

423

Supporting Information

424

Thiourea derivatives rejuvenate dysfunctional mitochondria in Chronic Hepatitis B infection

426

Authors: Jitendra Kumar^{1#}, Purnima Tyagi¹, Akhilesh K Saini¹, Deepti Sharma², Jaswinder
427 Singh Maras¹, Vijay Kumar¹

428

Affiliations:

429

¹Departments of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New
430 Delhi, India

431

²Department of Chemistry, Sri Venkateswara College, University of Delhi, New Delhi, India

432

433

1. Untargeted Proteomics analysis using UHPLC coupled with High Resolution- 434 MS/MS:

435

Untargeted proteomic analysis of cell culture samples was performed using ultra high-performance liquid chromatography (UHPLC) coupled with high resolution tandem mass spectrometry (HRMS/MS). In six-well plates, 100,000 HepG2.2.15 cells were seeded. Next day, they were treated with 10µM concentration of thiourea derivatives and ETV. Followed by incubation for 24h then trypsinized cultured cells. The trypsinized cells collected by centrifugation at 5000 RPM. The cells pallet resuspended in RIPA lysis buffer for the Isolation of total proteins from cultured cells. For digestion, 50µg equivalent protein was reconstituted in 200µl ABC buffer (ammonium bicarbonate buffer), 20 µl of 10 mM DTT was added followed by incubation at 60°C for 1 hour in a water bath to reduce proteins. Post-reduction, 15 µl of 10 mM IAA (Iodoacetamide) was added and incubated for 30 min in the dark for alkylation of proteins, then 10 µl of modified sequencing grade trypsin (0.1 µg/µl), was added followed by incubation at 37°C for 20–24 h in a water bath. To inhibit the trypsin activity in reaction mixture, add 5µl of conc. formic acid.

448

A. C18 column mediated de-salting of peptides: Sample cleanup was performed using the C18 spin column using the following steps: (1) column washing. (2) Equilibration of the column. (3) Binding of peptides to the column. (4) Elution. Eluted samples were subjected to lyophilisation at 4°C. The lyophilized samples were reconstituted in 40 µl of 0.1% (v/v) formic

452 acid which was followed by centrifugation at 15,000 g and samples were run on UHPLC-
453 HRMS/MS.

454

455 B. Untargeted proteomics by UHPLC-HRMS/MS: The peptides were ionized by nano-
456 electrospray and subsequent tandem mass spectrometry (MS/MS) on a Q-ExactiveTM Plus
457 (Thermo Fisher Scientific, San Jose, CA, United States). The fractions were enriched on a trap
458 column (75 μ m x 2 cm, 3 μ m, 100 \AA , nano Viper 2Pk C18 Acclaim PepMapTM 100), at a flow
459 rate of 8 μ l/min and then resolved on an analytical column (75 μ m x 25 cm, 2 μ m, 100 \AA , nano
460 Viper C18, Acclaim PepMapTM RSLC. The peptides were eluted by a 3–95% gradient of buffer
461 B (aqueous 80% acetonitrile in 0.1% formic acid) with a continuous flow rate of 800 nL/min
462 for about 70 min on a 25-cm analytical C18 column (C18, 3 mm, 100 A). The peptides were
463 analyzed using a mass spectrometer with the collision-induced dissociation mode with the
464 electrospray voltage of 2.3 kV. Analysis on the orbitrap was performed with full scan MS
465 spectra with a resolution of 70,000 from m/z 350 to 1800. Mascot algorithm (Mascot 2.4,
466 Matrix Science). Significant proteins were identified at (p < 0.05) and q values (p < 0.05). The
467 threshold of false discovery rate was kept at 0.012.

468

469 C. Mass spectrometry proteomics: The isolated proteins were reduced, alkylated, and
470 digested using trypsin followed by mass spectrometry analysis similar to that stated in
471 proteome analysis section. The MS/MS data was acquired and analyzed by Proteome
472 Discoverer (version 2.3, Thermo Fisher Scientific, Waltham, MA, United States) using the
473 human sequence of Uniprot. This was cross validated using Mascot algorithm (Mascot 2.4,
474 Matrix Science) specifically for all possible human peptides. In brief, significant peptide
475 groups were identified at (p<0.05) and q values (p<0.05) and the false discovery rate at 0.01.
476 Only rank-1 peptides with Peptides Sequence Match (PSMs)>3. Peptides mapping to human
477 database were segregated and were subjected to statistical, and functional analysis.

478

479 2. MTR and MTG Staining of HepG2.2.15:

480 HepG2.2.15 cells which is the well-known chronic HBV infection model (Xu et al., 2021), were
481 seeded in six-well plates. The next day, they were treated with 10 μ M concentration of thiourea
482 derivatives and ETV, as well as 1mM of Ascorbic Acid (Vitamin C). Followed by incubation
483 for 24h then trypsinized cultured cells, and made into a single cell suspension in PBS
484 containing 1% BSA and 2.5 mM EDTA (FACS Buffer). The complete cells were labelled with

485 25 nM, 100 nM, or both MitoTracker™ Red and MitoTracker® Deep Red (MTR and MTG;
486 Life Technologies) dyes. Following mitochondrial labelling, cell suspension samples were
487 fixed for 5 min at room temperature in 2% paraformaldehyde before being washed for 5 min
488 at room temperature with PBS. Following daily QC checks using BD CaliBRITE™ beads (BD
489 Biosciences), 50,000 events of each sample were collected using a FACSCalibur™ flow
490 cytometer (BD Biosciences, San Jose, CA). For the purposes of measuring fluorescence, green
491 and red fluorescence photomultipliers were used. The percentages of cells that stained
492 positively for MTG and MTR were noted. The FlowJo™ Software (Becton, Dickinson and
493 Company; Ashland, OR 97520 USA) was used for all data analysis.

494

495 **3. Statistical and Correlation Analysis:**

496 Results are shown as mean and S.D. unless indicated otherwise. Statistical analysis was
497 performed using Graph Pad Prism, version 8 (GraphPad Software, La Jolla, CA, USA;
498 www.graphpad.com), and SPSS, version 20; p values < 0.05 using Benjamini-Hochberg
499 correction (FDR< 0.05) were considered significant. Unpaired (two-tailed) Student t-test and
500 the Mann-Whitney U test were performed to compare the two groups. A one-way analysis of
501 variance and the Kruskal-Wallis test was performed for comparison among more than two
502 groups. All correlations were performed using Spearman correlation analysis, and $R^2>0.5$ and
503 $p<0.05$ were considered statistically significant. All statistical analyses were performed using
504 an unpaired two-sided t test. A difference was considered to be statistically significant at * $p<$
505 0.05 and ** $p< 0.01$, and not significant (ns).