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Abstract: The Internet of Things (IoT) generates a large volume of data whenever devices are
interconnected and exchange data across a network. As a result, there is a range of services with
varying needs, for example, capacity requirements, data quality, and latency demands. These services
operate on fog computing devices, which are limited in power and bandwidth compared to the cloud.
The main challenge is deciding where to implement services on the fog, the cloud, or the hybrid. This
paper proposes an efficient allocation technique that pushes processing closer to the network’s fog
side. It investigates which devices and services may best allocate while preserving resource usage in
the IoT architecture. It also examines the importance of allocating services to devices and optimizing
resource use in fog computing. In IoT settings, there is a wide range of services and devices; thus, it is
critical to effectively assign the services to the devices. We propose Priority-based Service allocation
(PSA) and Sort-based Service Allocation (SSA) techniques, which is used to enable an optimum
order to employ devices to perform the various services. The experimental results indicate that our
proposed technique minimize the data communication over the network by 82% by allocating most
of the services locally in fog. We have maximized the number of distributed services to fog devices
by 90% while minimizing the wastage of fog resources.
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1. Introduction

IoT devices generate a large amount of data as they are interconnected [1]. Most
current proposals focus on centralized, or cloud architecture [2]. The goal of a centralized
architecture is to process data in one place of decision. Consequently, a significant amount
of data must be uploaded to the cloud. Heavy data transmission via the network is one
of the challenges of this design introduced [3]. This suggests that an alternative design
is necessary to address these shortcomings. Since the IoT architecture connects several
devices with varied levels of computing, storage capacity, battery life, and Internet access,
device constraint awareness is a crucial part of its design.

Also, a variety of services will be available, each with a different set of expectations,
such as those for capability, quality of data, and latency. These services operate on fog
computing devices, which are limited devices in terms of power when compared to the
cloud [4], and they demand bandwidth. This implies that fog devices and services have a
strong connection. The main challenge is to decide, while considering overall efficiency,
whether services should be run using a fog layer, cloud layer, or a combination of fog and
cloud in a certain IoT architecture.

Furthermore, resource management at the network’s edge [5] is critical for evaluating
the advantages of fog computing. Developing an effective fog infrastructure presents a
number of issues. Local data storage is an instance when resolving these issues becomes es-
sential. The execution of services within distributed architecture becomes more challenging
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as the size and complexity of the IoT system increase, necessitating a method to allocate
services to the node(s), resulting in the discovery of the ideal allocation strategy.

Computing every incoming raw data on the cloud has a detrimental impact on various
elements, including higher network congestion, latency, the time it takes to return actions
to a user, energy usage, and privacy [6]. As the Internet of Things expands, so there is a
need to address these challenges. IoT devices are restricted devices because of their limited
computing power when compared to cloud devices. As a result, huge workloads cannot
be processed on fog nodes. In addition, determining the amount of computing load that
may be allocated to a fog device is challenging. Furthermore, distributing services among
fog devices is difficult since the large number of services in IoT might demand a lot of
computing power [7]. As a result, we must understand the nodes’ capabilities and services’
demands. Then we must optimize the process of service allocation to the nodes while
keeping optimal resource use.

This paper’s overarching goal is to provide an effective allocation technique for pro-
cessing data with reduced bandwidth utilization, faster reaction time, optimized resource
usage, and identifying an optimum technique to process data on a big scale. One of the
goals is to evaluate and test the proposed technique using a simulation. We propose an
efficient allocation strategy that pushes processing closer to the network’s fog side. More-
over, we investigate which devices and services may be best allocated while preserving
resource use in the IoT architecture. In addition, we offer a service allocation technique for
allocating services to devices depending on their capabilities. Our main contributions:

*  Service allocation technique is significant because providing services to devices in the
IoT is a difficult process due to the many types of devices and their capabilities. As
a result, we propose Priority-based Service allocation (PSA) and Sort-based Service
Allocation (SSA) techniques, which utilize a list of every fog device connected to
the network. This method makes it possible to use fog devices in the best possible
sequence to conduct a wide range of services. As a starting point, we use packing
problems as a baseline to help solving the allocation issues in the IoT environment.

*  We examine the importance of allocating services to devices and optimizing resource
use in fog computing to enhance service quality while meeting the optimal resource
usage demands of IoMT. As there will be a large variety of services and devices in the
IoT settings, it is vital to allocate the services to the devices and effectively optimize
resource consumption.

*  We evaluate the PSA and SSA techniques using a Synthetic dataset that mimics the
IoT services and devices. We do a tradeoff analysis to illustrate the effectiveness of the
service allocation approach. The results reveal that the data communication over the
network decreased by 92% since most services are allocated in fog. Additionally, the
latency is reduced by approximately 86%.

The remainder of this paper is organized as follows: Section 2 presents related works
in the field of service allocation, Section 3 describes the research problem and provides a
motivational scenario, Section 4 provides the methodology including the algorithm and
the architecture, Section 5 presents the experimental setup and reveals the details of the
experiments, Section 6 show the results that obtained from experiments and provide the
description of the results, followed by Discussion and evaluation, finally, Section 8 presents
our conclusions and then recommendations for future research.

2. Related works

Fog computing has become an increasingly popular topic of research in recent years,
as it offers a number of benefits for various industries [8]. One of the main challenges in
fog computing is data distribution and allocation. This literature review will explore the
current state of research on service allocation in fog computing and highlight some key
references in the field.

Analyzing data closer to the fog lead to reduced latency, and increased efficiency, as
well as improved security and privacy [9]. Fog computing also enables the deployment of


https://doi.org/10.20944/preprints202305.1523.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 May 2023 d0i:10.20944/preprints202305.1523.v1

30f23

computing resources closer to the data source, reducing the need for data transmission over
long distances. This can lead to improved performance and reduced energy consumption.

In terms of service allocation, research has focused on the use of optimization tech-
niques to allocate resources in fog computing environments efficiently. Optimization
techniques, such as game theory, packing, linear programming, and scheduling, can also
be used to model and solve service allocation problems in fog computing environments.

In resource allocation in edge and fog computing, we reviewed the research publica-
tions that focus on fog systems. The underlying infrastructure is assumed in these studies
to be cloud-fog [10-24]. These options fall under the system elements aspect and have a
significant impact on the researchers’ optimization goals. When considering cloud and fog
computing, many academics believe that the load is originally stored on the cloud and that
the edge system must select where to duplicate and how to divide the user load among
them [11]. As a result, they offer a framework for pushing applications that require lots
of resources to the fog and reducing average data communication in the edge network
across access points by duplicating cloud services to some of the edge servers. Workload
distribution over systems that are heterogeneous has to consider the availability of various
resources [25]. When spreading the workload between fog and cloud, the objective is to
reduce the energy consumption in order to meet service latency needs [26]. When a specific
research project does not assume the use of a central cloud but instead addresses multi-fog
situations, the issue may arise from the combined optimization of job distribution, virtual
machine placement, and resource allocation [12]. The authors in [14] attempt to reduce the
load of users by determining user association, joint service placement, and joint allocation.

However, most of the publications have the same Optimization objective(s), namely,
service completion latency [12,15,16,20-23], numerous research endeavors have been under-
taken to address the trade-off between energy consumption and delay in data transmission,
for example, [25,26]. In addition to delivering quick service completion to users, researchers
aim to cover many users with the edge fog [19,22]. Cost minimization includes several
aspects, such as resource usage, quality of service, and its associated revenue. Authors in
[27] calculated the total cost of deployment by considering the wireless communication
cost and the function placement computation cost, authors in [13,24] for maximizing user
allocation numbers in their cost they considered the usage of edge servers to have the
quality of service. In addition, the data communication over the network is also considered
one of the aspects of the cost.

Optimization techniques play a crucial role in the efficient management of resources
in fog computing, and IoT environments [28]. One popular optimization technique used in
these environments is bin packing. Bin packing is a combinatorial optimization problem
[29,30]that involves packing a set of items into a fixed number of bins, with the goal of
minimizing the number of bins used or the overall cost of the solution. In fog computing
and IoT environments, bin packing can be used to optimize the placement of services and
devices, taking into account factors such as network conditions, service requirements, and
device characteristics to minimize the overall cost of the solution by reducing the number
of fog nodes used.

There are many variations of the bin packing problem, including the multi-dimensional
bin packing problem [31] and the multi-constraint bin packing problem [32]. These vari-
ations can be used to put extra constraints and requirements in fog computing and IoT
environments. For example, the multi-dimensional bin packing problem can be used to
take into account the different resource requirements of services and devices, and the multi-
constraint bin packing problem can be used to take into account additional constraints such
as security and privacy.

In the literature, there are several works that have proposed the use of bin packing
for the optimization of services allocation and task scheduling. Authors in [33] attempt
to enhance task scheduling by transforming it into a bin packing problem. Three mod-
ified versions of bin packing algorithms based on the minimization of makespan were
presented for use in task scheduling (MBPTS). They have used Cloudsim simulator [34]
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open source simulator. When compared to scheduling algorithms such as First Come
First serve (FCFS) and Particle Swarm Optimization (PSO), the results of the proposed
MBPTS were adequate to optimize balancing results, reducing the waiting for time and
resource utilization improvement. Authors in [13] presented the edge user allocation (EUA)
problem as a bin packing problem and presented a unique, optimum solution based on the
Lexicographic Goal Programming technique. They ran three sets of tests to compare the
suggested strategy to two sample baseline approaches. The experimental findings reveal
that their strategy performs better than the other two alternatives substantially. In [35], the
authors presented a methodology for minimizing resource waste by resource consolidation,
which is accomplished by allocating many requests to the same machine. Bin packing is
offered to perform semi-online workload consolidation. The suggested approach is built
on bins, with each job allocated a bin that is subsequently allocated to a machine. The
suggested approach addresses the issue of request reduction in real-time resource assign-
ment. The suggested technique obtains information during a brief time frame, allowing
for more accurate decisions. Their findings reveal that, during periods of high demand,
their optimal policy can result in saving up to 40% more resources than the other policies
and is resistant to unpredictability in task lengths. Finally, they demonstrate that even
slight increases in the permitted time window result in considerable improvements but
that bigger time windows do not always improve resource use for real-world data sets. In
summary, bin packing is a powerful optimization technique that can be used to efficiently
manage resources in fog computing and IoT environments. By taking into account factors
such as network conditions, device capabilities, and additional constraints, bin packing
can be used to minimize the number of resources used and reduce the overall cost of the
solution.

Most of the literature focused on allocation strategies in the cloud, and they did not
give good attention to service allocation in fog and IoT environments as these environments
have various capability devices ranging from constrained devices and high capability
devices. However, still, they are not powerful as the devices in the cloud. This makes the
processing of allocation services to devices more challenging. It requires a good allocation
strategy while optimizing all the aspects like data communication, energy usage, resource
wastage, and response time. Moreover, the proposals in the literature have focused on
the aspects of the network conditions and device characteristics, but they did not give
attention to the technical requirements of service and task when they are in the allocation
process. This is important as the services and tasks have technical requirements similar
to the device’s capabilities. We have considered the device capabilities and the technical
requirements of the services in our proposal to have a full understanding of the allocation
process and to allocate the services to devices efficiently.

3. Research Problem and Motivational Scenario

As the number of IoT devices linked to the Internet has grown, so has the number of
services, and businesses have begun to install additional services for various objectives.
Most IoT devices have limited resources such as RAM, CPU, and storage, as well as a
lack of battery capacity. Furthermore, each deployed service has a comparable constraint
represented regarding similar resources. Additionally, it is crucial to take into account the
data processing capacities of IoT devices while implementing and distributing services. As
a result, before providing information about services to IoT devices, we must understand
their limitations.

For example, Magnetic resonance imaging (MRI) and X-ray produce videos and image
data in healthcare. The analysis of these data requires more processing capacity than blood
test results or electrocardiogram (ECG) results, which are numerical analyses. Other kinds
of data analysis, such as video image analysis, needs greater processing power owing to
their volume and the methods they employ, suggesting that the capabilities of the fog
layer have to be robust enough to conduct these services. As a result, because fog devices
have limited processing capability when compared to cloud devices, it is not viable to
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implement these services on them. Due to resource-constrained devices [36] in regard
to hardware, service allocation is a crucial part of fog architecture. Moreover, some fog
devices are not utilized due to their limited power capabilities to execute a service, implying
that certain fog devices are needed for data processing but are disregarded due to power
limitations. This can be made worse when billions of services are sent to billions of devices
and executed by them. This signifies that there is a waste of network devices, which may
cause the computation time to be delayed. The waste of devices occurs when devices are
not used owing to restrictions, and they remain in the network unused, losing the available
resources. The key problem is determining which service should be allocated to which
device in a fog architecture while keeping overall effectiveness in mind. This is comparable
to the optimization problems, which can be considered the most suitable for allocation
problems.

In Figure 1, several fog, IoT, and healthcare types of equipment are present in a
hospital’s environment. There are many patients (Py, ..., P;) in a hospital, and they are
checking up on their health status. Furthermore, there are many services (Sy, ..., Sy)
that the hospital provides to patients. Some of the patients are there for teeth problems,
immunization, lungs, kidney and internal medicine, diabetes, eye issues, brain disorders,
pregnancy, and heart issues. In our scenario, we consider these health problems that
patients face as a part of services (S). In other words, every user can have one or more than
one service, and when a user has a service, the service (S;) will have all the data of the
patients and the data of the tests.

This means that when a patient registers with the hospital, and the physician requires
the patient test, x-ray, MRI, or other diagnosis checks, also, the physician decides whether
the patient is a high priority or low priority, then the system will take this process as one
service while taking into consideration the priority. These services with priority levels will
be allocated to the fog devices (FDj, ..., FD;) for processing, then the fog device starts firstly,
processing the high-priority services, then lower-priority services will be processed, and
finally, when the fog devices are not capable of processing the services (low priority /high
priority), the cloud devices (CDj,..., CD,,) will get the services to apply further analysis.
For example, if a patient is listed as a high priority, then the system will send the patient’s
service to the fog device for processing and getting a fast response. However, if the patient
is in low priority and the fog devices are not capable, then the service will be allocated
to the cloud. In only one situation, when the fog devices are not capable of processing
high-priority services, then they will be allocated to the cloud for processing.
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Figure 1. Scenario: A patient in a hospital

Assumptions

¢  We assume that the fog layer’s devices have limited RAM capabilities compared to
cloud devices. For the experiments, we produced Synthetic data.

e There are 800 services with varying technical requirements. Similarly, we gathered
data for fog devices with various capabilities.

¢ The services’ technical requirements, the fog devices’ capabilities, and the priorities of
services are randomly generated.
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e The technical needs of services and the device capabilities are known.
*  We do not examine the connection between devices in our experiments since it is
outside the scope of our study.

Process

¢ The model starts by building synthetic data for both the requirement of services and
the capability of devices to prepare them for the allocation model.

¢  The fog devices’ capabilities are predefined, with fog devices being less capable when
compared to cloud devices.

*  The allocation technique is used to allocate between service needs and service priority,
and device capabilities.

¢ Depending on the needs of the services, taking into consideration device capabilities
and service priority, the services will be allocated across fog or cloud devices.

4. Methodology

We propose PSA and SSA technique, which is technique of allocating resources based
on a list that has all fog devices that are connected to the network. With this method, we
may determine the sequence in which different services are carried out by various devices.
The actual capacities of devices, such as RAM, are used to arrange the list of devices. As
a result, for each physical aspect, all devices capabilities are maintained in a list. The
main purpose is to allocate services to devices in an effective and optimized manner. The
allocation technique is utilized to allocate all or a part of the services to a specific number of
fog devices or to various cloud devices with varied capabilities according to their capability.
Furthermore, the allocation approach aims to maximize fog device usage and minimize
data communication over the network. The overview of our proposed strategy is presented
below with equations.

The main goal G is to allocate the services s; to fog devices Dr as much as possible in
an effective manner. We can represent this as:

N
max Z si-Air
br 5

Where A; r is a binary variable that represents whether or not service s; is allocated to
fog device Dr. If A; r = 1, then service s; is allocated to fog device Dr, and if A; r = 0, then
service s; is not allocated to fog device Dr. The notation Zfil s; - A; p calculates the total
number of services allocated to fog device Dr, where N is the total number of services. The
objective is to maximize this quantity over all possible allocations to fog devices.

The services will be allocated by the fog device to either fog devices Dr or cloud
devices D¢, dependent on the capabilities of the devices and the computing needs of the
services. We can represent this as:

N Dg(s;), if Dp can handle s;
' Dc(s;), otherwise
The services will then be allocated according to their requirements to the fog devices
since this is the focus of our strategy. We can represent this as:
si = Dr(s;)
If the fog devices are unable to manage the load, the remaining services will be
allocated to the cloud-based devices. We can represent this as:
si = Dc(si)

Therefore, to have efficient results we used both fog devices and cloud devices for
service allocation. We can represent this by combining the previous two relations as follows:
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Dk (si), Dc(si) — G(s;)

4.1. Objective function

We have a multi-criteria optimization problem. The goal is to maximize the weighted
sum of two objective functions, f1(x) for decreasing delay and f2(x) for optimizing the usage
of resources. The weighting variables w1 and w2 are utilized to balance the relevance of
the two objectives and govern the trade-off between the opposing aims. These could be
objectives for performance for our strategy. The function that has to be maximized is as
described below:

maximize fm(x) = —wy - f1(x) +wy - fo(x) 1)

where f1(x) is the objective function for minimizing latency (i.e., the time it takes for a
service to be allocated from fog to cloud), f»(x) is the objective function for maximizing
fog resource utilization (i.e., using the fog devices as much as possible while minimizing
resource wastage), x is a vector of variables, and w; and w, are weighting factors used to
balance the importance of the two objectives.

The minus sign in front of w; - f1(x) denotes that we are maximizing the negative
of f1(x), which is the same as minimizing f;(x). Similarly, we are maximizing f,(x) by
multiplying it with a positive weight w,. The goal of integrating two objectives into a
single objective function is to discover the optimal trade-off between the two of them.
By maximizing f,,(x), we mean finding x values that concurrently minimize f;(x) and
maximum f,(x), with suitable weightings.

Best-Fit

We give best-fit code in Algorithm 1 to maximize device usage while delivering
services to devices based on their capabilities. We need the requirements for service serReq
and device capabilities devCap as input. Then, for each service, we find the smallest possible
device capability that may accommodate the current service.

Servicepresent = find_min(devCapy, devCapy, ..., devCapy)

If a device is located, assign it to the present service. However, if a device cannot
be discovered, discard that service and keep inspecting the other services. In the afore-
mentioned method, we do not decompose the services into smaller services, but rather
allocate them to one of the devices, either a fog device or a cloud device, according to their
capabilities.

If a device is found, it should be assigned to the current service. If a device can not be
found, disregard it and keep going through the other services. We do not break down the
services into smaller ones, but rather assign them to one of the devices, either a fog device
or a cloud device, according to their capabilities.
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Algorithm 1 Best Fit

Input: devCapll, serReql]
Output: allocID[]
for x < 0 to length(serReq) — 1 do
bestFitID < —1
for y < 0 to length(devCap) — 1 do
if devCap|y| > serReq[x| then
if bestFit]ID = —1 then
bestFitID +y
else if devCap|bestFitID] > devCaply] then
bestFitID « vy
end if
end if
end for
if bestFitID # —1 then
allocID|[x] < bestFitID
devCap|bestFitID] <— devCap|bestFitID] — serReq|[x]
end if
end for

In other words, services are assigned to available devices according to best-fit criteria.
The algorithm receives two parameters: devCap and serReq. Each device’s capacity is
represented by devCap, and the service request is represented by serReq. The algorithm
begins with two for-loops that are nested. The outer loop begins at 0 and continues to a
length of serReq, whereas the inner loop begins at 0 and continues to the length of devCap.
The outer loop processes every service request one at a time, while the inner loop checks
every device’s capacity to see if it can handle the present service request.

The bestFitlD is first assigned to -1. If the capacity of the device at index y is more
than or equal to the capacity of the service request at index x, the bestFitID is assigned
to y within the inner loop. If bestFitID remains -1, it indicates that no device is currently
allocated to the service, and so the bestFitID is assigned to y. If bestFitID has recently been
assigned, a comparison is done between the present device’s capacity (devCap|y]) and the
device assigned previously (devCap|bestFitID]). If the current device’s capacity is smaller
than that of the earlier assigned device, the bestFitID is changed to the present device (y).

After the inner loop completes, if bestFitID is not equal to -1, the current service
is assigned to the device with the best fit (bestFitID). The allocation is documented by
updating the allocID list, and the capacity of the device is reduced by the service request.
The algorithm will continue to run the outer loop until all of the service requests have
been completed and the devices have been allocated to the services. The method returns
allocID, which is the index of the device allocated to the service. The algorithm’s result is
the services allocated to the devices.

Worst-Fit

We give the worst fit code in Algorithm 2 for optimizing device usage while assigning
services to devices and taking device capabilities into account. We need service require-
ments serReq and device capabilities devCap as input. Following that, we select each service
and identify the most powerful device capable of supporting the current service.

Servicepresent = find_max(devCap,devCapy, . .., devCap;)

If a device is found, it should be assigned to the current service. If a device cannot be
found, disregard it and continue investigating the other services.
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Algorithm 2 Worst Fit

Input: devCapll, serReql]
Output: allocID[]
for x < 0 to length(serReq) — 1 do
worstFitID < —1
for y < 0 to length(devCap) — 1 do
if devCap|y| > serReq[x| then
if worstFitID = —1 then
worstFitID <y
else if devCap[worstFitID] < devCaply| then
worstFitID <y
end if
end if
end for
if worstFitID # —1 then
allocID|[x] < worstFitID
devCap|worstFitID] < devCap|worstFitID] — serReq|[x|
end if
end for

The method then iterates through each service request in the serReq array. It changes
the value of worstFitID to -1 for each service request, indicating that no device has been
allocated to the service yet. The method then runs over the devCap device capacities. If a
device has adequate capacity to satisfy the current service request, the algorithm determines
whether it is the first device discovered with sufficient capacity or if its capacity is more than
the current worstFitID. If the device’s capacity is greater, the algorithm assigns worstFit]1D
to the present device’s ID.

Following the completion of the inner loop, the algorithm determines whether a device
has been allocated to the present service request. If a device is allocated, the algorithm
updates the allocID list by distributing the current service request the value of worstFitID.
The algorithm also decreases the allocated device’s capacity by the magnitude of the service
request. The aforementioned stages are repeated by the algorithm for all service requests.
After the outer loop has been completed, the algorithm returns the allocID list, which
contains the list of allocated services to devices.

First-Fit

To maximize device utilization while allocating services to devices based on their
capabilities, we give the first fit code in Algorithm 3. We need service requirements serReq
and device capabilities devCap as input. Following that, we select every service and find out
whether it is compatible with the current service. If the devCap is equal to the serReq, assign
and examine for the next serReq. If otherwise, proceed to investigate the next devCap.

Algorithm 3 First Fit

Input: devCap, serReq
Output: allocID[]
for x < 0 to length(serReq) — 1 do
for y < 0 to length(devCap) — 1 do
if devCap|y| > serReq[x| then
allocID[x] +y
devCaply| < devCaply] — serReq|[x]
break
end if
end for
end for



https://doi.org/10.20944/preprints202305.1523.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 May 2023 d0i:10.20944/preprints202305.1523.v1

10 of 23

In other words, the method has three inputs: devCap (device capabilities), serReq
(service needs), and allocID (allocated IDs). The algorithm’s purpose is to allocate services
in serReq to devices in devCap and record the allocation in allocID.

The algorithm begins with two nested for-loops, where x is the length of serReq and y is
the length of devCap. The method examines if devCap|j] is larger than or equal to serReq[x]
in every iteration of the inner loop. If the condition is met, the algorithm assigns the
present service (serReq[x]) to the current device (devCap|[j]) by changing allocID|x] to y and
lowering the current device’s capacity by the service requirement (devCap[j]— = serReq|[x]).
Finally, the algorithm exits the inner loop after locating a device capable of allocating the
current service and proceeds to the following service in the outer loop. This operation is
repeated by the algorithm until all services are assigned to devices.

Priority-based Service Allocation

We present the code of priority-based allocation in Algorithm 4 to select the service
allocation process and if the services should be handled in the fog or cloud. We need
service requirements serReq and device capabilities devCap as input. The services are
then allocated to the fog devices using the fogDevice(devCap, serReq) method. Following
that, one of the algorithms presented previously will be executed. Following that, we will
evaluate the capabilities of fog computing in order to allocate services. If no fog devices are
available to handle the service, we assign it to cloud devices by calling and forwarding the
remainder of the services to cloudDevice(remainingSer).

Based on the importance of the service request, the algorithm decides whether to
distribute services to fog or cloud devices. The algorithm prioritizes service requests by
assigning them to the fog devices initially. The algorithm begins the process by determining
the level of priority of the service demand. If the service is high-priority, the algorithm
inputs the device capability and service requirement. If fog devices are capable of handling
the services, they will be allocated to fog devices. If fog devices are unable to handle the
low-priority service, the algorithm will allocate it to cloud devices instead.

The algorithm begins by allocating services to fog devices. To distribute services to
fog devices, the algorithm employs one of three allocation algorithms: best-fit algorithm 1,
worst-fit method 2, or first-fit algorithm 3. The method then iterates across the length of
the service request using a for loop. In every iteration, the algorithm determines whether
or not the service has already been assigned to a device by determining whether or not
the allocID is greater than -1. If the allocID is not equal to -1, it is increased by one. If the
allocID is -1, the service request is saved in the remainingSer list.

The algorithm checks if the remainingSer list is empty at the end of the for loop. If the
remainingSer list is empty, the algorithm has been completed and all services have been
allocated to the devices. If the remainingSer list is not empty, the method "cloudDevice"
with the remainingSer list as input is called. The "cloudDevice" function is in charge of
distributing the remainder of services to cloud devices. The priority-based allocation
mechanism routes service requests to either the fog or cloud layers based on their priority.
The method assigns services to fog devices utilizing one of three allocation techniques: best
fit, worst fit, or first fit, with the remaining services given to the cloud.
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Algorithm 4 Priority-Based Allocation

Require: devCap: list of available devices, serReg: list of service requirements, allocID: list
of allocation IDs
Ensure: allocID
1: remainingSer < empty list
2: for each service request x in serReq do

3. if priority of serReq[x] is high then
4: Allocate to fog devices with sufficient capacity
5: if allocID[x] # —1 then
6: Increment allocID[x] by 1
7: else
8: Append serReq[x| to remainingSer
9: end if
10:  else if priority of serReq|x] is low then
11: Allocate to fog devices with sufficient capacity
12: if allocID|[x] # —1 then
13: Increment allocID|[x] by 1
14: else
15: if there is sufficient capacity in fog devices then
16: Allocate serReq[x] to a fog device
17: else
18: Append serReq[x] to remainingSer
19: end if
20: end if
21:  end if
22: end for

23: if remainingSer is full then
24:  Allocate remaining services to cloud devices
25: end if

Sort-based Service Allocation

We employed Dual-Pivot Quicksort, an efficient sorting algorithm commonly used
in computer science and data processing applications, especially for sorting primitive
data types such as int, double, and float. Dual-Pivot Quicksort, according to the authors’
findings [36], is typically quicker and more effective than alternative quicksort algorithms,
especially on big datasets. They point out that Dual-Pivot Quicksort works effectively
with both randomly ordered and partly sorted data, and that it has a minimal amount of
comparisons and swaps.

Sorting may be a valuable technique in the context of fog computing for optimizing
service allocation and lowering the level of complexity of service distribution for fog
devices. Sorting the data prior to it reaching the fog devices makes it easier to deploy
resources and maximize the network’s overall performance. We classify the technical needs
of services in ascending order, from least to greatest, to assist service allocation techniques
for fog devices. We also sort the capabilities of fog devices. This allows for faster and more
efficient service allocation.

4.2. Architecture

Our architecture is organized into three major sections: Sensor layer, Fog Layer, and
cloud layer. First, the Sensor layer has IoMT sensors and IoMT devices that send data to
the fog layer. Second, the fog layer is responsible for distributing services to devices in an
effective and optimized manner by ensuring that all available resources are utilized and
serving users by offering accessible services. Last, the cloud layer can manage all of the
data and services, as well as provide essential services to the edge and fog layers.

The architecture shown in FIGURE 2 incorporates three devices, including IoMT, fog,
and cloud, as shown below:
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Figure 2. Fog based IoT Architecture

*  The IoMT sensors and devices are located at the sensor layer of the system’s network
and are generally integrated into actual daily objects. IoMT sensors are tiny and afford-
able, making the process of installing IoMT sensors to things simple and economical.
These devices communicate with the Fog devices using wireless communication. The
IoT ecosystem should be beneficial in a variety of ways, including energy savings,
lower costs, better resource use, and lower data transmission costs via the network.
The IoMT sensors and devices produce data for each patient; then these data are fused
to the service so that each service will have data about the patient and their medical
diagnosis. Then, after fusing all the data into services, the services will be sent to the
fog layer. Also, this layer is responsible for sorting and prioritising services to help the
fog layer when allocating the services to the devices.

e The Fog devices reside adjacent to the sensor layer or within the communication
channel and gather services and use a service allocation strategy to allocate the services
to the fog devices as the priority is to process the services closer to the data source.
However, whenever the fog devices cannot handle the services due to the lack of
power of fog devices, then the services will be sent to the cloud using the proposed
allocation strategy. Additionally, the fog devices are responsible for allocating services
to either fog or cloud devices based on the priority of the service. Clearly, fog devices
have very little power and a narrower global data perspective than cloud devices;
thus, they can store less data and provide fewer services.

*  The Cloud devices receive services from fog devices. The computational power and
data storage capacity of the cloud is clearly greater than those of fog devices and IoMT
devices. Cloud devices can be used for further analysis and storage when required to
have the full picture of the data.

5. Experimental Setup
5.1. Dataset

We performed experiments in this study to evaluate the effectiveness of fog computing
for service allocation. We utilized a customized dataset comprised of several fog devices
configurations and services settings to conduct our research. The dataset used in this study
was created in order to simulate an IoMT healthcare system.

Fog Devices’ Configurations

The fog device configurations utilized in the experiments are detailed in Table 1. The
table displays the experiment name, the number of fog devices, and the fog devices’ RAM
capacities (in Gigabytes). The experiment name is divided into three sections: (1) the
allocation approach (Worst Fit, Best Fit, or First Fit), (2) the configuration types (Low,
Medium, or High), and (3) the device capabilities (FDC1 to FDC4). Each method includes
three tests of varying configurations (Low, Medium, and High).

FDC1, FDC2, FDC3, and FDC4 are the fog devices utilized in the experiment, each
with 2 GB, 4 GB, 8 GB, and 16 GB RAM. The low configuration had 50 fog devices totaling
100 GB, the medium configuration had 15 FDC1, 15 FDC2, 10 FDC3, and 10 FDC4 fog
devices totaling 330 GB, while the high configuration had 50 FDC4 fog devices totaling 800
GB. Table 1 displays the experiment name, the number of fog devices, and the fog devices’
RAM capability (in Gigabytes).
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Table 1. The configurations of fog devices in the experiment
Fog devices and capabilities \
FDC1 FDC2 FDC3 FDC4
FDC Setup Total FDC (GB)
2 GBRAM 4 GBRAM 8 GBRAM 16 GB RAM
1 Low 50 Fog devices | - - - 100 GB
2 Medium 15 Fog Devices | 15 Fog Devices | 10 Fog Devices | 10 Fog Devices | 330 GB
3 High - - - 50 Fog Devices | 800 GB

Service Setups

The technical demands of the services utilized in the experiment are provided in table
2. The services are labeled SR1, SR2, SR3, and SR4, and their RAM needs range from 1 MB
to 2 GB. We assumed that the size of the services was the same as the technical requirements
of the services in terms of size in GB. We deployed these services in various configurations
to assess the performance of fog computing in various circumstances. A total of 800 services
with varied technical needs were generated and the generated data has been used in all
experiments. The half of the services (400) has high priority and the other half (400) has
low priority. To create the dataset, simulations were run with fog devices configured as
stated in Table 1 and services with varying technical demands shown in Table 2. The data
was gathered and evaluated in the study. Because the dataset was generated at random, it
was representative of real-world scenarios and provided various types of data for analysis.
The dataset was used to assess the influence of various allocation techniques on system
performance and resource consumption in an IoT healthcare system.

This arrangement was created to emulate real-world circumstances in which fog
devices of diverse capacities may be required to host a variety of services with varying
resource requirements. The research intended to evaluate and compare several methods
for service allocation in fog computing environments through varying the number and
capacity of fog devices as well as the resource needs of the services. Overall, the dataset
utilized in the experiments offers a wide range of fog device and service configurations for
evaluating fog computing performance.

Table 2. The setups of technical requirements of services in the experiments

Services and Technical Requirements |

SR1 SR2 SR3 SR4
Total SR (GB)
1MB -255MB RAM | 256 MB -511MB RAM | 512MB - 1GBRAM | 1GB -2GB RAM
no. of services \ 300 services 300 services 100 services 100 services 383 GB

5.2. Experiments

We categorized the experiments into three categories: those without priority and sort
(standard), those with priority, and those with sort. Experiments with no priority or sort
are used to allocate services without consideration for characteristics like priority or sort.
The experiments with priority concentrate on the priority considerations when distributing
services to fog devices; this indicates that services with a high priority will be delivered
to fog devices first, followed by those with low priority. When the fog is lacking, the
services will be assigned to cloud devices. The experiments with the sort initially sort the
services in the sensor layer from small to big depending on their requirements in order
to make the allocation process for fog computing easier and to support the algorithms in
distributing the services efficiently. The three categories of experiments are used to evaluate
our allocation strategy, so when a setup does not require factors, the first strategy is chosen,
or if a setup requires a priority, the experiments with a priority are chosen, as we focus on
deploying services to fog devices as much as possible.

We performed a total of three main experiments in each category of experiments. In
every category (standard, priority, and sort), we use three algorithms with three different
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configurations namely low, medium, and high as mentioned earlier. In total, we conducted
nine experiments for each category to discover the ideal configuration for fog devices in
order to distribute services as effectively as feasible across fog devices. The configuration of
fog devices may differ based on the experiment, as illustrated in Table 1. The first column
lists the titles of the experiments, while the second column lists the capabilities of the fog
devices. We deployed 800 services using a variety of capabilities (FDC1, FDC2, FDC3,
and FDC4) to each of the 50 fog devices in experiments 1 through 9. The broad range of
capabilities includes both highly specialized and relatively common equipment (running
all capacities).

6. Results

In this section, we explore the outcomes of several techniques for allocating services to
fog or cloud depending on priority, size, and algorithms employed. The outcomes of the
allocation approach are shown. As previously stated, the technique would first allocate
services to fog nodes based on their capabilities, and then assign services that could not
be managed in the fog to cloud devices. We will examine and provide the findings of
the three methods namely worst fit, best fit, and first fit. According to Statista [37], the
average upload speed utilizing mobile to transmit services from fog to the cloud is 8.5
Mbps. However, the average upload speed using fixed broadband to transfer services from
fog to cloud is 28.5 Mbps.

To begin, we give two charts in Figure 3 and 4 that illustrates the distribution of
high and low-priority services to fog or cloud using various methodologies. Standard,
Priority, and Sort are the strategies used in our experiments. The allocation is provided
separately for high- and low-priority services. Second, in Figure 5a and 5b, we provide a
bar chart that indicates the number of unused fog devices in GB after assigning services
to fog. Furthermore, the values in the table represent the amount of unused RAM in GB
for each algorithm and each level of fog device configuration: low and medium. In the
charts, we did not show the results of high level configuration of fog devices as all the
services were handled in the fog. Then, in Figure 6a and 6b, we show a chart and a table
that provide information about allocating services to fog or cloud using three different
strategies: standard, priority, and sort. The services are categorized as high or low priority,
and their sizes are indicated in gigabytes (GB). Finally, we talk about data from Table 3,
which illustrates how long it takes for services to travel from fog devices to the cloud using
different techniques. The findings are reported in terms of the time required to assign
services via mobile and broadband networks, and the time is determined based on the
upload speed supplied by Statista [37].

No of Distributed Services (Low)

400

200
150
100
50
[}

To Fog To Cloud To Fog To Cloud To Fog To Cloud To Fog To Cloud To Fog To Cloud To Fog To Cloud

High Priority Services  Low priority Services  High Priority Services  Low priority Services  High Priority Services  Low priority Services

Number of services

Standrad Priority Sort
W Worst Fit Low 161 239 167 233 242 158 0 400 162 238 167 233
m Best Fit Low 142 258 132 268 277 123 0 400 237 163 243 157
First Fit Low 112 288 126 274 247 153 0 400 237 163 243 157

Figure 3. The number of allocated services to fog and cloud (Low)
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No of Distributed Services (Medium)
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o - [ - -

ToFog  To Cloud ToFog To Cloud ToFog To Cloud ToFog To Cloud ToFog To Cloud ToFog To Cloud

High Priority Services Low priority Services High Priority Services Low priority Services High Priority Services Low priority Services

Number of services

Standard Priority Sort
® Worst Fit Medium 377 23 368 32 400 0 339 61 373 27 378 22
m Best Fit Medium 362 38 365 35 400 0 314 86 381 19 389 11
First Fit Medium 358 a2 353 a7 400 0 294 106 381 19 389 11

Figure 4. The number of allocated services to fog and cloud (Medium)

Figure 3 and 4 display the quantity of high and low-priority services assigned to fog
or cloud using various techniques, including Standard, Priority, and Sort. The allocation
is displayed separately for high-priority and low-priority services. The standard refers
to a situation in which there is no differentiation between high and low-priority services.
Priority denotes a situation in which high-priority services take precedence over low-
priority services. Sort denotes a scenario in which services are first sorted and then assigned
using the Best Fit, Worst Fit, or First Fit algorithm. According to the findings, the allocation
approach has a substantial influence on the number of services provided to fog and cloud
environments. In general, the Priority method results in more high-priority services being
assigned to the fog environment and more low-priority services being assigned to the
cloud environment. When it comes to sorting services, the allocation approach has less
of an influence on the number of services distributed to the fog and cloud environments.
However, the allocation algorithm utilized does make a difference. For example, the Worst
Fit algorithm allocates more services to the fog environment, but the First Fit algorithm
allocates more services to the cloud environment.

For each combination of distribution strategy and service priority, the chart illustrates
the number of distributed high and low-priority services. The charts show that the number
of high-priority services allocated to the fog is lower than in the cloud for the Standard
strategy, while the converse is true for low-priority services. We did not include the results
of high-capacity fog devices in the table since their exceptional capabilities allowed them
to manage all services in the fog as mentioned earlier. It is clear from the charts that all
algorithms are doing well in terms of allocating services to fog and cloud, but as our
intention was to push the processing near the data source therefore priority strategy can be
a good choice. Among the three algorithms, we can realize that the best can be selected as
the best in most cases.

Overall, our findings imply that careful evaluation of allocation methods and algo-
rithms could be useful in optimizing service allocation in fog and cloud situations. A
Priority approach, in particular, that prioritizes high-priority services, can assist guarantee
that important services are allocated to the fog environment, where they can be handled
fast and efficiently. whereas the standard and sort strategies appear inefficient since they
allocate services without regard for priority.
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(a) Low Configuration (b) Medium Configuration
Figure 5. Wastage of Fog Devices

The bar charts in Figure 5a and 5b illustrate the number of unused fog devices in GB
after assigning services to fog. The values in the table indicate the quantity of unused RAM
in GB for each algorithm and fog device configuration: low, medium, and high. Worst Fit
Low: This allocation approach directs resources to the fog gadget that produces the most
waste. According to the chart, this technique wastes 2 GB for devices with low capacity
within the standard strategy. When priority is set, the wasted space is reduced to 1.5 GB.
Worst Fit Medium: This allocation approach produces the largest waste among medium
and low configuration devices. According to the charts, this technique wastes 7 GB for
devices in standard and 6 GB with priority. However, when medium configuration devices
are sorted, the strategy wastes 42 GB. Best Fit: This allocation strategy allocates resources
to the fog device with the least wastage. The table shows that this strategy results in 0
GB wastage for devices in all strategies. First Fit Low: This allocation strategy allocates
resources to the first available fog device. The table shows that this strategy results in 1.5
GB wastage for devices with low capacity within the standard and 6 GB within the sort
strategy, but 1 GB within the priority strategy. First Fit Medium: This allocation strategy
allocates resources to the first available fog device among devices with medium capacity.
The table shows that this strategy results in 2 GB wastage for devices within the standard
and 1.5 GB wastage when priority is given, however, the wastage increases to 6 GB when
the sort strategy is used.

Overall, we did not reveal the high-config devices since there was no waste because
the fog devices were in high capabilities, which allocated all services to the fog devices.
Finally, the table shows that the Worst Fit strategy results in the most waste for both low
and medium-capacity devices, especially when the sort is provided. For all circumstances,
the Best Fit technique results in the least amount of waste. The First Fit approach stands
somewhere between the other two.

Allocated Services (Low) Allocated Services (Medium)
350 350
300 300
8 250 8 250
£ 200 £ 200
g 150 g 150
K] 100 3 100
50 50
N 1 1 2 N " 1
ToFog ToCloud ToFog ToCloud ToFog  ToCloud ToFog ToCloud ToFog ToCloud ToFog ToCloud
(GB) (6B) (6B) (GB) (GB) (GB) (GB) (6B) (GB) (6B) (GB) (GB)
Standard Priority sort Standard Priority Sort
mWorstFitlow 98 285 985 2845 985 284.5 u Worst Fit Medium 323 60 324 59 288 95
= Best Fit Low 100 283 100 283 100 283 mBestFit Medium 330 53 330 53 330 53
FirstFitlow  98.5 284.5 99 284 7 289 FirstFit Medium 328 55 3285 545 320 63
(a) Low Configuration (b) Medium Configuration

Figure 6. RAM of Allocated Services

The charts in Figure 6a and 6b show the RAM size of services allocated to fog or
cloud based on three alternative strategies: standard, priority, and sort. The services are
classified as high or low priority, and their volumes are measured in gigabytes (GB). The
low-configuration devices have a total of 100 GB and the medium-configuration devices
have a total of 330 GB as mentioned earlier. This indicates that in each configuration of low,
medium, and high experiments, there is a maximum size of RAM to handle services. For
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example, the worst fit low experiment has allocated 98 GB of services to fog devices those
size out of 100 GB, the remaining 2 GB is the wastage which is discussed earlier. It is clear
that the strategy used most of the fog devices” RAM, but most of the services traveled to the
cloud because of the limited capabilities of the fog devices. It is clear that the best fit low
and medium strategies are the best among others in terms of the usage of fog devices and
allocating all services that can fit the fog devices without wastage. In the low configuration,
the sort strategy stands better than the standard strategy in worst fit and best fit, but worse
in sort. In the medium configuration, the sort strategy has resulted better than the standard
in all algorithms. Overall, the table provides valuable information about the allocation
of services to the fog or cloud and highlights the importance of considering service size,
algorithm, and strategy when making these allocation decisions.

Table 3. Time of service allocation (fog to the cloud)

Without Priority Sort
Mobile Broadband Mobile Broadband Mobile Broadband
Worst Fit Low 3d 7h 45m 23h 45m 3d 7h 23h 30m 3d 7h 23h 30m

Worst Fit Medium 15h 4h 30m 15h 4h 30m 1 day 7h 20m
Worst Fit High 0 0 0 0 0 0
Best Fit Low 3d 6h 23h 25m 3d 6h 23h 15m 3d 7h 23h 30m
Best Fit Medium 12h 3h 45m 12h 3h 45m 15h 43m 4h 40m
Best Fit High 0 0 0 0 0 0
First Fit Low 3d 7h 23h 30m 3d 7h 23h 30m 3d 8h 1d
First Fit Medium 13 h 4h 13 h 4h 16 h 4h 45m
First Fit High 0 0 0 0 0 0

Table 3 illustrates how long it takes for services to travel from fog devices to the cloud
using various techniques. Standard, Priority, and Sort were the algorithms employed.
The findings are reported in terms of the amount of time required to distribute services
using mobile and broadband networks. The data clearly shows that the time required
to distribute services to the cloud is often longer for the mobile network than for the
broadband network. This is most likely due to the fact that the mobile network has more
constraints and requirements for service distribution than the broadband network. In terms
of the various algorithms utilized, we can observe that the Best Fit algorithm outperformed
the others for both mobile and broadband networks. For the mobile network, the Worst
Fit algorithm performed the worst, but it was comparable with the other methods for the
broadband network. The First Fit method performed effectively in the broadband network
but not so well on the mobile network. It is clear that the high configuration setup of fog
devices has no cost over the network as all the services have been handled locally. Overall,
the table findings indicate that the Best Fit algorithm may be the most effective method for
distributing services from fog to the cloud. However, the particular method used may be
determined by the network’s specific requirements and constraints.

6.1. Total services allocated to the cloud

In this experiment, we allocated all services to the cloud in order to compare our
techniques against allocation without a strategy and to investigate architecture-based
allocation. Table 4 clearly shows that "No of Services" signifies 0 services out of 800 services
assigned to fog devices and 800 services out of 800 services given to cloud computing. In
other words, the fog devices receive 0% of the services, while the cloud devices receive 100%
of the services. The column "Allocated Services in GB" in the table indicates that 0 services
size in GB and 0 GB are allocated to the fog and 383 GB are allocated to the cloud devices.
The time of service allocation is then represented as "Time of service allocation (mobile),"
which indicates that the amount of time it takes for a mobile network to allocate the services
to fog is obviously 0 because there are no costs associated with data communication over
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the network because it is located locally, but the duration it takes to allocate the services
(383 GB) from fog to cloud is 4 days, 11 hours, and 0 minutes using the mobile network.
However, "Time of service allocation (broadband)" means that the period of time it takes to
allocate services from fog to the cloud using the fixed broadband network is 1 day and an
hour, and 40 minutes.

Table 4. Total services allocation

Total services in GB To Fog | To Cloud | Total
No of Services 0 800 800
Percentage 0 100% 100%
allocated Services in GB 0 383 GB | 383 GB
Time of allocating services (mobile) 0 4d 11h 4d 11h
Time of allocating services (broadband) 0 1d 8h 1d 8h

We have conducted three experiments using methods, namely best fit, first fit, and
worst fit. Based on the results, the worst fit results were lower than the best fit and first fit,
it is clear that the data communication over the network is reduced with all strategies when
compared to total service allocation to the cloud, and most of the services are allocated
to the fog devices. Since reducing data transfer across the network was our primary goal,
it fits with our proposed technique. Furthermore, the second aim was to use the priority
aspect to allocate the services as much as possible to the fog devices, and based on the
results, this aim was achieved as 90% or more of the services have been allocated to the fog
devices.

We ran a total of twenty-seven experiments utilizing the best fit, first fit, and worst fit
methodologies. According to the results, the worst fit and first fit results were lower than
the best fit, indicating that data traffic via the network is decreased with all methods when
compared to the entire service allocation to the cloud, with the fog devices receiving the
majority of the services. It fits with our proposed technique because reducing data transfer
across the network was our primary goal. Furthermore, the second goal was to use the
priority aspect to allocate as many high-priority services as possible to fog devices, and
based on the results, this goal was achieved because 90% or more of the priority services
were allocated.

We have compared the performance of the algorithms namely best fit, worst fit, and
first fit while allocating services to fog devices in the variable capability of fog devices
and variable service requirements. The focus was on the number of services allocated to
fog, resource usage, and data communication over the network. The First Fit Algorithm
allocates services to the first fog device which can handle them. It may, however, produce
some wastage, lowering fog device usage. The use of fog devices was approximately 90%.
The best Fit Algorithm allocates services to the smallest fog device that can handle them.
This algorithm tries to reduce waste and maximize fog device use. The wastage was found
to be the lowest. The use of fog devices in the priority strategy was 100% and in other
strategies was more than 90%. The worst Fit Algorithm allocates services to the largest
available fog device that can handle them. However, this algorithm leads to increased
wastage. The wastage was found to be the highest. Additionally, the fog device usage was
better than the first fit, and better than the best fit in some of the experiments, but generally
worse than the best fit. In terms of waste, the Best Fit Algorithm outperforms the first fit
and worst fit, attaining the lowest wastage. The Worst Fit Algorithm generated the most
wastage. As a result, the Best Fit Algorithm is regarded as the most advantageous of the
three for the variable capability of fog devices and variable services requirements scheme
since it reduces waste and maximizes fog device use. Based on our knowledge that the
worst fit can lead to high wastage (fragmentation) and the best fit can be best in terms of
wastage. However, in some cases, the worst fit can increase the usage of resources [38].


https://doi.org/10.20944/preprints202305.1523.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 May 2023 d0i:10.20944/preprints202305.1523.v1

19 of 23

7. Discussion and Evaluation:

We used two commonly used evaluation measures to assess the effectiveness of our
model: the allocation success rate (ASR) and the average resource usage (ARU). The ASR
calculates the number of services successfully assigned to fog devices/cloud devices. The
ARU calculates the percentage of RAM used by all fog devices/cloud servers. To illustrate
the robustness of our model, we did sensitivity analysis by adjusting various factors such as
dataset size, technological requirement distribution, and the number of fog devices/cloud
servers. The findings indicate that our model is not overfitting to a specific dataset or
set of parameters. We compared our strategies including standard, priority, and sort
performance while considering commonly used algorithms in the literature: the best-fit,
first-fit and worst-fit algorithms. Our model performs well in terms of ASR and ARU,
according to the results. We used various data groups randomly generated with different
distributions and sizes to demonstrate the validity of our model. The findings reveal that
our proposal performs well with the given setups and distributions. Our methodology
proposes a realistic and efficient solution to the service allocation problem in fog computing
applications.

Based on the results, we observed several observations as follows

The number of services allocated to fog devices

As previously said, our primary aim in fog computing is to allocate services as close to
the data as possible while simultaneously maximizing resource consumption, network data
transfer, and balancing service allocation. The amount of services allocated is influenced by
a variety of factors, including strategy, capabilities, and service requirements. According
to the findings, the allocation method and algorithm have a considerable influence on the
number of services assigned to the fog and cloud environments. The Priority approach allo-
cates more high-priority services to the fog environment and more low-priority services to
the cloud environment. The allocation algorithm utilized also influences service allocation,
with the Worst Fit algorithm allocating can allocate more services to the fog environment
and the First Fit algorithm allocating fewer services to the fog environment, but the worst
fit can result in more wastage. The results also demonstrate that allocating services without
regard for priority or employing a sorting technique without regard for priority is inefficient.
According to the study, a thorough evaluation of the allocation method and algorithm is
required to maximize service allocation in fog and cloud situations.

Resources usage

The results shown in Figure 5 indicate that the strategy used for distributing services
to fog devices can have a considerable influence on the amount of unused RAM in the
fog. The Best Fit method produces the least waste in all circumstances, whereas the Worst
Fit strategy produces the most waste, especially when priority is provided. In terms of
waste, the First Fit technique lies in between the other two. The chart also demonstrates
that high-config devices did not waste any resources because they could handle all of
the services assigned to them. These findings imply that careful study of the allocation
approach and algorithm can aid in optimizing the use of fog resources and minimizing
wastage.

Data communication over the network

The results clearly indicate that most of our experiments could result in low data
communication over the network compared to total services allocated to the cloud without
strategies 6.1 which is the traditional way of allocating services without considering the
power of fog and strategies. The variations of fog device capabilities used in our research
can help us choose a combination that depends on a number of factors, such as the technical
requirements of services as well as the RAM requirements of fog nodes. To decide which
allocation technique is optimal for allocating services to fog or cloud devices, we may
consider the service requirements and device capabilities. The results show the amount
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of time taken to allocate mobile and broadband services to different devices using three
different algorithms: Worst Fit, Best Fit, and First Fit. The values in the table represent the
time taken in hours and minutes for each algorithm and device configuration: low, medium,
and high capability. The findings imply that Best Fit is the most efficient algorithm, as
it takes the least amount of time to allocate services for all device types. The Worst Fit
algorithm results in the longest allocation time for low and medium-capacity devices, while
the First Fit algorithm falls somewhere in between the other two algorithms. Additionally,
the high-capacity devices did not have any allocation time as all services were allocated to
them. It is clear that the data communication over the network is reduced with all strategies,
and most of the services are allocated to fog devices. Since reducing data transfer across the
network was our primary goal, it fits with our proposed strategy. Furthermore, the second
aim was to use the priority aspect to allocate the high-priority services as much as possible
near the fog devices, and based on the results, this aim was achieved as 90% or more of the
services have been allocated to the fog devices and the data communication is reduced by
82% compared to 6.1.
8. Conclusion

In conclusion, this paper developed an efficient service allocation strategy priority
based service allocation (PSA) and sort based service allocation (SSA) with lower bandwidth
consumption, faster response times, improved resource usage, and the identification of the
best method for processing data at a large scale. As a result, we determined the capabilities
of fog and IoT devices, as well as the technical needs of the services, in order to efficiently
allocate the services to the devices. our proposed service allocation strategy was significant
because providing services to devices in the IoT is a difficult process due to the many types
of devices and their capabilities. Then, We proposed our allocation method, which utilizes
a list of every fog device in the network. We looked at how fog computing may improve
service quality while fulfilling the expectations of fog applications for optimal resource
consumption. This included the necessity of allocating services to devices and optimizing
resource use. Our findings demonstrated that our approach was suitable for the given
setting and dataset. Our results showed that by distributing most services locally in fog,
we reduced data transmission over the network by 82%, and we maximized the number of
distributed services to fog devices by 90% while minimizing the wastage of fog resources.

9. Future Work
Our future work includes the following open challenges:

*  Privacy: Privacy: Fog nodes acquire a considerable quantity of personal information
from fog applications such as smart healthcare. Despite the fact that some researchers
utilize privacy-preserving techniques on fog nodes [39], based on our knowledge that
no standard authentication solution exists.

®  Security is a serious concern because fog devices lack resources and are positioned in
risky environments, leaving them open to attack. As a result, designing a lightweight,
quick, and trustworthy safety algorithm remains a tough task. Only a few researchers
are currently focusing on fog computing security challenges [39], and there are several
outstanding issues such as dynamic authentication, access controls, external threats,
and intrusion detection.

*  Energy usage: As fog devices have limited battery capacity, energy awareness remains
a problem that remains in fog computing. Some researchers are concerned with opti-
mizing energy use, [39], while others are worried about the proper use of bandwidth
in data transfer, battery waste, and battery-draining issues.

Security is a serious concern because fog devices lack resources and are positioned
in risky environments, leaving them open to attack. As a result, designing a lightweight,
quick, and trustworthy safety algorithm remains a tough task. Only a few researchers
are currently focusing on fog computing security challenges [39], and there are several
outstanding issues such as dynamic authentication, access controls, external threats, and
intrusion detection.
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