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Abstract: Variable Angle Tow (VAT) laminates offer a promising alternative to classical straight 1
fiber composites in terms of design and performance. However, analyzing these structures can =
be more complex due to the introduction of new design variables. Carrera’s Unified Formulation s
(CUF) has been successful in previous works for buckling, vibrational, and stress analysis of VAT 4
plates. Typically, one-dimensional (1D) and two-dimensional (2D) CUF models are used, with a linear s
law describing the fiber orientation variation in the main plane of the structure. The objective of
this article is to expand the CUF 2D plate finite elements family to perform free vibration analysis 7
of composite laminated plate structures with curvilinear fibers. The primary contribution is the s
application of Reissner’s Mixed Variational Theorem (RMVT) to a CUF finite element model. The 9
Principle of Virtual Displacements (PVD) and RMVT are both used as variational statements for 1o
the study of monolayer and multilayer VAT plates dynamic behavior. The proposed approach is 11
compared to Abaqus three-dimensional (3D) reference solutions, classical theories and literature 12
results to investigate the effectiveness of the developed models. Results demonstrate that mixed 13
theories provide the best approximation of the reference solution in all cases. 14

Keywords: Free Vibration Analysis; Finite Element Method; Variable Angle Tow Plates; Carrera’s  1s
Unified Formulation; Reissner’s Mixed Variational Theorem 16

1. Introduction 17

Over the last decades, composite structures have shown interesting properties for 1.
aerospace applications, because of their high stiffness-to-weight ratio. Despite this, a 1o
common thought is that the potential of fiber reinforced structures could be better exploited 2o
by improving the directional properties through the variation of fibers angle along the =
in-plane directions. The choice to keep the fibre orientation constant in each layer is 22
particularly restrictive for geometries which present geometrical discontinuities like cut- =
outs. VAT plates are characterized by an in-plane variation of fibres angle, allowing to 24
expand the design space of a specific structure. This is particularly useful for optimization s
problems, where a wider design space can affect positively the search of an optimal solution. 2
For example, in the context of vibrational analyses, the maximization of fundamental -
frequencies can be improved by using curvilinear fibres. The complexity of analysis is  2s
one of the main disadvantages of VATs, because a greater number of unknowns mustbe 2o
taken into account and unfeasible fibres patterns could be obtained during the optimization 3o
process. s
Several methods for the study of VATs mechanical response are available in the literature. s
In the following text, a brief review of these approaches is presented, with a particular focus s
on free vibration analyses. To the best of authors” knowledge, the first works that have been 34
presented on the topic were based on the assumption of constant fibers angle within each s
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element in a Finite Element Method (FEM) solution. Therefore, the continuous variation of e
fibres direction was approximated in a step-wise discrete way. This approach can be used a7
in commercial FEM software tools that, at the moment, cannot handle a continuous fiber  ss
variation. Hyer and Charette [1] and Hyer and Lee [2] used this method to improve VATs 10
tensile strength and buckling response, respectively. One of the main disadvantages of this 40
step-wise approach is that, as the true variation is continuous, the discrete representation 41
of fibers angle variation imposes a further approximation. A p-version FEM based on the 4
Third-order Shear Deformation Theory (TSDT) was applied to preform vibrational analyses s
by Akhavan and Ribeiro [3]. Results showed that fibres variation allows to increase (or  4a
decrease) natural frequencies and that thin plates are more affected by this phenomenon s
if compared with thick ones. Ribeiro and Akhavan [4] used the p-version FEM approach s
with elements based on the First-Order Shear Deformation Theory (FSDT) to perform non-
linear vibration analyses. The advantage of the p-version of the FEM is that the accuracy 4
of the approximation is improved by increasing the order of shape functions over the 4
elements. Vibration analyses were performed on VAT plates with a central circular cut-out  so
considering parabolic fibres by Hachemi et al. [5]. Zhao and Kapania [6] investigated the s
free vibration of prestressed VAT stiffened plates where plates and stiffeners were modeled s
separately through Mindlin plate theory and Timoshenko beam theory, respectively. The s
compatibility conditions at the interface between plate and stiffeners were satisfied by s
using a transformation matrix. Honda and Narita [7] used the classical plate theory within  ss
the Ritz method in order to evaluate the natural frequencies and vibrational modes. An e
experimental approach was used in Rodrigues et al. [8] for the free vibration analysis of a  s7
plate with free boundary conditions subjected to random excitation via an electromagnetic  ss
shaker. Subsequently, the results were compared to the ones obtained through FEM, wherea  so
four-node isoparametric element based on the Reissner-Mindlin theory was used. Stodieck  eo
et al. [9] showed that curvilinear fibres can be useful for improving the aero-elastic response e
of composite wings. The Rayleigh-Ritz method and classical lamination theory were used e
to develop a 1D beam model, considering the assumption of null chamber deformation s
of the wing chord-wise section. The aero-elastic response was computed by introducing  es
quasi-static aerodynamic forces in a model developed for the plate structural analysis. A s
parametric study showed that by using VAT it is possible to influence wing response both s
positively and negatively. o7
Curvilinear fibres can improve the modal response as shown in several works. Abdalla et s
al. [10] used the classical lamination theory in combination with a successive approximation  es
method in order to solve an optimization problem. Results showed that curvilinear fibres 7o
increased the optimal fundamental frequency in comparison with straight ones. A similar 7
approach was presented in Blom et al. [11], where the maximization of the first natural -
frequency considering manufacturing constraints was obtained for VAT conical shells. 7
In Carvalho, Sohouli et al. [12], a genetic algorithm and shell elements based on FSDT 7
were used for the maximization of the fundamental frequency. The Multi-Scale Two-Level 7
(MS2L) approach allows to split the optimization problem in two parts. The compositeis 7
modeled as an equivalent homogeneous anisotropic plate in the first step, which aims to 7
find the ideal distribution of the polar parameters that represent the mechanical design 7
variables. The main goal of a second step is to establish the best stacking sequence in
relation to the mechanical properties distribution that has been obtained in the first step. so
The MS2L method was applied by Montemurro and Catapano [13] to VAT plates in order to &
optimize the buckling response. In order to evaluate the polar parameters, B-spline surfaces e
were introduced, while manufacturing constraints were considered during the second step. e
More details about MS2L approach can be find in Catapano et al. [14], Montemurro and s
Catapano [15] and Fiordilino et al. [16], where both stiffness and buckling optimization s
problems were solved. 86
VAT structures have also been studied by using Carrera’s Unified Formulation, which e
allows to use an arbitrary expansion order along the thickness of the plate. In this way, both s
Equivalent Single Layer (ESL) and Layer-Wise (LW) models can be obtained in the context s
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of a specific predefined variational statement, as shown in Carrera [17,18]. Carrera et o
al. [19] used CUF in order to develop a Navier closed-form solution for the static analysis of e
isotropic plates under several loading conditions. The same approach was used in Carrera o=
and Giunta [20] in order to perform failure analyses on isotropic plates. A further extension o3
of this method was shown in Giunta et al. [21], where the indentation failure analysis of s
composite sandwich plates was performed. Giunta et al. [22] performed free vibration s
analyses of composite beams. In Viglietti et al. [23] and Fallahi et al. [24], free vibration and e
buckling analyses of VATs were performed through the use of a 1D CUF model. Within o
this framework, shell models were developed as well for VAT cases in order to perform s
stress analyses, see Sanchez-Majano et al. [25]. In Pagani and Sanchez-Majano [26,27] and e
Sénchez-Majano et al. [28], manufacture defects were taken into account by using stochastic 100
techniques. Vescovini and Dozio [29] used the Ritz method within CUF for vibrational and 101
buckling analyses. A generalization of CUF was developed in order to allow the use of 102
different expansions for every component of the displacement vector. Demasi et al. [30] 103
applied this approach to the study of VAT plates with an ESL model. A further advantage 104
of CUF is that it can be used in combination with different variational statements. An 105
alternative to the classic PVD is represented by the RMVT, where both displacements 106
and transverse out-of-plane stresses are considered as primary variables. RMVT has been 107
widely used within CUF for the study of straight fibres composite structures. For example, 10s
Carrera and Demasi [31,32] developed RMVT-based CUF models to perform the static 100
analysis of straight fibres plates. 110
Within the free vibration analysis context, CUF has been applied to the study of VATs 1
considering as variational statement mainly the PVD. For this reason, this work aims 11
to extend this framework with the RMVT formulation in order to develop a family of 11
hierarchical plate finite elements. This will allow to better predict the natural frequencies 114
of composite plates characterized by curvilinear fibres. Section 2 shows the theoretical s
derivation for free vibration problems. Section 3 presents the numerical results where three 116
cases are investigated. Analyses are performed considering for varying side-to-thickness 117
ratio in order to investigate thin and thick plates and discuss the differences between 1.
models based on PVD or RMVT statements. Results are compared towards reference 110
solutions for validation. Concluding observations and remarks are presented in Section 4. 120

2. Carrera’s Unified Formulation 121

A plate is flat body whose material points lay in the Cartesian closed point subset 122
P=QxH (1)

Of the three-dimensional space R3 where: 123

0={(xy) : ,%e 01} c R?,
H = {z : zh—z € [—1,1]}, @

where a and b are the dimensions along the two in-plane axes, and & measures its thickness 124
along the z-axis, where z < 4 and b. The global reference system and plate geometry are i2s

X
a

presented in Fig. 1. The displacement field is expressed as: 126
Uy
u=9 uy .. 3)
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Figure 1. Plate geometry and reference system.

The strain vector can be divided in two parts, which represent the in-plane and out-of-plane 127

components: 128
€xx Yxz
€p =194 €y (€ =1 Tyz (- 4)
€xy Yzz

The hypothesis of small displacements allows to use a linear strains-displacements relation: 120

€y =Dypu, 5)
€y = (DnQ + Dnz)u ’
where Dy, D, and Dy, are the following differential operators: 130
J d
— 0
ox 0 00 Y e 0
9 d
D,=| 0 = 01, Din=1|g ¢ 2 [[De=|0 = 0 [
Y P 0z
2 2 y d
3y ox 0 00 O 0 gy
The stress vector is expressed in a similar manner: 131
Oxx Oxz
op= Ty 0 On = Tyz ¢- (7)
Oxy Ozz
Hooke’s law reads: _ _ 132
op = Cpp€p + Cpnén, ®)

On = Cnpep + Cunen ,

where the terms épp, é,m, énp and énn are subcomponents of a material stiffness C s
according to the stress and strain ordering in Eqs. 4 and 7 where the fibres lay in Q and 134
they are not, in general, aligned with the x-axis. C stands for the stiffness matrix in the 135
global reference system and its components can be written in terms of the young moduli 136
Er and E7, shear moduli Gy and Grr and Poisson’s ratios vyt and vyt where subscripts 17
L and T stand for the direction parallel and perpendicular to the fibres, respectively. For 1ss
further details see Reddy [33]. 130

2.1. Variable Stiffness Composite Plates 140

Laminated VAT structures are considered in this work. For this reason, the material 141
stiffness coefficients can change layer-wise along the thickness and point-wise along the 1.2
in-plane directions. The mapping of C into C reads: 143

C=TcCT". 9)
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Superscript T stands for the transpose operator. The matrix T represents a rotation matrix s
that depends on an in-plane rotation angle 0. For the sake of brevity, the components of 145
C and T are not reported here, they can be found in Reddy [33]. in a laminated VAT, the s
rotation angle 6 is a bi-dimensional field in (). In this work, two different variation laws are 147
considered for 6, a linear variation law and a parabolic one. The linear law can be expressed 14

according to the following formula: 149
T; — Tq
6(a) =@+ To+ ———|al . (10)
The angle ® describes the original direction along which 6 varies, « is a generic spatial 150
variable defined as 151
a = x’ cos(®) + ' sin(P) , (11)

where x” and i’ denote a generic in-plane reference system where 6 is measured. Ty and  1s:
T are the angles between the a-axis and the tangent to a fiber for & equal to zero and d, s
respectively, see Fig. 2. As shown in the figure, the fibres angle is always measured with

Ay _--71. T,

Figure 2. Example of in-plane fiber orientation.

respect to the x"-axis. Further details about the fibres linear variation law can be found in s
Giirdal et al. [34]. The parabolic law can be expressed according to the following equation: 1se

O(x) = ®+ Ty + tan~* (75) : (12)
d

The parameter v is used to control the shape of the parabola and it is related to the final s

fibres angle T as T; = tan~!(4+y). More details about the parabolic fibres path can be 1ss

found in Hachemi et al. [5] and Honda et al. [35]. The following notation, based upon the s

above introduced parameters, is used in order to describe the in-plane linear and parabolic  1e0

fibres behavior: ® < Ty, T; >. 161

2.2. Variational Statements 162

PVD and RMVT variational statements are considered to derive the governing equa- 1es
tions for the free vibration problem for a laminated VAT plate. The fundamental distinction  1es
is that the RMVT considers the vector of the out-of-plane stresses ¢, as a primary unknown, 1es
whereas the PVD considers only displacements as primary variables. For the PVD case, the  1s6
following variational statement applies: 167

/Q /H (deTc opr +delc oun ) dzdO+ L4, =0, (13)

where the subscript G refers to the components obtained from the geometrical relations  1es
in Egs. 5, subscript H refers to the components obtained from Hooke’s law in Egs. 8. {2is  1es
the in-plane middle surface of the plate and L;, is the inertial work. ¢ stands for a virtual 170
variation. For the RMVT case, the variational statement is: 171

/Q /H (€T oprt + b€l o + 0T (en — €nrr)| dzdO+6Li, =0, (19)
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The M subscript refers to the transverse stress components considered as primary un- iz
knowns in the mixed formulation. For the RMVT formulation, Hooke’s law is rewritten as 173
follows: . . 174

OpH = AcppepG + Acan'nM ,

15
€nt = Cnp€pc + Cunoum (15)
where Cpp, épn, Cnp and C,,,, are, see Carrera and Demasi [31]: 175
?w = 91@: CpnCrint Cp
Cpn = CpnCouy (16)

Cup = —Ci Cup ,

énn - C},Tnl .
The superscript “—1" indicates the inverse of a matrix. The inertial work can be expressed 176
as: 177
5L = / / suTp it dQ dz (17)
QJH
where p is the plate material density and ii represents the acceleration vector. 178
2.3. Kinematic Assumptions 179

CUF uses an axiomatic approach along the through-the-thickness direction to represent  1so
the primary unknowns, see Carrera [18]. The generic unknown component f = f(x,1,2z) is 1s
approximated as: 182

f(x,y,z) = F(2)gc(x,y), 7=0,1,..., N, (18)

where f is a displacement component in a formulation derived from the PVD, but it can 1es
also be an out-of-plane stress component when a RMVT formulation is considered. Fr = 1ss
is an approximation function in H and gr is an unknown two-dimensional function in  1ss
Q). According to Einstein’s notation, a twice repeated index implies a sum over the index 1ss
range. Finally, N is the approximation order. Both N and F; are a-priori defined . This e
feature of CUF allows to obtain multiple theories in the same formulation. Within CUF,  1es
ESL or LW models can be also obtain depending of the support of F;: in a ESL model s

k
E; : H — R, whereas for a LW model F; : HF — R where Hk = {zk : Zhik € [—1,1]} 100

N,
such that H = UI HF and HK N HY = @ fork # K withk, k' =1, 2, ..., N, being Nj the 101
k=1

N;
total number of laminae and 1 the thickness of a generic k lamina such thatk = Y 1*. The 1
k=1
number of unknowns in the ESL case is independent of number of layers in the lamination o3
since the approximation is imposed globally over H. The total stiffness contributes can be 104
seen as a weighted average of each layer stiffness along the thickness. Taylor’s polynomials  1es

are considered for the ESL models: 106
Fr(z)=2", 7=0,1,..., N, (19)

where N is the expansion order. The computational cost of ESL models depends on N only 17
and, for a given N, it is lower than a LW model since this latter depends on the total number 108
of layers in the lamination. ESL are suitable for relatively thick laminates. However, they are 100
unable to accurately predict the behavior of thick plates with a high degree of anisotropy. 200
ESL model have C®-continuity over H because of the used approximation functions, 20
whereas laminated composites presents a C’-continuity since the interface between to 202
layers of different materials introduces a change in the slope of the displacements (also 203
known as zig-zag displacements through-the-thickness variation). This behavior can be 204
accommodated within an ESL theory by means of Murakami’s function. This approach is 205
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not here considered, for more details refer to Carrera [36]. In a LW model, kinematics of 206
each layer is formulated independently: 207

ff(xy2) = F(2)85(x,y) + F(2)88 (x,y) + F(2)gf (x,y), r=2,..., N,  (20)

where subscripts b and ¢ stand for layer bottom and top, respectively. Congruency at the zos
interface is retrieved via a through-the-thickness assembly procedure similar to that used in 200
the finite element method. For this reason, Lagrange polynomials (which ensure partition 210

of unity) or the following linear combination of Legendre polynomials: 211
Py+P Pp—P
B@@D:—GJVﬂ@@D:—jJaR@@D:B—&%r:Z“”NQD

Zk
3
P, =P, (Ck) is an i-order Legendre polynomial. Eqs.21 create a base where F; and F, are =213

are, typically, used as approximation functions over H¥. In Egs. 21, & = €[-1,1]and =

the two linear Lagrange polynomials and F, are a kind of p-version enriching functions 21
since they do not contribute to a base linear combination for & = +1 being, by definition, 215
F.(£1) = 0. Since LW base functions have local support, inter-layer CO-continuity for i
layers made of different materials is ensured but the computational costs are higher than 217
for ESL models. 218

2.4. Acronym System 210

An acronym system is used in order to identify all the derived theories. Fig. 3 shows 220
this system. The first letter addresses the approximation level that is applied: ‘E” denotes

Variational Statement

- PVD, displacement: D
- RMVT, mixed displacements and |
transverse stresses: M

Kinematic model

- Equivalent Single Layer: E
- Layer-Wise: L

I

Notation:: HE/L| [D/M | |N [

- ; I
Number of virtual layers per physical
layer in LW theories (1 if none)

Polynomial order along thicknessl«—

Figure 3. Acronym system.
221
ESL models, whereas ‘L denotes LW models. The second letter denotes the variational 222

statement: PVD or RMVT are denoted by ‘D’ or “‘M’, respectively. The last number is the 223
order of expansion along the plate thickness. A number at the beginning of the acronym 224
, when present, indicates how many virtual layers have been used to approximate each 225
physical layer in a LW model to improve results for a given approximation order. If this 2z
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number is not present, only one virtual layer has been used to represent each physical layer. 227

As an example, in EDN models, the displacement field can be expressed as: 228
e = Uz0 + UnZ + U2 + -+ Uanz
Uy = uyo + Uz + upz? + - uynzd (22)

Uy = Upg + Us1Z + UpZ? + -+ 1z .
In a vectorial form: 220
u=Fu +Fu + ---+Fyuy=Fu;, 7=0,1,..., N, (23)

being Fr = z* and ur = uc(x,y). Additionally, classical theories can be been taken into =3
account. Classical Lamination Theory (CLT) and First-order Shear Deformation Theory s
are obtained as a particular case of a first-order ESL theory. FSDT is obtained through the 232
penalization of the uz; term, while for CLT also transverse shear stresses are disregarded 23
by using a fictitiously high value of the material shear moduli. The material stiffness matrix =2sa
is needs to be reduced in a plane-stress sense to overcome thickness locking. 235
For LDN solutions, only displacements are considered as primary variables: 236

v =FRul+FRul+ Ryl =Fut,  t=0,1,...,N, k=12 ..., N. (24

For LMN solutions, also transverse stresses are treated as primary variables. Indeed, the 237
transverse stresses field can be expressed as: 238

ok =Rof+ P+ + oy =Fot, t=0,1,...,N,k=1,2 ..., N/. (25

It can be observed that ESL theories can be considered as a particular case of LW ones. 230
While in the first case the integration along the thickness is performed in order to represent 20
composite’s properties through an unitary layer, for the second case the integration is = za:
computed layer by layer. This allows to represent the kinematic of each layer separately for 2s2
LW models. LDN solutions are obtained with Lagrange polynomials with equally spaced  2as
nodes, whereas LMN ones are obtained with Legendre polynomials. 244

2.5. FE Stiffness Matrices 245
As far as a FEM solution is concerned, the in-plane domain is discretized into N, 246

Ne ,
subdomains suchas Q = |J Q. and and Q, N Q° = @ fore # ¢’ . Shape functions are then 2«

e=1
introduced for the approximation of the variation over (). In the case of a bi-dimensional 24
model, Eq 18 becomes: 240
f(x,y,2) = Fe(z)Nij(x,y)gzi, T=0,1,..., N, i=1,..., Ny, (26)

where N; stands for the shape functions and N, is the number of nodes in the used finite 2so
element. Classical Lagrangian shape functions are used. They are not here presented for =zs:
the sake of brevity but they can be found in Bathe [37]. FE stiffness matrices are obtained  =zs:
by the a weak form of the variational principles. In the PVD case, considering Eq 26 the  2s:
displacements field can be written as: 284

Axti

u=FNiq qyri ¢ =FNiqq; . (27)

qzti
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Through the substitution of Egs. 5, 8 and 27 into Eqs. 13, the weak PVD form can be =zss
obtained: 256

/Q 8q1; (D, (NN ZE D, (NiI) + Dy (NI Z5, Dy (NjI) + Dy (NI Z 5= (N;T) +

+D 0 (NDZFD, (NJT) + Do (N Z5Dyuay (NJT) + Dy (NI Zi5 (NJT) +

. (28)
+(NIDZ75" Dy (NJT) + (NDZ5" Dy (NJT) + (N Z55% (N;T) +
+(NDPEe (N 00 = = [ 0g5 (NI pEes (N1) 02,
where: 257

(Z;)Sr/ ZZU';%S/ Z;;Sr'z/ ZT’ZS'Z) (erETS/ CuwrEr -y erETs,Z/ erET,ZS,Z) L w,r=pn, (29)

258

(Bes Eross Bess Eros. )= [ (FeBo Fe o Febs Fr B ) dz (30)
An axis coordinate as comma preceded subscript stands for a derivative in that coordinate 2so
direction. In a compact vectorial form, Eq 28 reads: 260
5quKTSiquj = _5quMTSij45j ’ (31)

where K™/ and M™/ ¢ R3*3 are Fundamental Nuclei (FN) of the stiffness and mass ze
matrices, respectively. Through the cycles on the indices T, s, , j, it is possible to build the =z
stiffness and mass matrices of a finite element. The components of the stiffness FN for the 263
PVD case can be written as: 264

K — / (Zos1iNiNi + Z516Ni, Niy + Zi16Nj, Niy + ZiseeNj, Niy + Z5i NN ) dQ),

KT = / (Z5512Ni, N+ Z5p6Ni Ny + Z536Ni, Ny + ZipesNi Ni, + ZEziz NiNG )40

K — /Q (z;fgaN N, + Z553NiNi, + Z5e Ny Ni + Z2 N, N)dQ

K;Jsfij = /Oe (Z;fﬂz Ni, + ZT;36Nj,yNi,y + Z;;l6erxNi,x + Z;;GéNj,yNi,x 2545’521\] N>d

K= [ (Z5322N1, iy + Zipa6NjNiy + Zisa6Nj, Ni + ZisesNju Ny + ZigE NN, )1,

K= | (Z5sNiNs, + ZyagNiNi, + ZyisNy N+ ZissNj N},

k5= [ (ZiaNiN L+ i NN+ ZiN; N+ 255N N+ 2 NN,

K5 = [ (ZisNiN + ZiasNiN + ZiNy N+ Z]N; N )42,

K2 = / ( inaaNj Ni + ZinasNj, Ni, + ZingsNi Ni,, + Z55ssNj, Ni, + ZZﬁgézNjNi)dQ -

(32)

The mass FN can be written as: 265

M = /Q (NiT)pEqs (NT)dQ) . (33)

e

It is possible to observe that M/ is a diagonal matrix and that, since the plate density is zes
assumed to be constant, the term pEs can be placed outside the integral. 267


https://doi.org/10.20944/preprints202305.1480.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 May 2023 d0i:10.20944/preprints202305.1480.v1

10 of 21
In the RMVT case, also transverse stresses are a priori approximated:
8xzti
o, = FrN; 8yzrti = FENg,; . (34)
8zzti

Through the substitution of Egs. 5, 15, 27 and 34 into Eqgs. 14, the RMVT weak form can be
obtained:

/Qe&ﬂi [D, (N1)Z5;, Dy (Nj1) g, + 6q5; (D} (N Z5 (NJT) + Dy (NI) (EsI) (NJT) +
"‘(Nil)(ET,zsI)(NjI)]gsj + 5321‘ [(Nil)(ErsI)DnQ (N]'I) + (Nil)(ETs,zI)(NjI)""
~ (NI 255D, (N — ST (N2, (N) g2 = — [ 8T, (NI (N1},
(35)
where:

FTS FT,28 TS,z T8\ _ (€ 2 F F . _
<Zwr/ Zw;% 7 Zwrzl Zw% Z) - (CZUVETS/ CZUI’ET,ZS/ CZUVETS,Z/ CZUVET,ZS,Z) Lw,r= P/ n. (36)

In a compact form:

0q 1K 45 + 647K g = —0q LM, 37)
081 Kou'q5; + 681 Koo' 85 =0 -

269
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In this case four fundamental nuclei are obtained. The components of the FN for the RMVT 27

case can be written as: 274
Zi};]cx _ / ppll Lt ZPP31N]"X Ni + pr13Nj,yNi + ZTP33N]',yNi,y)dQ ,
TS1

Kuw]ty = (prlzN N;, .t prSZN N + prl3Nj,xN + ZTp33N]',xNi,y)dQ ’

K] = / (ZTSHNJ,XNi, + 25551 Nj Niy + Z553Nj, Ny, + Z5550N;, Ny, ) dO2,
Kiy = / Ni, + Z553Njy Niy + Z5ssNj, Ny, + Z5saaN; Ni, )dQ0,
Ktz =0, KZZZZ =0, Kik=0, Kl =0, Kil=0,
Kigle = /()E(ET,ZSNjNi)dQ/ Kigl, = /Q <Z;Z13NjNi,x +Z;T7333NjNi,y>er
KZZ’J,y = /QE(ET,ZijNi)dQ, Kﬁff’éz Z/ (an23NjNi,y+Z;Z33NjNi,x>dQ’
Kich= [ (ENiNg, )40, K, = / (ENiNg, Ja0, Kl = /. (Ec.sNiN)dO,
Kigly =0, Kishe =0,

Koo = [ (B NN)AQ, Koo = [ (Bl NJAQ, Ky = | (B NN,

Tsij Tsii

K, = /Q e(ETij,yNi)dQ, K /Q (253N Ni = Z533aNj, Ny )2,
K&, = — /Q 25552, Ni = Zi5aNj N JAQ - Kol = /Q (Exs, NjN;)dO)
Kod, =0, Kod. =0,

Kovke == [ (ZiaNN)aQ, K5k = = [ (ZinNN)do,
K, = — /Q (ZBn NN dQ,  KE, = — /Q (255 N;N; ) dQY

Tsij Tsi Tsi Tsij Tsi
Kmn]cz =0, Kmréz =0, KO‘U;X - Kaaéy =0, K(TO‘;Z =0.
(38)

The mass FN is the same way of the PVD case, see Eq 33. Since the in-plane integrals are 27
calculated via Gauss quadrature, it is crucial to consider an appropriate number of Gauss 27
points, in accordance with the variational rule of fibers angle. 277

3. Numerical Results and Discussion 278

Three cases are analyzed in this work: a cantilever monolayer plate, a clamped multi- 27
layer plate and a clamped multilayer plate with a central circular cut out. For each case, a  2s0
square geometry is considered (@ = b = 1 m). Parametric studies are performed consider- 2e
ing different side-to-thickness ratios (a/h = 100, 10, 5). Material properties are represented  zs2
in Table 1 for all the considered analysis case. Reference solutions are represented by an

Table 1. Material properties.

Gt =G
Case E; [GPal Er [GPa] L{GP al T VLT = VTT
1 50.0 10.0 5.0 0.25
2 173.0 7.2 3.8 0.29
3 138.0 9.0 7.1 0.30

283

Abaqus 3D model where quadratic elements (C3D20R) have been used. For CUF solu- 2
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tions, nine-node square elements are used. For each case study, a preliminary convergence zss
analysis is carried out to identify the appropriate mesh for both CUF and Abaqus solutions. 2ss

3.1. Monolayer plate 287

The first case corresponds to a cantilever monolayer plate with density p = 1540 s
kg/m3. For this problem axes x” and i’ of angle reference system are coincident with axes  zs0
x and y of the plate. For this reason the length parameter in Eq. 10 corresponds tod = b. It 200
is assumed that fibres angle is a linear function of y/, see Eq. 10. Angle variational law in  zex
this case can be expressed as 90 < 0,90 > and it is represented in Fig. 4. This law has been

A

'y'=y . 90<0,90>

il

Figure 4. Stacking sequence, case 1.

1l
>

292
taken from Viglietti et al. [23]. Reference solution contains 80 elements along each in-plane 203

side and 12 elements along the thickness. The only clamped side of the plate is the one that 204
lays on the xz plane, in correspondence of ' = 0, where fibres form an angle of 6(0) = 90° o5
with x axis. For CUF results a 10 x 10 mesh is considered. Table 2 shows the Degrees Of 206
Freedom (DOF) for some considered solutions. It is possible to observe that higher-order

Table 2. Degrees of freedom, case 1.

Model DOF
Abaqus 3D 997’515
3LM4 34’398
2LM2 137230
3LD4 17'199
2LD2 6’615
ED4 6’615
ED2 3969
FSDT 2’646
CLT 2'646

CUF models allow a DOF reduction of one order of magnitude in comparison with the 2o
Abaqus 3D reference solution. Table 3 shows the first five natural frequencies for a/h = 100. 290
For this case, classic and higher-order theories show all a very good approximation of o0
the reference solution the maximum difference from the reference solution being 0.4% 301
for the second natural frequency computed via CLT. Table 4 shows the first five natural o
frequencies for a/h = 10. It is possible to observe that classical theories and lower-order o
ESL ones are now less accurate, specially for the prediction of higher frequencies. For 3o
example CLT, FSDT and ED2 models, in correspondence of the third natural frequency, sos
present a percentage error equal to 8.1%, 1.0% and 1.1%, respectively. This can be explained  sos
by considering that the side-to-thickness ratio a/h = 10 corresponds to a thick plate. In o7
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Table 3. Natural frequencies [Hz], a/h = 100, case 1.
Mode
1 2 3 4 5
Abaqus 3D 7.397 16.354 37.158 48.025 63.349
3LM4 7.399 16.334 37.164 47.988 63.310
2L.M2 7.398 16.333 37.162 47.986 63.309
3LD4 7.400 16.362 37.179 48.053 63.378
2L.D2 7.400 16.362 37.179 48.054 63.379
ED4 7.400 16.362 37.179 48.053 63.378
ED2 7.401 16.368 37.186 48.069 63.399
FSDT 7.398 16.363 37.171 48.054 63.388
CLT 7.403 16.414 37.213 48.175 63.537
Table 4. Natural frequencies [Hz], a/h = 10, case 1.
Mode
1 2 3 4 5
Abaqus 3D 72.229 151.762 338.517 389.336 431.011
3LM4 72.244 151.751 338.577 389.554 431.004
2L.M2 72.233 151.705 338.432 389.546 430.824
3LD4 72.250 151.796 338.625 389.587 431.151
2L.D2 72.269 151.906 338.939 389.589 431.577
ED4 72.253 151.810 338.669 389.588 431.207
ED2 72.466 153.069 342.179 389.592 435.990
FSDT 72.437 153.021 342.036 389.510 435.853
CLT 73.825 163.064 365.813 389.510 472.565

this case, higher-order theories are needed to obtain an accurate approximation. Since a 08
moderately thick plate is considered, transverse shear stresses affect the solution. This is  soe
the reason why CLT, which neglects those stresses, is less close to the reference solution. sio
The best approximations of plate natural frequencies are given by 2LM2 and 3LM4 mixed 31
theories, which show a maximum percentage errors of 0.1% each for the fourth natural sz
frequency. In particular, it is possible to observe that the 2LM2 solution is globally closer 1
to Abaqus in comparison with the 3LD4 solution, even if the last one is characterized by 14
an higher number of degrees of freedom. Table 5 shows the first five natural frequencies s
for a/h = 5. Because of the low side-to-thickness ratio, a very thick plate is considered

Table 5. Natural frequencies [Hz], a/h = 5, case 1.

Mode
1 2 3 4 5
Abaqus 3D 136.723 264.080 389.391 556.394 704.284
3LM4 136.742 264.077 389.557 556.404 704.295
2L.M2 136.667 263.747 389.550 555.332 703.121
3LD4 136.755 264.119 389.638 556.511 704.442
2LD2 136.875 264.684 389.643 558.145 706.381
ED4 136.774 264.224 389.640 556.855 704.832
ED2 138.015 269.553 389.651 570.563 721.354
FSDT 137.947 269.463 389.510 570.329 721.159
CLT 146.479 319.929 389.510 696.687 895.089

316
and lower-order theories do not provide a correct prediction of the natural frequencies. In = 317

this case, the inversion of the sixth mode with the fifth one is observed for the CLT model s
and a corresponding percentage error as high as 27.1%. On the other hand, a 3LM4 model 1o
matches Abaqus reference results. 320
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3.2. Multilayer plate a2

The second case is taken from Viglietti et al. [23] and corresponds to a multilayer sz
clamped plate with density p = 1540 kg/m?>. The plate is composed by three layers with 323
the same thickness. It is assumed that fibres angle is a function of /. Also in this case, a 32
linear law is considered for fibres path, according to Eq. 10. For this problem axes x’ and s
' of angle reference system are aligned with axes x and y of the plate, but their origin is sz
placed on the center of the plate (a/2,b/2). In this case b/2 has been considered as length  s2»
parameter in Eq. 10. The lamination of the plate is 90 < 0,45 > forlayer 1,90 < —45, =60 >  s2s
for layer 2 and 90 < 0,45 > for layer 3. The stacking sequence is represented in Fig. 5. 20
As for the previous case, the Abaqus reference solution contains 80 elements along each

A
Y layers 1 and 3: 90<0,45> 1 Y layer 2: 90<-45,-60>

X

\

Figure 5. Stacking sequence, case 2.
330

side and 12 elements along the thickness. For CUF results a 10 x 10 mesh is considered. ss:
Table 6 shows the first five natural frequencies for a/h = 100, together with the results s
presented in Viglietti et al. [23]. In this case the best approximation is given by LM2 and

Table 6. Natural frequencies [Hz], a/h = 100, case 2.

Mode
1 2 3 4 5
Abaqus 3D 92.18 130.68 194.96 237.56 274.60
Ref. [23] 92.90 132.28 198.97 240.46 278.75
LM4 92.35 131.01 195.77 238.25 275.60
LM2 92.34 130.99 195.74 238.23 275.58
LD4 92.36 131.03 195.81 238.30 275.67
LD2 92.36 131.04 195.84 238.31 275.69
ED4 92.37 131.06 195.88 238.32 275.72
ED2 92.49 131.23 196.16 238.97 276.48
FSDT 92.38 131.01 195.75 238.74 276.20
CLT 93.04 131.85 197.00 242.48 280.40

LM4 theories. LM2 and LM4 models have both a maximum percentage error as high s
as 0.4% in correspondence of the third frequency. Also classical and low-order theories s3s
provide good results since a thin plate is considered. For this reason, transverse stresses sss
do not play an important role. For example the maximum error given by CLT is 2.1% for a7
the fifth frequency. The case a/h = 10 is presented in Table 7. Here the CLT model shows 3s
the inversion of the third and fourth modes. In comparison with the monolayer plate, in 330
this case the modes inversion of the CLT model can be seen for higher side-to-thickness a0
ratios and lower frequencies. For the third-mode, CLT shows a percentage error of 96.0%, 3
while the best approximation is given by LM4 which has a percentage error of 0.17% for the = sa2
same mode. Table 8 shows the first five frequencies for a/h = 5. In this case lower-order s
theories have an evident loss of accuracy. The CLT model can predict only the first two = sas
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Table 7. Natural frequencies [Hz], a/h = 10, case 2.
Mode
1 2 3 4 5
Abaqus 3D 606.67 896.70 1208.24 1313.26 1458.25
Ref. [23] 609.79 903.63 1216.00 1328.41 1469.33
LM4 606.90 897.26 1208.80 1314.85 1459.23
LM2 606.33 896.52 1206.86 1313.56 1457.30
LD4 607.22 897.73 1209.64 1315.80 1460.16
LD2 608.65 901.20 1213.06 1322.93 1465.20
ED4 609.84 905.18 1214.60 1331.82 1469.17
ED2 633.68 941.96 1272.39 1396.16 1540.10
FSDT 632.82 940.46 1271.42 1393.96 1538.74
CLT 921.28 1287.71 2368.22 1885.61 2699.22
Table 8. Natural frequencies [Hz], a/h = 5, case 2.
Mode
1 2 3 4 5
Abaqus 3D 794.730 1201.916 1439.956 1701.328 1810.250
LM4 794.760 1202.101 1440.092 1701.788 1811.113
LM2 792.734 1199.331 1433.897 1696.266 1805.942
LD4 795.213 1202.777 1441.080 1702.986 1812.317
LD2 799.063 1209.706 1448.714 1713.982 1820.716
ED4 802.019 1216.744 1450.930 1723.900 1825.405
ED2 845.154 1294.481 1523.246 1847.193 1930.364
FSDT 844.048 1292.846 1522.478 1845.945 1928.631

CLT 1790.121 2411.198 - - -

modes. Also, FSDT and ED2 models show non-negligible errors, which become bigger s
with the increase of the frequency. On the other hand, mixed models are able to correctly = sas
predict the dynamic behavior of the plate for both low and high frequencies. 247

3.3. Multilayer plate with central hole 348

Case 3 is taken from Hachemi et al. [5] and corresponds to a multilayer clamped plate s
that presents a circular cut-out. The center of the cut-out is placed at plate center (2/2,b/2) 350
and its radius is = 0.2 m. It is assumed that fibres angle is a parabolic function of x’. Like s
the previous case, x’ and y’ axes are parallel respectively to x and y, and their origin is s
placed at the center of the plate. The angle variational law is defined in Eq. 12, considering sss
d = a/2. The plate is composed by two layers which have the same thickness and stacking sss
sequence 0 < 0, 30 >, see Fig. 6. In this case, the Abaqus reference solution is made of

1y layer 1: 0<0,+30> 1Y layer2: 0<0,-30>

A o
\t\]\_}oo
' !

-

W

-1 30°

I

Y

Figure 6. Stacking sequence, case 3.
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73728 elements: 4608 elements are defined on the plate plane and 16 elements are defined sss
along the thickness. For CUF results, 128 elements are used on the plate plane. Natural sse
frequencies are expressed through a non-dimensional frequency parameter defined as s
Q = (wa?)/ph/ Dy, where w is the natural frequency while Dy = E;h%/12(1 — viguyr). ass
Table 9 presents the first five non-dimensional frequencies for a/h = 100. It is possible

Table 9. Non-dimensional frequencies (), a/h = 100, case 3.

Mode
1 2 3 4 5
Abaqus 3D 87.079 106.407 147.559 184.034 197.096
LM4 87.281 106.622 147.070 184.554 197.522
LM2 87.259 106.593 147.045 184.500 197.489
LD4 87.327 106.704 147.911 184.789 197.969
LD2 87.336 106.719 147.952 184.821 198.022
ED4 87.331 106.708 147.921 184.798 197.984
ED2 87.364 106.768 148.169 184.931 198.228
FSDT 87.184 106.538 148.047 184.525 198.029
CLT 87.387 106.942 150.080 185.420 199.725

to observe that the theories show all a good approximation of reference results. Also the 60
percentage errors of FSDT and CLT are less than 2%. Mixed theories match Abaqus results. s
Table 10 shows the results for a/h = 10 in order to compare the Abaqus reference solution e
with the one presented in Hachemi et al. [5] and the solutions obtained with CUE. As

Table 10. Non-dimensional frequencies (), a/h = 10, case 3.

Mode
1 2 3 4 5
Abaqus 3LD4 72.645 86.745 104.279 136.366 140.278
Ref. [5] 72.432 86.626 103.910 135.828 139.747
LM4 72.699 86.830 104.307 136.467 140.408
LM2 72.573 86.700 104.051 136.137 140.143
LD4 72.744 86.888 104.376 136.558 140.516
LD2 73.107 87.263 105.144 137.567 141.231
ED4 72.868 86.990 104.630 136.851 140.725
ED2 73.977 88.609 107.143 140.522 143.556
FSDT 74.075 88.782 107.645 141.221 143.885
CLT 84.751 104.166 143.133 190.321 174.656

already observed in previous cases, classical theories and, in general low-order ones, are  sss
not able to provide an accurate approximation of natural frequencies, because of the low  es
side-to-thickness ratio value. It is also possible to notice that this generate the inversion ses
of modes four and five for the CLT case. On the other hand, the best approximation is ez
given by mixed theories, which are closer to Abaqus solution also for high frequencies. The ses
shapes of the modes have been represented in Figs. 7-11. 369
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The first mode shows a simple bending of the plate on the xy plane with a single half- 7
wave along each in-plane direction. The second and the third modes show two half-waves
in the y and x directions, respectively. Mode number four shows three half-waves along

Figure 9. Mode 3, case 3.
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the plate diagonal between x and y axes. The fifth mode shows three half-waves along the

y direction. Finally, Table 11 shows the frequencies for a/h = 5.
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Figure 10. Mode 4, case 3.
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Figure 11. Mode 5, case 3.
Table 11. Non-dimensional frequencies (), a/h = 5, case 3.
Mode
1 2 3 4 5

Abaqus 3D 54.333 64.456 70.572 90.875 98.086

LM4 54.326 64.456 70.541 90.866 98.098

LM2 54.038 64.201 70.036 90.292 97.612

LD4 54.388 64.514 70.619 90.956 98.191

LD2 54.875 64.963 71.421 91.868 98.955

ED4 54.554 64.623 70.913 91.224 98.408

ED2 56.062 66.756 73.181 94.442 101.535

FSDT 56.253 66.985 73.702 95.219 102.017

CLT 76.928 95.975 119.513 - -

Since a thick plate is considered, the effect of transverse stresses is not negligible, s7s
which causes classical and lower-order theories to be inaccurate. This can be observed sz
for CLT, which is not able to predict the fourth and fifth modes and has an error as hugh sz
as 69.4% for the third mode. Considering FSDT, ED4 and LD4 models, this error can be 7
reduced to 4.4%, 0.5% and 0.1%, respectively. 379

4. Conclusions 380

In this paper, a new framework for the dynamic analysis of VAT structures is presented. e
RMVT is developed within CUF in order to obtain a new family of 2D models for the free- s
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vibration analysis of VAT plates. The results are obtained via either RMVT or PVD and s
are compared in order to show the effective capabilities of the proposed method in the = sss
prediction of VAT plates natural frequencies. Abaqus 3D reference solutions and results zes
from Refs. [5,23] are also included in order to present a validation as wide as possible. s
Linear and parabolic laws are both considered in order to describe the in-plane path of fibres s
variation. The possibility to use a polynomial order defined a-priori through CUE, and the = ses
introduction of the transverse stresses field as primary variable of the problem through s
RMVT allow to obtain a valid approach for the prediction of VATs dynamic behavior. After e
the results analysis, the following remarks can be done: 301

*  C(lassical theories (FSDT and CLT) provide the best trade off between accuracy and ez
computational costs for thin plates (a/h = 100), whereas they are not able to correctly sos
predict the behavior of thicker plates (a/h = 10 and 5), specially at high frequencies. s0s
The loss of accuracy is more evident for CLT results, since this theory does not consider  ses
transverse shear stresses, which become important in thick plates. This error is s
particularly evident in the second and third, where the inversion of modes can be o7
observed. 308

*  PVD results show monotonic convergence to the reference solution: the lower the 30
DOF number, the higher the frequency value. For a given mode, frequencies values oo
decrease when higher-order models are employed, and they get closer to reference a0
solution. a02

* In all the cases, layer-wise mixed theories yield the best match of the reference 3D 403
solution, independently from the plate geometry or fibres variational law. In every aos
case, a second-order model is more accurate and less computationally expensive than  aos
a fourth-order layer-wise PVD model. This is justified by the fact that RMVT considers 406
both displacements and transverse stresses as primary variables, assuring a better oz
approximation of the transverse stresses field into the problem domain improving the 408
overall solution accuracy. a00

In conclusion, the application of RMVT within CUF has demonstrated significant po- 410
tential for improving the accuracy and efficiency of modeling VAT plates for free-vibration a1
analyses. The promising results suggest, as future perspectives, the extension to buckling a2
and failure analyses where an accurate and efficient modeling of VAT structures under as
various loading and operational conditions is required. 414
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