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Article

Comment on the Cosmological Constant for λφ4

Theory in d Spacetime Dimensions

André LeClair

Cornell University, Physics Department, Ithaca, NY 14853, United States of America; andre.leclair@gmail.com

Abstract: In a recent article we showed that the analog of the cosmological constant in two spacetime

dimensions for a wide variety of integrable quantum field theories has the form ρvac = −m2/2g

where m is a physical mass and g is a generalized coupling, where in the free field limit g → 0, ρvac

diverges. We speculated that in four spacetime dimensions ρvac takes a similar form ρvac = −m4/2g,

but did not support this idea in any specific model. In this article we study this problem for λφ4

theory in d spacetime dimensions. We show how to obtain the exact ρvac for the sinh-Gordon theory

in the weak coupling limit by using a saddle point approximation. This calculation indicates that

the cosmological constant can be well-defined, positive or negative, without spontaneous symmetry

breaking. We also show that ρvac satisfies a Callan-Symanzik type of renormalization group equation.

For the most interesting case physically, ρvac is positive and can arise from a marginally relevant

negative coupling g and the cosmological constant flows to zero at low energies.

Keywords: cosmological constant; quantum field theory

1. Introduction

The so-called cosmological constant problem (CCP) continues to provide serious challenges to our

understanding of fundamental physics. Einstein’s equations of general relativity involve the classical

stress-energy tensor as a source of gravitation, and in a semi-classical quantum theory one expects

that the classical Tµν is replaced by its quantum vacuum expectation value ⟨0|Tµν|0⟩, where |0⟩ is the

vacuum state. Based on general coordinate invariance one expects

⟨0|Tµν|0⟩ = −ρvac gµν (1)

where gµν is the spacetime metric. In the above equation the convention for the metric is the signature

gµν = diag(−1, 1, 1, 1), i.e. g00 = −gii = −1 in Minkowski space. The original CCP was based on

viewing a free quantum field as a collection of harmonic oscillators of frequency ωk =
√

k2 + m2, and

the vacuum energy is naively the sum of the zero point energies [1,2]:

ρvac =
∫

Λ

0

dk

(2π)3
4πk2 1

2

√

k2 + m2 ≈ Λ
4

16π2
(2)

where Λ is an ultraviolet cutoff and we have assumed Λ ≫ m. The first problem is that for reasonable

values of the cut-off Λ, such as the Planck scale, the above ρvac is off by over 100 orders of magnitude

compared to astrophysical measurements. The original problem has evolved to consider a series of

phase transitions in the thermal development of the dynamical evolution of the Universe where Λ

is a scale of spontaneous symmetry breaking (SSB), such as the electro-weak scale, a supersymmetry

breaking scale, or even the QCD scale (see for example the review [3] and references therein.) In any

case, the corresponding Λ leads to much too high a scale to explain the observed astrophysical value

of ρvac. We henceforth we use “ρvac" and “cosmological constant" interchangeably.

One should strongly question the above naive computation in (2), since we are accustomed

to dealing with divergences in quantum field theory (QFT) in a way that leads to finite physical

predictions. Also, one should stress that the way the problem is stated above, it is actually a QFT

problem in the absence of gravity. It is only relevant to gravity when one treats ⟨0|Tµν|0⟩ as a source in
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Einstein’s equations of General Relativity. Thus it would appear that a first step in addressing the CCP

should focus on making mathematical and physical sense of ⟨0|Tµν|0⟩ purely in the context of quantum

field theory. This may or may not resolve the CCP, but it is worthwhile exploring iff it can with the

theoretical tools we have available. In [4] we studied this problem for integrable quantum field theory

in d = 2 spacetime dimensions. Although d = 2 is considerably simpler, conceptually the problem is

essentially the same as in 4d since in 2d the calculation (2) also leads to a divergent ρvac ≈ Λ
2/4π. We

proposed that interactions can actually fix the above simplistic free field calculation. Using integrability,

we were able to exactly calculate ρvac for a wide variety of models, including massive and massless,

and some with and without SSB. The main point is that it is physically meaningful and calculable

without quantum gravity. It was found that for all these models

ρvac = −m2

2 g
(3)

exactly, where m is a physical mass scale and g an interaction coupling. The main tool that led to this

result was Zamolodchikov’s analysis of the Thermodynamic Bethe Ansatz (TBA) [5–7], which is a

relativistic generalization of Yang-Yang thermodynamics [8]. For many additional references which

deal with some specific models, we refer to [4]. For the massive case, in the formula (3) m = m1 which

is the physical mass of the lightest particle and g is a generalized coupling which is a trigonometric sum

over certain resonance angles of the exact 2-body S-matrix for the scattering of this lightest particle

with itself. (See for example (16) below.) For massless cases, which are renormalization group flows

between two conformal field theories (CFTs), m can be the scale of SSB.

The above 2d results led us to suggest [4] that in 4d,

ρvac = −m4

2 g
. (4)

In [4] we did not attempt to justify the above 4d proposal in any particular model. In this paper

we will do so for λφ4 theory. We were encouraged to undertake this study by some recent results from

a very different approach involving charged black holes and the notion of a Swampland [9,10]. There

it was proposed that

ρvac <
m4

2e2
(5)

where m is the mass of a charged particle, and α = e2/4π is the electromagnetic fine structure constant.

This is weaker than (4) since it is an upper bound rather than an equality. Remarkably this is consistent

with (4) if m in (5) is the lightest mass particle and < is replaced with ≤. In other words the novelty

of our proposal (4) is that whereas it is consistent with (5) if m is the lightest mass, it proposes that

the lightest mass particle saturates the inequality leading to an equality. One intriguing aspect of

(4) is that if m is for the lightest mass particle and g ≈ 1, then the astrophysically measured value

of ρvac ≈ 10−9Joule/meter3 implies the lowest mass is on the order of the expected neutrino masses

(0.03eV).1

The main goal of this paper is to understand how to obtain (4) without relying on integrability, at

least in some approximation. We will also demonstrate that a QFT can have a well-defined cosmological

constant even in the absence of spontaneous symmetry breaking. First of all there is no integrability in

4d and thus no TBA. Secondly, in the TBA the theory lives on an infinite cylinder of circumference β; in

thermal field theory β = 1/T where T is the temperature. In [4] we proposed that the cosmological

constant ρvac is the β independent term in the free energy density, however in the TBA this term is

sometimes tricky to extract since it can mix with terms coming from conformal perturbation theory.

1 Astronomical data is based on WMAP [12]. The subject of neutrino masses is reviewed in [13].
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On the other hand, it should be possible to compute ρvac directly in the zero temperature quantum

field theory, and this paper shows how to do this for a simple model, namely the λφ4 theory, in a weak

coupling approximation. We chose to study the latter theory since this alternative calculation can be

compared with exact results for the sinh-Gordon model at small coupling as a check of the method.

In the next section we review the exact ρvac for the sinh-Gordon model which was originally

obtained with the help of the TBA. We show how this result can be obtained at weak coupling from

a relatively simple calculation without introducing β and the TBA2. We then apply this approach to

λ φ4 theory in d spacetime dimensions and show how to obtain both (3),(4). An interesting feature is

that in order to obtain the correct result one must analytically continue in m2 from a regime where

m2 is negative and has SSB to a physical region with no SSB, since there is no SSB in the sinh-Gordon

model. We will derive a Callan-Symanzik for ρvac based on the renormalization group for the coupling

λ, which leads to an RG flow for g. The two main cases correspond to whether g is marginally relevant

or irrelevant. For the marginally relevant case the cosmological constant decreases in the flow to low

energies.

2. Generalities for a Scalar Field in Any Spacetime Dimension

In this article, we only consider models of a single scalar field in d spacetime dimensions. The

classical theory can be defined by the action in euclidean space

S =
∫

ddx
(

1
2 (∂µφ)2 + V(φ)

)

. (6)

As usual we consider the partition function Z = Tr e−βH where β is the inverse temperature. From

Z we can calculate the free energy density F , energy density E , and pressure p in the usual manner

F = −p = − 1

βV log Z, E = − 1

V
∂ log Z

∂β
(7)

where V is the d − 1 dimensional spatial volume. For arbitrary β the above equations determine an

equation of state relating E and p, which generally does not correspond to a cosmological constant.

However in [4] it was shown that the β independent term in F does correspond to a cosmological

constant. Let us show this here in a different manner. First of all consider an arbitrary shift of V(φ) by

a constant v, V(φ) → V(φ) + v. Whereas Z depends on v, correlation functions do not, since v cancels

in ⟨O⟩ = (
∫

Dφ e−S O )/Z. Thus shifts by v do not change the cosmological constant.

Let us calculate ρvac in a saddle point approximation. In the vacuum φ has no spatial dependence,

so we can ignore the ∂φ terms. The saddle point is then the value of φ = φ0 satisfying

dV(φ)

dφ

∣

∣

∣

φ=φ0

= 0. (8)

The action is then

S0 =
∫

ddx V(φ0) = V β V(φ0) =⇒ Z ≈ e−Vβ V(φ0), (9)

since in thermal field theory, euclidean time is a circle of circumference β. This implies a β independent

free energy density

F = V(φ0). (10)

2 This short article may thus be viewed as an addendum to [4]
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The equation of state corresponds to a cosmological constant (1) since it implies the equation of

state E = −p:

E = V(φ0), p = −V(φ0). (11)

We adopt the standard convention that a positive E corresponds to negative pressure p:

ρvac = V(φ0) (12)

in this approximation.

3. The 2d Sinh-Gordon Model at Weak Coupling

The sinh-Gordon model is perhaps the simplest integrable quantum field theory. It can be defined

by the action

S =
∫

d2x

(

1

8π
(∂µφ ∂µφ) + 2µ cosh(

√
2 bφ)

)

. (13)

The 1/8π normalization of the kinetic term is such that the two point function has the standard

2d CFT normalization: ⟨φ(x)φ(0)⟩ = − log x2 when µ = 0. The operator cosh(
√

2bφ) is then

strongly relevant with scaling dimension −2b2. The spectrum consists of a single particle of mass m.

Parameterizing the energy and momentum of a particle in terms of a rapidity θ,

E = m cosh θ, p = m sinh θ, (14)

the exact 2-body S-matrix is

S(θ) =
sinh θ − i sin πγ

sinh θ + i sin πγ
, γ ≡ b2

1 + b2
. (15)

As explained in [4], the strict 2d analog of the 4d cosmological constant corresponds to the

so-called bulk term in the effective central charge c(βm). The latter can extracted from the TBA, but

without some level of difficulty [5–7]. However the exact result is quite simple:

ρvac =
m2

8 sin πγ
. (16)

Since this result depends only on S-matrix parameters, it must be possible to obtain it directly in

the zero temperature quantum field theory, and this is the primary goal of this paper, since doing so

can provide insights into the 4d cosmological constant problem.

At small coupling b one has

lim
b→0

ρvac =
m2

8πb2
. (17)

This can be obtained in a simple way using results of the last section. The saddle point satisfying

(8) is simply φ0 = 0, thus

ρvac = 2µ. (18)

The above result does not rely on integrability, and is not exact except in the b → 0 limit. If one

allows results from integrability, then the relation between µ and the physical mass m and coupling

constant b is known exactly [11]. Since the cosh potential has dimension −2b2, the scaling dimension

of µ is 2 + 2b2, thus µ ∝ m2+2b2
where m is the renormalized physical mass. The exact relation is

µ =
1

π

Γ(1 − b2)

Γ(b2)
[mZ(γ)]2+2b2

, with Z(γ) =
1

8
√

π
γγ (1 − γ)1−γ

Γ

(

1−γ
2

)

Γ
( γ

2

)

. (19)
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In the limit b2 → 0, Z ≈ 1/4b2 which implies

µ ≈ m2

16π b2
, (20)

and this combined with (18) gives the correct limit (17).

In the b → 0 limit, (20) can be obtained in a much simpler way without using integrability and

this will be useful in the sequel. Expanding the cosh and redefining φ →
√

4πφ, the lagrangian is

L =
1

2
(∂µφ)2 +

m2

2
φ2 +

λ

4!
φ4 + O(φ6), with m2 = 16πb2 µ, λ = 128π2b4 µ. (21)

This naturally leads us to the next section where we consider the cosmological constant for λφ4

theory in d spacetime dimensions in light of the above understanding.

4. λφ4 Theory in d Spacetime Dimensions

The theory is defined by the euclidean action

S =
∫

ddx

(

1

2
(∂µφ)2 +

m2

2
φ2 +

λ

4!
φ4

)

. (22)

Let [X] denote the scaling dimension of X in mass units. The classical, engineering, dimensions

are

[m] = 1, [φ] = (d − 2)/2, [λ] = 4 − d, [ρvac] = d. (23)

4.1. Saddle Point Approximation

The saddle point equation leads to

φ2
0 = −6

m2

λ
=⇒ ρvac = V(φ0) = −3

2

m4

λ
. (24)

As is well known, a non-zero real solution φ0 only exists if m2 is negative, and there is spontaneous

symmetry breaking of the φ → −φ symmetry. It is important to note that in the small b approximation

to the sinh-Gordon model (21), m2 is positive and there is no spontaneous symmetry breaking, but

nevertheless it has a positive cosmological constant. As we will argue below, in order to explain the 2d

result (17) we will need to analytically continue m2 from negative to positive values.3

Based on the engineering dimensions (23) let us define a dimensionless coupling g as follows:

λ ≡ 3 m4−d
g, (25)

where by definition m is the true physical mass. The above equation is analogous to the exact

sinh-Gordon result (19). Then ρvac has the desired form stated in the Introduction for any spacetime

dimension d:

ρvac = −md

2g
. (26)

One sees that the saddle point approximation to ρvac in Section II the main features of the exact

sinh-Gordon result at small b, including overall factors, if one analytically continues m2 → −m2 which

makes ρvac positive, and identifies g = 4πb2. The need to analytically continue in m2 in order to obtain

3 Equation (24) together with the λφ4 approximation to the sinh-Gordon model (21) leads to ρvac = −3µ rather than ρvac = 2µ
in (18), however this is clearly due to the approximation of the cosh potential with a λφ4 theory.
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a positive cosmological constant is clear from (21) since the m2 has the wrong sign for there to be a

non-trivial φ0.

4.2. Renormalization Group Considerations

The saddle point approximation to ρvac, namely (26), is not a renormalization group (RG) invariant.

For the 2d sinh-Gordon model, with a proper RG prescription, b2 can be viewed as an RG invariant. In

other dimensions, g has a non-trivial RG flow, and one needs to investigate the implications of this.

Renormalization of λφ4 theory is well understood (see for instance [14]) however its implications for

ρvac have not been considered previously in much detail, at least to our knowledge. Being related to a

correlation function (1), ρvac satisfies a RG differential equation. This involves absorbing divergences

into the parameters m, λ and the normalization of the field φ, which necessarily introduces an arbitrary

mass scale M, and a specific renormalization prescription which defines physical parameters, such

as the actual physical mass of particles. Being a 1-point correlation function which is independent of

spacetime coordinates, these RG equations for ρvac are simpler than for general correlation functions.

For our purposes, we want m in (26) to be the physical, measurable mass of a particle. For this reason,

the Callan-Symanzik form of the RG equation is most suitable, since there the arbitrary renormalization

scale M is the actual physical mass m. In this prescription, m has dimension 1 with no anomalous

corrections4, and the beta function βλ for the coupling λ only depends on λ and not m. This RG

equation is
(

m
∂

∂m
+ βλ

∂

∂λ

)

ρvac = Γρ ρvac (27)

where βλ = m∂mλ, Γρ is the scaling dimension of ρvac, and

βλ(λ) = (4 − d)λ + O(λ2). (28)

Indeed ρvac ∝ m4/λ as in (24) satisfies the above equation to lowest order with Γρ = d +

O(λ). However the higher order corrections to βλ imply that the beta function for the classically

dimensionless g is non-zero, and the Callan-Symanzik equation now is

(

m
∂

∂m
+ β(g)

∂

∂g

)

ρvac = Γρ ρvac, β(g) ≡ m
∂g

∂m
. (29)

This is consistent with ρvac ∝ md/g and β(g) = 0 classically. Quantum corrections to 1-loop are

known [14]

β(g) = m
dg

dm
= − 9

16π2
g

2 + O(g3). (30)

The RG flow toward low energy corresponds to increasing m. Let us fix g = g0 at some high

energy scale m0 such as the Planck scale. Then integrating the one-loop β function (30) one has

g(m) =
g0

1 + 9
16π2 g0 log(m/m0)

. (31)

In any spacetime dimension d there are essentially two generic cases to consider:

Marginally irrelevant. Here g0 > 0, and ρvac is negative. In the flow to low energies (increasing m),

g → 0 and ρvac → −∞.

4 γm = 0 in the notation in [14]
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Marginally relevant. Here g0 < 0, and ρvac is positive. In the flow to low energies, |g| increases and

ρvac slowly flows to ρvac = 0 and reaches there at

m/m0 = e−16π2/9g0 > 1, (32)

then it changes sign.

The expononential in (32) implies there can be a very large hierarchy of scales relating the

cosmological constant in the UV and IR.

There are some features that specifically depend on the spacetime dimension d:

d = 2. Here ρvac = −m2/2g. Recall that for the sinh-Gordon model, ρvac is positive and there is no

spontaneous symmetry breaking. Thus in order to reproduce the known exact result in the sinh-Gordon

model at weak coupling, one must analytically continue m2 → −m2 which makes ρvac > 0 and is

consistent with no spontaneous symmetry breaking, i.e. φ0 = 0.

d = 4. Here ρvac = −m4/2g. Thus the analytic continuation m2 → −m2 does not change the sign of

ρvac. A positive cosmological constant requires a marginally relevant coupling g that is negative. As

explained above, this can occur for asymptotical free theories in the UV, where g → 0 and ρvac → ∞ at

high energy.

5. Concluding Remarks

In our approach to the cosmological constant problem, we have essentially decoupled the problem

from classical and quantum gravity and computed it in the pure, zero temperature quantum field

theory. It can be computed exactly for integrable quantum field theories in 2 spacetime dimensions.

Based on insights gained in 2d we studied the problem for λφ4 theory in d spacetime dimensions and

motivated the result ρvac = −md/2g in a saddle point approximation. This result does not require

spontaneous symmetry breaking. One check of this calculation is that it reproduces the exact weak

coupling vacuum energy for the 2d sinh-Gordon model. This entails a renormalization group equation

satisfied by ρvac which is naturally of Callan-Symanzik type. For a marginally relevant coupling g,

such as for asymptotically free theories, ρvac can flow from large positive values to zero, and this flow

introduces a large hierarchy of energy scales.

If our analysis proves to be correct, then there are many open avenues for exploration. It

would be interesting to try and extend our results to theories with both bosons and fermions

as in the Standard Model of particle physics. In fact, based on our analysis of simpler models,

conceptually the cosmological constant in the Standard Model is in principle computable, but difficult;

it is non-perturbative, and perhaps can be computed on a lattice. We have not at all explored the

consequences of including ρvac in the temporal and thermal evolution of the universe. However

we suggested one scenario wherein g is a negative marginally relevant coupling, for instance for an

asymptotically free theory, and ρvac flows to zero at low energies, indicating a kind of “cosmic freedom"

in that the cosmological constant does not dominate at late times.

Acknowledgments: We wish to thank Miguel Montero and Gerben Venken for pointing out their potentially
related work [9,10] and discussions.
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