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Abstract: Within the framework of the previously proposed formulation of the quantum theory
of gravity in terms of world histories, it was suggested that the universe has its own mass. This
quantity is analogous to the mass of a particle in relativistic mechanics. The mass of the universe
is a distribution of non-zero values of gravitational constraints, which arises and changes in time
as a consequence of the initial conditions for fundamental dynamic variables. A formulation of the
Euclidean quantum theory of gravity is also proposed to determine the initial state, which can be the
source of the universe’s own mass. Being unrelated to ordinary matter, the distribution of its own
mass affects the geometry of space and forms a dedicated frame of reference. The existence of selected
reference systems is taken into account by the corresponding modification of the system of quantum
gravitational constraints. A variant of such a modification of the Wheeler-De Witt equation is the
operator representation of gravitational constraints, which, together with the state of the universe,
determines the parameters of the reference system in the form of a distribution of the spinor field on
a spatial section.
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1. INTRODUCTION

Speaking about the mass of the universe in this work, we mean the analogy with the
mass of a particle in relativistic mechanics, which is included in the well-known relativistic
relation between energy and momentum (we assume the speed of light to be unity):

Hzpyp”:—p%+p?+m2:0. 1)

This equation has a direct analogy with the constraint equations in the canonical repre-
sentation of the theory of gravity of Arnowitt, Deser, and Mizner (ADM) [1,2]. The latter
will be the basis of our consideration. The question of what is the dynamic nature of the
particle mass arose after Dirac and Fock introduced the proper time of the particle as an
independent dynamic variable [3,4]. Subsequently, Stockelberg, Feynman, and Schwinger
introduced proper time into quantum electrodynamics [5-7] and considered mass as a
dynamic variable conjugate to proper time (see also [8]). In this paper, we ask ourselves the
question: should the mass in equation Eq.(1) be considered an independent constant, or is it
a consequence of the conditions in the source of the particle that were imposed at its birth?
It is clear that the answer to this question should be sought in quantum theory. Another
aspect closely related to the concepts of proper time and mass is the proper covariant
formulation of quantum theory. The generally accepted formulation of the quantum theory
of gravity (QTG) is based on the quantum version of gravitational constraints - the Wheeler-
DeWitt (WDW) equations [9,10]. It implements the results of canonical analysis and Dirac’s
proposals on quantization of covariant theories [11]. Since in the case of a closed universe,
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the Hamiltonian is reduced to a linear combination of constraints, in this formulation it
is equal to zero, and the wave function of the universe does not depend on any external
time parameter (Kuchaf [12]). This is the well-known problem of time in QTG. As we will
see later, this also excludes the appearance of the universe’s own mass. To describe the
evolution of the universe, it is necessary to move from this "frozen" formalism (MTW [1]) in
QTG to a formulation in terms of world histories. This will also open up a possibility of the
appearance of the universe’s own mass. There is also an alternative approach based on the
invariant definition of the Batalin-Fradkin-Vilkovysky (BFV) functional integral over world
histories [13,14]. It gives an object that can be called the propagator (Green’s function)
of the constraint operators in the state space of the universe, that includes an additional
integration over proper time (see about the BFV theorem in the case of a relativistic particle
[15]). Written in the Euclidean representation, the invariant functional integral over all Rie-
mannian 4D metrics with one spatial boundary (and "south pole") defines the no-boundary
Hartle-Hawking wave function of the universe - the proposed non-singular solution of
WDW [16]. After integration over the Euclidean proper time, there are also no sources for
the appearance of the universe’s own mass.

In this paper, we propose an alternative formulation of the covariant QTG, in which
there is an explicit time parameter that describes the evolution of the universe in terms
of trajectories in the configuration space (superspace). In the new formulation, the ADM
constraints, while remaining canonical generators of dynamics, can be nonzero. Their
numerical values are determined by the initial conditions at the time of the birth of the
universe. The modified covariant quantum dynamics, after the transition to the Euclidean
form, gives a variant of the description of the "subpolar region" or the cosmological vac-
uum that determines the initial state of the universe. We allow for a natural violation of
covariance in this region, so that the initial state can be the source of the universe’s own
mass. Note that the distribution and motion of this self-mass in space forms a dedicated
frame of reference and “spontaneously” breaks the covariance. This circumstance can be
considered as one of the examples of spontaneous vacuum symmetry breaking.

However, the description of the evolution of the universe in terms of the external
time parameter, although covariant in form and independent of parametrization, is a view
"from outside". Since all observers are "inside" the universe, the problem of determining
the internal time parameter remains relevant. In this paper, we propose a variant of
modification of the ADM constraints, which also includes restrictions on the parameters of
the frame of reference. This variant is based on the Witten identity [17,18], that was first
obtained in connection with the proof of the gravitational field energy positivity theorem.

In the next section, we briefly formulate the standard approach to the covariant
quantum theory of gravity. In the second section, a modification of this quantum theory is
proposed, in which a non-zero self-mass of the universe is allowed, and a variant of the
initial state of the universe in which this mass arises is also proposed. In the third section, a
modification of the WDW system of equations is proposed, which includes the parameters
of the selected reference frame. The conditional principle of the extremum of the energy of
space is also formulated, which can be used as the basis for determining the internal time
of the universe.

2. COVARIANT QUANTUM THEORY OF GRAVITY

Here we briefly formulate the generally accepted approach to the QTG. Consideration
begins with the classical action of the general theory of relativity (GR),

1
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where the second term is the action functional of matter fields. We will keep in mind the
need to add appropriate boundary contributions to obtain a canonical representation and
subsequent quantization (see [19]). Variation of the action with respect to the metric tensor
guv gives the Einstein equations
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The transition to the canonical representation is carried out following the ADM [1]. Using
the 3 + 1 splitting of the 4D metric

ds? = gy (dxf + Nidt) (dxk + det) — (Ndt)?, ®)

where i,k = 1,2, 3, we represent the density of the Lagrange function of the Hilbert-Einstein
action in the form

167GL — 7% %8k _ Np — N, ®)
ot

where
N; = giN¥, ()
and

ik = /det Sim (gikTrK—Kik> , (8)

have the meaning of canonical momenta conjugate to the components of the 3D metric gj,
in which
1 ogik
Kie = 55 (Nik + Niji — g;) )

The density of the Hamilton function is a linear combination of gravitational constraints,

H
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H = —27r|i’,§. (11)

Here and below, for simplicity, we do not include matter fields. The components of the 4D
metrics N, N; are called lapse and shift functions and play the role of Lagrange multipliers
in the canonical form of the ADM action. A variation of the action with respect to these
factors gives the classical constraint equations:

H=H =0. (12)

It is these equalities that will be the subject of discussion and possible modification in this
paper. They are part of the Einstein equations Eq.(3) and a necessary consequence of the
general covariance of the theory. Although in the canonical formalism based on the action
of the ADM, the dynamic meaning of the components N, N; of the 4D metric differs from
the rest of the components, the Euler-Lagrange equations Eq.(12) corresponding to them
must be strictly fulfilled.

The quantization of the theory is carried out in the standard way by replacing the
canonical momenta with the corresponding Hermitian differentiation operators on the
space of wave functions (g;x),

h )
ki T
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Their substitution into Eqs.(10),(11) gives the constraint operators H,H' (the problem of
ordering noncommuting factors is not discussed here). In the generally accepted version of

(13)
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the covariant quantization theory, in accordance with Dirac’s proposal [11], the classical
constraint equations Eq.(13) are replaced by additional conditions for the wave function. In
the case of the QTG, these additional conditions have the form of the WDW equations,

Hy(gix) = H'y(gix) = 0. (14)

Here we use parentheses to denote the functional dependence of the wave function on the
metric, assuming the subsequent introduction of a functional on world histories with a
time parameter. In the WDW equations Eq.(14), there is no time parameter, which in the
case of a closed universe creates a difficult problem for the interpretation of the theory. The
solutions of WDW equations form the set of admissible physical states of the universe in
the covariant quantum theory. The construction of a specific solution requires additional
conditions for the constraints Eq.(14). One such solution, the no-boundary wave function,
was proposed by Hartle and Hawking [16].

To approach the definition of the no-boundary wave function of the universe, it is
useful to refer to an analogy with the simplest covariant quantum theory of a relativistic
particle based on the Klein-Gordon (KG) equation:

Hy(x) = (hzayaﬂ + m2>1/;(x) ~0. (15)

In this case, the BFW invariant functional integral reduces to the expression (see [15])
G(x,x') = —i/ K(x,x',s)ds, (16)

0
where K(x, ¥/, s) is the solution of the parabolic equation
K

ih— = HK 17
i (17)

with the corresponding initial condition (see also [20])

K(x,x',0) =6(x —x'). (18)

The function G(x, x") is the Feynman propagator of a particle is a singular solution of the
KG equation (for x — x’).

Returning to the theory of gravity, we can also start with the universe propagator
in the form of a covariant functional integral over all pseudo-Euclidean 4D geometries
between two fixed spatial sections, which is a singular solution of the WDW equations.
In this context, the suggestion of Hartle and Hawking is understandable - to obtain a
non-singular solution of the WDW equations by removing one of the boundary surfaces,
which is achieved by passing to imaginary time and integrating over all Riemannian 4D
geometries with one fixed spatial section. In this form of covariant quantum theory of
gravity, there is no external parameter of temporal evolution, and there is no place for the
universe’s own mass. The mass of the universe can be introduced into quantum theory if
time is returned there as a parameter of evolution.

3. OWN MASS OF THE UNIVERSE

The interpretation of nonrelativistic quantum mechanics based on the KG equation
for a charged particle (for example, a pi meson) is based on the theory of electric charge
perturbations [21]. Here the particle and the antiparticle correspond to positive- and
negative-frequency solutions of the KG equation. There is also an interpretation of the
solutions of the parabolic wave equation with proper time Eq.(17), in which sections of
world lines directed backward in time in Minkowski space are compared to antiparticles
[5]. Here K(x, ¥/, s) serves as the kernel of the evolution operator for Eq.(17).

Let’s give this interpretation in terms of world lines another form, more suitable
for generalization. To this end, we start with the action of a relativistic particle in a
parametrized form (with an arbitrary parameter ),
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Ih]ztél(z&——mzN)dT, (19)

which has a clear analogy with the ADM representation of the Hilbert-Einstein action. We
write the classical equations of motion of a free particle, which follow from (19), in the form

dxt
= 2
=0 (20)
where the proper time parameter is explicitly introduced, according to
ds = Ndr. (21)

Note that the introduction of the proper time as an evolution parameter in Eq.(19) makes
the second term with the mass redundant in the particle dynamics. It is essential for
determining proper time using the additional constraint equation,

1dxtdx, B 2
Z d52 = —m-, (22)

that is obtained by varying Eq. (19) with respect to N and taking into account the definition
of the proper time Eq. (21). Let us introduce the canonical momenta

Pu = Q’.‘w (23)

and write the action Eq.(19) in the canonical form

Uﬂ:A%WJ—NHVL (24)

where H is determined by relation Eq.(1), an analog of the ADM theory of gravity. Rela-
tivistic quantum mechanics is obtained by replacing the 4-momentum of the particle by the
differentiation operators

. _h o
Pu= 755 (25)
substituting which into Eq.(1) we obtain the KG equation. In this quantum theory, the
probability measure
i\ [0y oY
(30) (73 ¥ -

is sign indefinite in accordance with the interpretation of positive- and negative-frequency
solutions of the KG equation [21].

Passing to the interpretation in terms of world lines, we will normalize the solutions
of Eq.(17) ¢(x,s) by the quadratic form

W) = [ 5l s)p(xs). @)

Let us divide the time interval [0, S| into small segments of length ¢ by points s, = nS/N,
n=1,2,...,N, and approximate an arbitrary world line x* = x*(s) by a polyline with

vertices x}, = x"(s;). Let us introduce the multiplicative function of the polygonal vertices

Y (xn) = Hlp(xn,sn)/ (28)

where §(x, s) the solution of equation Eq.(17) on the interval [0, S]. We define the norm of
this function by the quadratic form
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¥) — / [T xF¢. (29)

Thus, the function ¥ (x,) determines the probability of movement along some world line
passing through the points of the polyline with vertices x;,,, provided that the initial wave
function ¢y (x) is given. As such, we take a wave packet with a given initial 4-momentum

pOy [22]

o)
Po(x) =Aexp | =) 574 27 £p01,x" , (30)
I

where we put

PG5 = pouply = —mj. (31)

This wave packet obviously describes the state of a particle in a source localized near
the point xp, of the Minkowski space, which has finite dimensions aﬁ (source coherence
parameters). Using function Eq.(28), one can calculate the average acceleration values

d?xt(s)
< ds? >11f
(x”(sn+1)>¢ — 2(xt (Sn»lp + (x# (Sn71)>¢

2
= 0, (32)

In relation Eq.(32), the Ehrenfest theorem [23] is formulated for a relativistic particle.
The proper time here remains undefined. In the classical theory, it is determined by the
constraint equation Eq.(22) with the kinematic mass m. To determine the proper time in
quantum theory, [22] proposed a quantum analogue of the Eq.(22) — the condition for the
extremum of the real phase « of the wave function ¢(x, S) with respect to proper time:

o

oS
Now the proper time is determined by the particle mass iy in the initial state (with quantum
corrections depending on the coherence parameters (7‘5), if its kinematic mass m in the KG
equation is set equal to zero. In this case, in quantum theory, the particle has a mass entirely
determined by the initial state.

We will come to a new formulation of the RQM in terms of world lines of a particle
if we pass to the limit ¢ — 0, in which the broken line approximates an arbitrary world
line x# = x(s) arbitrarily exactly. In this limit, the function ¥(x,) turns into a wave
functional ¥[x(s)] on the space of particle world lines, and the Schrodinger equation Eq.(17)
is replaced by the quantum principle of least action [22],[24] ,which is a secular equation
for the action operator

=0. (33)

Y

S # . " 2
/ds[hxy(s) o¥ —l—hz oY
0

i dxt(s) dxt(s)oxy(s)
= AY, (34)

where

F=h-¢ (35)
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and the limit ¢ — 0 is assumed. Based on this form of RQM, we will now present the
necessary modification of the QTG, which we will also use to determine the initial state of
the universe.

This modification will be based on the parabolic Schrodinger equation for the wave
function of the universe (g, t)

L 0P 3 5 Sk
in<t = /Zd x(NH -+ Ny, (36)

with coordinate time ¢, where X is a spatial slice in which the lapse and shift functions are
arbitrary and fixed. This equation is analogous to Eq.(17). Proceeding further in the same
way as in the case of a particle, we divide the time interval on which the dynamics of the
universe is considered into small segments of length £ and compose a multiplicative wave
function (in the limit ¢ — 0, the wave functional)

Y (gik (x1,tn)) Hw (ik(x1, ). (37)

With this limit in mind, we define the generalized momentum operator on the space of
wave functionals

S L —_—
1 (Sg kl (xTrZr t)

Replacing the canonical momenta by operators in the canonical form of the ADI\/£ action
(we agree to place them on the right in all terms), we obtain the action operator I. As in

ordinary quantum mechanics, the secular equation for this operator

7 ( (38)

- 710 (Xm, t) )
— 4 Sk (Xm,
= /d [l ot 01 (Xm, 1)
_NH- Nkﬁk}‘lf
= AY, (39)

where the eigenvalue is determined by the boundary values of the metric on the initial and
final spatial sections,

%A =In l)b(gik/ T) - lnlp(gikr 0)’ (40)

(T is considered time interval) is equivalent to the Schrodinger equation Eq.(37). We
assume that the eigenfunctional ¥ [g] - the solution of this secular equation is an invariant
of transformations of the space-time coordinates that do not affect the boundary surfaces.
We emphasize that ¥ is the world history functional g, (xk, t) , including the dependence
of the metric on time. As in the case of a relativistic particle, sections of history are allowed,
with backward movement in time, i.e. compression of parts of the universe (det gjx — 0)
with the formation of black holes. We define the invariant norm of the wave functional
Y¥[g(x)] by the quadratic form

¥ = [Tl s ¥(s)¥g), (@)

where ][glis the corresponding element of the Faddeev-Popov invariant measure [25].
Based on it the probabilistic interpretation of QTG in a new formulation, we can calculate
the average values of the Einstein equations Eq.(2) (taking into account at this stage also
the matter fields):
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<RW — 1g}“’R - 167TGT”’/> . (42)
2 ¥
Now the question is whether these averages are equal to zero. For some of them, which
determine the 3D metric g;;, we assume the validity of the Ehrenfest theorem, and hence
their equality to zero. Some of the Einstein equations, which are obtained by varying the
lapse and shift functions N, Nj, in the classical theory give the classical constraint equations
Eq.(12). In QTG, as in relativistic quantum mechanics, we will replace them with conditions
for the extremum of the real phase of the wave function of the universe with respect to N, N;.

Now, these extremum conditions do not mean that the classical constraints H? = (H, Hi) ,

or their mean values (H"), are equal to zero. In this case, the constraint algebra determined
by the commutation relations

{H”,Hb} = C®H, (43)

retains its meaning in the new formulation. Here the structural "constants" Cl’;h are functions
of the 3D metric gj [2], and summation over indices also implies integration over spatial
coordinates. It follows from Eq.(42) that the average values (H”), which are scalar and
vector densities in space, also depend on time:

%(H“) - <c;bNbHd > (44)
Thus, the mean values (H”) are always and everywhere equal to zero if they are equal to
zero at the beginning. Whether this is so depends on the initial state of the universe.

One of the options for determining the initial state of the universe was proposed in
[26]. In its construction, a new representation of the QTG is used in terms of the quantum
principle of least action Eq.(39). To do this, we pass to the Euclidean form of action by
Wick’s rotation of time in the complex plane, t — it, with the simultaneous transformation
of the canonical momenta, 71 — —i7. The Euclidean representation allows us to formulate
the quantum principle of least action for a 4D geometry with one "spatial” section. We pay
attention to the fact that in Riemannian geometry the specificity of the time coordinate
is completely lost and for Euclidean quantization the generalized canonical form of De-
Donder-Weil follows [27,28]. This is also allowed by the quantum principle of least action,
which for the initial state takes the form (see [26])

~ Tia 5Y
5
o0 5y
= Ag¥o, (45)

where the integral is taken over a compact domain of a 4D dimensional Riemannian space
with one boundary. Here

fia = - eg (46)

where ¢, are spatial lattice constants (see [26]). The eigenvalue of the action Ag now
depends only on the boundary values of the 4D metric and determines the initial state of
the universe at this boundary for the subsequent dynamics of the state in time:

$o(gix) = exp [;.ZA()(gik)}- (47)
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Note that the De-Donder-Weil canonical formalism as applied to a metric field requires the
fulfillment of an additional condition

detg,p = const, (48)

which violates the 4D covariance of this initial state theory. Thus, there is no reason to
attribute the initial state Eq.(47) to the set of solutions for WDW equations Eq.(14). It can
be assumed that the subsequent evolution of the universe with such an initial state will
include additional dynamic variables in the form of the distribution and motion of its own
mass.

Own mass is not part of the matter that fills the universe. However, its presence
affects the geometry and thus it interacts with matter through some form of gravitational
force. This effect of the presence of its own mass means that it is possible to associate a
distinguished frame of reference with it.

4. PROPER TIME OF THE UNIVERSE

Above, we have considered a variant of describing the dynamics of the universe in
terms of coordinate time, which can be called external. The principle of covariance is
needed precisely in order to ensure the independence of physical laws from the choice of
this coordinate time. But this description looks as if there were some external observer for
the universe. Therefore, the description in terms of internal time remains relevant, which
must be introduced in the dynamic interpretation of solutions of gravitational constraints.
There is no single approach to this issue. The general idea is that the picture of motion in
time that is familiar to us arises in the semiclassical approximation [29]. When analyzing
simple mini-superspace models of the universe, one of the fundamental dynamical variables
of the theory is chosen as the time parameter. It seems natural to choose the 3D volume of
the universe (volume logarithm) as the time parameter (see [1]). This choice is consistent
with the hyperbolic signature of the constraint Eq.(10). However, here we again encounter
the problem of the cosmological singularity, which in quantum theory takes on the chaotic
form of a quantum billiard [30]. In a loop QTG near a cosmological singularity, a massless
scalar field is considered [31] as the time parameter.

This section discusses an alternative approach to determining internal time that does
not involve fundamental dynamic variables. It also takes into account the presence of the
own mass of the universe, with which the selected frame of reference is associated. In
classical general relativity, the frame of reference is given by the lapse and shift functions
N, Nj, and in the conventional QTG, any dependence on these functions is excluded as
a consequence of the WDW equations. These equations must be modified in such a way
as to take into account the presence of a dedicated frame of reference. Such a variant of
constraints is provided by a construction based on the Witten identity in the theory of
gravity [17],[18], which can be written in integral form for the case of a closed universe [32]:

(X/WU> —/ZdSX\/ det gi[N(x,7)H
+N1(Xf’7)Hi}

= 0, (49)

where yx, 17 are the Dirac bi-spinors on the spatial section X. Parentheses denote the scalar
product in the space of bi-spinor fields:

(xn) = /Z dPx+/det gux ™1, (50)

where the cross denotes the Hermitian conjugation (see [32]). If x = 7, identity Eq. (49)
gives a representation of the Hamiltonian function of a closed universe in a special gauge
[33], so that the bi-spinor field x completely determines the frame of reference (see also [18]).
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It also follows from identity Eq.(49) that the set of gravitational constraints is equivalent to
the operator equality on the space of bi-spinor fields:

W=D2— (—3) -0, (1)

where D is a Hermitian Dirac operator with respect to the scalar product Eq.(50), and Ais
also a Hermitian Beltrami-Laplace operator. Note that both operators in this equality are
positive-definite: D > 0, —A > 0. After quantization, the operator W additionally becomes

an operator W on the space of wave functions 1(g;;), which is marked with an additional

“lid”. The "double" operator W allows us to write the quantum constraint equations for the
wave function of the universe (g;x) together with the conditions for the frame field x:

Wy x ¢ = 0. (52)

Thus, in this variant of the quantum theory, the physical states of the universe should be
referred to a selected frame of reference given by the field yx.

Quantum constraints Eq.(52) form a system of differential equations for the functions
X (xk> and §(gjx, 4) (here we have also added matter fields). By themselves, they do not
constitute a specific mathematical problem without additional conditions. For hyperbolic
equations, these are usually the initial-boundary conditions in the configuration space.
Rejecting the initial-boundary value problem, let us pay attention to another possibility
dictated by the structure of the operator equality Eq.(51). It is obvious that the mean value
of any of the two positive operators included in it has a minimum on the set of solutions
of the relation system Eq.(52). We choose the square of the Dirac operator, which does
not explicitly include matter fields, and therefore, as part of the Hamilton function, can
be called the energy of space. All physical degrees of freedom, including the transverse
components of the gravitational field, are included in the second positive-definite operator.
Thus, we come to the conditional extremum principle for the space energy

(¥l (x, 52;() )
W00 X))
N[ W x ) )
+{(xx pW ||, (53)

E =

in which the constraint equations Eq.(52) are taken into account as additional conditions
with the corresponding Lagrange multipliers A/. The double brackets here mean the
scalar product in the composition space x x . In addition to the minimum value of the
space energy, the conditional extremum problem Eq.(52) determines the entire spectrum
of its excitations E,,, which is described by a certain set of quantum numbers w. The
identification of quantum numbers w with the internal time of the universe is an alternative
to choosing the volume of the universe as a time parameter. An additional reason for such
an interpretation is that such a choice of the cosmological arrow of time will be consistent
with the thermodynamic arrow (entropy), if the increasing "complexity" of the excited
states of space is taken as a measure of disorder in the universe. However, a large element
of arbitrariness remains in the proposed interpretation until the structure of the excitation
spectrum of space is known.

5. CONCLUSIONS
The description of the quantum dynamics of the universe using the wave functional

on the space of world histories g,p (xk, t) allows us to assume that the average values

of gravitational constraints (H?), equal to zero in classical GR, are nonzero in QTG. The
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difference between these averages from zero in quantum theory can arise in the initial state
of the universe. For a new version of the description of dynamics, a quantum principle of
least action is proposed, in which the action operator is the central object. This operator
is obtained by replacing the canonical momenta in the canonical form of the ADM action
by operators of variational differentiation on the space of wave functionals from world
histories. According to the quantum principle of least action, the evolution of the universe
is described by the eigenfunctions of the action operator. The new formalism also allows
for modification to define the initial state of the universe. The quantum principle of least
action for the "near polar region" is formulated, in which the action operator is defined
on the space of wave functionals of 4D Riemannian metrics in a compact region with one
boundary. In this case, we are interested in the eigenvalue of the action operator, which is
the logarithm of the initial state of the universe. This state can be called the cosmological
vacuum, and there is reason to expect that it is the source of the universe’s own mass. Thus,
the appearance of the universe’s own mass is a consequence of quantum theory, and the
associated violation of the covariance of the original theory is an example of a spontaneous
violation of the symmetry of the cosmological vacuum.
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