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Abstract: We prove that the Legendre coefficients associated with a function f (x) can be represented 1

as the Fourier coefficients of a suitable Abel-type transform of the function itself. Thus, the computa- 2

tion of N Legendre coefficients can be performed efficiently in O(NlogN) operations by means of 3

a single Fast Fourier Transform of the Abel-type transform of f (x). We also show how the symme- 4

tries associated with the Abel-type transform can be exploited to further reduce the computational 5

complexity. The dual problem of calculating the sum of Legendre expansions is also considered. We 6

prove that a Legendre series can be written as the Abel transform of a suitable Fourier series. This fact 7

allows us to state an efficient algorithm for the evaluation of Legendre expansions. Finally, numerical 8

tests are presented to exemplify and confirm the theoretical results. 9
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1. Introduction 12

The computation of the coefficients of Legendre expansions is a very important prob- 13

lem in numerical analysis and applied mathematics with a wide range of applications 14

including, just to mention a few, approximation theory [1], special function theory [2], 15

spectral methods for differential equations [3] and construction of quadrature formulae 16

[3,4]. Its importance has emerged also in connection with the computation of spectra 17

of highly oscillatory Fredholm integral operators, which play an important role in laser 18

engineering [5]. For its relevance, this problem attracted a significant reserach attention 19

since the Seventies [6,7]. 20

The difficulty of the problem lies essentially in the fact that these coefficients are 21

represented by integrals whose integrands oscillate rapidly for large values of the index of 22

the polynomial. Standard quadrature procedures for the calculation of N Legendre coeffi- 23

cients lead only to slow O(N2) algorithms (see, e.g., Ref. [6,8]). The first contribution for a 24

more efficient computation of Legendre coefficients traces back to the work of Orszag [9], 25

where the algorithm uses a slowly converging first-order WKB expansion of the Legendre 26

polynomials. 27

More efficiently, in Ref. [10] the Legendre coefficients are obtained by transforming 28

the corresponding Chebyshev coefficients through a multipole-like expansion, which 29

yields a fast O(N log N) algorithm, though requiring a considerable and rather expensive 30

initialization phase. In this context, various improvements have been proposed, e.g., in 31

[11,12]. Remaining within this kind of approach, [13] describes anO(N(log N)2/ log log N) 32

Chebyshev-Legendre transform, which is based on the Stieltjes’ asymptotic formula for 33

the Legendre polynomials of large degree. Mori et al. [14] employed the same asymptotic 34

formula to produce a fast O(N log N) algorithm but affected by a problem of numerical 35

instability for large N. The connection between Legendre and Chebyshev coefficients is 36

analyzed also in [15] in the case of piecewise smooth functions. In Ref. [16] (see also 37

[17]) an O(N(log N)2) algorithm is given, for N a power of two, which requires a suitably 38

preprocessed data structure. 39
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Another way to tackle this problem has been described in [18], where an algorithm 40

for the rapid computation of the Legendre coefficients is presented when the analytic 41

expression of the input function is known on a Bernstein ellipse in the complex plane. 42

The algorithm has O(N log N) complexity but requires the knowledge of the region of 43

analyticity of the function in C. 44

In this paper we present an alternative procedure. The basic idea of our method 45

consists in exploiting the Dirichlet-Murphy integral representation of the Legendre poly- 46

nomials. We prove that the coefficients of the Legendre expansion of a function f (x) are 47

connected with a subset of the Fourier coefficients (the ones with nonnegative index) of an 48

Abel-type transform of f (x). 49

The numerical implementation of the algorithm follows straightforwardly and is very 50

efficient. The aforementioned Fourier coefficients (which represent the sought for Legendre 51

coefficients) can be computed in O(N log N) operations by a single Fast Fourier Transform 52

(FFT) after the evaluation of the Abel-type integral by means of standard quadrature 53

techniques. 54

The dual problem of calculating the values of (finite) Legendre expansions is analyzed 55

in Section 3. In Subsection 3.1 we prove that the Legendre expansions can be computed by 56

means of a (inverse) cosine transform of a sequence of coefficients, which is obtained by a 57

suitable linear transformation of the given set of N Legendre coefficients. Further, a novel 58

algorithm is presented in Subsection 3.2, where the Legendre expansions are proved to be 59

the Abel-type transform of a Fourier series, the coefficients of the latter being the Legendre 60

coefficients of the function f (x). This leads to an efficient algorithm which requires the 61

computation of one FFT and of one Abel-type integral. 62

2. Connection between Legendre expansions and Fourier series 63

The standard form of the Legendre expansion reads: 64

f (x) =
∞

∑
n=0

cn Pn(x) (x ∈ [−1, 1]), (1)

where Pn(x) are the Legendre polynomials, which can be defined by the generating function 65

[19]: 66

∞

∑
n=0

Pn(x) tn =
(

1− 2xt + t2
)− 1

2
(|x| 6 1, |t| < 1), (2)

and the coefficients {cn}∞
n=0 are given by: 67

cn =
(

n + 1
2

) ∫ 1

−1
f (x) Pn(x)dx (n > 0). (3)

The conditions to be satisfied by f (x) to guarantee the uniform convergence of the series in 68

(1) will be discussed in the next section. However, for our current purpose of computing 69

the Legendre coefficients cn, it is sufficient to assume that f (x) be absolutely integrable on 70

the interval [−1, 1]. For later convenience, we define the normalized Legendre coefficients as 71

an
.
=

cn

2n + 1
(n > 0). (4)

We can now state the following theorem. 72

Theorem 1. The normalized Legendre coefficients {an}∞
n=0 coincide with the Fourier coefficients, 73

with n > 0, of an Abel-type transform of f (x), that is: 74

an =
∫ π

−π
f̂ (y) einy dy (n > 0), (5)
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where the 2π-periodic function f̂ (y) is defined by 75

f̂ (y) =
1

2πi
ε(y) ei y

2

∫ 1

cos y

f (x)

[2(x− cos y)]
1
2

dx (y ∈ R), (6)

ε(y) being the sign function. 76

Proof. We consider the Dirichlet-Murphy integral representation of the Legendre polyno- 77

mials [20](Ch. III, §5.4): 78

Pn(cos u) = − i
π

∫ (2π−u)

u

e i(n+ 1
2 )y

[2(cos u− cos y)]
1
2

dy. (7)

Plugging (7) into equality (3) (after the change of variable x → cos u), we have: 79

2πi an =
∫ π

0
du f (cos u) sin u

∫ (2π−u)

u

e i(n+ 1
2 )y

[2(cos u− cos y)]
1
2

dy. (8)

Interchanging the order of integration in (8) we obtain: 80

2πi an =
∫ π

0
dy e i(n+ 1

2 )y
∫ y

0
f (cos u)

sin u

[2(cos u− cos y)]
1
2

du

+
∫ 2π

π
dy e i(n+ 1

2 )y
∫ (2π−y)

0
f (cos u)

sin u

[2(cos u− cos y)]
1
2

du.
(9)

Next, if we make the change of variables: y→ y− 2π and u→ −u, the second integral on 81

the r.h.s. of (9) becomes: 82

eiπ
∫ 0

−π
dy e i(n+ 1

2 )y
∫ y

0
f (cos u)

sin u

[2(cos u− cos y)]
1
2

du. (10)

Then, (9) becomes 83

2πi an =
∫ π

0
dy e i(n+ 1

2 )y
∫ y

0
f (cos u)

sin u

[2(cos u− cos y)]
1
2

du

+ eiπ
∫ 0

−π
dy e i(n+ 1

2 )y
∫ y

0
f (cos u)

sin u

[2(cos u− cos y)]
1
2

du,
(11)

which, after the change of variable cos u→ x into the integrals on the r.h.s., yields: 84

an =
∫ π

−π
f̂ (y) einy dy (n > 0), (12)

with f̂ (y) given by (6). 85

It is easy to check from (6) that f̂ (y) satisfies the following symmetry relation: 86

f̂ (y) = −eiy f̂ (−y), (13)

which, in view of (5), induces the following symmetry on the coefficients an: 87

an = −a−n−1 (n ∈ Z). (14)
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2.1. Numerical issues 88

Let us now consider the actual problem of computing the first N Legendre coefficients 89

{cn}N−1
n=0 (or, equivalently, N normalized coefficients {an}N−1

n=0 ) associated with the function 90

f (x) (see (1) and (3)). 91

The numerical implementation of the algorithm suggested by Theorem 1 requires the 92

computation of the Fourier coefficients (5) of the Abel-type integral function f̂ (y) defined 93

in (6). For what concerns the computation of f̂ (y), the integrand presents a weak algebraic 94

singularity at the end point of the domain of integration, which can be effectively handled 95

by means of a proper nonlinear change of variable. This technique, along with the use 96

of a standard quadrature formula (e.g., the Gauss-Legendre one), allows obtaining high 97

accuracy with a small number of nodes [21]. Quadrature formulae suited to end-point 98

singular integrands can also be used [22,23]. 99

It is ought to stress that the function f̂ (y) does not depend on the order n of the 100

Legendre polynomial. Therefore, the computational cost for evaluating f̂ (y) is independent 101

of the number N of Legendre coefficients to be computed. This means that the number 102

of knots which are necessary to compute the integral in f̂ (y) (with a prescribed fixed 103

accuracy ε) does not depend on N, but depends only upon the oscillatory characteristics 104

of the function f (x) (i.e., the number of samples needed to determine f (x) uniquely) and 105

on the accuracy ε. The oscillatory contributions due to the Legendre polynomials or, in 106

other words, the dependence on the order n of the Legendre polynomial, are accounted for 107

only in the Fourier formula (5) and are neatly separated from the oscillatory contributions 108

ascribable to the input function f (x). The consequence of this decoupling is the low 109

computational complexity of the whole algorithm. In fact, formula (5) makes it possible 110

to take full advantage of the computational efficiency of the Fast Fourier Transform both in 111

terms of speed of computation and of accuracy [24,25]. The first N Fourier coefficients an of 112

f̂ (y) (which coincide with the normalized Legendre coefficients of f (x)) can thus be computed 113

by a single FFT from the values (samples) of f̂ (y) at N distinct points in O(N log N) time. 114

As we have seen above, the number of operations for the calculation of each sample of 115

f̂ (y) is independent of N and, consequently, the (asymptotic) computational complexity 116

of the entire algorithm for the computation of the Legendre coefficients coincides with 117

that of the FFT, i.e., O(N log N). Moreover, in view of the symmetry relation (13), the 118

number of calls to the procedure for the computation of the Abel integral is halved. Of 119

course, if O(N) samples are needed to determine uniquely the function f (x) and we want 120

the error ε to be as small as possible, then all the O(N) samples of f (x) must be used for 121

the numerical computation of the Abel integral and, consequently, the total number of 122

operations in the algorithm will be O(N2). Therefore, following logical lines similar to 123

those adopted by Alpert and Rokhlin in Ref. [1] (and, more generally, in methods like, e.g., 124

the Fast Multipole Methods [26]), the reduction of complexity from O(N2) to O(N log N) is 125

obtained by accepting a lower precision in the computation (in our case, a lower precision 126

in the computation of the Abel integral). 127

We want to remark two additional features of the algorithm just presented. First, 128

the algorithm does not require the knowledge of the input function f (x) at a specific and 129

prescribed set of knots (see, for instance, Ref. [10] where the input function is supposed 130

to be known at Chebyshev knots). The function f (x) enters the algorithm only through 131

its Abel-type integral. This allows a significant flexibility in choosing the quadrature 132

scheme which is more suitable for the distribution of knots at which the input function is 133

known (e.g., uniform grid, Chebyshev grid, set of measurements of f (x) non-uniformly 134

distributed). 135

The final remark concerns the robustness of the algorithm against the noise. In the 136

case the values of f (x) are only approximately known, e.g., when the input samples of f (x) 137

represent measurements affected by error, the effects of the noise in the calculation of the 138

coefficients cn are damped by the algorithm. In fact, the noisy input samples of f (x) are 139
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smoothed by the Abel integral operator [27] before being analyzed (encoded as samples of 140

f̂ (y)) by the oscillatory Fourier integral (5). 141

The procedure described above has been implemented in double precision arithmetics 142

using the standard open source GNU Scientific Library (GSL) [28]. Feasibility and accuracy 143

of the algorithm have been verified by direct comparison of the obtained numerical results 144

with the true Legendre coefficients for a variety of functions. Hereafter we report some of 145

them. 146

Table 1 displays the absolute error En
.
= |cTrue

n − cComputed
n | in the computation of 147

Legendre coefficients for four functions with different degree of regularity: the discon- 148

tinuous function f1(x) = γ ε(x− x0) (with ε(·) being the sign function and γ a constant), 149

whose Legendre coefficients are c(1)0 = −γx0, c(1)n = γ[Pn−1(x0)− Pn+1(x0)] for n > 1; the 150

C0[−1, 1] function: f2(x) = |x|3/2, whose Legendre coefficients are [3](p. 78): 151

c(2)n =


(α + 1)−1 if n = 0 (α = 3

2 ),

(2n + 1) α (α− 2) · · · (α− n + 2)
(α + 1)(α + 3) · · · (α + n + 1)

if n is even,

0 if n is odd;

(15)

the function f3(x) = (1 − 2xt + t2)−1/2 with c(3)n = tn (with a singlarity for x outside 152

the interval [−1 : 1], see (2)); the C-analytic function: f4(x) = eβx J0(β
√

1− x2) with 153

c(4)n = βn/n! (J0 denoting the Bessel function of the first kind and zeroth order). 154

Table 1. Absolute error En of the computed Legendre coefficients cn for four different functions with
different degree of smoothness (see text). The reference “exact” values of cn have been computed
with 30 significant figures by standard quadrature with Mathematica [29].

n En[ f1] En[ f2] En[ f3] En[ f4]

0 8.15−6 7.51−11 1.11−16 3.33−16
1 2.98−6 1.44−10 3.33−15 5.55−17
2 3.12−5 1.86−12 3.88−15 1.97−15
3 5.43−5 9.20−11 3.39−15 2.87−15
4 3.41−5 1.07−10 4.72−15 3.36−15
5 2.53−5 1.30−10 5.47−15 1.58−15
6 9.28−5 1.14−10 4.50−15 1.96−15
7 1.09−4 9.75−11 4.22−15 2.54−15
8 1.99−5 4.29−10 3.18−15 2.63−15
9 1.27−4 6.10−10 3.94−15 2.90−15

10 1.87−4 5.74−10 1.65−15 2.93−15
11 7.50−5 4.45−10 1.54−15 9.71−16
12 1.16−4 1.79−10 1.94−15 2.04−15
13 2.20−4 3.32−10 3.60−15 1.67−15
14 1.56−4 8.43−10 7.36−16 2.37−15
15 2.75−5 9.81−10 4.18−15 2.06−15

The first observation from Table 1 is that the accuracy depends on the degree of 155

smoothness of the function because of the computation of the Abel transform of f (x) that, 156

in order to obtain a given target precision, requires more quadrature knots for low regular 157

functions. For what concerns the smooth (within the interval [−1, 1]) functions f3 and f4, 158

which give similar results, the accuracy increases significantly to reach values comparable 159

with the ε-machine. 160

The algorithm sources of error are: the approximation of integral (5) by the Dis- 161

crete Fourier Transform; the approximation of the Abel transform (6) by quadratures 162

and, finally, the finite accuracy of the floating-point arithmetic. The first source of er- 163

ror is ruled by N. This is clearly visible from Figure 1(A), where the maximum error 164

Emax(N)
.
= maxn∈[0,N−1] En is plotted versus N. For the C0-function f2(x) (asterisks), we 165
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Figure 1. (A) Maximum error Emax(N) = maxn∈[0,N−1] En versus the number N of computed
Lagendre coefficients. The filled dots (•) refer to the function f1(x), the asterisks (∗) to f2(x), and
the filled triangles (N) to f3(x) (see text). (B) Execution time T versus N. The O(N2) line is plotted
just for reference.

see that for low values of N the maximum error is mainly ascribable to the error due to the 166

approximation of the Fourier integral with the DFT and to the approximation of the Abel 167

integral: it decreases like N−2 up to N ∼ 103, and then starts increasing like O(N), as in 168

the case of smooth functions. From the comparison with the plot of maximum error for 169

smooth functions (triangles), we can also say that the number of points N used in the DFT 170

need not to be unnecessary large unless the function f (x) itself has low regularity. 171

The computation of N Legendre coefficients cn by ordinary quadrature produces an 172

O(N2) algorithm. The increment of performances of the algorithm presented here has been 173

verified by evaluating the speed of computation at (nearly) same precision. The results 174

of these tests are illustrated in Figure 1(B), where the execution time T (in seconds) is 175

plotted versus the number N of computed Legendre coefficients. The results show anO(N) 176

execution time (at least in the N-interval we considered, up to N ∼ 5 · 105) independently of 177

the regularity properties of the input function f (x), confirming the expected great increase 178

of computational speed (asymptotically, the awaited improvement ratio being proportional 179

to N/ log N). Such an increase of performances will become even more crucial for the 180

efficient evaluation of multivariate Legendre transform [5] and of spherical harmonic 181

expansions [30], which will be the subject of a forthcoming paper. 182

183

3. Computation of Legendre expansions 184

Let us now move on to consider the problem of evaluating the function f (x) from the 185

set of Legendre coefficients cn. In general, in the complex plane the domain of convergence 186

of the Legendre expansion (1) is the maximal ellipse with foci at ±1 within which the 187

function f is analytic [31]. This rather restricted class of functions can be greatly enlarged 188

when we limit ourselves to consider convergence issues on the segment x ∈ [−1, 1]. In Ref. 189

[32] W. H. Young showed the tight connection between Legendre series and Fourier series 190

when x ∈ (−1, 1). In particular, he proved that in any internal closed interval of (−1, 1) the 191

series of Legendre (1) behaves in respect to convergence, divergence, or oscillation, uniform 192
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or otherwise, precisely like the Fourier series of f (cos u) where x = cos u, provided the 193

terms cn of series (1) are such that 194

n−
1
2 cn → 0 for n→ ∞, (16)

the latter being the natural necessary condition for the convergence of the series (1). More 195

explicitly, e.g., E. W. Hobson [33] provided a test of convergence stating that if the condition 196

197∫ 1

−1
(1− x2)−

1
4 | f (x)|dx < ∞ (17)

is satisfied (the latter condition being equivalent to require that f (cos u)
√

sin u be integrable 198

on u ∈ [0, π]), then the series (1) is convergent for any x ∈ (−1, 1) near which f is of 199

bounded variation. Since the points x = ±1 are singular points of Legendre’s equation, the 200

convergence at the end points of the interval requires somehow more stringent (than in 201

the Fourier case) conditions such as, e.g., f (x) being of bounded variation over the entire 202

interval [−1, 1]. 203

This parallelism between Legendre and Fourier expansions have been already ex- 204

ploited in the previous section where we proved that the (normalized) Legendre coeffi- 205

cients of f (x) coincide with the Fourier coefficients of the function f̂ (y). In the next two 206

subsections we continue our analysis along this line, and present two algorithms for the 207

computation of values of Legendre expansions. 208

3.1. An algorithm for the evaluation of Legendre series 209

In the theorem that follows we will prove that a Legendre expansion can be computed 210

by calculating the (inverse) cosine transform of a sequence which is obtained by a suitable 211

linear transformation of the set of Legendre coefficients cn. 212

Theorem 2. Let f (x) be the function given in (1). Assume that f (x) is such that the Legendre 213

expansion (1) and the Fourier expansion of f (cos u) converge uniformly on x ∈ [−1, 1] and 214

u ∈ [0, π], respectively. Then f (cos u), u ∈ [0, π], can be written as follows: 215

f (cos u) =
ϕ0

2
+

+∞

∑
m=1

ϕm cos mu, (18)

the coefficients ϕm (m = 0, 1, 2, . . .) being given by: 216

ϕm =
+∞

∑
n=0

km,n cn (m = 0, 1, 2, . . .), (19)

cn denoting the Legendre coefficients associated with f (x) (see (3)) and 217

km,n =
2
π

∫ π

0
Pn(cos u) cos(mu)du (m, n = 0, 1, 2, . . .). (20)

218

Proof. Since f (x) is compactly supported on x ∈ [−1, 1], the function f (cos u) (u ∈ [0, π]) 219

is a 2π-periodic function of u. Then, the latter can be represented as the Fourier series, 220

f (cos u) =
1

2π

+∞

∑
n=−∞

fn e−inu (u ∈ [0, π]). (21)

In view of the uniform convergence of the two series, from (1) and (21) we have: 221

1
2π

+∞

∑
n=−∞

fn e−inu =
+∞

∑
n=0

cn Pn(cos u), (22)
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so that, multiplying both sides of (22) by eimu and integrating on u ∈ [−π, π], we have: 222

+∞

∑
n=−∞

fn

[
1

2π

∫ π

−π
ei(m−n)u du

]
=

+∞

∑
n=0

cn

∫ π

−π
Pn(cos u) eimu du. (23)

The term in the parenthesis on the l.h.s. of (23) is the integral representation of the Kronecker 223

delta δm,n. Then, from (23) we have: 224

ϕm
.
=

fm

π
=

+∞

∑
n=0

[
2
π

∫ π

0
Pn(cos u) cos(mu)du

]
· cn =

+∞

∑
n=0

km,n cn, (24)

with km,n defined in (20). Finally, expansion (18) follows readily by observing that ϕ−m = 225

ϕm. 226

It is worth remarking that the transformation K .
= {km,n}∞

m,n=0, which connects the 227

Legendre coefficients of f (x) with the Fourier coefficients of f (cos u), is independent of 228

f (x), can be computed with arbitrary precision, and can be regarded as known. In the next 229

proposition we list some known facts on the structure of the matrix K, we give the analytic 230

expression of its entries as smooth function of the indexes (see Ref. [10]), and provide an 231

iterative procedure for computing its elements. 232

Proposition 1. (i) The coefficients km,n (defined in (20)) can be written as follows: 233

km,n =
2
π

∫ 1

−1
Pn(x) Tn(x)

dx√
1− x2

, (25)

Tn(·) denoting the Chebyshev polynomials of the first kind. 234

(ii) The matrix K is upper triangular, and its entries km,n can be computed as follows: 235

km,n =


1
π

[
Λ
( n

2
)]2 for m = 0 and n > m with n even,

2
π Λ

( n−m
2
)
Λ
( n+m

2
)

if 0 < m 6 n and (n + m) is even,

0 otherwise,

(26)

where 236

Λ(z) .
=

Γ(z + 1
2 )

Γ(z + 1)
, (27)

Γ(·) denoting the Euler gamma function. 237

(iii) The following recurrence relation holds for n = 1, 2, . . . and 0 6 m < n: 238

km,n =
(n− 1)(n−m− 1)

n(m + n)
km,n−2 +

m(2n− 1)
n(m + n)

km−1,n−1. (28)

(iv) The diagonal elements can be written as follows: 239

km,m = 2
m

∏
j=1

(
1− 1

2j

)
(m = 1, 2, . . .). (29)

(v) The elements k0,2n of the first row can be written as follows: 240

k0,2n = 2
n

∏
j=1

(
1− 1

2j

)2
(n = 1, 2, . . .). (30)

241
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Proof. Formula (25) follows from definition (20) by making the substitution cos u → x
into the integral and recalling the definition of the Chebyshev polynomials of the first
kind: Tm(x) .

= cos(m arccos x), (m > 0). Representation (ii) of the coefficients km,n is well-
known, and it is given, e.g., by Alpert and Rokhlin in [10](formula (20)) (where the matrix
K is there named M). The recurrence relation (28) follows from representation (26) and
from the following three-term recurrence relations holding, respectively, for the Legendre
polynomials Pn(x) and for Chebyshev polynomials Tn(x):

nPn(x) = (2n− 1)x Pn−1(x)− (n− 1)Pn−2(x) (n = 2, 3, . . .), (31)

P0(x) = 1 and P1(x) = x, (32)

and

Tn(x) = 2xTn−1(x)− Tn−2(x) (n = 2, 3, . . .), (33)

T0(x) = 1 and T1(x) = x. (34)

Finally, point (iv) is obtained by putting n = m into (29), and, similarly, point (v) follows by 242

putting m = 0 into the relation (29). 243

The algorithmic prescription provided by Theorem 2 for the computation of the values 244

of a Legendre expansion is indeed very simple. It consists of a two-step procedure: 245

1. From the N-vector c = (c0, c1, . . . , cN−1)
T of Legendre coefficients compute the N- 246

vector ϕ = (ϕ0, ϕ1, . . . , ϕN−1)
T by ϕ = KN c, where the (known) upper triangular 247

matrix KN = {km,n}N−1
m,n=0 is defined in (20) (see also Proposition 1); 248

2. Compute the cosine transform of length N of the vector ϕ to obtain values of f (cos u) 249

at N selected points of the interval u ∈ [0, π]. 250

The second step of the algorithm presents no difficulties. It is fast since it can be imple- 251

mented by a single FFT of length N, which requires O(N log N) operations. The standard 252

FFT procedure provides the output on a uniform grid {un}N−1
n=0 of [0, π], so that, according 253

to formula (18), the final result consists of the set of function values { f (cos un)}N−1
n=0 at 254

Chebyshev points. 255

The first step of the algorithm presents instead some aspects which deserve a few 256

comments. The crux is that the matrix KN is dense and the direct calculation of the 257

matrix-vector product KN c requires O(N2) operations (precisely, N(N+2)
4 multiplications). 258

Therefore, this step can become a bottleneck for the algorithm when N becomes large. In 259

some practical cases the question is not critical, e.g., when the triangular structure of KN 260

can be exploited on some computer architectures (e.g., vector machines, parallel GPU) 261

to drop significantly the complexity of the computation. Nevertheless, the reduction of 262

the algorithmic complexity remains an issue. Approximate methods are the only tools to 263

handle effectively the fast computation of the matrix-vector product when the matrix is not 264

structured (i.e., when its entries depend only on O(N) parameters). The key to many of 265

these fast methods is renouncing to exactness and accepting the result of the computation 266

within an a-priori fixed level of accuracy. This allows for using approximations of the 267

kernel K which, combined with a suitable subdivision of the matrix into panels, can reduce 268

enormously the cost of computing. Among these algorithms it is worth citing the celebrated 269

Fast Multipole Methods by L. Greengard and V. Rokhlin for the fast evaluation of N-body 270

interactions [12,26,34], which are able to reduce the number of operations to O(N log N) 271

(or even O(N), depending on the matrix structure). 272

The specific problem we are dealing with here, that is, the fast computation of the 273

matrix-vector product KN c (with {km,n}N−1
m,n=0 given by formula (25)) has been solved 274

brilliantly by B. Alpert and V. Rokhlin in Ref. [10]. In that paper the matrix KN is first 275

properly divided in square submatrices, and then the computation associated with each 276

submatrix is performed efficiently approximating each entry of the submatrix by its finite 277
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Chebyshev expansion. The computational cost brought by a ν× ν submatrix is then reduced 278

from order O(ν2) of the naive computation to O(ν log 1
ε ), ε being the fixed precision 279

required in the Chebyshev interpolation of the submatrix entries. This basic building block 280

allows thus constructing an algorithm for the fast computation of the matrix-vector product 281

KN c with O(N log N) order of complexity. 282

3.2. A novel algorithm 283

In this subsection we present a novel algorithm for the inversion of the Legendre 284

transform, which somewhat represents the natural dual algorithm of the one presented in 285

Section 2 for the computation of the forward Legendre transform. In the next theorem we 286

will show that a Legendre expansion can be represented as the Abel-type transform of a 287

suitable Fourier series, the coefficients of the latter being the Legendre coefficients of f (x) 288

(cf. Theorem 1). 289

Theorem 3. Let f (x) be the function given in (1). Assume that f (x) is such that the Legendre 290

expansion (1) converges uniformly on x ∈ [−1, 1]. Then f (cos u), u ∈ [0, π], can be written as 291

follows: 292

f (cos u) =
∫ π

u

χ(t)

[2(cos u− cos t)]
1
2

dt (u ∈ [0, π]), (35)

where the function χ(t) is defined by 293

χ(t) .
=

2
π

∞

∑
n=0

cn sin(n + 1
2 )t (t ∈ [0, π]), (36)

cn denoting the Legendre coefficients associated with f (x) (see (3)). 294

Proof. First we show that the following integral representation holds for the Legendre 295

polynomials Pn(cos u): 296

Pn(cos u) =
2
π

∫ π

u

sin(n + 1
2 )t

[2(cos u− cos t)]
1
2

dt (u ∈ [0, π]). (37)

Formula (37) can be easily obtained from the Dirichlet-Murphy representation (7) by first 297

splitting the interval of integration into two subintervals: [u, 2π − u] = [u, π] ∪ [π, 2π − u], 298

and then changing the integration variable t→ 2π− t in the second integral, i.e., we have: 299

Pn(cos u) = − i
π

(∫ π

u
+
∫ 2π−u

π

)
e i(n+ 1

2 )t

[2(cos u− cos t)]
1
2

dt

= − i
π

{∫ π

u

e i(n+ 1
2 )t

[2(cos u− cos t)]
1
2

dt−
∫ π

u

e−i(n+ 1
2 )t

[2(cos u− cos t)]
1
2

dt

}

=
2
π

∫ π

u

sin(n + 1
2 )t

[2(cos u− cos t)]
1
2

dt.

(38)

Now, we can plug formula (37) into Legendre expansion (1) and then, interchanging sum 300

and integral (which is legitimate in view of the assumption of uniform convergence for 301

expansion (1)), we get: 302

f (cos u) =
2
π

∞

∑
n=0

cn

∫ π

u

sin(n + 1
2 )t

[2(cos u− cos t)]
1
2

dt =
∫ π

u

[
2
π ∑∞

n=0 cn sin(n + 1
2 )t
]

[2(cos u− cos t)]
1
2

dt, (39)

which is indeed formula (35) with χ(t) defined by (36). 303
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Theorem 3 suggests the following algorithm for the computation of the values of a 304

Legendre expansion: 305

1. From the input N-vector c = (c0, c1, . . . , cN−1)
T of Legendre coefficients compute the 306

N-term approximation χN(t) of the function χ(t) (see (36)): 307

χN(t)
.
=

2
π

N−1

∑
n=0

cn sin(n + 1
2 )t. (40)

2. Compute the values of the N-term Legendre expansion 308

fN(cos u) =
N−1

∑
n=0

cn Pn(cos u) (u ∈ [0, π]), (41)

at points un (n = 0, 1, . . .) by the Abel-type integral (see (35)): 309

fN(cos un) =
∫ π

un

χN(t)

[2(cos un − cos t)]
1
2

dt (un ∈ [0, π]). (42)

The first step is fast: the set of values {χN(tn)}N−1
n=0 of the function χN(t) at N equidistant 310

nodes of the interval [0, π] can be calculated in O(N log N) time by a single FFT. 311

For what concerns the second step, it should first be noted that the distribution of the 312

nodes un is not constrained and, therefore, we are free to calculate fN(cos u) at any set of 313

points of the interval u ∈ [0, π] by means of formula (42). 314

The numerical computation of the Abel-type integral in (42), which presents a weak 315

singularity at the left end-point (see also Section 2), is constrained by the fact that the 316

integrand is known only on a uniform grid of the interval t ∈ [0, π] (see Step (1) of the 317

algorithm) and, consequently, only quadrature formulae based on equally spaced knots 318

can be used. 319

In general, the computation of fN(cos un) at N points {un}N−1
n=0 requires O(N2) op- 320

erations since the second step of the algorithm requires O(N) operations when all the 321

N known values of the function χN are used for the computation of the integral in (42). 322

However, it is ought to note that for this computation it is not always necessary to imple- 323

ment a full N-knot quadrature procedure, in particular when N is large. The integral in 324

(42) can usually be computed with an a-priori fixed precision by using much less (than N) 325

quadrature knots, the number of knots depending on the implemented quadrature scheme 326

and on the oscillatory characteristics of the integrand, which, ultimately, depend on the 327

oscillatory characteristics of f (x). An instance of a suitable quadrature scheme is given in 328

Refs. [22,23], where quadratures rules are proposed, based on corrections to the trapezoidal 329

rule, for integrands with end-point singularities of various types, including singularities of 330

the form xγ, |γ| < 1. The convergence rate of these quadrature formulae is proved to be at 331

least κ (that is, the approximation error is of the order of N−κ) where κ denotes the order of 332

the corrected quadrature rule [22,23]. Thus, in these cases and for N sufficiently large, the 333

algorithm we propose for the evaluation of the Legendre expansion becomes convenient 334

in terms of complexity since the number of operations of the second step is a constant 335

independent of N and, for large values of N, the complexity of the entire algorithm will be 336

dominated by the O(N log N) complexity of the FFT used in Step (1). 337

4. Conclusions 338

In summary, we have presented a new and fast, i.e., O(N log N), algorithm for the 339

computation of the coefficients of Legendre expansions. The algorithm is very simple to 340

implement and computes the Legendre coefficients with just a single FFT of an Abel-type 341

transform of the input function. This algorithm calls up a number of natural generalizations 342

to other polynomials systems, for instance, associated Legendre polynomials and the related 343

spherical harmonic expansions. 344
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The dual problem of evaluating a Legendre expansion has been also considered, and 345

two algorithms have been proposed. In the first algorithm the values of the expansion at 346

appropriately chosen points of the interval x ∈ [−1, 1] are computed by simply performing 347

a single (inverse) FFT of a sequence of coefficients, which are obtained by a suitable linear 348

transformation of the given set of N Legendre coefficients. The rapid evaluation of the 349

expansion values requires using approximate methods for the fast calculation of the matrix- 350

vector product. The second algorithm for the calculation of values of Legendre expansions 351

is novel and somehow inverts the logical steps of the algorithm we have proposed for the 352

computation of the Legendre coefficients: the N-term Legendre expansion can be evaluated 353

efficiently (for N sufficiently large) at any point of the interval x ∈ [−1, 1] by computing 354

the Abel-type transform of a suitable Fourier series. 355
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