
Citation: Lastname, F.; Lastname, F.;

Lastname, F. Title. Journal Not Specified

2023, 1, 0. https://doi.org/

Received:

Revised:

Accepted:

Published:

Copyright: © 2023 by the authors.

Submitted to Journal Not Specified

for possible open access publication

under the terms and conditions

of the Creative Commons Attri-

bution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Towards an Effective Service Allocation in Fog Computing
Rayan A. Alsemmeari 1, Mohamed Yehia Dahab 2, Badraddin Alturki1, Abdulaziz A. Alsulami3, Raed Alsini3

1 Department of Information Technology, Faculty of Computing and Information Technology, King Abdulaziz
University, Jeddah 21589, Saudi Arabia; ralsimmeari@kau.edu.sa (R.A.A.); baalturki@kau.edu.sa (B.A.)

2 Department of Computer Science, Faculty of Computing and Information Technology, King Abdulaziz
University, Jeddah 21589, Saudi Arabia; mdahab@kau.edu.sa (M.Y.D.);

3 Department of Information Systems, Faculty of Computing and Information Technology, King Abdulaziz
University, Jeddah 21589, Saudi Arabia; aaalsulami10@kau.edu.sa (A.A.A.); ralsinie@kau.edu.sa (R.A.)

* Correspondence: aaalsulami10@kau.edu.sa (A.A.A.)

Abstract: The Internet of Things (IoT) generates a large volume of data whenever devices are 1

interconnected and exchange data across a network. As a result, there is a range of services with 2

varying needs, for example, capacity requirements, data quality, and latency demands. These services 3

operate on fog computing devices, which are limited in power and bandwidth compared to the cloud. 4

The main challenge is deciding where to implement services on the fog, the cloud, or the hybrid. This 5

paper proposes an efficient allocation technique that pushes processing closer to the network’s fog 6

side. It investigates which devices and services may best allocate while preserving resource usage in 7

the IoT architecture. It also examines the importance of allocating services to devices and optimizing 8

resource use in fog computing. In IoT settings, there is a wide range of services and devices; thus, it is 9

critical to effectively assign the services to the devices. We propose Priority-based Service allocation 10

(PSA) and Sort-based Service Allocation (SSA) techniques, which is used to enable an optimum 11

order to employ devices to perform the various services. The experimental results indicate that our 12

proposed technique minimize the data communication over the network by 82% by allocating most 13

of the services locally in fog. We have maximized the number of distributed services to fog devices 14

by 90% while minimizing the wastage of fog resources. 15

Keywords: IoT, IoMT, fog computing, service allocation, optimisation, Cloud Computing 16

1. Introduction 17

IoT devices generate a large amount of data as they are interconnected [1]. Most 18

current proposals focus on centralized, or cloud architecture [2]. The goal of a centralized 19

architecture is to process data in one place of decision. Consequently, a significant amount 20

of data must be uploaded to the cloud. Heavy data transmission via the network is one 21

of the challenges of this design introduced [3]. This suggests that an alternative design 22

is necessary to address these shortcomings. Since the IoT architecture connects several 23

devices with varied levels of computing, storage capacity, battery life, and Internet access, 24

device constraint awareness is a crucial part of its design. 25

Also, a variety of services will be available, each with a different set of expectations, 26

such as those for capability, quality of data, and latency. These services operate on fog 27

computing devices, which are limited devices in terms of power when compared to the 28

cloud [4], and they demand bandwidth. This implies that fog devices and services have a 29

strong connection. The main challenge is to decide, while considering overall efficiency, 30

whether services should be run using a fog layer, cloud layer, or a combination of fog and 31

cloud in a certain IoT architecture. 32

Furthermore, resource management at the network’s edge [5] is critical for evaluating 33

the advantages of fog computing. Developing an effective fog infrastructure presents a 34

number of issues. Local data storage is an instance when resolving these issues becomes es- 35

sential. The execution of services within distributed architecture becomes more challenging 36

Version May 18, 2023 submitted to Journal Not Specified https://www.mdpi.com/journal/notspecified

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 May 2023 doi:10.20944/preprints202305.1523.v1

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202305.1523.v1
http://creativecommons.org/licenses/by/4.0/

Version May 18, 2023 submitted to Journal Not Specified 2 of 23

as the size and complexity of the IoT system increase, necessitating a method to allocate 37

services to the node(s), resulting in the discovery of the ideal allocation strategy. 38

Computing every incoming raw data on the cloud has a detrimental impact on various 39

elements, including higher network congestion, latency, the time it takes to return actions 40

to a user, energy usage, and privacy [6]. As the Internet of Things expands, so there is a 41

need to address these challenges. IoT devices are restricted devices because of their limited 42

computing power when compared to cloud devices. As a result, huge workloads cannot 43

be processed on fog nodes. In addition, determining the amount of computing load that 44

may be allocated to a fog device is challenging. Furthermore, distributing services among 45

fog devices is difficult since the large number of services in IoT might demand a lot of 46

computing power [7]. As a result, we must understand the nodes’ capabilities and services’ 47

demands. Then we must optimize the process of service allocation to the nodes while 48

keeping optimal resource use. 49

This paper’s overarching goal is to provide an effective allocation technique for pro- 50

cessing data with reduced bandwidth utilization, faster reaction time, optimized resource 51

usage, and identifying an optimum technique to process data on a big scale. One of the 52

goals is to evaluate and test the proposed technique using a simulation. We propose an 53

efficient allocation strategy that pushes processing closer to the network’s fog side. More- 54

over, we investigate which devices and services may be best allocated while preserving 55

resource use in the IoT architecture. In addition, we offer a service allocation technique for 56

allocating services to devices depending on their capabilities. Our main contributions: 57

• Service allocation technique is significant because providing services to devices in the 58

IoT is a difficult process due to the many types of devices and their capabilities. As 59

a result, we propose Priority-based Service allocation (PSA) and Sort-based Service 60

Allocation (SSA) techniques, which utilize a list of every fog device connected to 61

the network. This method makes it possible to use fog devices in the best possible 62

sequence to conduct a wide range of services. As a starting point, we use packing 63

problems as a baseline to help solving the allocation issues in the IoT environment. 64

• We examine the importance of allocating services to devices and optimizing resource 65

use in fog computing to enhance service quality while meeting the optimal resource 66

usage demands of IoMT. As there will be a large variety of services and devices in the 67

IoT settings, it is vital to allocate the services to the devices and effectively optimize 68

resource consumption. 69

• We evaluate the PSA and SSA techniques using a Synthetic dataset that mimics the 70

IoT services and devices. We do a tradeoff analysis to illustrate the effectiveness of the 71

service allocation approach. The results reveal that the data communication over the 72

network decreased by 92% since most services are allocated in fog. Additionally, the 73

latency is reduced by approximately 86%. 74

The remainder of this paper is organized as follows: Section 2 presents related works 75

in the field of service allocation, Section 3 describes the research problem and provides a 76

motivational scenario, Section 4 provides the methodology including the algorithm and 77

the architecture, Section 5 presents the experimental setup and reveals the details of the 78

experiments, Section 6 show the results that obtained from experiments and provide the 79

description of the results, followed by Discussion and evaluation, finally, Section 8 presents 80

our conclusions and then recommendations for future research. 81

2. Related works 82

Fog computing has become an increasingly popular topic of research in recent years, 83

as it offers a number of benefits for various industries [8]. One of the main challenges in 84

fog computing is data distribution and allocation. This literature review will explore the 85

current state of research on service allocation in fog computing and highlight some key 86

references in the field. 87

Analyzing data closer to the fog lead to reduced latency, and increased efficiency, as 88

well as improved security and privacy [9]. Fog computing also enables the deployment of 89

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 May 2023 doi:10.20944/preprints202305.1523.v1

https://doi.org/10.20944/preprints202305.1523.v1

Version May 18, 2023 submitted to Journal Not Specified 3 of 23

computing resources closer to the data source, reducing the need for data transmission over 90

long distances. This can lead to improved performance and reduced energy consumption. 91

In terms of service allocation, research has focused on the use of optimization tech- 92

niques to allocate resources in fog computing environments efficiently. Optimization 93

techniques, such as game theory, packing, linear programming, and scheduling, can also 94

be used to model and solve service allocation problems in fog computing environments. 95

In resource allocation in edge and fog computing, we reviewed the research publica- 96

tions that focus on fog systems. The underlying infrastructure is assumed in these studies 97

to be cloud-fog [10–24]. These options fall under the system elements aspect and have a 98

significant impact on the researchers’ optimization goals. When considering cloud and fog 99

computing, many academics believe that the load is originally stored on the cloud and that 100

the edge system must select where to duplicate and how to divide the user load among 101

them [11]. As a result, they offer a framework for pushing applications that require lots 102

of resources to the fog and reducing average data communication in the edge network 103

across access points by duplicating cloud services to some of the edge servers. Workload 104

distribution over systems that are heterogeneous has to consider the availability of various 105

resources [25]. When spreading the workload between fog and cloud, the objective is to 106

reduce the energy consumption in order to meet service latency needs [26]. When a specific 107

research project does not assume the use of a central cloud but instead addresses multi-fog 108

situations, the issue may arise from the combined optimization of job distribution, virtual 109

machine placement, and resource allocation [12]. The authors in [14] attempt to reduce the 110

load of users by determining user association, joint service placement, and joint allocation. 111

However, most of the publications have the same Optimization objective(s), namely, 112

service completion latency [12,15,16,20–23], numerous research endeavors have been under- 113

taken to address the trade-off between energy consumption and delay in data transmission, 114

for example, [25,26]. In addition to delivering quick service completion to users, researchers 115

aim to cover many users with the edge fog [19,22]. Cost minimization includes several 116

aspects, such as resource usage, quality of service, and its associated revenue. Authors in 117

[27] calculated the total cost of deployment by considering the wireless communication 118

cost and the function placement computation cost, authors in [13,24] for maximizing user 119

allocation numbers in their cost they considered the usage of edge servers to have the 120

quality of service. In addition, the data communication over the network is also considered 121

one of the aspects of the cost. 122

Optimization techniques play a crucial role in the efficient management of resources 123

in fog computing, and IoT environments [28]. One popular optimization technique used in 124

these environments is bin packing. Bin packing is a combinatorial optimization problem 125

[29,30]that involves packing a set of items into a fixed number of bins, with the goal of 126

minimizing the number of bins used or the overall cost of the solution. In fog computing 127

and IoT environments, bin packing can be used to optimize the placement of services and 128

devices, taking into account factors such as network conditions, service requirements, and 129

device characteristics to minimize the overall cost of the solution by reducing the number 130

of fog nodes used. 131

There are many variations of the bin packing problem, including the multi-dimensional 132

bin packing problem [31] and the multi-constraint bin packing problem [32]. These vari- 133

ations can be used to put extra constraints and requirements in fog computing and IoT 134

environments. For example, the multi-dimensional bin packing problem can be used to 135

take into account the different resource requirements of services and devices, and the multi- 136

constraint bin packing problem can be used to take into account additional constraints such 137

as security and privacy. 138

In the literature, there are several works that have proposed the use of bin packing 139

for the optimization of services allocation and task scheduling. Authors in [33] attempt 140

to enhance task scheduling by transforming it into a bin packing problem. Three mod- 141

ified versions of bin packing algorithms based on the minimization of makespan were 142

presented for use in task scheduling (MBPTS). They have used Cloudsim simulator [34] 143

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 May 2023 doi:10.20944/preprints202305.1523.v1

https://doi.org/10.20944/preprints202305.1523.v1

Version May 18, 2023 submitted to Journal Not Specified 4 of 23

open source simulator. When compared to scheduling algorithms such as First Come 144

First serve (FCFS) and Particle Swarm Optimization (PSO), the results of the proposed 145

MBPTS were adequate to optimize balancing results, reducing the waiting for time and 146

resource utilization improvement. Authors in [13] presented the edge user allocation (EUA) 147

problem as a bin packing problem and presented a unique, optimum solution based on the 148

Lexicographic Goal Programming technique. They ran three sets of tests to compare the 149

suggested strategy to two sample baseline approaches. The experimental findings reveal 150

that their strategy performs better than the other two alternatives substantially. In [35], the 151

authors presented a methodology for minimizing resource waste by resource consolidation, 152

which is accomplished by allocating many requests to the same machine. Bin packing is 153

offered to perform semi-online workload consolidation. The suggested approach is built 154

on bins, with each job allocated a bin that is subsequently allocated to a machine. The 155

suggested approach addresses the issue of request reduction in real-time resource assign- 156

ment. The suggested technique obtains information during a brief time frame, allowing 157

for more accurate decisions. Their findings reveal that, during periods of high demand, 158

their optimal policy can result in saving up to 40% more resources than the other policies 159

and is resistant to unpredictability in task lengths. Finally, they demonstrate that even 160

slight increases in the permitted time window result in considerable improvements but 161

that bigger time windows do not always improve resource use for real-world data sets. In 162

summary, bin packing is a powerful optimization technique that can be used to efficiently 163

manage resources in fog computing and IoT environments. By taking into account factors 164

such as network conditions, device capabilities, and additional constraints, bin packing 165

can be used to minimize the number of resources used and reduce the overall cost of the 166

solution. 167

Most of the literature focused on allocation strategies in the cloud, and they did not 168

give good attention to service allocation in fog and IoT environments as these environments 169

have various capability devices ranging from constrained devices and high capability 170

devices. However, still, they are not powerful as the devices in the cloud. This makes the 171

processing of allocation services to devices more challenging. It requires a good allocation 172

strategy while optimizing all the aspects like data communication, energy usage, resource 173

wastage, and response time. Moreover, the proposals in the literature have focused on 174

the aspects of the network conditions and device characteristics, but they did not give 175

attention to the technical requirements of service and task when they are in the allocation 176

process. This is important as the services and tasks have technical requirements similar 177

to the device’s capabilities. We have considered the device capabilities and the technical 178

requirements of the services in our proposal to have a full understanding of the allocation 179

process and to allocate the services to devices efficiently. 180

3. Research Problem and Motivational Scenario 181

As the number of IoT devices linked to the Internet has grown, so has the number of 182

services, and businesses have begun to install additional services for various objectives. 183

Most IoT devices have limited resources such as RAM, CPU, and storage, as well as a 184

lack of battery capacity. Furthermore, each deployed service has a comparable constraint 185

represented regarding similar resources. Additionally, it is crucial to take into account the 186

data processing capacities of IoT devices while implementing and distributing services. As 187

a result, before providing information about services to IoT devices, we must understand 188

their limitations. 189

For example, Magnetic resonance imaging (MRI) and X-ray produce videos and image 190

data in healthcare. The analysis of these data requires more processing capacity than blood 191

test results or electrocardiogram (ECG) results, which are numerical analyses. Other kinds 192

of data analysis, such as video image analysis, needs greater processing power owing to 193

their volume and the methods they employ, suggesting that the capabilities of the fog 194

layer have to be robust enough to conduct these services. As a result, because fog devices 195

have limited processing capability when compared to cloud devices, it is not viable to 196

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 May 2023 doi:10.20944/preprints202305.1523.v1

https://doi.org/10.20944/preprints202305.1523.v1

Version May 18, 2023 submitted to Journal Not Specified 5 of 23

implement these services on them. Due to resource-constrained devices [36] in regard 197

to hardware, service allocation is a crucial part of fog architecture. Moreover, some fog 198

devices are not utilized due to their limited power capabilities to execute a service, implying 199

that certain fog devices are needed for data processing but are disregarded due to power 200

limitations. This can be made worse when billions of services are sent to billions of devices 201

and executed by them. This signifies that there is a waste of network devices, which may 202

cause the computation time to be delayed. The waste of devices occurs when devices are 203

not used owing to restrictions, and they remain in the network unused, losing the available 204

resources. The key problem is determining which service should be allocated to which 205

device in a fog architecture while keeping overall effectiveness in mind. This is comparable 206

to the optimization problems, which can be considered the most suitable for allocation 207

problems. 208

In Figure 1, several fog, IoT, and healthcare types of equipment are present in a 209

hospital’s environment. There are many patients (P1, ..., Pn) in a hospital, and they are 210

checking up on their health status. Furthermore, there are many services (S1, . . . , Sn) 211

that the hospital provides to patients. Some of the patients are there for teeth problems, 212

immunization, lungs, kidney and internal medicine, diabetes, eye issues, brain disorders, 213

pregnancy, and heart issues. In our scenario, we consider these health problems that 214

patients face as a part of services (S). In other words, every user can have one or more than 215

one service, and when a user has a service, the service (Si) will have all the data of the 216

patients and the data of the tests. 217

This means that when a patient registers with the hospital, and the physician requires 218

the patient test, x-ray, MRI, or other diagnosis checks, also, the physician decides whether 219

the patient is a high priority or low priority, then the system will take this process as one 220

service while taking into consideration the priority. These services with priority levels will 221

be allocated to the fog devices (FD1, ..., FDn) for processing, then the fog device starts firstly, 222

processing the high-priority services, then lower-priority services will be processed, and 223

finally, when the fog devices are not capable of processing the services (low priority/high 224

priority), the cloud devices (CD1,..., CDn) will get the services to apply further analysis. 225

For example, if a patient is listed as a high priority, then the system will send the patient’s 226

service to the fog device for processing and getting a fast response. However, if the patient 227

is in low priority and the fog devices are not capable, then the service will be allocated 228

to the cloud. In only one situation, when the fog devices are not capable of processing 229

high-priority services, then they will be allocated to the cloud for processing. 230

Figure 1. Scenario: A patient in a hospital

Assumptions 231

• We assume that the fog layer’s devices have limited RAM capabilities compared to 232

cloud devices. For the experiments, we produced Synthetic data. 233

• There are 800 services with varying technical requirements. Similarly, we gathered 234

data for fog devices with various capabilities. 235

• The services’ technical requirements, the fog devices’ capabilities, and the priorities of 236

services are randomly generated. 237

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 May 2023 doi:10.20944/preprints202305.1523.v1

https://doi.org/10.20944/preprints202305.1523.v1

Version May 18, 2023 submitted to Journal Not Specified 6 of 23

• The technical needs of services and the device capabilities are known. 238

• We do not examine the connection between devices in our experiments since it is 239

outside the scope of our study. 240

Process 241

• The model starts by building synthetic data for both the requirement of services and 242

the capability of devices to prepare them for the allocation model. 243

• The fog devices’ capabilities are predefined, with fog devices being less capable when 244

compared to cloud devices. 245

• The allocation technique is used to allocate between service needs and service priority, 246

and device capabilities. 247

• Depending on the needs of the services, taking into consideration device capabilities 248

and service priority, the services will be allocated across fog or cloud devices. 249

4. Methodology 250

We propose PSA and SSA technique, which is technique of allocating resources based 251

on a list that has all fog devices that are connected to the network. With this method, we 252

may determine the sequence in which different services are carried out by various devices. 253

The actual capacities of devices, such as RAM, are used to arrange the list of devices. As 254

a result, for each physical aspect, all devices capabilities are maintained in a list. The 255

main purpose is to allocate services to devices in an effective and optimized manner. The 256

allocation technique is utilized to allocate all or a part of the services to a specific number of 257

fog devices or to various cloud devices with varied capabilities according to their capability. 258

Furthermore, the allocation approach aims to maximize fog device usage and minimize 259

data communication over the network. The overview of our proposed strategy is presented 260

below with equations. 261

The main goal G is to allocate the services si to fog devices DF as much as possible in 262

an effective manner. We can represent this as: 263

max
DF

N

∑
i=1

si · Ai,F

Where Ai,F is a binary variable that represents whether or not service si is allocated to 264

fog device DF. If Ai,F = 1, then service si is allocated to fog device DF, and if Ai,F = 0, then 265

service si is not allocated to fog device DF. The notation ∑N
i=1 si · Ai,F calculates the total 266

number of services allocated to fog device DF, where N is the total number of services. The 267

objective is to maximize this quantity over all possible allocations to fog devices. 268

The services will be allocated by the fog device to either fog devices DF or cloud 269

devices DC, dependent on the capabilities of the devices and the computing needs of the 270

services. We can represent this as: 271

si →
{

DF(si), if DF can handle si

DC(si), otherwise

The services will then be allocated according to their requirements to the fog devices 272

since this is the focus of our strategy. We can represent this as: 273

si → DF(si)

If the fog devices are unable to manage the load, the remaining services will be 274

allocated to the cloud-based devices. We can represent this as: 275

si → DC(si)

Therefore, to have efficient results we used both fog devices and cloud devices for 276

service allocation. We can represent this by combining the previous two relations as follows: 277

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 May 2023 doi:10.20944/preprints202305.1523.v1

https://doi.org/10.20944/preprints202305.1523.v1

Version May 18, 2023 submitted to Journal Not Specified 7 of 23

DF(si), DC(si)→ G(si)

4.1. Objective function 278

We have a multi-criteria optimization problem. The goal is to maximize the weighted 279

sum of two objective functions, f1(x) for decreasing delay and f2(x) for optimizing the usage 280

of resources. The weighting variables w1 and w2 are utilized to balance the relevance of 281

the two objectives and govern the trade-off between the opposing aims. These could be 282

objectives for performance for our strategy. The function that has to be maximized is as 283

described below: 284

maximize f m(x) = −w1 · f1(x) + w2 · f2(x) (1)

where f1(x) is the objective function for minimizing latency (i.e., the time it takes for a 285

service to be allocated from fog to cloud), f2(x) is the objective function for maximizing 286

fog resource utilization (i.e., using the fog devices as much as possible while minimizing 287

resource wastage), x is a vector of variables, and w1 and w2 are weighting factors used to 288

balance the importance of the two objectives. 289

The minus sign in front of w1 · f1(x) denotes that we are maximizing the negative 290

of f1(x), which is the same as minimizing f1(x). Similarly, we are maximizing f2(x) by 291

multiplying it with a positive weight w2. The goal of integrating two objectives into a 292

single objective function is to discover the optimal trade-off between the two of them. 293

By maximizing fm(x), we mean finding x values that concurrently minimize f1(x) and 294

maximum f2(x), with suitable weightings. 295

Best-Fit 296

We give best-fit code in Algorithm 1 to maximize device usage while delivering 297

services to devices based on their capabilities. We need the requirements for service serReq 298

and device capabilities devCap as input. Then, for each service, we find the smallest possible 299

device capability that may accommodate the current service. 300

Servicepresent = find_min(devCap1, devCap2, . . . , devCapn) 301

If a device is located, assign it to the present service. However, if a device cannot 302

be discovered, discard that service and keep inspecting the other services. In the afore- 303

mentioned method, we do not decompose the services into smaller services, but rather 304

allocate them to one of the devices, either a fog device or a cloud device, according to their 305

capabilities. 306

If a device is found, it should be assigned to the current service. If a device can not be 307

found, disregard it and keep going through the other services. We do not break down the 308

services into smaller ones, but rather assign them to one of the devices, either a fog device 309

or a cloud device, according to their capabilities. 310

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 May 2023 doi:10.20944/preprints202305.1523.v1

https://doi.org/10.20944/preprints202305.1523.v1

Version May 18, 2023 submitted to Journal Not Specified 8 of 23

Algorithm 1 Best Fit

Input: devCap[], serReq[]
Output: allocID[]

for x ← 0 to length(serReq)− 1 do
bestFitID ← −1
for y← 0 to length(devCap)− 1 do

if devCap[y] ≥ serReq[x] then
if bestFitID = −1 then

bestFitID ← y
else if devCap[bestFitID] > devCap[y] then

bestFitID ← y
end if

end if
end for
if bestFitID ̸= −1 then

allocID[x]← bestFitID
devCap[bestFitID]← devCap[bestFitID]− serReq[x]

end if
end for

In other words, services are assigned to available devices according to best-fit criteria. 311

The algorithm receives two parameters: devCap and serReq. Each device’s capacity is 312

represented by devCap, and the service request is represented by serReq. The algorithm 313

begins with two for-loops that are nested. The outer loop begins at 0 and continues to a 314

length of serReq, whereas the inner loop begins at 0 and continues to the length of devCap. 315

The outer loop processes every service request one at a time, while the inner loop checks 316

every device’s capacity to see if it can handle the present service request. 317

The bestFitID is first assigned to -1. If the capacity of the device at index y is more 318

than or equal to the capacity of the service request at index x, the bestFitID is assigned 319

to y within the inner loop. If bestFitID remains -1, it indicates that no device is currently 320

allocated to the service, and so the bestFitID is assigned to y. If bestFitID has recently been 321

assigned, a comparison is done between the present device’s capacity (devCap[y]) and the 322

device assigned previously (devCap[bestFitID]). If the current device’s capacity is smaller 323

than that of the earlier assigned device, the bestFitID is changed to the present device (y). 324

After the inner loop completes, if bestFitID is not equal to -1, the current service 325

is assigned to the device with the best fit (bestFitID). The allocation is documented by 326

updating the allocID list, and the capacity of the device is reduced by the service request. 327

The algorithm will continue to run the outer loop until all of the service requests have 328

been completed and the devices have been allocated to the services. The method returns 329

allocID, which is the index of the device allocated to the service. The algorithm’s result is 330

the services allocated to the devices. 331

Worst-Fit 332

We give the worst fit code in Algorithm 2 for optimizing device usage while assigning 333

services to devices and taking device capabilities into account. We need service require- 334

ments serReq and device capabilities devCap as input. Following that, we select each service 335

and identify the most powerful device capable of supporting the current service. 336

Servicepresent = find_max(devCap1, devCap2, . . . , devCapn) 337

If a device is found, it should be assigned to the current service. If a device cannot be 338

found, disregard it and continue investigating the other services. 339

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 May 2023 doi:10.20944/preprints202305.1523.v1

https://doi.org/10.20944/preprints202305.1523.v1

Version May 18, 2023 submitted to Journal Not Specified 9 of 23

Algorithm 2 Worst Fit

Input: devCap[], serReq[]
Output: allocID[]

for x ← 0 to length(serReq)− 1 do
worstFitID ← −1
for y← 0 to length(devCap)− 1 do

if devCap[y] ≥ serReq[x] then
if worstFitID = −1 then

worstFitID ← y
else if devCap[worstFitID] < devCap[y] then

worstFitID ← y
end if

end if
end for
if worstFitID ̸= −1 then

allocID[x]← worstFitID
devCap[worstFitID]← devCap[worstFitID]− serReq[x]

end if
end for

The method then iterates through each service request in the serReq array. It changes 340

the value of worstFitID to -1 for each service request, indicating that no device has been 341

allocated to the service yet. The method then runs over the devCap device capacities. If a 342

device has adequate capacity to satisfy the current service request, the algorithm determines 343

whether it is the first device discovered with sufficient capacity or if its capacity is more than 344

the current worstFitID. If the device’s capacity is greater, the algorithm assigns worstFitID 345

to the present device’s ID. 346

Following the completion of the inner loop, the algorithm determines whether a device 347

has been allocated to the present service request. If a device is allocated, the algorithm 348

updates the allocID list by distributing the current service request the value of worstFitID. 349

The algorithm also decreases the allocated device’s capacity by the magnitude of the service 350

request. The aforementioned stages are repeated by the algorithm for all service requests. 351

After the outer loop has been completed, the algorithm returns the allocID list, which 352

contains the list of allocated services to devices. 353

First-Fit 354

To maximize device utilization while allocating services to devices based on their 355

capabilities, we give the first fit code in Algorithm 3. We need service requirements serReq 356

and device capabilities devCap as input. Following that, we select every service and find out 357

whether it is compatible with the current service. If the devCap is equal to the serReq, assign 358

and examine for the next serReq. If otherwise, proceed to investigate the next devCap. 359

Algorithm 3 First Fit

Input: devCap, serReq
Output: allocID[]

for x ← 0 to length(serReq)− 1 do
for y← 0 to length(devCap)− 1 do

if devCap[y] ≥ serReq[x] then
allocID[x]← y
devCap[y]← devCap[y]− serReq[x]
break

end if
end for

end for

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 May 2023 doi:10.20944/preprints202305.1523.v1

https://doi.org/10.20944/preprints202305.1523.v1

Version May 18, 2023 submitted to Journal Not Specified 10 of 23

In other words, the method has three inputs: devCap (device capabilities), serReq 360

(service needs), and allocID (allocated IDs). The algorithm’s purpose is to allocate services 361

in serReq to devices in devCap and record the allocation in allocID. 362

The algorithm begins with two nested for-loops, where x is the length of serReq and y is 363

the length of devCap. The method examines if devCap[j] is larger than or equal to serReq[x] 364

in every iteration of the inner loop. If the condition is met, the algorithm assigns the 365

present service (serReq[x]) to the current device (devCap[j]) by changing allocID[x] to y and 366

lowering the current device’s capacity by the service requirement (devCap[j]− = serReq[x]). 367

Finally, the algorithm exits the inner loop after locating a device capable of allocating the 368

current service and proceeds to the following service in the outer loop. This operation is 369

repeated by the algorithm until all services are assigned to devices. 370

Priority-based Service Allocation 371

We present the code of priority-based allocation in Algorithm 4 to select the service 372

allocation process and if the services should be handled in the fog or cloud. We need 373

service requirements serReq and device capabilities devCap as input. The services are 374

then allocated to the fog devices using the f ogDevice(devCap, serReq) method. Following 375

that, one of the algorithms presented previously will be executed. Following that, we will 376

evaluate the capabilities of fog computing in order to allocate services. If no fog devices are 377

available to handle the service, we assign it to cloud devices by calling and forwarding the 378

remainder of the services to cloudDevice(remainingSer). 379

Based on the importance of the service request, the algorithm decides whether to 380

distribute services to fog or cloud devices. The algorithm prioritizes service requests by 381

assigning them to the fog devices initially. The algorithm begins the process by determining 382

the level of priority of the service demand. If the service is high-priority, the algorithm 383

inputs the device capability and service requirement. If fog devices are capable of handling 384

the services, they will be allocated to fog devices. If fog devices are unable to handle the 385

low-priority service, the algorithm will allocate it to cloud devices instead. 386

The algorithm begins by allocating services to fog devices. To distribute services to 387

fog devices, the algorithm employs one of three allocation algorithms: best-fit algorithm 1, 388

worst-fit method 2, or first-fit algorithm 3. The method then iterates across the length of 389

the service request using a for loop. In every iteration, the algorithm determines whether 390

or not the service has already been assigned to a device by determining whether or not 391

the allocID is greater than -1. If the allocID is not equal to -1, it is increased by one. If the 392

allocID is -1, the service request is saved in the remainingSer list. 393

The algorithm checks if the remainingSer list is empty at the end of the for loop. If the 394

remainingSer list is empty, the algorithm has been completed and all services have been 395

allocated to the devices. If the remainingSer list is not empty, the method "cloudDevice" 396

with the remainingSer list as input is called. The "cloudDevice" function is in charge of 397

distributing the remainder of services to cloud devices. The priority-based allocation 398

mechanism routes service requests to either the fog or cloud layers based on their priority. 399

The method assigns services to fog devices utilizing one of three allocation techniques: best 400

fit, worst fit, or first fit, with the remaining services given to the cloud. 401

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 May 2023 doi:10.20944/preprints202305.1523.v1

https://doi.org/10.20944/preprints202305.1523.v1

Version May 18, 2023 submitted to Journal Not Specified 11 of 23

Algorithm 4 Priority-Based Allocation

Require: devCap: list of available devices, serReq: list of service requirements, allocID: list
of allocation IDs

Ensure: allocID
1: remainingSer ← empty list
2: for each service request x in serReq do
3: if priority of serReq[x] is high then
4: Allocate to fog devices with sufficient capacity
5: if allocID[x] ̸= −1 then
6: Increment allocID[x] by 1
7: else
8: Append serReq[x] to remainingSer
9: end if

10: else if priority of serReq[x] is low then
11: Allocate to fog devices with sufficient capacity
12: if allocID[x] ̸= −1 then
13: Increment allocID[x] by 1
14: else
15: if there is sufficient capacity in fog devices then
16: Allocate serReq[x] to a fog device
17: else
18: Append serReq[x] to remainingSer
19: end if
20: end if
21: end if
22: end for
23: if remainingSer is full then
24: Allocate remaining services to cloud devices
25: end if

Sort-based Service Allocation 402

We employed Dual-Pivot Quicksort, an efficient sorting algorithm commonly used 403

in computer science and data processing applications, especially for sorting primitive 404

data types such as int, double, and float. Dual-Pivot Quicksort, according to the authors’ 405

findings [36], is typically quicker and more effective than alternative quicksort algorithms, 406

especially on big datasets. They point out that Dual-Pivot Quicksort works effectively 407

with both randomly ordered and partly sorted data, and that it has a minimal amount of 408

comparisons and swaps. 409

Sorting may be a valuable technique in the context of fog computing for optimizing 410

service allocation and lowering the level of complexity of service distribution for fog 411

devices. Sorting the data prior to it reaching the fog devices makes it easier to deploy 412

resources and maximize the network’s overall performance. We classify the technical needs 413

of services in ascending order, from least to greatest, to assist service allocation techniques 414

for fog devices. We also sort the capabilities of fog devices. This allows for faster and more 415

efficient service allocation. 416

4.2. Architecture 417

Our architecture is organized into three major sections: Sensor layer, Fog Layer, and 418

cloud layer. First, the Sensor layer has IoMT sensors and IoMT devices that send data to 419

the fog layer. Second, the fog layer is responsible for distributing services to devices in an 420

effective and optimized manner by ensuring that all available resources are utilized and 421

serving users by offering accessible services. Last, the cloud layer can manage all of the 422

data and services, as well as provide essential services to the edge and fog layers. 423

The architecture shown in FIGURE 2 incorporates three devices, including IoMT, fog, 424

and cloud, as shown below: 425

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 May 2023 doi:10.20944/preprints202305.1523.v1

https://doi.org/10.20944/preprints202305.1523.v1

Version May 18, 2023 submitted to Journal Not Specified 12 of 23

Figure 2. Fog based IoT Architecture

• The IoMT sensors and devices are located at the sensor layer of the system’s network 426

and are generally integrated into actual daily objects. IoMT sensors are tiny and afford- 427

able, making the process of installing IoMT sensors to things simple and economical. 428

These devices communicate with the Fog devices using wireless communication. The 429

IoT ecosystem should be beneficial in a variety of ways, including energy savings, 430

lower costs, better resource use, and lower data transmission costs via the network. 431

The IoMT sensors and devices produce data for each patient; then these data are fused 432

to the service so that each service will have data about the patient and their medical 433

diagnosis. Then, after fusing all the data into services, the services will be sent to the 434

fog layer. Also, this layer is responsible for sorting and prioritising services to help the 435

fog layer when allocating the services to the devices. 436

• The Fog devices reside adjacent to the sensor layer or within the communication 437

channel and gather services and use a service allocation strategy to allocate the services 438

to the fog devices as the priority is to process the services closer to the data source. 439

However, whenever the fog devices cannot handle the services due to the lack of 440

power of fog devices, then the services will be sent to the cloud using the proposed 441

allocation strategy. Additionally, the fog devices are responsible for allocating services 442

to either fog or cloud devices based on the priority of the service. Clearly, fog devices 443

have very little power and a narrower global data perspective than cloud devices; 444

thus, they can store less data and provide fewer services. 445

• The Cloud devices receive services from fog devices. The computational power and 446

data storage capacity of the cloud is clearly greater than those of fog devices and IoMT 447

devices. Cloud devices can be used for further analysis and storage when required to 448

have the full picture of the data. 449

5. Experimental Setup 450

5.1. Dataset 451

We performed experiments in this study to evaluate the effectiveness of fog computing 452

for service allocation. We utilized a customized dataset comprised of several fog devices 453

configurations and services settings to conduct our research. The dataset used in this study 454

was created in order to simulate an IoMT healthcare system. 455

Fog Devices’ Configurations 456

The fog device configurations utilized in the experiments are detailed in Table 1. The 457

table displays the experiment name, the number of fog devices, and the fog devices’ RAM 458

capacities (in Gigabytes). The experiment name is divided into three sections: (1) the 459

allocation approach (Worst Fit, Best Fit, or First Fit), (2) the configuration types (Low, 460

Medium, or High), and (3) the device capabilities (FDC1 to FDC4). Each method includes 461

three tests of varying configurations (Low, Medium, and High). 462

FDC1, FDC2, FDC3, and FDC4 are the fog devices utilized in the experiment, each 463

with 2 GB, 4 GB, 8 GB, and 16 GB RAM. The low configuration had 50 fog devices totaling 464

100 GB, the medium configuration had 15 FDC1, 15 FDC2, 10 FDC3, and 10 FDC4 fog 465

devices totaling 330 GB, while the high configuration had 50 FDC4 fog devices totaling 800 466

GB. Table 1 displays the experiment name, the number of fog devices, and the fog devices’ 467

RAM capability (in Gigabytes). 468

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 May 2023 doi:10.20944/preprints202305.1523.v1

https://doi.org/10.20944/preprints202305.1523.v1

Version May 18, 2023 submitted to Journal Not Specified 13 of 23

Table 1. The configurations of fog devices in the experiment

Fog devices and capabilities

FDC Setup
FDC1

2 GB RAM

FDC2

4 GB RAM

FDC3

8 GB RAM

FDC4

16 GB RAM
Total FDC (GB)

1 Low 50 Fog devices - - - 100 GB
2 Medium 15 Fog Devices 15 Fog Devices 10 Fog Devices 10 Fog Devices 330 GB
3 High - - - 50 Fog Devices 800 GB

Service Setups 469

The technical demands of the services utilized in the experiment are provided in table 470

2. The services are labeled SR1, SR2, SR3, and SR4, and their RAM needs range from 1 MB 471

to 2 GB. We assumed that the size of the services was the same as the technical requirements 472

of the services in terms of size in GB. We deployed these services in various configurations 473

to assess the performance of fog computing in various circumstances. A total of 800 services 474

with varied technical needs were generated and the generated data has been used in all 475

experiments. The half of the services (400) has high priority and the other half (400) has 476

low priority. To create the dataset, simulations were run with fog devices configured as 477

stated in Table 1 and services with varying technical demands shown in Table 2. The data 478

was gathered and evaluated in the study. Because the dataset was generated at random, it 479

was representative of real-world scenarios and provided various types of data for analysis. 480

The dataset was used to assess the influence of various allocation techniques on system 481

performance and resource consumption in an IoT healthcare system. 482

This arrangement was created to emulate real-world circumstances in which fog 483

devices of diverse capacities may be required to host a variety of services with varying 484

resource requirements. The research intended to evaluate and compare several methods 485

for service allocation in fog computing environments through varying the number and 486

capacity of fog devices as well as the resource needs of the services. Overall, the dataset 487

utilized in the experiments offers a wide range of fog device and service configurations for 488

evaluating fog computing performance. 489

Table 2. The setups of technical requirements of services in the experiments

Services and Technical Requirements
SR1

1MB – 255MB RAM

SR2

256MB – 511MB RAM

SR3

512MB – 1GBRAM

SR4

1GB – 2GB RAM
Total SR (GB)

no. of services 300 services 300 services 100 services 100 services 383 GB

5.2. Experiments 490

We categorized the experiments into three categories: those without priority and sort 491

(standard), those with priority, and those with sort. Experiments with no priority or sort 492

are used to allocate services without consideration for characteristics like priority or sort. 493

The experiments with priority concentrate on the priority considerations when distributing 494

services to fog devices; this indicates that services with a high priority will be delivered 495

to fog devices first, followed by those with low priority. When the fog is lacking, the 496

services will be assigned to cloud devices. The experiments with the sort initially sort the 497

services in the sensor layer from small to big depending on their requirements in order 498

to make the allocation process for fog computing easier and to support the algorithms in 499

distributing the services efficiently. The three categories of experiments are used to evaluate 500

our allocation strategy, so when a setup does not require factors, the first strategy is chosen, 501

or if a setup requires a priority, the experiments with a priority are chosen, as we focus on 502

deploying services to fog devices as much as possible. 503

We performed a total of three main experiments in each category of experiments. In 504

every category (standard, priority, and sort), we use three algorithms with three different 505

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 May 2023 doi:10.20944/preprints202305.1523.v1

https://doi.org/10.20944/preprints202305.1523.v1

Version May 18, 2023 submitted to Journal Not Specified 14 of 23

configurations namely low, medium, and high as mentioned earlier. In total, we conducted 506

nine experiments for each category to discover the ideal configuration for fog devices in 507

order to distribute services as effectively as feasible across fog devices. The configuration of 508

fog devices may differ based on the experiment, as illustrated in Table 1. The first column 509

lists the titles of the experiments, while the second column lists the capabilities of the fog 510

devices. We deployed 800 services using a variety of capabilities (FDC1, FDC2, FDC3, 511

and FDC4) to each of the 50 fog devices in experiments 1 through 9. The broad range of 512

capabilities includes both highly specialized and relatively common equipment (running 513

all capacities). 514

6. Results 515

In this section, we explore the outcomes of several techniques for allocating services to 516

fog or cloud depending on priority, size, and algorithms employed. The outcomes of the 517

allocation approach are shown. As previously stated, the technique would first allocate 518

services to fog nodes based on their capabilities, and then assign services that could not 519

be managed in the fog to cloud devices. We will examine and provide the findings of 520

the three methods namely worst fit, best fit, and first fit. According to Statista [37], the 521

average upload speed utilizing mobile to transmit services from fog to the cloud is 8.5 522

Mbps. However, the average upload speed using fixed broadband to transfer services from 523

fog to cloud is 28.5 Mbps. 524

To begin, we give two charts in Figure 3 and 4 that illustrates the distribution of 525

high and low-priority services to fog or cloud using various methodologies. Standard, 526

Priority, and Sort are the strategies used in our experiments. The allocation is provided 527

separately for high- and low-priority services. Second, in Figure 5a and 5b, we provide a 528

bar chart that indicates the number of unused fog devices in GB after assigning services 529

to fog. Furthermore, the values in the table represent the amount of unused RAM in GB 530

for each algorithm and each level of fog device configuration: low and medium. In the 531

charts, we did not show the results of high level configuration of fog devices as all the 532

services were handled in the fog. Then, in Figure 6a and 6b, we show a chart and a table 533

that provide information about allocating services to fog or cloud using three different 534

strategies: standard, priority, and sort. The services are categorized as high or low priority, 535

and their sizes are indicated in gigabytes (GB). Finally, we talk about data from Table 3, 536

which illustrates how long it takes for services to travel from fog devices to the cloud using 537

different techniques. The findings are reported in terms of the time required to assign 538

services via mobile and broadband networks, and the time is determined based on the 539

upload speed supplied by Statista [37]. 540

Figure 3. The number of allocated services to fog and cloud (Low)

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 May 2023 doi:10.20944/preprints202305.1523.v1

https://doi.org/10.20944/preprints202305.1523.v1

Version May 18, 2023 submitted to Journal Not Specified 15 of 23

Figure 4. The number of allocated services to fog and cloud (Medium)

Figure 3 and 4 display the quantity of high and low-priority services assigned to fog 541

or cloud using various techniques, including Standard, Priority, and Sort. The allocation 542

is displayed separately for high-priority and low-priority services. The standard refers 543

to a situation in which there is no differentiation between high and low-priority services. 544

Priority denotes a situation in which high-priority services take precedence over low- 545

priority services. Sort denotes a scenario in which services are first sorted and then assigned 546

using the Best Fit, Worst Fit, or First Fit algorithm. According to the findings, the allocation 547

approach has a substantial influence on the number of services provided to fog and cloud 548

environments. In general, the Priority method results in more high-priority services being 549

assigned to the fog environment and more low-priority services being assigned to the 550

cloud environment. When it comes to sorting services, the allocation approach has less 551

of an influence on the number of services distributed to the fog and cloud environments. 552

However, the allocation algorithm utilized does make a difference. For example, the Worst 553

Fit algorithm allocates more services to the fog environment, but the First Fit algorithm 554

allocates more services to the cloud environment. 555

For each combination of distribution strategy and service priority, the chart illustrates 556

the number of distributed high and low-priority services. The charts show that the number 557

of high-priority services allocated to the fog is lower than in the cloud for the Standard 558

strategy, while the converse is true for low-priority services. We did not include the results 559

of high-capacity fog devices in the table since their exceptional capabilities allowed them 560

to manage all services in the fog as mentioned earlier. It is clear from the charts that all 561

algorithms are doing well in terms of allocating services to fog and cloud, but as our 562

intention was to push the processing near the data source therefore priority strategy can be 563

a good choice. Among the three algorithms, we can realize that the best can be selected as 564

the best in most cases. 565

Overall, our findings imply that careful evaluation of allocation methods and algo- 566

rithms could be useful in optimizing service allocation in fog and cloud situations. A 567

Priority approach, in particular, that prioritizes high-priority services, can assist guarantee 568

that important services are allocated to the fog environment, where they can be handled 569

fast and efficiently. whereas the standard and sort strategies appear inefficient since they 570

allocate services without regard for priority. 571

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 May 2023 doi:10.20944/preprints202305.1523.v1

https://doi.org/10.20944/preprints202305.1523.v1

Version May 18, 2023 submitted to Journal Not Specified 16 of 23

(a) Low Configuration (b) Medium Configuration
Figure 5. Wastage of Fog Devices

The bar charts in Figure 5a and 5b illustrate the number of unused fog devices in GB 572

after assigning services to fog. The values in the table indicate the quantity of unused RAM 573

in GB for each algorithm and fog device configuration: low, medium, and high. Worst Fit 574

Low: This allocation approach directs resources to the fog gadget that produces the most 575

waste. According to the chart, this technique wastes 2 GB for devices with low capacity 576

within the standard strategy. When priority is set, the wasted space is reduced to 1.5 GB. 577

Worst Fit Medium: This allocation approach produces the largest waste among medium 578

and low configuration devices. According to the charts, this technique wastes 7 GB for 579

devices in standard and 6 GB with priority. However, when medium configuration devices 580

are sorted, the strategy wastes 42 GB. Best Fit: This allocation strategy allocates resources 581

to the fog device with the least wastage. The table shows that this strategy results in 0 582

GB wastage for devices in all strategies. First Fit Low: This allocation strategy allocates 583

resources to the first available fog device. The table shows that this strategy results in 1.5 584

GB wastage for devices with low capacity within the standard and 6 GB within the sort 585

strategy, but 1 GB within the priority strategy. First Fit Medium: This allocation strategy 586

allocates resources to the first available fog device among devices with medium capacity. 587

The table shows that this strategy results in 2 GB wastage for devices within the standard 588

and 1.5 GB wastage when priority is given, however, the wastage increases to 6 GB when 589

the sort strategy is used. 590

Overall, we did not reveal the high-config devices since there was no waste because 591

the fog devices were in high capabilities, which allocated all services to the fog devices. 592

Finally, the table shows that the Worst Fit strategy results in the most waste for both low 593

and medium-capacity devices, especially when the sort is provided. For all circumstances, 594

the Best Fit technique results in the least amount of waste. The First Fit approach stands 595

somewhere between the other two. 596

(a) Low Configuration (b) Medium Configuration
Figure 6. RAM of Allocated Services

The charts in Figure 6a and 6b show the RAM size of services allocated to fog or 597

cloud based on three alternative strategies: standard, priority, and sort. The services are 598

classified as high or low priority, and their volumes are measured in gigabytes (GB). The 599

low-configuration devices have a total of 100 GB and the medium-configuration devices 600

have a total of 330 GB as mentioned earlier. This indicates that in each configuration of low, 601

medium, and high experiments, there is a maximum size of RAM to handle services. For 602

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 May 2023 doi:10.20944/preprints202305.1523.v1

https://doi.org/10.20944/preprints202305.1523.v1

Version May 18, 2023 submitted to Journal Not Specified 17 of 23

example, the worst fit low experiment has allocated 98 GB of services to fog devices those 603

size out of 100 GB, the remaining 2 GB is the wastage which is discussed earlier. It is clear 604

that the strategy used most of the fog devices’ RAM, but most of the services traveled to the 605

cloud because of the limited capabilities of the fog devices. It is clear that the best fit low 606

and medium strategies are the best among others in terms of the usage of fog devices and 607

allocating all services that can fit the fog devices without wastage. In the low configuration, 608

the sort strategy stands better than the standard strategy in worst fit and best fit, but worse 609

in sort. In the medium configuration, the sort strategy has resulted better than the standard 610

in all algorithms. Overall, the table provides valuable information about the allocation 611

of services to the fog or cloud and highlights the importance of considering service size, 612

algorithm, and strategy when making these allocation decisions. 613

Table 3. Time of service allocation (fog to the cloud)

Without Priority Sort
Mobile Broadband Mobile Broadband Mobile Broadband

Worst Fit Low 3d 7h 45m 23h 45m 3d 7h 23h 30m 3d 7h 23h 30m
Worst Fit Medium 15h 4h 30m 15 h 4h 30m 1 day 7h 20m

Worst Fit High 0 0 0 0 0 0
Best Fit Low 3d 6h 23h 25m 3d 6h 23h 15m 3d 7h 23h 30m

Best Fit Medium 12 h 3h 45m 12 h 3h 45m 15h 43m 4h 40m
Best Fit High 0 0 0 0 0 0
First Fit Low 3d 7h 23h 30m 3d 7h 23h 30m 3d 8h 1d

First Fit Medium 13 h 4h 13 h 4h 16 h 4h 45m
First Fit High 0 0 0 0 0 0

Table 3 illustrates how long it takes for services to travel from fog devices to the cloud 614

using various techniques. Standard, Priority, and Sort were the algorithms employed. 615

The findings are reported in terms of the amount of time required to distribute services 616

using mobile and broadband networks. The data clearly shows that the time required 617

to distribute services to the cloud is often longer for the mobile network than for the 618

broadband network. This is most likely due to the fact that the mobile network has more 619

constraints and requirements for service distribution than the broadband network. In terms 620

of the various algorithms utilized, we can observe that the Best Fit algorithm outperformed 621

the others for both mobile and broadband networks. For the mobile network, the Worst 622

Fit algorithm performed the worst, but it was comparable with the other methods for the 623

broadband network. The First Fit method performed effectively in the broadband network 624

but not so well on the mobile network. It is clear that the high configuration setup of fog 625

devices has no cost over the network as all the services have been handled locally. Overall, 626

the table findings indicate that the Best Fit algorithm may be the most effective method for 627

distributing services from fog to the cloud. However, the particular method used may be 628

determined by the network’s specific requirements and constraints. 629

6.1. Total services allocated to the cloud 630

In this experiment, we allocated all services to the cloud in order to compare our 631

techniques against allocation without a strategy and to investigate architecture-based 632

allocation. Table 4 clearly shows that "No of Services" signifies 0 services out of 800 services 633

assigned to fog devices and 800 services out of 800 services given to cloud computing. In 634

other words, the fog devices receive 0% of the services, while the cloud devices receive 100% 635

of the services. The column "Allocated Services in GB" in the table indicates that 0 services 636

size in GB and 0 GB are allocated to the fog and 383 GB are allocated to the cloud devices. 637

The time of service allocation is then represented as "Time of service allocation (mobile)," 638

which indicates that the amount of time it takes for a mobile network to allocate the services 639

to fog is obviously 0 because there are no costs associated with data communication over 640

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 May 2023 doi:10.20944/preprints202305.1523.v1

https://doi.org/10.20944/preprints202305.1523.v1

Version May 18, 2023 submitted to Journal Not Specified 18 of 23

the network because it is located locally, but the duration it takes to allocate the services 641

(383 GB) from fog to cloud is 4 days, 11 hours, and 0 minutes using the mobile network. 642

However, "Time of service allocation (broadband)" means that the period of time it takes to 643

allocate services from fog to the cloud using the fixed broadband network is 1 day and an 644

hour, and 40 minutes. 645

Table 4. Total services allocation

Total services in GB To Fog To Cloud Total
No of Services 0 800 800
Percentage 0 100% 100%
allocated Services in GB 0 383 GB 383 GB
Time of allocating services (mobile) 0 4d 11h 4d 11h
Time of allocating services (broadband) 0 1d 8h 1d 8h

We have conducted three experiments using methods, namely best fit, first fit, and 646

worst fit. Based on the results, the worst fit results were lower than the best fit and first fit, 647

it is clear that the data communication over the network is reduced with all strategies when 648

compared to total service allocation to the cloud, and most of the services are allocated 649

to the fog devices. Since reducing data transfer across the network was our primary goal, 650

it fits with our proposed technique. Furthermore, the second aim was to use the priority 651

aspect to allocate the services as much as possible to the fog devices, and based on the 652

results, this aim was achieved as 90% or more of the services have been allocated to the fog 653

devices. 654

We ran a total of twenty-seven experiments utilizing the best fit, first fit, and worst fit 655

methodologies. According to the results, the worst fit and first fit results were lower than 656

the best fit, indicating that data traffic via the network is decreased with all methods when 657

compared to the entire service allocation to the cloud, with the fog devices receiving the 658

majority of the services. It fits with our proposed technique because reducing data transfer 659

across the network was our primary goal. Furthermore, the second goal was to use the 660

priority aspect to allocate as many high-priority services as possible to fog devices, and 661

based on the results, this goal was achieved because 90% or more of the priority services 662

were allocated. 663

We have compared the performance of the algorithms namely best fit, worst fit, and 664

first fit while allocating services to fog devices in the variable capability of fog devices 665

and variable service requirements. The focus was on the number of services allocated to 666

fog, resource usage, and data communication over the network. The First Fit Algorithm 667

allocates services to the first fog device which can handle them. It may, however, produce 668

some wastage, lowering fog device usage. The use of fog devices was approximately 90%. 669

The best Fit Algorithm allocates services to the smallest fog device that can handle them. 670

This algorithm tries to reduce waste and maximize fog device use. The wastage was found 671

to be the lowest. The use of fog devices in the priority strategy was 100% and in other 672

strategies was more than 90%. The worst Fit Algorithm allocates services to the largest 673

available fog device that can handle them. However, this algorithm leads to increased 674

wastage. The wastage was found to be the highest. Additionally, the fog device usage was 675

better than the first fit, and better than the best fit in some of the experiments, but generally 676

worse than the best fit. In terms of waste, the Best Fit Algorithm outperforms the first fit 677

and worst fit, attaining the lowest wastage. The Worst Fit Algorithm generated the most 678

wastage. As a result, the Best Fit Algorithm is regarded as the most advantageous of the 679

three for the variable capability of fog devices and variable services requirements scheme 680

since it reduces waste and maximizes fog device use. Based on our knowledge that the 681

worst fit can lead to high wastage (fragmentation) and the best fit can be best in terms of 682

wastage. However, in some cases, the worst fit can increase the usage of resources [38]. 683

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 May 2023 doi:10.20944/preprints202305.1523.v1

https://doi.org/10.20944/preprints202305.1523.v1

Version May 18, 2023 submitted to Journal Not Specified 19 of 23

7. Discussion and Evaluation: 684

We used two commonly used evaluation measures to assess the effectiveness of our 685

model: the allocation success rate (ASR) and the average resource usage (ARU). The ASR 686

calculates the number of services successfully assigned to fog devices/cloud devices. The 687

ARU calculates the percentage of RAM used by all fog devices/cloud servers. To illustrate 688

the robustness of our model, we did sensitivity analysis by adjusting various factors such as 689

dataset size, technological requirement distribution, and the number of fog devices/cloud 690

servers. The findings indicate that our model is not overfitting to a specific dataset or 691

set of parameters. We compared our strategies including standard, priority, and sort 692

performance while considering commonly used algorithms in the literature: the best-fit, 693

first-fit and worst-fit algorithms. Our model performs well in terms of ASR and ARU, 694

according to the results. We used various data groups randomly generated with different 695

distributions and sizes to demonstrate the validity of our model. The findings reveal that 696

our proposal performs well with the given setups and distributions. Our methodology 697

proposes a realistic and efficient solution to the service allocation problem in fog computing 698

applications. 699

Based on the results, we observed several observations as follows 700

The number of services allocated to fog devices 701

As previously said, our primary aim in fog computing is to allocate services as close to 702

the data as possible while simultaneously maximizing resource consumption, network data 703

transfer, and balancing service allocation. The amount of services allocated is influenced by 704

a variety of factors, including strategy, capabilities, and service requirements. According 705

to the findings, the allocation method and algorithm have a considerable influence on the 706

number of services assigned to the fog and cloud environments. The Priority approach allo- 707

cates more high-priority services to the fog environment and more low-priority services to 708

the cloud environment. The allocation algorithm utilized also influences service allocation, 709

with the Worst Fit algorithm allocating can allocate more services to the fog environment 710

and the First Fit algorithm allocating fewer services to the fog environment, but the worst 711

fit can result in more wastage. The results also demonstrate that allocating services without 712

regard for priority or employing a sorting technique without regard for priority is inefficient. 713

According to the study, a thorough evaluation of the allocation method and algorithm is 714

required to maximize service allocation in fog and cloud situations. 715

716

Resources usage 717

The results shown in Figure 5 indicate that the strategy used for distributing services 718

to fog devices can have a considerable influence on the amount of unused RAM in the 719

fog. The Best Fit method produces the least waste in all circumstances, whereas the Worst 720

Fit strategy produces the most waste, especially when priority is provided. In terms of 721

waste, the First Fit technique lies in between the other two. The chart also demonstrates 722

that high-config devices did not waste any resources because they could handle all of 723

the services assigned to them. These findings imply that careful study of the allocation 724

approach and algorithm can aid in optimizing the use of fog resources and minimizing 725

wastage. 726

727

Data communication over the network 728

The results clearly indicate that most of our experiments could result in low data 729

communication over the network compared to total services allocated to the cloud without 730

strategies 6.1 which is the traditional way of allocating services without considering the 731

power of fog and strategies. The variations of fog device capabilities used in our research 732

can help us choose a combination that depends on a number of factors, such as the technical 733

requirements of services as well as the RAM requirements of fog nodes. To decide which 734

allocation technique is optimal for allocating services to fog or cloud devices, we may 735

consider the service requirements and device capabilities. The results show the amount 736

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 May 2023 doi:10.20944/preprints202305.1523.v1

https://doi.org/10.20944/preprints202305.1523.v1

Version May 18, 2023 submitted to Journal Not Specified 20 of 23

of time taken to allocate mobile and broadband services to different devices using three 737

different algorithms: Worst Fit, Best Fit, and First Fit. The values in the table represent the 738

time taken in hours and minutes for each algorithm and device configuration: low, medium, 739

and high capability. The findings imply that Best Fit is the most efficient algorithm, as 740

it takes the least amount of time to allocate services for all device types. The Worst Fit 741

algorithm results in the longest allocation time for low and medium-capacity devices, while 742

the First Fit algorithm falls somewhere in between the other two algorithms. Additionally, 743

the high-capacity devices did not have any allocation time as all services were allocated to 744

them. It is clear that the data communication over the network is reduced with all strategies, 745

and most of the services are allocated to fog devices. Since reducing data transfer across the 746

network was our primary goal, it fits with our proposed strategy. Furthermore, the second 747

aim was to use the priority aspect to allocate the high-priority services as much as possible 748

near the fog devices, and based on the results, this aim was achieved as 90% or more of the 749

services have been allocated to the fog devices and the data communication is reduced by 750

82% compared to 6.1. 751

8. Conclusion 752

In conclusion, this paper developed an efficient service allocation strategy priority 753

based service allocation (PSA) and sort based service allocation (SSA) with lower bandwidth 754

consumption, faster response times, improved resource usage, and the identification of the 755

best method for processing data at a large scale. As a result, we determined the capabilities 756

of fog and IoT devices, as well as the technical needs of the services, in order to efficiently 757

allocate the services to the devices. our proposed service allocation strategy was significant 758

because providing services to devices in the IoT is a difficult process due to the many types 759

of devices and their capabilities. Then, We proposed our allocation method, which utilizes 760

a list of every fog device in the network. We looked at how fog computing may improve 761

service quality while fulfilling the expectations of fog applications for optimal resource 762

consumption. This included the necessity of allocating services to devices and optimizing 763

resource use. Our findings demonstrated that our approach was suitable for the given 764

setting and dataset. Our results showed that by distributing most services locally in fog, 765

we reduced data transmission over the network by 82%, and we maximized the number of 766

distributed services to fog devices by 90% while minimizing the wastage of fog resources. 767

9. Future Work 768

Our future work includes the following open challenges: 769

• Privacy: Privacy: Fog nodes acquire a considerable quantity of personal information 770

from fog applications such as smart healthcare. Despite the fact that some researchers 771

utilize privacy-preserving techniques on fog nodes [39], based on our knowledge that 772

no standard authentication solution exists. 773

• Security is a serious concern because fog devices lack resources and are positioned in 774

risky environments, leaving them open to attack. As a result, designing a lightweight, 775

quick, and trustworthy safety algorithm remains a tough task. Only a few researchers 776

are currently focusing on fog computing security challenges [39], and there are several 777

outstanding issues such as dynamic authentication, access controls, external threats, 778

and intrusion detection. 779

• Energy usage: As fog devices have limited battery capacity, energy awareness remains 780

a problem that remains in fog computing. Some researchers are concerned with opti- 781

mizing energy use, [39], while others are worried about the proper use of bandwidth 782

in data transfer, battery waste, and battery-draining issues. 783

Security is a serious concern because fog devices lack resources and are positioned 784

in risky environments, leaving them open to attack. As a result, designing a lightweight, 785

quick, and trustworthy safety algorithm remains a tough task. Only a few researchers 786

are currently focusing on fog computing security challenges [39], and there are several 787

outstanding issues such as dynamic authentication, access controls, external threats, and 788

intrusion detection. 789

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 May 2023 doi:10.20944/preprints202305.1523.v1

https://doi.org/10.20944/preprints202305.1523.v1

Version May 18, 2023 submitted to Journal Not Specified 21 of 23

Supplementary Materials: Not applicable. 790

791

Author Contributions: Conceptualization, A.A.A. and R.A.A.; methodology, A.A.A., B.A., 792

R.A. and R.A.A.; software, A.A.A. validation, M.Y.D.and B.A.; formal analysis, R.A.A.; 793

investigation, B.A. and R.A.; resources, B.A.; data curation, A.A.A.; writing—original draft 794

preparation, A.A.A. and R.A.A.; writing—review and editing, A.A.A, R.A.A., B.A.and 795

M.Y.D.; visualization, R.A.A.; supervision, M.Y.D., and A.A.A.; project administration, 796

A.A.A.; funding acquisition, R.A., A.A.A. and R.A.A.; All authors have read and agreed to 797

the published version of the manuscript. 798

799

Funding: This project was funded by the Deanship of Scientific Research (DSR) at King 800

Abdulaziz University, Jeddah, under grant no. IFPIP: 1033-611-1443. The authors, 801

therefore, acknowledge with thanks DSR for technical and financial support. 802

803

Conflicts of Interest: The authors declare no conflict of interest. 804

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 May 2023 doi:10.20944/preprints202305.1523.v1

https://doi.org/10.20944/preprints202305.1523.v1

Version May 18, 2023 submitted to Journal Not Specified 22 of 23

References 805

1. Betty Jane, J.; Ganesh, E. Big data and internet of things for smart data analytics using machine 806

learning techniques. In Proceedings of the International conference on computer networks, big 807

data and IoT. Springer, 2020, pp. 213–223. 808

2. Wang, N.; Varghese, B.; Matthaiou, M.; Nikolopoulos, D.S. ENORM: A framework for edge 809

node resource management. IEEE transactions on services computing 2017, 13, 1086–1099. 810

3. de Moura Costa, H.J.; da Costa, C.A.; da Rosa Righi, R.; Antunes, R.S. Fog computing in health: 811

A systematic literature review. Health and Technology 2020, 10, 1025–1044. 812

4. Pisani, F.; de Oliveira, F.M.C.; Gama, E.S.; Immich, R.; Bittencourt, L.F.; Borin, E. Fog computing 813

on constrained devices: Paving the way for the future iot. Advances in Edge Computing: Massive 814

Parallel Processing and Applications 2020, 35, 22–60. 815

5. Hong, C.H.; Varghese, B. Resource management in fog/edge computing: a survey on architec- 816

tures, infrastructure, and algorithms. ACM Computing Surveys (CSUR) 2019, 52, 1–37. 817

6. Ortiz, G.; Zouai, M.; Kazar, O.; Garcia-de Prado, A.; Boubeta-Puig, J. Atmosphere: Context 818

and situational-aware collaborative IoT architecture for edge-fog-cloud computing. Computer 819

Standards & Interfaces 2022, 79, 103550. 820

7. Alturki, B.; Reiff-Marganiec, S.; Perera, C.; De, S. Exploring the effectiveness of service decompo- 821

sition in fog computing architecture for the Internet of Things. IEEE Transactions on Sustainable 822

Computing 2019. 823

8. Puliafito, C.; Mingozzi, E.; Longo, F.; Puliafito, A.; Rana, O. Fog computing for the internet of 824

things: A survey. ACM Transactions on Internet Technology (TOIT) 2019, 19, 1–41. 825

9. Laroui, M.; Nour, B.; Moungla, H.; Cherif, M.A.; Afifi, H.; Guizani, M. Edge and fog computing 826

for IoT: A survey on current research activities & future directions. Computer Communications 827

2021, 180, 210–231. 828

10. Mahmud, R.; Toosi, A.N.; Ramamohanarao, K.; Buyya, R. Context-aware placement of industry 829

4.0 applications in fog computing environments. IEEE Transactions on Industrial Informatics 2019, 830

16, 7004–7013. 831

11. Maia, A.M.; Ghamri-Doudane, Y.; Vieira, D.; de Castro, M.F. A multi-objective service placement 832

and load distribution in edge computing. In Proceedings of the 2019 IEEE global communica- 833

tions conference (GLOBECOM). IEEE, 2019, pp. 1–7. 834

12. Behravesh, R.; Coronado, E.; Harutyunyan, D.; Riggio, R. Joint user association and VNF 835

placement for latency sensitive applications in 5G networks. In Proceedings of the 2019 IEEE 836

8th International Conference on Cloud Networking (CloudNet). IEEE, 2019, pp. 1–7. 837

13. Lai, P.; He, Q.; Abdelrazek, M.; Chen, F.; Hosking, J.; Grundy, J.; Yang, Y. Optimal edge user 838

allocation in edge computing with variable sized vector bin packing. In Proceedings of the 839

Service-Oriented Computing: 16th International Conference, ICSOC 2018, Hangzhou, China, 840

November 12-15, 2018, Proceedings 16. Springer, 2018, pp. 230–245. 841

14. Yu, N.; Xie, Q.; Wang, Q.; Du, H.; Huang, H.; Jia, X. Collaborative service placement for 842

mobile edge computing applications. In Proceedings of the 2018 IEEE Global Communications 843

Conference (GLOBECOM). IEEE, 2018, pp. 1–6. 844

15. Moubayed, A.; Shami, A.; Heidari, P.; Larabi, A.; Brunner, R. Edge-enabled V2X service 845

placement for intelligent transportation systems. IEEE Transactions on Mobile Computing 2020, 846

20, 1380–1392. 847

16. Maiti, P.; Shukla, J.; Sahoo, B.; Turuk, A.K. QoS-aware fog nodes placement. In Proceedings of 848

the 2018 4th International Conference on Recent Advances in Information Technology (RAIT). 849

IEEE, 2018, pp. 1–6. 850

17. Huang, M.; Liang, W.; Shen, X.; Ma, Y.; Kan, H. Reliability-aware virtualized network function 851

services provisioning in mobile edge computing. IEEE Transactions on Mobile Computing 2019, 852

19, 2699–2713. 853

18. Ma, H.; Zhou, Z.; Chen, X. Leveraging the power of prediction: Predictive service placement 854

for latency-sensitive mobile edge computing. IEEE Transactions on Wireless Communications 2020, 855

19, 6454–6468. 856

19. Peng, Q.; Xia, Y.; Feng, Z.; Lee, J.; Wu, C.; Luo, X.; Zheng, W.; Pang, S.; Liu, H.; Qin, Y.; et al. 857

Mobility-aware and migration-enabled online edge user allocation in mobile edge computing. 858

In Proceedings of the 2019 IEEE International Conference on Web Services (ICWS). IEEE, 2019, 859

pp. 91–98. 860

20. Toka, L.; Haja, D.; Kőrösi, A.; Sonkoly, B. Resource provisioning for highly reliable and ultra- 861

responsive edge applications. In Proceedings of the 2019 IEEE 8th International conference on 862

cloud networking (CloudNet). IEEE, 2019, pp. 1–6. 863

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 May 2023 doi:10.20944/preprints202305.1523.v1

https://doi.org/10.20944/preprints202305.1523.v1

Version May 18, 2023 submitted to Journal Not Specified 23 of 23

21. Mseddi, A.; Jaafar, W.; Elbiaze, H.; Ajib, W. Intelligent resource allocation in dynamic fog 864

computing environments. In Proceedings of the 2019 IEEE 8th International Conference on 865

Cloud Networking (CloudNet). IEEE, 2019, pp. 1–7. 866

22. Badri, H.; Bahreini, T.; Grosu, D.; Yang, K. Energy-aware application placement in mobile edge 867

computing: A stochastic optimization approach. IEEE Transactions on Parallel and Distributed 868

Systems 2019, 31, 909–922. 869

23. Haja, D.; Szalay, M.; Sonkoly, B.; Pongracz, G.; Toka, L. Sharpening kubernetes for the edge. In 870

Proceedings of the Proceedings of the ACM SIGCOMM 2019 Conference Posters and Demos, 871

2019, pp. 136–137. 872

24. Mahmud, R.; Srirama, S.N.; Ramamohanarao, K.; Buyya, R. Profit-aware application placement 873

for integrated fog–cloud computing environments. Journal of Parallel and Distributed Computing 874

2020, 135, 177–190. 875

25. Deng, R.; Lu, R.; Lai, C.; Luan, T.H. Towards power consumption-delay tradeoff by workload 876

allocation in cloud-fog computing. In Proceedings of the 2015 IEEE international conference on 877

communications (ICC). IEEE, 2015, pp. 3909–3914. 878

26. Deng, R.; Lu, R.; Lai, C.; Luan, T.H.; Liang, H. Optimal workload allocation in fog-cloud 879

computing toward balanced delay and power consumption. IEEE internet of things journal 2016, 880

3, 1171–1181. 881

27. Gu, L.; Zeng, D.; Guo, S.; Barnawi, A.; Xiang, Y. Cost efficient resource management in fog 882

computing supported medical cyber-physical system. IEEE Transactions on Emerging Topics in 883

Computing 2015, 5, 108–119. 884

28. Kashani, M.H.; Ahmadzadeh, A.; Mahdipour, E. Load balancing mechanisms in fog computing: 885

A systematic review. arXiv preprint arXiv:2011.14706 2020. 886

29. Korte, B.H.; Vygen, J.; Korte, B.; Vygen, J. Combinatorial optimization; Vol. 1, Springer, 2011. 887

30. man Jr, E.C.; Garey, M.; Johnson, D. Approximation algorithms for bin packing: A survey. 888

31. Laabadi, S.; Naimi, M.; El Amri, H.; Achchab, B. A binary crow search algorithm for solving 889

two-dimensional bin packing problem with fixed orientation. Procedia Computer Science 2020, 890

167, 809–818. 891

32. Anand, S.; Guericke, S. A bin packing problem with mixing constraints for containerizing 892

items for logistics service providers. In Proceedings of the Computational Logistics: 11th 893

International Conference, ICCL 2020, Enschede, The Netherlands, September 28–30, 2020, 894

Proceedings. Springer, 2020, pp. 342–355. 895

33. Chraibi, A.; Alla, S.B.; Ezzati, A. An efficient cloudlet scheduling via bin packing in cloud 896

computing. International Journal of Electrical and Computer Engineering 2022, 12, 3226. 897

34. Goyal, T.; Singh, A.; Agrawal, A. Cloudsim: simulator for cloud computing infrastructure and 898

modeling. Procedia Engineering 2012, 38, 3566–3572. 899

35. Armant, V.; De Cauwer, M.; Brown, K.N.; O’Sullivan, B. Semi-online task assignment policies 900

for workload consolidation in cloud computing systems. Future Generation Computer Systems 901

2018, 82, 89–103. 902

36. Aftab, A.; Ali, M.A.; Ghaffar, A.; Shah, A.U.R.; Ishfaq, H.M.; Shujaat, M. Review on Performance 903

of Quick Sort Algorithm. International Journal of Computer Science and Information Security (IJCSIS) 904

2021, 19. 905

37. Taylor, P. Statista Average Global Broadband Download amp; Upload Speed 2022, 2023. 906

38. Mandal, A.K.; Baruah, D.K.; Medak, J.; Gogoi, N.; Gogoi, P. CRITICAL SCRUTINYOF MEMORY 907

ALLOCATION ALGORITHMS: FIRST FIT, BEST FIT AND WORST FIT. Turkish Journal of 908

Computer and Mathematics Education (TURCOMAT) 2020, 11, 2185–2194. 909

39. Das, R.; Inuwa, M.M. A review on fog computing: issues, characteristics, challenges, and 910

potential applications. Telematics and Informatics Reports 2023, p. 100049. 911

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 May 2023 doi:10.20944/preprints202305.1523.v1

https://doi.org/10.20944/preprints202305.1523.v1

	Introduction
	Related works
	Research Problem and Motivational Scenario
	Methodology
	Objective function
	Architecture

	Experimental Setup
	Dataset
	Experiments

	Results
	Total services allocated to the cloud

	Discussion and Evaluation:
	Conclusion
	Future Work
	References

