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Abstract: Within the framework of the previously proposed formulation of the quantum theory 1

of gravity in terms of world histories, it was suggested that the universe has its own mass. This 2

quantity is analogous to the mass of a particle in relativistic mechanics. The mass of the universe 3

is a distribution of non-zero values of gravitational constraints, which arises and changes in time 4

as a consequence of the initial conditions for fundamental dynamic variables. A formulation of the 5

Euclidean quantum theory of gravity is also proposed to determine the initial state, which can be the 6

source of the universe’s own mass. Being unrelated to ordinary matter, the distribution of its own 7

mass affects the geometry of space and forms a dedicated frame of reference. The existence of selected 8

reference systems is taken into account by the corresponding modification of the system of quantum 9

gravitational constraints. A variant of such a modification of the Wheeler-De Witt equation is the 10

operator representation of gravitational constraints, which, together with the state of the universe, 11

determines the parameters of the reference system in the form of a distribution of the spinor field on 12

a spatial section. 13

Keywords: universe; mass; canonical action; quantization; internal time 14

1. INTRODUCTION 15

Speaking about the mass of the universe in this work, we mean the analogy with the 16

mass of a particle in relativistic mechanics, which is included in the well-known relativistic 17

relation between energy and momentum (we assume the speed of light to be unity): 18

H ≡ pµ pµ = −p2
0 + p2

i + m2 = 0. (1)

This equation has a direct analogy with the constraint equations in the canonical repre- 19

sentation of the theory of gravity of Arnowitt, Deser, and Mizner (ADM) [1,2]. The latter 20

will be the basis of our consideration. The question of what is the dynamic nature of the 21

particle mass arose after Dirac and Fock introduced the proper time of the particle as an 22

independent dynamic variable [3,4]. Subsequently, Stõckelberg, Feynman, and Schwinger 23

introduced proper time into quantum electrodynamics [5–7] and considered mass as a 24

dynamic variable conjugate to proper time (see also [8]). In this paper, we ask ourselves the 25

question: should the mass in equation Eq.(1) be considered an independent constant, or is it 26

a consequence of the conditions in the source of the particle that were imposed at its birth? 27

It is clear that the answer to this question should be sought in quantum theory. Another 28

aspect closely related to the concepts of proper time and mass is the proper covariant 29

formulation of quantum theory. The generally accepted formulation of the quantum theory 30

of gravity (QTG) is based on the quantum version of gravitational constraints - the Wheeler- 31

DeWitt (WDW) equations [9,10]. It implements the results of canonical analysis and Dirac’s 32

proposals on quantization of covariant theories [11]. Since in the case of a closed universe, 33
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the Hamiltonian is reduced to a linear combination of constraints, in this formulation it 34

is equal to zero, and the wave function of the universe does not depend on any external 35

time parameter (Kuchař [12]). This is the well-known problem of time in QTG. As we will 36

see later, this also excludes the appearance of the universe’s own mass. To describe the 37

evolution of the universe, it is necessary to move from this "frozen" formalism (MTW [1]) in 38

QTG to a formulation in terms of world histories. This will also open up a possibility of the 39

appearance of the universe’s own mass. There is also an alternative approach based on the 40

invariant definition of the Batalin-Fradkin-Vilkovysky (BFV) functional integral over world 41

histories [13,14]. It gives an object that can be called the propagator (Green’s function) 42

of the constraint operators in the state space of the universe, that includes an additional 43

integration over proper time (see about the BFV theorem in the case of a relativistic particle 44

[15]). Written in the Euclidean representation, the invariant functional integral over all Rie- 45

mannian 4D metrics with one spatial boundary (and "south pole") defines the no-boundary 46

Hartle-Hawking wave function of the universe - the proposed non-singular solution of 47

WDW [16]. After integration over the Euclidean proper time, there are also no sources for 48

the appearance of the universe’s own mass. 49

In this paper, we propose an alternative formulation of the covariant QTG, in which 50

there is an explicit time parameter that describes the evolution of the universe in terms 51

of trajectories in the configuration space (superspace). In the new formulation, the ADM 52

constraints, while remaining canonical generators of dynamics, can be nonzero. Their 53

numerical values are determined by the initial conditions at the time of the birth of the 54

universe. The modified covariant quantum dynamics, after the transition to the Euclidean 55

form, gives a variant of the description of the "subpolar region" or the cosmological vac- 56

uum that determines the initial state of the universe. We allow for a natural violation of 57

covariance in this region, so that the initial state can be the source of the universe’s own 58

mass. Note that the distribution and motion of this self-mass in space forms a dedicated 59

frame of reference and “spontaneously” breaks the covariance. This circumstance can be 60

considered as one of the examples of spontaneous vacuum symmetry breaking. 61

However, the description of the evolution of the universe in terms of the external 62

time parameter, although covariant in form and independent of parametrization, is a view 63

"from outside". Since all observers are "inside" the universe, the problem of determining 64

the internal time parameter remains relevant. In this paper, we propose a variant of 65

modification of the ADM constraints, which also includes restrictions on the parameters of 66

the frame of reference. This variant is based on the Witten identity [17,18], that was first 67

obtained in connection with the proof of the gravitational field energy positivity theorem. 68

In the next section, we briefly formulate the standard approach to the covariant 69

quantum theory of gravity. In the second section, a modification of this quantum theory is 70

proposed, in which a non-zero self-mass of the universe is allowed, and a variant of the 71

initial state of the universe in which this mass arises is also proposed. In the third section, a 72

modification of the WDW system of equations is proposed, which includes the parameters 73

of the selected reference frame. The conditional principle of the extremum of the energy of 74

space is also formulated, which can be used as the basis for determining the internal time 75

of the universe. 76

2. COVARIANT QUANTUM THEORY OF GRAVITY 77

Here we briefly formulate the generally accepted approach to the QTG. Consideration 78

begins with the classical action of the general theory of relativity (GR), 79

I[g, φ] =
1

16πG

∫
R
√
−gd4x + Im[g, φ], (2)

where the second term is the action functional of matter fields. We will keep in mind the 80

need to add appropriate boundary contributions to obtain a canonical representation and 81

subsequent quantization (see [19]). Variation of the action with respect to the metric tensor 82

gµν gives the Einstein equations 83
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Rµν − 1
2

gµνR = 16πGTµν, (3)

Tµν ≡ δIm

δgµν
. (4)

The transition to the canonical representation is carried out following the ADM [1]. Using 84

the 3 + 1 splitting of the 4D metric 85

ds2 = gik

(
dxi + Nidt

)(
dxk + Nkdt

)
− (Ndt)2, (5)

where i, k = 1, 2, 3, we represent the density of the Lagrange function of the Hilbert-Einstein 86

action in the form 87

16πGL = πik ∂gik
∂t

− NH − NiHi, (6)

where 88

Ni = gik Nk, (7)

and 89

πik =
√

det glm

(
gikTrK−Kik

)
, (8)

have the meaning of canonical momenta conjugate to the components of the 3D metric gik, 90

in which 91

Kik =
1

2N

(
Ni|k + Nk|i −

∂gik
∂t

)
. (9)

The density of the Hamilton function is a linear combination of gravitational constraints, 92

H ≡ 1√
det glm

(
Trπ2 − 1

2
(Trπ)2

)
, (10)

Hi = −2πik
|k . (11)

Here and below, for simplicity, we do not include matter fields. The components of the 4D 93

metrics N, Ni are called lapse and shift functions and play the role of Lagrange multipliers 94

in the canonical form of the ADM action. A variation of the action with respect to these 95

factors gives the classical constraint equations: 96

H = Hi = 0. (12)

It is these equalities that will be the subject of discussion and possible modification in this 97

paper. They are part of the Einstein equations Eq.(3) and a necessary consequence of the 98

general covariance of the theory. Although in the canonical formalism based on the action 99

of the ADM, the dynamic meaning of the components N, Ni of the 4D metric differs from 100

the rest of the components, the Euler-Lagrange equations Eq.(12) corresponding to them 101

must be strictly fulfilled. 102

The quantization of the theory is carried out in the standard way by replacing the 103

canonical momenta with the corresponding Hermitian differentiation operators on the 104

space of wave functions ψ(gik), 105

π̂kl(xm) =
h̄
i

δ

δgkl(xm)
. (13)

Their substitution into Eqs.(10),(11) gives the constraint operators Ĥ,Ĥi (the problem of 106

ordering noncommuting factors is not discussed here). In the generally accepted version of 107
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the covariant quantization theory, in accordance with Dirac’s proposal [11], the classical 108

constraint equations Eq.(13) are replaced by additional conditions for the wave function. In 109

the case of the QTG, these additional conditions have the form of the WDW equations, 110

Ĥψ(gik) = Ĥiψ(gik) = 0. (14)

Here we use parentheses to denote the functional dependence of the wave function on the 111

metric, assuming the subsequent introduction of a functional on world histories with a 112

time parameter. In the WDW equations Eq.(14), there is no time parameter, which in the 113

case of a closed universe creates a difficult problem for the interpretation of the theory. The 114

solutions of WDW equations form the set of admissible physical states of the universe in 115

the covariant quantum theory. The construction of a specific solution requires additional 116

conditions for the constraints Eq.(14). One such solution, the no-boundary wave function, 117

was proposed by Hartle and Hawking [16]. 118

To approach the definition of the no-boundary wave function of the universe, it is 119

useful to refer to an analogy with the simplest covariant quantum theory of a relativistic 120

particle based on the Klein-Gordon (KG) equation: 121

Ĥψ(x) =
(

h̄2∂µ∂µ + m2
)

ψ(x) = 0. (15)

In this case, the BFW invariant functional integral reduces to the expression (see [15]) 122

G
(

x, x′
)
= −i

∫ ∞

0
K
(
x, x′, s

)
ds, (16)

where K(x, x′, s) is the solution of the parabolic equation 123

ih̄
∂K
∂s

= ĤK (17)

with the corresponding initial condition (see also [20]) 124

K
(
x, x′, 0

)
= δ

(
x − x′

)
. (18)

The function G(x, x′) is the Feynman propagator of a particle is a singular solution of the 125

KG equation (for x → x′). 126

Returning to the theory of gravity, we can also start with the universe propagator 127

in the form of a covariant functional integral over all pseudo-Euclidean 4D geometries 128

between two fixed spatial sections, which is a singular solution of the WDW equations. 129

In this context, the suggestion of Hartle and Hawking is understandable - to obtain a 130

non-singular solution of the WDW equations by removing one of the boundary surfaces, 131

which is achieved by passing to imaginary time and integrating over all Riemannian 4D 132

geometries with one fixed spatial section. In this form of covariant quantum theory of 133

gravity, there is no external parameter of temporal evolution, and there is no place for the 134

universe’s own mass. The mass of the universe can be introduced into quantum theory if 135

time is returned there as a parameter of evolution. 136

3. OWN MASS OF THE UNIVERSE 137

The interpretation of nonrelativistic quantum mechanics based on the KG equation 138

for a charged particle (for example, a pi meson) is based on the theory of electric charge 139

perturbations [21]. Here the particle and the antiparticle correspond to positive- and 140

negative-frequency solutions of the KG equation. There is also an interpretation of the 141

solutions of the parabolic wave equation with proper time Eq.(17), in which sections of 142

world lines directed backward in time in Minkowski space are compared to antiparticles 143

[5]. Here K(x, x′, s) serves as the kernel of the evolution operator for Eq.(17). 144

Let’s give this interpretation in terms of world lines another form, more suitable 145

for generalization. To this end, we start with the action of a relativistic particle in a 146

parametrized form (with an arbitrary parameter τ), 147
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I[x] =
∫ 1

0

 ·
x

2

4N
− m2N

dτ, (19)

which has a clear analogy with the ADM representation of the Hilbert-Einstein action. We 148

write the classical equations of motion of a free particle, which follow from (19), in the form 149

d2xµ

ds2 = 0, (20)

where the proper time parameter is explicitly introduced, according to 150

ds = Ndτ. (21)

Note that the introduction of the proper time as an evolution parameter in Eq.(19) makes 151

the second term with the mass redundant in the particle dynamics. It is essential for 152

determining proper time using the additional constraint equation, 153

1
4

dxµdxµ

ds2 = −m2, (22)

that is obtained by varying Eq. (19) with respect to N and taking into account the definition 154

of the proper time Eq. (21). Let us introduce the canonical momenta 155

pµ =
1
2
·
xµ, (23)

and write the action Eq.(19) in the canonical form 156

I[x] =
∫ 1

0

(
pµ

·
x

µ
− NH

)
dτ, (24)

where H is determined by relation Eq.(1), an analog of the ADM theory of gravity. Rela- 157

tivistic quantum mechanics is obtained by replacing the 4-momentum of the particle by the 158

differentiation operators 159

p̂µ =
h̄
i

∂

∂xµ , (25)

substituting which into Eq.(1) we obtain the KG equation. In this quantum theory, the 160

probability measure 161(
ih̄
2m

)(
ψ

∂ψ

∂t
− ψ

∂ψ

∂t

)
(26)

is sign indefinite in accordance with the interpretation of positive- and negative-frequency 162

solutions of the KG equation [21]. 163

Passing to the interpretation in terms of world lines, we will normalize the solutions 164

of Eq.(17) ψ(x, s) by the quadratic form 165

⟨ψ|ψ⟩ =
∫

d4xψ(x, s)ψ(x, s). (27)

Let us divide the time interval [0, S] into small segments of length ε by points sn = nS/N, 166

n = 1, 2, . . . , N, and approximate an arbitrary world line xµ = xµ(s) by a polyline with 167

vertices xµ
n = xµ(sn). Let us introduce the multiplicative function of the polygonal vertices 168

Ψ(xn) = ∏
n

ψ(xn, sn), (28)

where ψ(x, s) the solution of equation Eq.(17) on the interval [0, S]. We define the norm of 169

this function by the quadratic form 170
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⟨Ψ|Ψ⟩ =
∫

∏
n

d4xΨΨ. (29)

Thus, the function Ψ(xn) determines the probability of movement along some world line 171

passing through the points of the polyline with vertices xn, provided that the initial wave 172

function ψ0(x) is given. As such, we take a wave packet with a given initial 4-momentum 173

p0µ [22]: 174

ψ0(x) = A exp

−∑
µ

(
xµ − xµ

0

)2

2σ2
µ

+
i
h̄

p0νxν

, (30)

where we put 175

p2
0 = p0µ pµ

0 = −m2
0. (31)

This wave packet obviously describes the state of a particle in a source localized near 176

the point x0µ of the Minkowski space, which has finite dimensions σ2
µ (source coherence 177

parameters). Using function Eq.(28), one can calculate the average acceleration values 178

〈
d2xµ(s)

ds2

〉
Ψ

=
⟨xµ(sn+1)⟩ψ − 2⟨xµ(sn)⟩ψ + ⟨xµ(sn−1)⟩ψ

ε2

= 0, (32)

In relation Eq.(32), the Ehrenfest theorem [23] is formulated for a relativistic particle. 179

The proper time here remains undefined. In the classical theory, it is determined by the 180

constraint equation Eq.(22) with the kinematic mass m. To determine the proper time in 181

quantum theory, [22] proposed a quantum analogue of the Eq.(22) – the condition for the 182

extremum of the real phase α of the wave function ψ(x, S) with respect to proper time: 183

∂α

∂S
= 0. (33)

Now the proper time is determined by the particle mass m0 in the initial state (with quantum 184

corrections depending on the coherence parameters σ2
µ), if its kinematic mass m in the KG 185

equation is set equal to zero. In this case, in quantum theory, the particle has a mass entirely 186

determined by the initial state. 187

We will come to a new formulation of the RQM in terms of world lines of a particle 188

if we pass to the limit ε → 0, in which the broken line approximates an arbitrary world 189

line xµ = xµ(s) arbitrarily exactly. In this limit, the function Ψ(xn) turns into a wave 190

functional Ψ[x(s)] on the space of particle world lines, and the Schrödinger equation Eq.(17) 191

is replaced by the quantum principle of least action [22],[24] ,which is a secular equation 192

for the action operator 193

ÎΨ

≡
∫ S

0
ds

[˜̄h
i
·
x

µ
(s)

δΨ
δxµ(s)

+ ˜̄h2 δ2Ψ
δxµ(s)δxµ(s)

]
= ΛΨ, (34)

where 194

˜̄h = h̄ · ε, (35)

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 22 May 2023                   doi:10.20944/preprints202305.1529.v1

https://doi.org/10.20944/preprints202305.1529.v1


Version May 19, 2023 submitted to Journal Not Specified 7 of 12

and the limit ε → 0 is assumed. Based on this form of RQM, we will now present the 195

necessary modification of the QTG, which we will also use to determine the initial state of 196

the universe. 197

This modification will be based on the parabolic Schrödinger equation for the wave 198

function of the universe ψ(gik, t) 199

ih̄
∂ψ

∂t
=

∫
Σ

d3x
(

NĤ + NkĤk
)

ψ, (36)

with coordinate time t, where Σ is a spatial slice in which the lapse and shift functions are 200

arbitrary and fixed. This equation is analogous to Eq.(17). Proceeding further in the same 201

way as in the case of a particle, we divide the time interval on which the dynamics of the 202

universe is considered into small segments of length ε and compose a multiplicative wave 203

function (in the limit ε → 0, the wave functional) 204

Ψ(gik(xl , tn)) = ∏
n

ψ(gik(xl , tn)). (37)

With this limit in mind, we define the generalized momentum operator on the space of 205

wave functionals 206

π̂kl(xm, t) =
˜̄h
i

δ

δgkl(xm, t)
. (38)

Replacing the canonical momenta by operators in the canonical form of the ADM action 207

(we agree to place them on the right in all terms), we obtain the action operator Î. As in 208

ordinary quantum mechanics, the secular equation for this operator 209

ÎΨ ≡
∫

d4x

[˜̄h
i

∂gkl(xm, t)
∂t

δ

δgkl(xm, t)

−NĤ − NkĤk
]
Ψ

= ΛΨ, (39)

where the eigenvalue is determined by the boundary values of the metric on the initial and 210

final spatial sections, 211

i
h̄

Λ = ln ψ(gik, T)− ln ψ(gik, 0), (40)

(T is considered time interval) is equivalent to the Schrödinger equation Eq.(37). We 212

assume that the eigenfunctional Ψ[g] - the solution of this secular equation is an invariant 213

of transformations of the space-time coordinates that do not affect the boundary surfaces. 214

We emphasize that Ψ is the world history functional gαβ

(
xk, t

)
, including the dependence 215

of the metric on time. As in the case of a relativistic particle, sections of history are allowed, 216

with backward movement in time, i.e. compression of parts of the universe (det gik → 0) 217

with the formation of black holes. We define the invariant norm of the wave functional 218

Ψ[g(x)] by the quadratic form 219

⟨Ψ|Ψ⟩ =
∫

∏
x

J[g]d10gΨ[g]Ψ[g], (41)

where J[g]is the corresponding element of the Faddeev-Popov invariant measure [25]. 220

Based on it the probabilistic interpretation of QTG in a new formulation, we can calculate 221

the average values of the Einstein equations Eq.(2) (taking into account at this stage also 222

the matter fields): 223
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〈
Rµν − 1

2
gµνR − 16πGTµν

〉
Ψ

. (42)

Now the question is whether these averages are equal to zero. For some of them, which 224

determine the 3D metric gik, we assume the validity of the Ehrenfest theorem, and hence 225

their equality to zero. Some of the Einstein equations, which are obtained by varying the 226

lapse and shift functions N, Ni, in the classical theory give the classical constraint equations 227

Eq.(12). In QTG, as in relativistic quantum mechanics, we will replace them with conditions 228

for the extremum of the real phase of the wave function of the universe with respect to N, Ni. 229

Now, these extremum conditions do not mean that the classical constraints Ha =
(

H, Hi
)

, 230

or their mean values ⟨Ha⟩, are equal to zero. In this case, the constraint algebra determined 231

by the commutation relations 232{
Ha, Hb

}
= Cab

d Hd, (43)

retains its meaning in the new formulation. Here the structural "constants" Cab
d are functions 233

of the 3D metric gik [2], and summation over indices also implies integration over spatial 234

coordinates. It follows from Eq.(42) that the average values ⟨Ha⟩, which are scalar and 235

vector densities in space, also depend on time: 236

∂

∂t
⟨Ha⟩ =

〈
Cab

d NbHd
〉

. (44)

Thus, the mean values ⟨Ha⟩ are always and everywhere equal to zero if they are equal to 237

zero at the beginning. Whether this is so depends on the initial state of the universe. 238

One of the options for determining the initial state of the universe was proposed in 239

[26]. In its construction, a new representation of the QTG is used in terms of the quantum 240

principle of least action Eq.(39). To do this, we pass to the Euclidean form of action by 241

Wick’s rotation of time in the complex plane, t → it, with the simultaneous transformation 242

of the canonical momenta, π → −iπ. The Euclidean representation allows us to formulate 243

the quantum principle of least action for a 4D geometry with one "spatial" section. We pay 244

attention to the fact that in Riemannian geometry the specificity of the time coordinate 245

is completely lost and for Euclidean quantization the generalized canonical form of De- 246

Donder-Weil follows [27,28]. This is also allowed by the quantum principle of least action, 247

which for the initial state takes the form (see [26]) 248

ÎEΨ0 ≡
∫

d4x
˜̄hα

i
∂αgβγ(x)

δΨ0

δαgβγ(x)

−H
[

gβγ(x),
δ

δαgβγ(x)

]
Ψ0

= Λ0Ψ0, (45)

where the integral is taken over a compact domain of a 4D dimensional Riemannian space 249

with one boundary. Here 250

˜̄hα = h̄ · εα (46)

where εα are spatial lattice constants (see [26]). The eigenvalue of the action Λ0 now 251

depends only on the boundary values of the 4D metric and determines the initial state of 252

the universe at this boundary for the subsequent dynamics of the state in time: 253

ψ0(gik) = exp
[

i
h̄

Λ0(gik)

]
. (47)
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Note that the De-Donder-Weil canonical formalism as applied to a metric field requires the 254

fulfillment of an additional condition 255

det gαβ = const, (48)

which violates the 4D covariance of this initial state theory. Thus, there is no reason to 256

attribute the initial state Eq.(47) to the set of solutions for WDW equations Eq.(14). It can 257

be assumed that the subsequent evolution of the universe with such an initial state will 258

include additional dynamic variables in the form of the distribution and motion of its own 259

mass. 260

Own mass is not part of the matter that fills the universe. However, its presence 261

affects the geometry and thus it interacts with matter through some form of gravitational 262

force. This effect of the presence of its own mass means that it is possible to associate a 263

distinguished frame of reference with it. 264

4. PROPER TIME OF THE UNIVERSE 265

Above, we have considered a variant of describing the dynamics of the universe in 266

terms of coordinate time, which can be called external. The principle of covariance is 267

needed precisely in order to ensure the independence of physical laws from the choice of 268

this coordinate time. But this description looks as if there were some external observer for 269

the universe. Therefore, the description in terms of internal time remains relevant, which 270

must be introduced in the dynamic interpretation of solutions of gravitational constraints. 271

There is no single approach to this issue. The general idea is that the picture of motion in 272

time that is familiar to us arises in the semiclassical approximation [29]. When analyzing 273

simple mini-superspace models of the universe, one of the fundamental dynamical variables 274

of the theory is chosen as the time parameter. It seems natural to choose the 3D volume of 275

the universe (volume logarithm) as the time parameter (see [1]). This choice is consistent 276

with the hyperbolic signature of the constraint Eq.(10). However, here we again encounter 277

the problem of the cosmological singularity, which in quantum theory takes on the chaotic 278

form of a quantum billiard [30]. In a loop QTG near a cosmological singularity, a massless 279

scalar field is considered [31] as the time parameter. 280

This section discusses an alternative approach to determining internal time that does 281

not involve fundamental dynamic variables. It also takes into account the presence of the 282

own mass of the universe, with which the selected frame of reference is associated. In 283

classical general relativity, the frame of reference is given by the lapse and shift functions 284

N, Ni, and in the conventional QTG, any dependence on these functions is excluded as 285

a consequence of the WDW equations. These equations must be modified in such a way 286

as to take into account the presence of a dedicated frame of reference. Such a variant of 287

constraints is provided by a construction based on the Witten identity in the theory of 288

gravity [17],[18], which can be written in integral form for the case of a closed universe [32]: 289

(
χ, Ŵη

)
−

∫
Σ

d3x
√

det gik[N(χ, η)H

+Ni(χ, η)Hi
]

= 0, (49)

where χ, η are the Dirac bi-spinors on the spatial section Σ. Parentheses denote the scalar 290

product in the space of bi-spinor fields: 291

(χ, η) =
∫

Σ
d3x

√
det gikχ+η, (50)

where the cross denotes the Hermitian conjugation (see [32]). If χ = η, identity Eq. (49) 292

gives a representation of the Hamiltonian function of a closed universe in a special gauge 293

[33], so that the bi-spinor field χ completely determines the frame of reference (see also [18]). 294
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It also follows from identity Eq.(49) that the set of gravitational constraints is equivalent to 295

the operator equality on the space of bi-spinor fields: 296

Ŵ ≡ D̂2 −
(
−∆̂

)
= 0, (51)

where D̂ is a Hermitian Dirac operator with respect to the scalar product Eq.(50), and ∆̂ is 297

also a Hermitian Beltrami-Laplace operator. Note that both operators in this equality are 298

positive-definite: D̂ ⪖ 0,−∆̂ ⪖ 0. After quantization, the operator Ŵ additionally becomes 299

an operator ̂̂W on the space of wave functions ψ(gik), which is marked with an additional 300

“lid”. The "double" operator ̂̂W allows us to write the quantum constraint equations for the 301

wave function of the universe ψ(gik) together with the conditions for the frame field χ: 302

̂̂Wχ × ψ = 0. (52)

Thus, in this variant of the quantum theory, the physical states of the universe should be 303

referred to a selected frame of reference given by the field χ. 304

Quantum constraints Eq.(52) form a system of differential equations for the functions 305

χ
(

xk
)

and ψ(gik, φA) (here we have also added matter fields). By themselves, they do not 306

constitute a specific mathematical problem without additional conditions. For hyperbolic 307

equations, these are usually the initial-boundary conditions in the configuration space. 308

Rejecting the initial-boundary value problem, let us pay attention to another possibility 309

dictated by the structure of the operator equality Eq.(51). It is obvious that the mean value 310

of any of the two positive operators included in it has a minimum on the set of solutions 311

of the relation system Eq.(52). We choose the square of the Dirac operator, which does 312

not explicitly include matter fields, and therefore, as part of the Hamilton function, can 313

be called the energy of space. All physical degrees of freedom, including the transverse 314

components of the gravitational field, are included in the second positive-definite operator. 315

Thus, we come to the conditional extremum principle for the space energy 316

E =

⟨ψ|
(

χ, ̂̂D2
χ

)
|ψ⟩

⟨ψ|(χ, χ)|ψ⟩

+⟨⟨N |
∣∣∣ ̂̂Wχ × ψ

〉〉
+
〈〈

χ × ψ ̂̂W ∣∣∣|N ⟩⟩, (53)

in which the constraint equations Eq.(52) are taken into account as additional conditions 317

with the corresponding Lagrange multipliers N . The double brackets here mean the 318

scalar product in the composition space χ × ψ. In addition to the minimum value of the 319

space energy, the conditional extremum problem Eq.(52) determines the entire spectrum 320

of its excitations Eω, which is described by a certain set of quantum numbers ω. The 321

identification of quantum numbers ω with the internal time of the universe is an alternative 322

to choosing the volume of the universe as a time parameter. An additional reason for such 323

an interpretation is that such a choice of the cosmological arrow of time will be consistent 324

with the thermodynamic arrow (entropy), if the increasing "complexity" of the excited 325

states of space is taken as a measure of disorder in the universe. However, a large element 326

of arbitrariness remains in the proposed interpretation until the structure of the excitation 327

spectrum of space is known. 328

5. CONCLUSIONS 329

The description of the quantum dynamics of the universe using the wave functional 330

on the space of world histories gαβ

(
xk, t

)
allows us to assume that the average values 331

of gravitational constraints ⟨Ha⟩, equal to zero in classical GR, are nonzero in QTG. The 332
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difference between these averages from zero in quantum theory can arise in the initial state 333

of the universe. For a new version of the description of dynamics, a quantum principle of 334

least action is proposed, in which the action operator is the central object. This operator 335

is obtained by replacing the canonical momenta in the canonical form of the ADM action 336

by operators of variational differentiation on the space of wave functionals from world 337

histories. According to the quantum principle of least action, the evolution of the universe 338

is described by the eigenfunctions of the action operator. The new formalism also allows 339

for modification to define the initial state of the universe. The quantum principle of least 340

action for the "near polar region" is formulated, in which the action operator is defined 341

on the space of wave functionals of 4D Riemannian metrics in a compact region with one 342

boundary. In this case, we are interested in the eigenvalue of the action operator, which is 343

the logarithm of the initial state of the universe. This state can be called the cosmological 344

vacuum, and there is reason to expect that it is the source of the universe’s own mass. Thus, 345

the appearance of the universe’s own mass is a consequence of quantum theory, and the 346

associated violation of the covariance of the original theory is an example of a spontaneous 347

violation of the symmetry of the cosmological vacuum. 348

Author Contributions: Investigation, N. G. and A. L.; Draft review and editing, N. G., A. L. and A. V. 349

G. All authors have read and agreed to the published version of the manuscript. 350

Funding: This research received no external funding. 351

Institutional Review Board Statement: Not applicable. 352

Informed Consent Statement: Not applicable. 353

Data Availability Statement: Data sharing not applicable. 354

Acknowledgments: We would like to thank V.A. Franke for the useful discussions. 355

Conflicts of Interest: The authors declare no conflict of interest. 356

References 357

1. Misner, C. W.; Thorne, K. S.; Wheeler, J. A. Gravitation, W. H. Freeman and Company, San Francisco (1973). 358

2. Arowitt R., Deser S., and Misner C.W., The dynamics of general relativity, in Gravitation: An Introduction to Current Research, ed. L. 359

Witten, Willey, New York, 1962, p. 227. 360

3. Dirac, P. A. M. Proc. Roy. Soc. London Ser. A 1926, 110 , 405. 361

4. Fock, V. A. Phys. Z. Sovjetunion 1937, 12, 404. 362

5. Stökelberg, E. C. G. Helv. Phys. Acta 1941, 14, 322. 363

6. Feynman, R. P. Phys. Rev. 1948 74, 939. 364

7. Schwinger, J. Phys. Rev. 1951, 82, 664679. 365

8. Aparicio, J. P.; Gaioli, F. H.; Alvarez, E. T. G. Phys. Rev. A 1995, 51(1), 96. 366

9. Wheeler, J. A. Einsteins Vision; Springer-Verlag: Berlin-Heidelberg, Germany, (1968). 367

10. DeWitt, B.S. Quantum Theory of Gravity. II. The Manifestly Covariant Theory. Phys. Rev. 1967, 162, 1195. 368

11. Dirac, P. A. M. Lectures on quantum mechanics, Yeshiva Universitry, New York (1964). 369
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