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Comment on the Cosmological Constant for A¢*
Theory in d Spacetime Dimensions

André LeClair
Cornell University, Physics Department, Ithaca, NY 14853, United States of America; andre.leclair@gmail.com

Abstract: In a recent article we showed that the analog of the cosmological constant in two spacetime

dimensions for a wide variety of integrable quantum field theories has the form py,. = —m?/2g
where m is a physical mass and g is a generalized coupling, where in the free field limit g — 0, pvac
diverges. We speculated that in four spacetime dimensions pyac takes a similar form pyac = —m*/2g,

but did not support this idea in any specific model. In this article we study this problem for A¢*
theory in d spacetime dimensions. We show how to obtain the exact pyac for the sinh-Gordon theory
in the weak coupling limit by using a saddle point approximation. This calculation indicates that
the cosmological constant can be well-defined, positive or negative, without spontaneous symmetry
breaking. We also show that py, satisfies a Callan-Symanzik type of renormalization group equation.
For the most interesting case physically, pyac is positive and can arise from a marginally relevant
negative coupling g and the cosmological constant flows to zero at low energies.

Keywords: cosmological constant; quantum field theory

1. Introduction

The so-called cosmological constant problem (CCP) continues to provide serious challenges to our
understanding of fundamental physics. Einstein’s equations of general relativity involve the classical
stress-energy tensor as a source of gravitation, and in a semi-classical quantum theory one expects
that the classical T),, is replaced by its quantum vacuum expectation value (0|T},|0), where |0) is the
vacuum state. Based on general coordinate invariance one expects

<0|TyV|0> = —Pvac §uv (1)

where g, is the spacetime metric. In the above equation the convention for the metric is the signature
guv = diag(—1,1,1,1),i.e. goo = —gii = —1 in Minkowski space. The original CCP was based on
viewing a free quantum field as a collection of harmonic oscillators of frequency wy = v'k? + m?, and
the vacuum energy is naively the sum of the zero point energies [1,2]:

A dk A4
Pvac = /0 471k? %\/ K+ m? ~ )

(27)3 1672

where A is an ultraviolet cutoff and we have assumed A >>> m. The first problem is that for reasonable
values of the cut-off A, such as the Planck scale, the above pyac is off by over 100 orders of magnitude
compared to astrophysical measurements. The original problem has evolved to consider a series of
phase transitions in the thermal development of the dynamical evolution of the Universe where A
is a scale of spontaneous symmetry breaking (SSB), such as the electro-weak scale, a supersymmetry
breaking scale, or even the QCD scale (see for example the review [3] and references therein.) In any
case, the corresponding A leads to much too high a scale to explain the observed astrophysical value
of pyac. We henceforth we use “pyac" and “cosmological constant" interchangeably.

One should strongly question the above naive computation in (2), since we are accustomed
to dealing with divergences in quantum field theory (QFT) in a way that leads to finite physical
predictions. Also, one should stress that the way the problem is stated above, it is actually a QFT
problem in the absence of gravity. It is only relevant to gravity when one treats (0|T},|0) as a source in
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Einstein’s equations of General Relativity. Thus it would appear that a first step in addressing the CCP
should focus on making mathematical and physical sense of (0|T},,|0) purely in the context of quantum
field theory. This may or may not resolve the CCP, but it is worthwhile exploring iff it can with the
theoretical tools we have available. In [4] we studied this problem for integrable quantum field theory
in d = 2 spacetime dimensions. Although d = 2 is considerably simpler, conceptually the problem is
essentially the same as in 44 since in 24 the calculation (2) also leads to a divergent pyac ~ AZ/47. We
proposed that interactions can actually fix the above simplistic free field calculation. Using integrability,
we were able to exactly calculate pyac for a wide variety of models, including massive and massless,
and some with and without SSB. The main point is that it is physically meaningful and calculable
without quantum gravity. It was found that for all these models

2
m
Pvac = _E (3)

exactly, where m is a physical mass scale and g an interaction coupling. The main tool that led to this
result was Zamolodchikov’s analysis of the Thermodynamic Bethe Ansatz (TBA) [5-7], which is a
relativistic generalization of Yang-Yang thermodynamics [8]. For many additional references which
deal with some specific models, we refer to [4]. For the massive case, in the formula (3) m = m; which
is the physical mass of the lightest particle and g is a generalized coupling which is a trigonometric sum
over certain resonance angles of the exact 2-body S-matrix for the scattering of this lightest particle
with itself. (See for example (16) below.) For massless cases, which are renormalization group flows
between two conformal field theories (CFTs), m can be the scale of SSB.
The above 2d results led us to suggest [4] that in 44,

4
m
Pvac = _5 . (4)
In [4] we did not attempt to justify the above 4d proposal in any particular model. In this paper
we will do so for A¢* theory. We were encouraged to undertake this study by some recent results from
a very different approach involving charged black holes and the notion of a Swampland [9,10]. There

it was proposed that
-t

Pvac < ? (5)

where m is the mass of a charged particle, and a = e? /47 is the electromagnetic fine structure constant.
This is weaker than (4) since it is an upper bound rather than an equality. Remarkably this is consistent
with (4) if m in (5) is the lightest mass particle and < is replaced with <. In other words the novelty
of our proposal (4) is that whereas it is consistent with (5) if m is the lightest mass, it proposes that
the lightest mass particle saturates the inequality leading to an equality. One intriguing aspect of
(4) is that if m is for the lightest mass particle and g ~ 1, then the astrophysically measured value
of pyac = 10~ °Joule/meter> implies the lowest mass is on the order of the expected neutrino masses
(0.03eV).!

The main goal of this paper is to understand how to obtain (4) without relying on integrability, at
least in some approximation. We will also demonstrate that a QFT can have a well-defined cosmological
constant even in the absence of spontaneous symmetry breaking. First of all there is no integrability in
4d and thus no TBA. Secondly, in the TBA the theory lives on an infinite cylinder of circumference §; in
thermal field theory B = 1/T where T is the temperature. In [4] we proposed that the cosmological
constant pyac is the p independent term in the free energy density, however in the TBA this term is
sometimes tricky to extract since it can mix with terms coming from conformal perturbation theory.

1 Astronomical data is based on WMAP [12]. The subject of neutrino masses is reviewed in [13].
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On the other hand, it should be possible to compute pya. directly in the zero temperature quantum
field theory, and this paper shows how to do this for a simple model, namely the A¢* theory, in a weak
coupling approximation. We chose to study the latter theory since this alternative calculation can be
compared with exact results for the sinh-Gordon model at small coupling as a check of the method.

In the next section we review the exact pyac for the sinh-Gordon model which was originally
obtained with the help of the TBA. We show how this result can be obtained at weak coupling from
a relatively simple calculation without introducing 8 and the TBA2. We then apply this approach to
A ¢4 theory in d spacetime dimensions and show how to obtain both (3),(4). An interesting feature is
that in order to obtain the correct result one must analytically continue in 7 from a regime where
m? is negative and has SSB to a physical region with no SSB, since there is no SSB in the sinh-Gordon
model. We will derive a Callan-Symanzik for pyac based on the renormalization group for the coupling
A, which leads to an RG flow for g. The two main cases correspond to whether g is marginally relevant
or irrelevant. For the marginally relevant case the cosmological constant decreases in the flow to low
energies.

2. Generalities for a Scalar Field in Any Spacetime Dimension

In this article, we only consider models of a single scalar field in d spacetime dimensions. The
classical theory can be defined by the action in euclidean space

s =[x (10,07 + V(). (6)

As usual we consider the partition function Z = Tre~PH where B is the inverse temperature. From
Z we can calculate the free energy density F, energy density £, and pressure p in the usual manner

B 1 __1dlogZ
=—-p= m)logZ, &= v op

F 7)
where V is the d — 1 dimensional spatial volume. For arbitrary § the above equations determine an
equation of state relating £ and p, which generally does not correspond to a cosmological constant.
However in [4] it was shown that the § independent term in F does correspond to a cosmological
constant. Let us show this here in a different manner. First of all consider an arbitrary shift of V(¢) by
a constant v, V(¢) — V(¢) + v. Whereas Z depends on v, correlation functions do not, since v cancels
in (0) = ( [ Dpe=° O )/Z. Thus shifts by v do not change the cosmological constant.

Let us calculate py,c in a saddle point approximation. In the vacuum ¢ has no spatial dependence,
so we can ignore the d¢ terms. The saddle point is then the value of ¢ = ¢ satisfying

dv(¢) _
g lp=p, - ®)
The action is then
So = /ddx Vigo) = VBV(py) = Zre VBV, )

since in thermal field theory, euclidean time is a circle of circumference B. This implies a § independent
free energy density
F = V(o) (10)

2 This short article may thus be viewed as an addendum to [4]
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The equation of state corresponds to a cosmological constant (1) since it implies the equation of
state £ = —p:
E=V(¢go), p=-Vigo) (11)

We adopt the standard convention that a positive £ corresponds to negative pressure p:

Pvac = V(‘PO) (12)

in this approximation.

3. The 2d Sinh-Gordon Model at Weak Coupling

The sinh-Gordon model is perhaps the simplest integrable quantum field theory. It can be defined
by the action

1
S= /dzx (8”(8]44)8”4)) +2u cosh(\ﬁbqb)) . (13)

The 1/87 normalization of the kinetic term is such that the two point function has the standard
2d CFT normalization: (¢(x)$(0)) = —logx*> when u = 0. The operator cosh(y/2b¢) is then
strongly relevant with scaling dimension —2b2. The spectrum consists of a single particle of mass .
Parameterizing the energy and momentum of a particle in terms of a rapidity 6,

E =mcosh0, p=msinh, (14)
the exact 2-body S-matrix is

S(0) = sinh 0 — i sin 71y b?

sinh 6 + i sin 71y’ =11

(15)

As explained in [4], the strict 2d analog of the 4d cosmological constant corresponds to the
so-called bulk term in the effective central charge c(fm). The latter can extracted from the TBA, but
without some level of difficulty [5-7]. However the exact result is quite simple:

m2

—. 1
8 sin 7Ty (16)

Pvac =
Since this result depends only on S-matrix parameters, it must be possible to obtain it directly in
the zero temperature quantum field theory, and this is the primary goal of this paper, since doing so
can provide insights into the 4d cosmological constant problem.
At small coupling b one has
m2
8mb?’

This can be obtained in a simple way using results of the last section. The saddle point satisfying

%li)l(l) Pvac = (17)

(8) is simply ¢p = 0, thus
Pvac = 2} (18)

The above result does not rely on integrability, and is not exact except in the b — 0 limit. If one
allows results from integrability, then the relation between i and the physical mass m and coupling
constant b is known exactly [11]. Since the cosh potential has dimension —2b?, the scaling dimension
of p is 2 + 2b?, thus p m?+2Y" where m is the renormalized physical mass. The exact relation is

mE, with Z(7) = s;\l/EW(l_”)HF () r@.
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In the limit b> — 0, Z ~ 1/4b? which implies

m2

W= Tonp? (20)

and this combined with (18) gives the correct limit (17).
In the b — 0 limit, (20) can be obtained in a much simpler way without using integrability and
this will be useful in the sequel. Expanding the cosh and redefining ¢ — v/47¢, the lagrangian is

2
= %(awp)z + m?q)z + %4;4 +O(¢%), with m?=167b*p, A =12872%0* . (21)

This naturally leads us to the next section where we consider the cosmological constant for A¢*
theory in d spacetime dimensions in light of the above understanding.

4. A¢* Theory in d Spacetime Dimensions

The theory is defined by the euclidean action

S — /dd( D) +—¢ +4,4>> (22)

Let [X] denote the scaling dimension of X in mass units. The classical, engineering, dimensions
are

=1 gl=@-2)/2, N =4—-d, [pwd=d. 23)

4.1. Saddle Point Approximation
The saddle point equation leads to
2

4’(2) = _6% = Pvac = V(o) = —

m?

5 (24)

N W

Asis well known, a non-zero real solution ¢ only exists if m? is negative, and there is spontaneous
symmetry breaking of the ¢ — —¢ symmetry. It is important to note that in the small b approximation
to the sinh-Gordon model (21), m? is positive and there is no spontaneous symmetry breaking, but
nevertheless it has a positive cosmological constant. As we will argue below, in order to explain the 24
result (17) we will need to analytically continue m? from negative to positive values.?

Based on the engineering dimensions (23) let us define a dimensionless coupling g as follows:

A=3mt g, (25)

where by definition m is the true physical mass. The above equation is analogous to the exact
sinh-Gordon result (19). Then pyac has the desired form stated in the Introduction for any spacetime
dimension d:
mi
Pvac = *279- (26)
One sees that the saddle point approximation to pyac in Section II the main features of the exact
sinh-Gordon result at small b, including overall factors, if one analytically continues m? — —m? which

makes pyac positive, and identifies g = 47tb%. The need to analytically continue in 72 in order to obtain

3 Equation (24) together with the A¢* approximation to the sinh-Gordon model (21) leads to pyac = —3y rather than pyac = 2p
in (18), however this is clearly due to the approximation of the cosh potential with a A¢* theory.
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a positive cosmological constant is clear from (21) since the m? has the wrong sign for there to be a
non-trivial ¢.

4.2. Renormalization Group Considerations

The saddle point approximation to pyac, namely (26), is not a renormalization group (RG) invariant.
For the 2d sinh-Gordon model, with a proper RG prescription, b? can be viewed as an RG invariant. In
other dimensions, g has a non-trivial RG flow, and one needs to investigate the implications of this.
Renormalization of /\¢)4 theory is well understood (see for instance [14]) however its implications for
Pvac have not been considered previously in much detail, at least to our knowledge. Being related to a
correlation function (1), pvac satisfies a RG differential equation. This involves absorbing divergences
into the parameters m, A and the normalization of the field ¢, which necessarily introduces an arbitrary
mass scale M, and a specific renormalization prescription which defines physical parameters, such
as the actual physical mass of particles. Being a 1-point correlation function which is independent of
spacetime coordinates, these RG equations for pyac are simpler than for general correlation functions.
For our purposes, we want m in (26) to be the physical, measurable mass of a particle. For this reason,
the Callan-Symanzik form of the RG equation is most suitable, since there the arbitrary renormalization
scale M is the actual physical mass m. In this prescription, m has dimension 1 with no anomalous
corrections?, and the beta function f, for the coupling A only depends on A and not m. This RG
equation is

0 d
(mam + ,B)\a/\) Pvac = rp Pvac (27)
where B = mdpA, [, is the scaling dimension of pyac, and
Br(A) = (4—d)A +O(A%). (28)

Indeed pyac m*/A as in (24) satisfies the above equation to lowest order with I', = d +
O(A). However the higher order corrections to B, imply that the beta function for the classically
dimensionless g is non-zero, and the Callan-Symanzik equation now is

d 9 99
<m8m + 'B(g)ag) Pvac = Lppvac,  B(9) = Mo (29)
This is consistent with pyac o m?/g and B(g) = 0 classically. Quantum corrections to 1-loop are
known [14]
_dg 9 3
Plo) =m-- = —15 ¢ +0(g). (30)

The RG flow toward low energy corresponds to increasing m. Let us fix g = go at some high
energy scale 1 such as the Planck scale. Then integrating the one-loop B function (30) one has

90
= . (1)
1+ % go log(m/my)

g(m)

In any spacetime dimension d there are essentially two generic cases to consider:

Marginally irrelevant. Here gg > 0, and pyac is negative. In the flow to low energies (increasing m),
g — 0and pyac = —oo.

4 4, = 0in the notation in [14]
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Marginally relevant. Here gy < 0, and pyac is positive. In the flow to low energies, |g| increases and
Pvac slowly flows to pyac = 0 and reaches there at

m/my = o167 /980 1, (32)

then it changes sign.
The expononential in (32) implies there can be a very large hierarchy of scales relating the
cosmological constant in the UV and IR.

There are some features that specifically depend on the spacetime dimension d:

d=2. Herepyac = —m?/2g. Recall that for the sinh-Gordon model, Pvac is positive and there is no
spontaneous symmetry breaking. Thus in order to reproduce the known exact result in the sinh-Gordon
model at weak coupling, one must analytically continue m?> — —m? which makes pyac > 0 and is
consistent with no spontaneous symmetry breaking, i.e. ¢g = 0.

d =4. Here pyac = —m*/2g. Thus the analytic continuation m? — —m? does not change the sign of
Pvac- A positive cosmological constant requires a marginally relevant coupling g that is negative. As
explained above, this can occur for asymptotical free theories in the UV, where g — 0 and pyac — o0 at
high energy.

5. Concluding Remarks

In our approach to the cosmological constant problem, we have essentially decoupled the problem
from classical and quantum gravity and computed it in the pure, zero temperature quantum field
theory. It can be computed exactly for integrable quantum field theories in 2 spacetime dimensions.
Based on insights gained in 2d we studied the problem for A¢* theory in d spacetime dimensions and
motivated the result pyoc = —m?/2g in a saddle point approximation. This result does not require
spontaneous symmetry breaking. One check of this calculation is that it reproduces the exact weak
coupling vacuum energy for the 2d sinh-Gordon model. This entails a renormalization group equation
satisfied by pyac which is naturally of Callan-Symanzik type. For a marginally relevant coupling g,
such as for asymptotically free theories, pyac can flow from large positive values to zero, and this flow
introduces a large hierarchy of energy scales.

If our analysis proves to be correct, then there are many open avenues for exploration. It
would be interesting to try and extend our results to theories with both bosons and fermions
as in the Standard Model of particle physics. In fact, based on our analysis of simpler models,
conceptually the cosmological constant in the Standard Model is in principle computable, but difficult;
it is non-perturbative, and perhaps can be computed on a lattice. We have not at all explored the
consequences of including pyac in the temporal and thermal evolution of the universe. However
we suggested one scenario wherein g is a negative marginally relevant coupling, for instance for an
asymptotically free theory, and pyac flows to zero at low energies, indicating a kind of “cosmic freedom"
in that the cosmological constant does not dominate at late times.

Acknowledgments: We wish to thank Miguel Montero and Gerben Venken for pointing out their potentially
related work [9,10] and discussions.
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