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allows us to state an efficient algorithm for the evaluation of Legendre expansions. Finally, numerical
tests are presented to exemplify and confirm the theoretical results.

Keywords: Legendre coefficients, Fourier coefficients, Legendre expansion, Abel transform

MSC: 42C10; 44A05; 65R10; 65T50

1. Introduction

The computation of the coefficients of Legendre expansions is a very important prob-
lem in numerical analysis and applied mathematics with a wide range of applications
including, just to mention a few, approximation theory [1], special function theory [2],
spectral methods for differential equations [3] and construction of quadrature formulae
[3,4]. Its importance has emerged also in connection with the computation of spectra
of highly oscillatory Fredholm integral operators, which play an important role in laser
engineering [5]. For its relevance, this problem attracted a significant reserach attention
since the Seventies [6,7].

The difficulty of the problem lies essentially in the fact that these coefficients are
represented by integrals whose integrands oscillate rapidly for large values of the index of
the polynomial. Standard quadrature procedures for the calculation of N Legendre coeffi-
cients lead only to slow O(N?) algorithms (see, e.g., Ref. [6,8]). The first contribution for a
more efficient computation of Legendre coefficients traces back to the work of Orszag [9],
where the algorithm uses a slowly converging first-order WKB expansion of the Legendre
polynomials.

More efficiently, in Ref. [10] the Legendre coefficients are obtained by transforming
the corresponding Chebyshev coefficients through a multipole-like expansion, which
yields a fast O(Nlog N) algorithm, though requiring a considerable and rather expensive
initialization phase. In this context, various improvements have been proposed, e.g., in
[11,12]. Remaining within this kind of approach, [13] describes an O (N (log N)?/ loglog N)
Chebyshev-Legendre transform, which is based on the Stieltjes” asymptotic formula for
the Legendre polynomials of large degree. Mori et al. [14] employed the same asymptotic
formula to produce a fast O(N log N) algorithm but affected by a problem of numerical
instability for large N. The connection between Legendre and Chebyshev coefficients is
analyzed also in [15] in the case of piecewise smooth functions. In Ref. [16] (see also
[17]) an O(N(log N)?) algorithm is given, for N a power of two, which requires a suitably
preprocessed data structure.
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Another way to tackle this problem has been described in [18], where an algorithm
for the rapid computation of the Legendre coefficients is presented when the analytic
expression of the input function is known on a Bernstein ellipse in the complex plane.
The algorithm has O(Nlog N) complexity but requires the knowledge of the region of
analyticity of the function in C.

In this paper we present an alternative procedure. The basic idea of our method
consists in exploiting the Dirichlet-Murphy integral representation of the Legendre poly-
nomials. We prove that the coefficients of the Legendre expansion of a function f(x) are
connected with a subset of the Fourier coefficients (the ones with nonnegative index) of an
Abel-type transform of f(x).

The numerical implementation of the algorithm follows straightforwardly and is very
efficient. The aforementioned Fourier coefficients (which represent the sought for Legendre
coefficients) can be computed in O(N log N) operations by a single Fast Fourier Transform
(FFT) after the evaluation of the Abel-type integral by means of standard quadrature
techniques.

The dual problem of calculating the values of (finite) Legendre expansions is analyzed
in Section 3. In Subsection 3.1 we prove that the Legendre expansions can be computed by
means of a (inverse) cosine transform of a sequence of coefficients, which is obtained by a
suitable linear transformation of the given set of N Legendre coefficients. Further, a novel
algorithm is presented in Subsection 3.2, where the Legendre expansions are proved to be
the Abel-type transform of a Fourier series, the coefficients of the latter being the Legendre
coefficients of the function f(x). This leads to an efficient algorithm which requires the
computation of one FFT and of one Abel-type integral.

2. Connection between Legendre expansions and Fourier series

The standard form of the Legendre expansion reads:
f) =3} enPulx)  (xe[-11)), @
n=0

where P, (x) are the Legendre polynomials, which can be defined by the generating function
[19]:

1
2

f Pu(x) 1" = (1 —2xt+ tz) (Ix] < 1,]t| < 1), 2)
n=0

and the coefficients {c, };"_, are given by:

Cy = (n—i—%) /jlf(x)Pn(x)dx (n>0). ©)]

The conditions to be satisfied by f(x) to guarantee the uniform convergence of the series in
(1) will be discussed in the next section. However, for our current purpose of computing
the Legendre coefficients c,, it is sufficient to assume that f(x) be absolutely integrable on
the interval [—1, 1]. For later convenience, we define the normalized Legendre coefficients as

ay = "
" n+1

(n>0). 4)
We can now state the following theorem.

Theorem 1. The normalized Legendre coefficients {ay }o_, coincide with the Fourier coefficients,
with n > 0, of an Abel-type transform of f(x), that is:

o= [ Fwevdy (120, 5)
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where the 27t-periodic function f(y) is defined by
- ]. i 1 X
fo)=gmewet[ T 4 yem, ©
m cosy [2(x —cosy)|2

e(y) being the sign function.

Proof. We consider the Dirichlet-Murphy integral representation of the Legendre polyno-
mials [20](Ch. III, §5.4):

eiln+3)y

Py(cosu) = _irc /u(27'(u) o dy. 7)

1
cosu — cosy)]?

Plugging (7) into equality (3) (after the change of variable x — cosu), we have:

T (2m—u) ei(n+%)y
2mia, = / du f(cosu)sinu / - dy. 8)
0 u [2(cosu — cosy)]?
Interchanging the order of integration in (8) we obtain:
T . Y :
2ria, = / dy e‘(’”%)y/ f(cosu) st —du
0 0 [2(cosu — cosy)]? ©)
27 . (2m—y) i
+ / dy eilnt)y / f(cosu) smi - du.
” 0 [2(cosu — cosy)]?

Next, if we make the change of variables: y — y — 27r and u — —1u, the second integral on
the r.h.s. of (9) becomes:

. 0 . y i
et / dy ei(nt2)y / f(cosu) Ll T+ du. (10)
- 0 [2(cosu — cosy)]|?
Then, (9) becomes
T . Y 1
2ria, = / dy el("+%)y/ f(cosu) smi —du
0 0 [2(cosu — cosy)]? an
. 0 . y i
+ el?‘[/ dy el(i’l"r%)y/ f(COS u) smu T du,
- 0 [2(cosu — cosy)]?
which, after the change of variable cos u — x into the integrals on the r.h.s., yields:
T o .
ay = /_nf(y) e dy (n>0), (12)

o~

with f(y) given by (6). [

-~

It is easy to check from (6) that f(y) satisfies the following symmetry relation:

fly) = =" f(=y), (13)
which, in view of (5), induces the following symmetry on the coefficients a,:

Ay = —A_y_1 (n€Z). (14)
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2.1. Numerical issues

Let us now consider the actual problem of computing the first N Legendre coefficients
{cu} 2];01 (or, equivalently, N normalized coefficients {an}nN;()l) associated with the function
f(x) (see (1) and (3)).

The numerical implementation of the algorithm suggested by Theorem 1 requires the

computation of the Fourier coefficients (5) of the Abel-type integral function J?(y) defined
in (6). For what concerns the computation of f(y), the integrand presents a weak algebraic
singularity at the end point of the domain of integration, which can be effectively handled
by means of a proper nonlinear change of variable. This technique, along with the use
of a standard quadrature formula (e.g., the Gauss-Legendre one), allows obtaining high
accuracy with a small number of nodes [21]. Quadrature formulae suited to end-point
singular integrands can also be used [22,23].

o~

It is ought to stress that the function f(y) does not depend on the order n of the
Legendre polynomial. Therefore, the computational cost for evaluating f(y) is independent
of the number N of Legendre coefficients to be computed. This means that the number
of knots which are necessary to compute the integral in f(y) (with a prescribed fixed
accuracy €) does not depend on N, but depends only upon the oscillatory characteristics
of the function f(x) (i.e., the number of samples needed to determine f(x) uniquely) and
on the accuracy €. The oscillatory contributions due to the Legendre polynomials or, in
other words, the dependence on the order n of the Legendre polynomial, are accounted for
only in the Fourier formula (5) and are neatly separated from the oscillatory contributions
ascribable to the input function f(x). The consequence of this decoupling is the low
computational complexity of the whole algorithm. In fact, formula (5) makes it possible
to take full advantage of the computational efficiency of the Fast Fourier Transform both in
terms of speed of computation and of accuracy [24,25]. The first N Fourier coefficients a, of

-~

f(y) (which coincide with the normalized Legendre coefficients of f(x)) can thus be computed
by a single FFT from the values (samples) of f(y) at N distinct points in O(N log N) time.
As we have seen above, the number of operations for the calculation of each sample of
f(y) is independent of N and, consequently, the (asymptotic) computational complexity
of the entire algorithm for the computation of the Legendre coefficients coincides with
that of the FFT, i.e., O(Nlog N). Moreover, in view of the symmetry relation (13), the
number of calls to the procedure for the computation of the Abel integral is halved. Of
course, if O(N) samples are needed to determine uniquely the function f(x) and we want
the error € to be as small as possible, then all the O(N) samples of f(x) must be used for
the numerical computation of the Abel integral and, consequently, the total number of
operations in the algorithm will be O(N?). Therefore, following logical lines similar to
those adopted by Alpert and Rokhlin in Ref. [1] (and, more generally, in methods like, e.g.,
the Fast Multipole Methods [26]), the reduction of complexity from O(N?) to O(Nlog N) is
obtained by accepting a lower precision in the computation (in our case, a lower precision
in the computation of the Abel integral).

We want to remark two additional features of the algorithm just presented. First,
the algorithm does not require the knowledge of the input function f(x) at a specific and
prescribed set of knots (see, for instance, Ref. [10] where the input function is supposed
to be known at Chebyshev knots). The function f(x) enters the algorithm only through
its Abel-type integral. This allows a significant flexibility in choosing the quadrature
scheme which is more suitable for the distribution of knots at which the input function is
known (e.g., uniform grid, Chebyshev grid, set of measurements of f(x) non-uniformly
distributed).

The final remark concerns the robustness of the algorithm against the noise. In the
case the values of f(x) are only approximately known, e.g., when the input samples of f(x)
represent measurements affected by error, the effects of the noise in the calculation of the
coefficients c, are damped by the algorithm. In fact, the noisy input samples of f(x) are
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smoothed by the Abel integral operator [27] before being analyzed (encoded as samples of
7(y)) by the oscillatory Fourier integral (5).

The procedure described above has been implemented in double precision arithmetics
using the standard open source GNU Scientific Library (GSL) [28]. Feasibility and accuracy
of the algorithm have been verified by direct comparison of the obtained numerical results
with the true Legendre coefficients for a variety of functions. Hereafter we report some of
them.

Table 1 displays the absolute error E,, = |cfue — | in the computation of
Legendre coefficients for four functions with different degree of regularity: the discon-
tinuous function f;(x) = ye(x — xp) (with (-) being the sign function and 7y a constant),
whose Legendre coefficients are c(()l) = —xo, c,(f) = v[Py_1(x0) — Py11(x0)] for n > 1; the
C%[—1,1] function: f»(x) = |x|>/2, whose Legendre coefficients are [3](p. 78):

Computed
Cn

(a+1)71 ifn=0 (x=32),
@ _)J@Cn+Da(a—2)--(a—n+2) o (
" 15)
n @t )@t3) (arntD) if n is even,
0 if n is odd;

the function f3(x) = (1 — 2xt + t?)~1/2 with c,(13) = " (with a singlarity for x outside
the interval [—1 : 1], see (2)); the C-analytic function: fy(x) = ef*Jo(Bv1 — x2) with

c,(f) = B"/n! (Jo denoting the Bessel function of the first kind and zeroth order).

Table 1. Absolute error E; of the computed Legendre coefficients c;, for four different functions with
different degree of smoothness (see text). The reference “exact” values of ¢, have been computed
with 30 significant figures by standard quadrature with Mathematica [29].

n E[fi1] E,[f2] Ex[fs] Ey[fa]
0 8.15_¢ 751 11 111 333 ¢
1 298 ¢ 144 4 333 15 5.55_17
2 3125 1.86_1 3.88 1 1.97 15
3 543_5 9.20 1, 339 15 287 15
4 341 5 1.07_10 472 s 336 15
5 253 5 1.30_10 547 15 158 15
6 9.28 5 114 1 450 15 1.96 15
7 1.09 4 9.75 1 422 15 254 15
8 1.99 5 429 1o 318 15 263 15
9 127 4 6.10_1 3.94 290 15
10 1.87 4 574 10 1.65 15 293 15
1 7.50_s 445 1 1.54 15 971 16
12 116 4 1.79 10 1.94 45 204 15
13 220, 332 10 3.60_15 1.67 15
14 1.56_, 843 10 7.36 16 237 15
15 275 5 9.81 1o 418 15 206 15

The first observation from Table 1 is that the accuracy depends on the degree of
smoothness of the function because of the computation of the Abel transform of f(x) that,
in order to obtain a given target precision, requires more quadrature knots for low regular
functions. For what concerns the smooth (within the interval [—1, 1]) functions f3 and fy,
which give similar results, the accuracy increases significantly to reach values comparable
with the e-machine.

The algorithm sources of error are: the approximation of integral (5) by the Dis-
crete Fourier Transform; the approximation of the Abel transform (6) by quadratures
and, finally, the finite accuracy of the floating-point arithmetic. The first source of er-
ror is ruled by N. This is clearly visible from Figure 1(A), where the maximum error
Emax(N) = max,¢(on_1] En is plotted versus N. For the CO-function f,(x) (asterisks), we
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Figure 1. (A) Maximum error Emax(N) = max,¢(on_1] En versus the number N of computed
Lagendre coefficients. The filled dots (e) refer to the function f(x), the asterisks (*) to f,(x), and
the filled triangles (A) to f3(x) (see text). (B) Execution time T versus N. The O(N?) line is plotted
just for reference.

see that for low values of N the maximum error is mainly ascribable to the error due to the
approximation of the Fourier integral with the DFT and to the approximation of the Abel
integral: it decreases like N~2 up to N ~ 10, and then starts increasing like O(N), as in
the case of smooth functions. From the comparison with the plot of maximum error for
smooth functions (triangles), we can also say that the number of points N used in the DFT
need not to be unnecessary large unless the function f(x) itself has low regularity.

The computation of N Legendre coefficients ¢, by ordinary quadrature produces an
O(N?) algorithm. The increment of performances of the algorithm presented here has been
verified by evaluating the speed of computation at (nearly) same precision. The results
of these tests are illustrated in Figure 1(B), where the execution time T (in seconds) is
plotted versus the number N of computed Legendre coefficients. The results show an O(N)
execution time (at least in the N-interval we considered, up to N ~ 5-10°) independently of
the regularity properties of the input function f(x), confirming the expected great increase
of computational speed (asymptotically, the awaited improvement ratio being proportional
to N/log N). Such an increase of performances will become even more crucial for the
efficient evaluation of multivariate Legendre transform [5] and of spherical harmonic
expansions [30], which will be the subject of a forthcoming paper.

3. Computation of Legendre expansions

Let us now move on to consider the problem of evaluating the function f(x) from the
set of Legendre coefficients c;. In general, in the complex plane the domain of convergence
of the Legendre expansion (1) is the maximal ellipse with foci at &1 within which the
function f is analytic [31]. This rather restricted class of functions can be greatly enlarged
when we limit ourselves to consider convergence issues on the segment x € [—1,1]. In Ref.
[32] W. H. Young showed the tight connection between Legendre series and Fourier series
when x € (—1,1). In particular, he proved that in any internal closed interval of (—1,1) the
series of Legendre (1) behaves in respect to convergence, divergence, or oscillation, uniform
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or otherwise, precisely like the Fourier series of f(cosu) where x = cos u, provided the
terms c,, of series (1) are such that

no? cn — 0 for n — oo, (16)

the latter being the natural necessary condition for the convergence of the series (1). More
explicitly, e.g., E. W. Hobson [33] provided a test of convergence stating that if the condition

1
[ A=) @) dr <o 17)
is satisfied (the latter condition being equivalent to require that f(cos u)+/sin u be integrable
on u € [0, 7)), then the series (1) is convergent for any x € (—1,1) near which f is of
bounded variation. Since the points x = +1 are singular points of Legendre’s equation, the
convergence at the end points of the interval requires somehow more stringent (than in
the Fourier case) conditions such as, e.g., f(x) being of bounded variation over the entire
interval [—1,1].

This parallelism between Legendre and Fourier expansions have been already ex-
ploited in the previous section where we proved that the (normalized) Legendre coeffi-
cients of f(x) coincide with the Fourier coefficients of the function f(y). In the next two
subsections we continue our analysis along this line, and present two algorithms for the
computation of values of Legendre expansions.

3.1. An algorithm for the evaluation of Legendre series

In the theorem that follows we will prove that a Legendre expansion can be computed
by calculating the (inverse) cosine transform of a sequence which is obtained by a suitable
linear transformation of the set of Legendre coefficients c;.

Theorem 2. Let f(x) be the function given in (1). Assume that f(x) is such that the Legendre
expansion (1) and the Fourier expansion of f(cosu) converge uniformly on x € [—1,1] and
u € [0, 7t], respectively. Then f(cosu), u € [0, 7t], can be written as follows:

—+00
f(cosu) = % + Y om cosmu, (18)
m=1

the coefficients @, (m = 0,1,2, . ..) being given by:

—+o00
qu = Z km,n Cn (m == O/ 1/ 2/ . ')/ (19)
n=0

cy denoting the Legendre coefficients associated with f(x) (see (3)) and

7T
kmn = %/ P, (cosu) cos(mu) du (m,n=0,1,2,...). (20)
0

Proof. Since f(x) is compactly supported on x € [—1,1], the function f(cosu) (u € [0, t])
is a 27-periodic function of u. Then, the latter can be represented as the Fourier series,

1 ¥ i
fleosu) = 5 ¥ fre™ (el @1
In view of the uniform convergence of the two series, from (1) and (21) we have:

1 —+o0 . —+oc0
P Y. fue ™ =Y cyPu(cosu), (22)
n=0

n=-—oo
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so that, multiplying both sides of (22) by ¢ and integrating on u € [—7, 77|, we have:

400 1 T +oo 7T .
Y fa {/ ellm=—mnu du} =) o / Py (cosu) ™ du. (23)
2 J-n n=0 -

n=—oo

The term in the parenthesis on the Lh.s. of (23) is the integral representation of the Kronecker
delta . Then, from (23) we have:

w27 =
Pm="" = ,;)[ﬂ/o Py (cosu) cos(mu) du] ey = n;)km,n Cn, (24)

with ky, ,, defined in (20). Finally, expansion (18) follows readily by observing that ¢_,,, =
Q. O

It is worth remarking that the transformation K = {ku,n};; ,_o, which connects the
Legendre coefficients of f(x) with the Fourier coefficients of f(cosu), is independent of
f(x), can be computed with arbitrary precision, and can be regarded as known. In the next
proposition we list some known facts on the structure of the matrix K, we give the analytic
expression of its entries as smooth function of the indexes (see Ref. [10]), and provide an
iterative procedure for computing its elements.

Proposition 1. (i) The coefficients ky, , (defined in (20)) can be written as follows:

K —3/1p(x)T(x)L (25)
mn — o n n mr
Ty (-) denoting the Chebyshev polynomials of the first kind.
(ii) The matrix K is upper triangular, and its entries k;, ,, can be computed as follows:
%[A(%)]Z for m = 0 and n > m with n even,
K = 4 2 A(S2)A(252)  if0 < m < nand (n+ m) is even, (26)
0 otherwise,
where )
L Tz+3)
I'(+) denoting the Euler gamma function.
(iii) The following recurrence relation holds forn =1,2,...and 0 < m < n:
_ (n=1)(n—m—1) m(2n —1)
km,n = n(m T 1’1) km,n72 + n(m ¥ Tl) km—l,n—l- (28)
(iv) The diagonal elements can be written as follows:
e 1
km,m—zl"[(l—zj) (m=1,2,...). (29)

j=1

(v) The elements kg 2y, of the first row can be written as follows:

n 1 2
koon = 2H<1 - 2j> (n=1,2,...). (30)
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Proof. Formula (25) follows from definition (20) by making the substitution cosu — x
into the integral and recalling the definition of the Chebyshev polynomials of the first
kind: T, (x) = cos(m arccos x), (m > 0). Representation (ii) of the coefficients ky, , is well-
known, and it is given, e.g., by Alpert and Rokhlin in [10](formula (20)) (where the matrix
K is there named M). The recurrence relation (28) follows from representation (26) and
from the following three-term recurrence relations holding, respectively, for the Legendre
polynomials P, (x) and for Chebyshev polynomials T, (x):

nPy(x)=02n—1xP,_1(x) — (n—1)P,2(x) (n=2,3,...), (31)

Py(x) =1 and Pi(x) =1z, (32)
and

Tu(x) = 2xTy 1 (x) = Tya(x) (n=23,...), (33)

To(x) =1 and Ty(x ) X. (34)

Finally, point (iv) is obtained by putting n = m into (29), and, similarly, point (v) follows by
putting m = 0 into the relation (29). O

The algorithmic prescription provided by Theorem 2 for the computation of the values
of a Legendre expansion is indeed very simple. It consists of a two-step procedure:

1. From the N-vector ¢ = (cq,c1,...,cn-1)" of Legendre coefficients compute the N-
vector @ = (@o, ¢1,--.,¢n-1)T by ¢ = Ky ¢, where the (known) upper triangular
matrix Ky = {km,n}%,j:o is defined in (20) (see also Proposition 1);

2. Compute the cosine transform of length N of the vector ¢ to obtain values of f(cos u)
at N selected points of the interval u € [0, 7t].

The second step of the algorithm presents no difficulties. It is fast since it can be imple-
mented by a single FFT of length N, which requires O(N log N) operations. The standard
FFT procedure provides the output on a uniform grid {u, }, N= 1 of [0, 7t], so that, according
to formula (18), the final result consists of the set of functlon values {f(cosuy)}, N 01 at
Chebyshev points.

The first step of the algorithm presents instead some aspects which deserve a few
comments. The crux is that the matrix Ky is dense and the direct calculation of the
matrix-vector product Ky ¢ requires O(N?) operations (precisely, M multiplications).
Therefore, this step can become a bottleneck for the algorithm when N becomes large. In
some practical cases the question is not critical, e.g., when the triangular structure of Ky
can be exploited on some computer architectures (e.g., vector machines, parallel GPU)
to drop significantly the complexity of the computation. Nevertheless, the reduction of
the algorithmic complexity remains an issue. Approximate methods are the only tools to
handle effectively the fast computation of the matrix-vector product when the matrix is not
structured (i.e., when its entries depend only on O(N) parameters). The key to many of
these fast methods is renouncing to exactness and accepting the result of the computation
within an a-priori fixed level of accuracy. This allows for using approximations of the
kernel K which, combined with a suitable subdivision of the matrix into panels, can reduce
enormously the cost of computing. Among these algorithms it is worth citing the celebrated
Fast Multipole Methods by L. Greengard and V. Rokhlin for the fast evaluation of N-body
interactions [12,26,34], which are able to reduce the number of operations to O(N log N)
(or even O(N), depending on the matrix structure).

The specific problem we are deahng w1th here, that is, the fast computation of the
matrix-vector product Ky ¢ (with {k,, n} = 0 given by formula (25)) has been solved
brilliantly by B. Alpert and V. Rokhlin in Ref. [10]. In that paper the matrix Ky is first
properly divided in square submatrices, and then the computation associated with each
submatrix is performed efficiently approximating each entry of the submatrix by its finite
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Chebyshev expansion. The computational cost brought by a v x v submatrix is then reduced
from order O(v?) of the naive computation to O(vlog 1), € being the fixed precision
required in the Chebyshev interpolation of the submatrix entries. This basic building block
allows thus constructing an algorithm for the fast computation of the matrix-vector product
Ky ¢ with O(Nlog N) order of complexity.

3.2. A novel algorithm

In this subsection we present a novel algorithm for the inversion of the Legendre
transform, which somewhat represents the natural dual algorithm of the one presented in
Section 2 for the computation of the forward Legendre transform. In the next theorem we
will show that a Legendre expansion can be represented as the Abel-type transform of a
suitable Fourier series, the coefficients of the latter being the Legendre coefficients of f(x)
(cf. Theorem 1).

Theorem 3. Let f(x) be the function given in (1). Assume that f(x) is such that the Legendre
expansion (1) converges uniformly on x € [—1,1]. Then f(cosu), u € [0, 7], can be written as
follows:

= [ x(0) d 0 35
fleosi) = [ oy dt (we o), ©5)
where the function x(t) is defined by
x=2 Y asinm e (telon), (36)
n=0

cy denoting the Legendre coefficients associated with f(x) (see (3)).

Proof. First we show that the following integral representation holds for the Legendre
polynomials Py (cos u):

2 (7 sin(n+ )t
P, == _d 0, 7). 37
(cos ) ”/u [2(cosu — cost)]2 t (v € 0,7 7

Formula (37) can be easily obtained from the Dirichlet-Murphy representation (7) by first
splitting the interval of integration into two subintervals: [u, 27t — u| = [u, 7t] U [71, 271 — u],
and then changing the integration variable t — 27t — t in the second integral, i.e., we have:

Pn(cosu)——</ +/2” ) AU

1
2(cosu — cost)|?

:_i{/” el 2y 1dt—/ﬂ e inee 1dt} (38)
T2 )]? v )]

cosu —cost cosu —cost

B / sin(n + 3)t dt

[2(cosu — cos t)]%

Now, we can plug formula (37) into Legendre expansion (1) and then, interchanging sum
and integral (which is legitimate in view of the assumption of uniform convergence for
expansion (1)), we get:

1 = 1

) o 2y yonsin(n+ %)
f(cosu) E 2 / sin(n + e } dt, (39)
T =0 [2(cosu — cost)]2 2(cosu — cost)]z

which is indeed formula (35) with x(t) defined by (36). O
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Theorem 3 suggests the following algorithm for the computation of the values of a
Legendre expansion:

1. From the input N-vector ¢ = (co, cq, .. -, cN,l)T of Legendre coefficients compute the
N-term approximation xn(t) of the function x(t) (see (36)):

2 N-1
an(t) == Y cusin(n+ 1)t (40)
n=0

2. Compute the values of the N-term Legendre expansion

N-1
fn(cosu) =Y ¢y Py(cosu) (u e 0,m]), (41)
0

n=

at points u, (n = 0,1, ...) by the Abel-type integral (see (35)):

cos —[" an(t) u
fuleostn) = [ [T g dt (we ) 2)

The first step is fast: the set of values {n(tx)})— of the function xy(t) at N equidistant
nodes of the interval [0, 77] can be calculated in O(N log N) time by a single FFT.

For what concerns the second step, it should first be noted that the distribution of the
nodes i, is not constrained and, therefore, we are free to calculate fy(cosu) at any set of
points of the interval u € [0, 7r] by means of formula (42).

The numerical computation of the Abel-type integral in (42), which presents a weak
singularity at the left end-point (see also Section 2), is constrained by the fact that the
integrand is known only on a uniform grid of the interval t € [0, 7] (see Step (1) of the
algorithm) and, consequently, only quadrature formulae based on equally spaced knots
can be used.

In general, the computation of fy(cosuy,) at N points {u,}N") requires O(N?) op-
erations since the second step of the algorithm requires O(N) operations when all the
N known values of the function ) are used for the computation of the integral in (42).
However, it is ought to note that for this computation it is not always necessary to imple-
ment a full N-knot quadrature procedure, in particular when N is large. The integral in
(42) can usually be computed with an a-priori fixed precision by using much less (than N)
quadrature knots, the number of knots depending on the implemented quadrature scheme
and on the oscillatory characteristics of the integrand, which, ultimately, depend on the
oscillatory characteristics of f(x). An instance of a suitable quadrature scheme is given in
Refs. [22,23], where quadratures rules are proposed, based on corrections to the trapezoidal
rule, for integrands with end-point singularities of various types, including singularities of
the form x7, |y| < 1. The convergence rate of these quadrature formulae is proved to be at
least « (that is, the approximation error is of the order of N~*) where x denotes the order of
the corrected quadrature rule [22,23]. Thus, in these cases and for N sufficiently large, the
algorithm we propose for the evaluation of the Legendre expansion becomes convenient
in terms of complexity since the number of operations of the second step is a constant
independent of N and, for large values of N, the complexity of the entire algorithm will be
dominated by the O(Nlog N) complexity of the FFT used in Step (1).

4. Conclusions

In summary, we have presented a new and fast, i.e., O(Nlog N), algorithm for the
computation of the coefficients of Legendre expansions. The algorithm is very simple to
implement and computes the Legendre coefficients with just a single FFT of an Abel-type
transform of the input function. This algorithm calls up a number of natural generalizations
to other polynomials systems, for instance, associated Legendre polynomials and the related
spherical harmonic expansions.
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The dual problem of evaluating a Legendre expansion has been also considered, and
two algorithms have been proposed. In the first algorithm the values of the expansion at
appropriately chosen points of the interval x € [—1,1] are computed by simply performing
a single (inverse) FFT of a sequence of coefficients, which are obtained by a suitable linear
transformation of the given set of N Legendre coefficients. The rapid evaluation of the
expansion values requires using approximate methods for the fast calculation of the matrix-
vector product. The second algorithm for the calculation of values of Legendre expansions
is novel and somehow inverts the logical steps of the algorithm we have proposed for the
computation of the Legendre coefficients: the N-term Legendre expansion can be evaluated
efficiently (for N sulfficiently large) at any point of the interval x € [—1, 1] by computing
the Abel-type transform of a suitable Fourier series.
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