn[t+1]

Prediction
Model LL

Figure 1. Depiction of the overall architecture.
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Figure 2. State representation for the high-level agent.

The low-level prediction did not improve much (or at all, the results were inconclusive) 208

the performance of the low-level agents; thus, we do not include it in the final results. 209

Looking at the low-level prediction in Figure 5b, a more accurate prediction model is 210

needed. For the high-level state, we tried multiple approaches: 211

• using raw returns as in the low-level agent 212

• using the recent performance of each individual agent in its own simulated environ- 213

ment (similar to [7]) and concatenating these for all agents 214

• using concatenated samples from the prediction model instead of median or mean 215

• using the result of the classification of the recent past and the prediction, applying C 216

The best version used both classification and prediction, see Figure 7. In general, larger 217

state spaces induce more variability, in our experience, which is also what happened when 218

using raw samples from the prediction model. We show the full algorithm in Algorithm 1. 219

Data: xt−n:t, high-level agent hl, pretrained low-level agents lli, prediction
functions f and g, classification C

while episode < max_episodes do
t← random episode start
while t < horizon do

x̃t:t+m ← f (xt−n:t) /* prediction
high-level */

c̃t:t+m ← C(x̃t:t+m) /* classification
future */

ct−n:t ← C(xt−n:t) /* classification
past */

i← hl.compute_action([ct−n:t; c̃t:t+m]) /* high-level
selects low-level */

j← t
while βt ̸= 1 do

xt+1 = g(xt−n:t) /* prediction
low-level */

action = lli.compute_action[xt−n:t; xt+1]

t← t + 1
xt−n:t, rll

j = env.step(action) /* action in the
environment */

end
rhl

t = ∑t
k=j rll

k /* cumulative reward */
end

end
Algorithm 1: Hierarchical model-based deep reinforcement learning for trading in
evaluation mode.
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Figure 4. Performance of the low-level agents, each trained on one cluster.

3.2.1. Clustering as preprocessing for the high-level agent 220

We endow the high-level agent with a preprocessing module that can cluster the 221

incoming time series into a specific cluster (one of 5 discovered beforehand when clustering 222

the training set, see Figure 3). 223

We denote by sh the state of the high-level agent. The state at timestep t is given by 224

sh = [ct−n:t; c̃t:t+m] where ct−n:t is a vector of the last n classifications, where each point 225

ct−i with 0 ≤ i ≤ n denotes the classification of the episode which ends at t− i. c̃t:t+m is 226

the prediction of the following episodes classes by the classification, which is fed with the 227

prediction of the next timesteps. Thus, each point c̃t+j with 0 ≤ j ≤ m, is the classification 228

of the (predicted) episode ending at t + j. Because the high-level takes decisions at a coarser 229

data granularity, having such a multiple-step prediction model makes sense. We use a 230

DeepAR model for our multiple-step prediction, which generally keeps the shape of the 231

future trend but lacks minute precision, which is what we needed. We show example 232

predictions in Figure 5a. 233

3.2.2. Pretraining the low-level agents 234

We pretrain the low-level agents on specific data clusters, so each one specializes in 235

one type of trend. We show the clusters and their means in Figure 3. We see that the 5 236

clusters catch some of the main trends in the market. 237

We show Figure 4 the best performance of individual agents on the test set consist- 238

ing of 15000 points (21 months). We select the best one (among 24 trials) for each class 239

for comparison. We perform 30 repetitions for each and depict the mean and standard 240

deviation. 241

3.3. Prediction 242

In the context of RL, prediction assumes the existence of a model of the environment 243

with which the agent can interact without incurring the losses associated with the real 244

environment. This complete model comprises state and reward models, predicting the 245

following states and rewards. We are only interested in the state model, as the reward 246

model is completely dependent on the state model. In the sense that if we know the next 247

state (price) we can easily compute the rewards, given the action taken. 248
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Figure 5. Sample predictions.

For the low-level, we tested with the true values instead of the predictions to see if 249

the performance improved. We noticed a significant improvement. We repeated the value 250

of the future step 10 times and then concatenated this to the state vector for the low level as 251

a way of biasing the agent, such that this future value has a more considerable influence 252

on the decision (having a single value did not seem to work too well). So it is clear that 253

accurate predictions can significantly improve performance and training time. We thus add 254

a 1-step prediction for each of the OHLCV time series, thus having five different prediction 255

models for each agent. As we mentioned, this does not improve performance conclusively. 256

For the high-level agent, the representation is in terms of classes (0 to 4), and thus the 257

prediction should be the same. We also note that the history window size has now doubled 258

compared to the low-level since an episode now defines every point ending at that point. 259

So we predict multiple steps into the future and look at more steps into the past. We show 260

an example in Figure 2. 261

3.4. Rewards 262

The rewards for the low-level agent are given by the usual profit and loss (PnL). We 263

also standardize the rewards, subtracting the running mean and dividing by the running 264

standard deviation of the current episode at each step. We do this operation for all types of 265

rewards used and all agents. 266

For the high-level agent, we feed the cumulative profit and loss for each low-level 267

episode, while for the low-level, we feed the realized PnL (profit and loss): 268

rhl
t =

t

∑
k

rll
k with rll

k = pricek − buy_price0 (5)

where buy_price0 is the first open buy price, see Section 7.1. 269

3.5. Termination function and diversification 270

By looking at the low-level agents’ pretraining performance, we can draw some 271

conclusions: 272

• if a large loss has been incurred, there are chances that this is a period of losses for this 273

agent (and not only; we see that some periods of losses coincide for all agents). Thus 274

we add a hold action for the high-level agent. 275

• recent agent performance could be relevant for the immediate future 276

• agents are not complementary, but combining more of them can bring improved 277

performance 278

• improving diversification in the low-level dynamics might improve overall perfor- 279

mance 280

We hypothesized that the termination function would be necessary for trading and 281

that the overall strategy could be improved by learning when to terminate, but it seems not. 282
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We tested with multiple values (10, 30, 300), and the difference is small, especially among 283

lower values. We settled on 30 as the value, which seemed more robust. 284

4. Experiments and results 285

Firstly, we have also to mention the usual RL instability in training and emphasize 286

how best hyperparameters were different in each selection (for the pretrained agents or 287

the hierarchical agent), so running multiple trials with different configurations of hyper- 288

parameters at each experimental stage is critical for obtaining reasonable solutions. We 289

evaluate 30 samples for each curve after an initial run of 24 trials and selecting the best 290

hyperparameter configuration. A significant improvement was also adding the ability 291

to hold (or do nothing) for the high-level agent, thus for a more extended period (the 292

terminating value k), which makes sense because, as we saw from the low-level pretraining, 293

there are extended periods where it is better to do nothing, as it is almost impossible to be 294

profitable. 295

Performance gains were hard to obtain with this setup, due to the fact that agents 296

were not very dissimilar when making profits, thus we wanted to add more agents, but 297

with different trading dynamics. We proceed to describe these steps. 298

4.1. Hierarchy with two simple strategies 299

We test two basic strategies, a mean reversion and a moving average crossover, which 300

can be considered a momentum strategy. Figure 6a shows the performance of the two basic 301

strategies. We then check to see if using a DRL agent to select between the two strategies is 302

of any help. We also add the hold option for the agent to choose from three discrete actions. 303

We show the performance of the DRL agent (we use a PPO agent as before) in Figure 6b. 304

We see that performance is indeed better than each of the two individual strategies. We use 305

a minimal [64, 32] network with a relu activation function. We try three decision intervals 306

for the PPO: every step, once in 5 steps (PPO 5), and once in 10 steps (PPO 10). 307

The mean reversion strategy uses two indicators, a Relative Strength Index indicator 308

with an exponential moving window working on a period of 6 hours and a moving average 309

on a period of 20 hours. The strategy buys if the RSI value is less than some threshold (40 310

in our case) and the price value is less than the lower Bollinger band and sells if the RSI 311

value is higher than some threshold (60 in our case) and the current price is higher than the 312

higher Bollinger. The higher and lower Bollinger thresholds are at 2× σ, with sigma the 313

rolling standard deviation of the time series (on the same period as the mean, 20 hours). 314

The strategy holds or does nothing if none of the above conditions are met. 315

The moving average crossover strategy is even more straightforward. We have two 316

different moving averages (in our case, one works on a 100 hours window and the other on 317

a 400 hours window), and when the shorter one surpasses the lower one, it is a buy signal, 318

and when the reverse is the case, that is a sell signal. 319

(a) Mean reversion and Moving average crossover
strategies.
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(b) PPO selecting between the two strategies.
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Figure 6. Performance of a hierarchical agent (PPO) using two basic strategies as low-level agents.
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We see that these models can be leveraged to perform better when combined through 320

an additional layer of decision-making. Thus, we include these 2 simple models in our final 321

set of low-level agents. The results in Figures 7 and 8 are obtained with this setup 322

4.2. Risk-return optimization 323

The Markowitz model implies that one wants to minimize risk and maximize returns, 324

and a hierarchical approach lends itself naturally to such a dual optimization. We thus test 325

this approach as well, with the high-level agent optimizing for risk. The conditional value 326

rewards the high-level at risk, or CVaR. To define the CVaR, we first need to define the 327

Value at Risk (VaR). 328

VaR, Value at Risk is a measure describing how much value is at risk during a specific 329

period and its probability of occurrence. Many critics have criticized this as being unin- 330

formative or giving a false measure of certainty and security where there should be none. 331

Some of the main arguments against using VaR is that it is a measure of describing rare 332

events that are hard to describe. 333

Formally, let X be profits (positive) and losses (negative) random variable (rv) associ- 334

ated with some distribution. The VaR at level α ∈ (0, 1) gives the smallest number y such 335

that the probability that Y := −X is not larger than y is at least 1− α. We denote this as 336

VaRα(X), and the most general definition is given by: 337

VaRα(X) = −in f {x ∈ R : FX(x) > α} = F−1
Y (1− α) (6)

The function FX is the cumulative distribution function (cdf) of the random variable X (for 338

any rv, its cdf is well defined). There are multiple ways of computing the VaR: 339

• either by looking at past returns, assuming that future outcomes will be similar to past 340

ones 341

• by assuming a parametric distribution of the returns, like a Gaussian 342

• by using Monte Carlo simulations of predicted returns 343

We use the first method as it is the simplest and quite efficient. We use α = 0.05. 344

CVaR, Conditional Value at Risk is a measure related to VaR but more comprehensive as it 345

looks at the expected value beyond the VaR threshold: 346

CVaRα(X) = − 1
α

∫ α

0
VaRγ(X)dγ (7)

If we assume that the distribution is continuous, than this is equivalent to the conditional 347

tail expectation given by: 348

E[−X|X ≤ −VaRα(X)] (8)

CVaR is also known as the expected shortfall and can be seen as describing the average loss 349

case when the losses are severe (they only occur α percent of the time). 350

When comparing the original version, using a cumulative return for the high-level, 351

versus the risk-return version, using CVaR as a reward, we get a significant difference, with 352

a larger Sharpe ratio for the CVaR agent (running a t-test between the two populations, 353

gave a p-value of 0.02, so the null hypothesis can be rejected, i.e., the two populations 354

means are not equal). 355
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Figure 7. Final performance on BTCUSDT of major models tested.
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To evaluate the performance of the risk-return model, we compute the monthly Sharpe
ratio, which will be independent of the frequency of trading or data used. Otherwise,
we risk sampling bias, with the Sharpe ratio dependent on the period length used for
calculation. The monthly Sharpe ratio is computed as follows:

S =
Re

σe
with Re =

1
n

n

∑
i=1

(Ri − R f ) and

σe =

√
1

n− 1

n

∑
i=1

(Ri − R f − Re)2 (9)

where Re is the average monthly excess return, Ri is the return of the portfolio in month 356

i, and R f is the risk-free excess return (which can be taken to vary each month but which 357

we keep constant for simplicity) and n is the number of months. The risk-free return is 358

generally quite low (initially taken as the return of US bonds); we take it as 5%. 359
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5. Conclusion 360

Both hierarchy and prediction can improve performance significantly. Even though 361

we haven’t seen any performance benefit from adding one-step prediction at the low-level, 362

we have tested to see if good prediction does improve performance and ideed it is so, 363

using true values instead of predictions does provide positive results. This means that the 364

prediction model used for the low-level is insufficient. 365

For the high-level we saw that prediction used in conjunction to incrementally classi- 366

fying predictions does offer significant performance improvements, even though neither 367

of the two methods used separately offered any improvements. Moreover, we saw that 368

changing the reward of the high-level to a risk-based measure like CVaR, transforms the 369

whole problem into a risk-return optimization where the low-level is getting rewarded 370

for increased returns and the high-level receives rewards for lowering the risk (or the risk 371

measure). 372

6. Future directions 373

The current work can be extended by considering specific goals the high-level might 374

give the low-level, like, for example, a desired (approximate) number of trades or desired 375

amount of risk to seek for the period (Sharpe ratio or Sortino ratio). The closer to the goal, 376

the bigger the reward for the low-level. In this way, the behaviour of the low-level agents 377

can be constructed to specific desiderata. 378

One interesting behaviour which could be enacted in this type of architecture is for one 379

agent to control the learning of the other (meta-learning), where, for example, the high-level 380

control of a parameter α ∈ R with the reward of the low-level being αr1 + (1− α)r2. 381

Other ways the hierarchical decision-making setup can be further leveraged is to 382

devise complementary low-level agents, where the trading dynamics is as different as 383

possible while still retaining reasonable performance individually. Moreover, training one 384

level of agents with some risk-measure and the other with the returns has not been explored 385

fully in this article. For example, one could try using the risk-measure in the low-level 386

and the returns for the high-level. Or alternatively, train them in the same time, without 387

pretraining of the low-level. However, this is usually computationally more intensive and 388

more unstable, adding to the usual instability of RL training. 389

In this article we showed how leveraging hierarchy and prediction for trading a single 390

asset can significantly improve performance both in terms of overall returns and the Sharpe 391

ratio. We used a much larger testing set to avoid the sampling bias usually encountered 392

in such scenarios (cherry picking), and showed that even simple strategies like the mean 393

reversion or moving average crossover can be leveraged with the help of an additional 394

decision-making layer. 395

Furthermore, natural hierarchical structures seen in the usual portfolio management 396

literature (e.g. asset classes, based on industry type or country) could be mapped to such 397

a hierarchical system in a straightforward manner, providing a consistent way of dealing 398

with heterogeneous assets. 399
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Figure 10. Data splits.

7. Appendix 468

7.1. Implementation details 469

We use a simple trading environment with a fixed quantity size for each buy and sell 470

(e.g., 0.01 for BTCUSDT). We start with an initial balance of 1000USDT. We use a FIFO (first 471

in first out) order queue, meaning that when we have multiple buys opened, we close the 472

first one (first in) if a sell operation is requested. We do not allow selling short. We use 473

transaction fees of 1%; however, recently, Bitstamp has introduced 0% trading fees for all 474

coins for up to 1000USD or equivalent 5). 475

Because we only trade at the closing price of the hour in our simulations, the close 476

moment of the open operation can be further optimized, and thus profits can significantly 477

increase. We leave this for further work. The hierarchical approach can be easily extended 478

to support another layer of decision-making at a smaller timescale. 479

We only take the close price (ohlcv) for the high-level model and predict the following 480

50 steps with DeepAR. We use the high-level model predictions in the high-level training 481

regime such that the agent should learn when and how much to use the model if the 482

predictions are off sometimes. One could say that this allows the RL agent to learn a policy 483

based on the prediction model and its errors. 484
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Figure 9. Action distribution for the best HRL model.

5 https://blog.bitstamp.net/post/bitstamps-summer-of-discovery-is-underway-with-0-trading-fee-for-all-
coins/
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7.2. Hyperparameters 485

Parameter Value
num_cells 64
num_layers 2
dropout_rate 0.3
prediction_length 50

Table 1. DeepAR prediction model

Parameter Value
delay 2
decay 0.9
prediction_length 1
AdaGrad rate 1.0
AdaGrad delta 1e-6

Table 2. DyBM prediction model

Parameter Value
n_clusters 5
max_iter 50
metric euclidean
tolerance 1e-6

Table 3. K-means clustering

Parameter Value
use_critic True
use GAE True
GAE lambda 1.0
kl_coeff 0.2
rollout_fragment_length 200
train_batch_size 200
sgd_minibatch_size 128
shuffle_sequences True
num_sgd_iter 30
lr_schedule None
vf_loss_coeff 1.0
entropy_coeff_schedule grid_search([[1, 0.1], [500000, 0.0001]])
clip_param 0.3
kl_target 0.01
batch_mode truncate_episodes
vf_clip_param grid_search([1, 10])
clip_param grid_search([0.1, 0.2])
grad_clip grid_search([1, 10])

learning_rate_schedule
grid_search([[[1, 1e-4], [500000, 1e-5]],
[[1, 1e-3], [500000, 1e-4]],
[[1, 1e-3], [500000, 1e-5]]])

neural_network [1024, 512]

Table 4. Proximal Policy Optimization
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