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Abstract: This paper discusses about the quantum energy levels of muonic hydrogen considering
only Coulomb interaction. The computational analysis in this paper will help the reader get a good
understanding of how different a muonic hydrogen is from its electronic counterparts. Energy
eigenvalues are calculated by numerical method and the probability density distribution of muon
around the nucleus is plotted for different quantum states using special functions. The code is written
in +python+. A comparative study of emission spectra between the muonic hydrogen and hydrogen
has also been discussed.
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1. Introduction

Interaction of muons with matter has been extensively studied since the discovery of muon in
the year 1936 [1]. Muon is found to behave as a heavy electron or positron in matter. When stopped
by a target, muons are captured by the nuclei. On interaction with matter, muonic atoms are formed.
In 1947, John Wheeler suggested that particles other than electrons could form a bound system with
a nucleus, particularly the negative muon 3~ having a mass of 1.883 x 102 kg and mean lifetime
of 2.2 x 10~® s with a charge of —e [2]. A muonic atom is an atom where an electron is replaced by a
muon, which also belongs to the lepton family. Importance of muonic atom lies in the fact that the
wave function of muon in all states, especially in the lowest state, overlaps with the nucleus more
strongly than the normal electronic wave functions.

1.1. Discovery

Muons are constantly being produced in the upper atmosphere by the interaction of cosmic rays
with the atmospheric air. Due to their high energy, a large fraction of them reaches the ground and even
penetrate deep into rocks [3]. Pions decay into muons. Pions are created in the following interactions:

p+tp—p+n+nat

p+tp—p+p+n’
ptp—d+nt
p—i—n—)p—i—n—i—rco
ptn—=p+p+m1
p+n—n+n+mat
p+n—d+nr°

In 1953, using a Nal synchrocyclotron, two American scientists Fitch and Rainwater observed radiation
from muonic atoms [4]. This work indicated that the size of atomic nuclei was smaller than what
had been supposed. In 1964, the Nal scintillation spectrometer was replaced by Ge(Li) detector
because of its high resolution to investigate the muonic X-ray spectra that made great advances in
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accuracy and precision. The production of muon atoms in laboratory is carried out with a particle
accelerator. Protons are incident on atomic nuclei like lithium or carbon after being accelerated to high
energies. This collision creates a whole bunch of particles including pions. They decay into a muon
and a neutrino.

These muons are then selectively channeled into beam lines and transported to the spectrometer
where the sample lies. The muon is slowed down and captured by an atom into an orbit forming
muonic atom.

Muonic atoms are nuclear probes and are used to test principles from quantum electrodynamics
to chemical physics. Prior to 1980, most research was in negative muonic atoms. During the last few
years positive muonic atoms are also being studied. In hadronic atoms, due to strong interaction
between the hadron and the nucleus, the energy levels are shifted and broadened as compared to
muonic atoms with strong dependence on the nuclear charge. The proton and neutron distribution
insidethe nucleus can be separately analyzed by means of combined muonic and hadronic atom data,
as the muon interacts mainly with the protons and the hadrons with both types of nucleons.

2. Hydrogen Atom

2.1. Bohr’s Model of an Atom

In this section, we apply Bohr’s model of hydrogen atom [5] to muonic hydrogen and calculate
the orbit size for various principal quantum number #.
The radius of the n" orbit is given by

4megh®
n = 2 n-,
me
where symbols have their usual meaning.
The reduced mass of muonic hydrogen is
m
my = R ,
mp +

where m, and y are rest masses of proton and muon respectively. Using y = 1.8835 x 10~?%kg,
the reduced mass for muonic hydrogen is m, = 1.6928 x 10-2 kg. Table 1 lists the orbit sizes for
various values of n for electronic and muonic hydrogen atoms.

Table 1. Orbit size of electronic and muonic hydrogen atoms.

H, Hy

n (nm) (nm)
1 0.052 0.0002
2 0.211 0.0011
3 0.476 0.0025
4 0.846 0.0045
5 1.322 0.0071
6 1.904 0.0102
7 2.592 0.0139
8 3.386 0.0182
9 4.286 0.0230
10 5.291 0.0284
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The radius of the #n™ orbit of muonic hydrogen atom (H,) is 186 times less than the electronic

hydrogen atom (H,). This is shown in Table 1. The energy of muon in n" orbit is
myet

Enp = _86%112112'

The relation between the energy levels of H, and H, is

i.e., the corresponding energy levels of Hy, is 186 times greater than H,.

2.2. Quantum Mechanical Model of Hydrogen Atom

The hydrogen atom problem in quantum mechanics is a two-body problem for which
Schrodinger’s equation should be solved. We present below a brief derivation of the stationary
states of the hydrogen atom for Coulomb potential [6]. The Schrodinger equation is

9
i [¥) = H[¥).

The Hamiltonian is )
—h
H=_-—V*+V
2m V),

where (—h?/2m)V? is the kinetic energy operator, and V (r) = €2/ (47egr) is the potential energy term.
If |¢) represents spatial part of the wave function |'¥), then for stationary states, we can write

Hlp) =Ely),

where E represents the energy eigenvalue of the system. General solution is of the form
[¥(r,t)) =Y Cu|¢u(r)) exp(—iEnt/h).
n

The Laplacian operator V2 can be expressed in spherical polar coordinates (r,, ¢) as

r20r ' or r2sin 6 00 00 72 sin? § 9>
One can write §(r, 0, ¢) as
$(r,6,¢) = R(r) Y(6,0), ey

where R(r) is the radial part and Y (6, ¢) is the angular part of ¢(,6,¢). Using Equation (1) in the
Schrodinger’s equation, we get the radial equation as

1d [,dR\ 2mr? _
R (r dr) - [V(r)—E]=1(1+1).

The angular part of the Schrodinger’s equation is

171 9 /. 9Y 1 9%Y
Y LinGBG (Sm689> * sinZGW] =i+, ?
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where [(I + 1) is the separation constant. Equation (2) can be further simplified by setting Y (6, ¢) =
©(0) ®(¢). Thus

1. .d /. dO© .2 1d%0
{@ sm@E (sm@de> +1(I+1)sin 9} + g 0. 3)
Equation (3) has two variables 6 and ¢ which can be separated as
1 d de
2 1. a . .2
m 7®Sm9d9 <51n9d9>+l(l+1)sm 0 4)
1 d*®
k=
=g ()

where m? is the separation constant. Equation (5) can be solved to get
() = ™, withm = 0,£1,£2,£3, ...

Equation (4) can be solved as

. ,d (. dO .2 2l —
smé)@ (sm@de> + {l(l+1)sm 0 —m } =0
©(0) = CP/" (cosh),

where P/"(cos 0) is the associated Legendre polynomial. If [m| > I, then P* = 0. Therefore, we must
have |m| < for solution to exist;  is a non-negative integer ; m = —1,—1+1,...,-1,0,1,...,1 —1,1.
Now, Y(6,¢) = CP/" (cos §) "¢ which represents spherical harmonics. Normalizing, we get

where € = (—1)" for m > 0 and € = 1 for m < 0. It can be shown that the stationary part of the wave

function is
_ 2 ’ (n_l_l)! —r/na 2r : 21+1 2r m
4””@”‘¢<m)zww+wwe (ne) st (5 ) e,

where L is associated Laguerre polynomial, and

- 471'607"12

a= . (6)

me>?

The allowed energies of the hydrogen atom are

me221
m:L#(M%>Lﬂ 7

Equation (7) is identical to the energy expression derived using Bohr’s model. Hence quantum
mechanically, the energy eigenvalues are the same.

We define
B 2\° (n—1-1)!
A= \/(na) 2n[(n+ )13

For 1s and 2s state of H,, A is of the order of 10’ and 10'* respectively. For 1s and 2s state of
H,, A is of the order of 10!? and 10'® respectively. These normalization constants do not have any
physical significance.
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For H,, 4, = 5.290 x 10~ m and for Hy, a, = 2.846 x 10~ m from Equation (6). Clearly a, > ay,.
The most probable value of r in the ground state and for the first excited state for both H, and H,
are calculated and compared. The most probable value of r means that the probability of finding an
electron or muon is highest for a given stationary state |i).

For 1s state,
1

100 =
v v a3

The probability of finding electron or muon within an elemental volume 47tr2dr is

e’/ ®)

P = |l/)100 |247T1’2d1’.

Using (8),
P = p(r)dr,
where
46—2;'/{11,2
p(?‘) = e

By definition, the slope of the curve is zero where the probability is a maximum [5].

dp(r) _,

S.r=a.

Therefore, the most probable value of r in 1s state is the Bohr’s radius a. For electronic hydrogen,
electron is more likely to be found at r = 5.290 x 10~ ! m. For muonic hydrogen, muon is more likely
to be found at r = 2.846 x 1013 m. Thus one sees that the muon is closer to the nucleus than the
electron in 1s state by a couple of orders.

3. Numerical Method

In this section we explain the method to solve the Schrodinger’s equation numerically for a given
potential, in particular, for Coulomb potential in the case of hydrogen atom.

3.1. Finite Difference Method

Finite difference methods are a class of numerical techniques for solving differential equations by
approximating derivatives with finite differences [7]. Suppose y = f(x), its first derivative is

dy _ o
dr f'(x).
By definition

dy _ o [t = £(x)

dx o h—0 h !

where i > 0 is the change in the variable x. Therefore, one can write

dy _ flx+h)— £(x)
dx h !
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provided & is reasonably small. One can replace the derivative dy/dx by a difference
(f(x+h) — f(x))/h in the differential equation and solve it. Using index notation, one can write

dy _ fir1—fi
dx h

For 214 order derivative, we have

dy [ flcth) =2 () + f(x— )

dx?2 150 h2

Approximating using finite difference method we write,

&y fOebh) = 2f(0) + f(x—h)
dx? h? '

Using index notation, we write
&’y fir1 —2fi+ fia

da2 ~ h2

3.2. Numerical Method for Schrodinger’s Equation

While solving the Schrédinger’s equation analytically, we get an expression for radial part R(r) of
the stationary state ¢ (r, 0, ¢) as

u = Eu, 9)

i | R+
2m dr? 2mr?

where u(r) = rR(r). We will be using Equation (9) to determine the energy eigenvalues for the
hydrogen atom. Equation (9) can be written as

—n*/dz I(1+1) e2
[Zm <dr2 2 ) " dmegr u=Eu. (10)

Equation (10) is an eigenvalue equation. We need to express different terms on left hand side in matrix
form. As previously mentioned, d?u/dr? term can be replaced by a finite difference

dzu o Wil — 21/11' + Uit
drz ~ h? ’

where the index i is iterated up to N. This can be written as a square matrix of order N as

-2 1 0 0 u
1 -2 1 0 Uy

d? 1

au 2 1 -2 0
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I(14+1)/ 72 can be written in a square matrix of order N as
l 0 0 0
6
1
0 = 0 0
3
I(1+1 1
D ey o 0 L oo o
r r2
3
1
0O 0 O -
N
e?/ (4megr) can be written as a square matrix of order N as
rl 0 0 0
1
1
0 - 0 0
2 2 2
e e 1
= - 11
4rtegr  4mey 0 0 3 0 (1
0O 0 O i
N

The sum of all the above matrices will be the square matrix of the eigenvalue equation for which

eigenvalues and eigenvectors will be determined.

4. Computation

4.1. Program 1

The +python+ program for energy computation is the following:
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#!/usr/bin/python3

#

# hyd_energy.py

#

# program to compute the energy eigenvalues

# and plot probability densities for different
# energies as a function of the distance

# for electronic and muonic hydrogen

#

import numpy as np

from scipy import constants as const
from scipy import sparse as sparse
from scipy.sparse.linalg import eigs
from matplotlib import pyplot as plt
import tikzplotlib

# fundamental constants

hbar = const.hbar

e = const.e

m_elec = const.m_e

m_mu = 1.6928e-28

pi = const.pi
epsilon_0 = const.epsilon_0O

def calculate_potential_term(r):
potential = e**2 / (4.0 * pi * epsilon_0) / r
potential_term = sparse.diags(potential)
return potential_term

def calculate_angular_term(r):
angular = 1 * (1 + 1) / r*x2

angular_term = sparse.diags(angular)
return angular_term

def calculate_laplace_three_point(r):
h = r[1] - r[o0]

main_diag = -2.0 / h**2 x np.ones(N)
off_diag = 1.0 / h*x2 * np.ones(N - 1)
laplace_term = sparse.diags([main_diag, off_diag,

off_diagl, (0, -1, 1))
return laplace_term

def build_hamiltonian(r, mass):

laplace_term = calculate_laplace_three_point (r)
angular_term = calculate_angular_term(r)
potential_term = calculate_potential_term(r)
hamiltonian = -hbar**2 / (2.0 * mass) * \
(laplace_term - angular_term) - potential_term

return hamiltonian

def plot(r, densities, eigenvalues, fname):
plt.xlabel (’$r$’)
plt.ylabel (’$P_r$’)

energies = [’E = {: >5.3f} eV’.
format (eigenvalues[i].real / e)
for i in range (4)]

colors = [’red’, ’black’, ’green’, ’blue’]

for i in range (4)
plt.plot(r * le+10, densities[il,
color = colors[i], label = energiesl[il])

plt.legend ()
#plt.show ()
tikzplotlib.save (fname)

return
B o m e
# MAIN program
# ________________________
N = 3000 # number of iterations
1 =0 # angular momentum
number_of_eigenvalues = 400

# compute for electron
r = np.linspace(8e-9, 0.0, N, endpoint = False)
hamiltonian = build_hamiltonian(r, m_elec)

eigenvalues, eigenvectors = \
eigs(hamiltonian,
k = number_of_eigenvalues, which = ’SM’)
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eigenvectors = np.array([x for (_, x) in
sorted(zip (eigenvalues, eigenvectors.T),
key = lambda pair:pair[0])])
elec_eigenvalues = np.sort(eigenvalues)
elec_energies = [elec_eigenvalues[i].real/e
for i in range (number_of_eigenvalues)]

elec_densities = [np.absolute(eigenvectors[i, :])**2
for i in range(len(eigenvalues))]

#plot(r, elec_densities, eigenvalues,
# ’e_energy_plot.tex’)

# compute for muon
r = np.linspace(4e-11, 0.0, N, endpoint = False)
hamiltonian = build_hamiltonian(r, m_mu)

eigenvalues, eigenvectors = \
eigs(hamiltonian,
k = number_of_eigenvalues, which = ’SM’)

eigenvectors = np.array([x for (_, x) in
sorted(zip(eigenvalues, eigenvectors.T),
key = lambda pair:pair[0])])
muon_eigenvalues = np.sort(eigenvalues)
muon_energies = [muon_eigenvalues[i].real/e
for i in range (number_of_eigenvalues)]

muon_densities = [np.absolute(eigenvectors[i, :])=**2
for i in range(len(eigenvalues))]

for i in range (10)
print("%2d %10.3f %10.3f" %
(i+1, elec_energies[i], muon_energies[i]))

#plot (r, muon_densities, eigenvalues,
# ’mu_energy_plot.tex’)

The +python+ program for radial density distribution computation is the following:
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#!/usr/bin/python3
hyd_density.py
program to compute the radial density distribution

plots for different quantum numbers
for electronic and muonic hydrogen

HHHHEHHH

import math as M
import numpy as np
import scipy.special

from scipy import constants as const

from scipy.special import sph_harm

import matplotlib.colors as mcolors

import matplotlib.pyplot as plt

import mpl_toolkits.mplot3d.axes3d as axes3d

# fundamental constants

pi = const.pi

m_elec = const.m_e

m_mu = 1.6928e-28
epsilon_0O = const.epsilon_O
e = const.e

hbar = const.hbar

def comp_density(mass)
a = 4 % pi * epsilon_0 * hbar**2 / (mass * ex*x*2)

orbitals = [
(1, o, o1, 2, 1, o], [2, 1, 1],
(3, ¢, o1, 3, 2, 01, [3, 2, 11, [4, 3, 1] 1]

i in orbitals:

n = i[0]

1 = il[1]

m = il[2]

A = ((2 / (n * a))**3 x M.factorial(n-1-1) /
(2 # n x M.factorial(n + 1)#*%3))*x(1/2)

T = np.linspace(-1, 1, 1)

theta = np.linspace(0, np.pi, 100)

phi = np.linspace(0, 2 * np.pi, 100)
exp = (2 x r / (n *x a))*x1

L = scipy.special.genlaguerre(n-1-1, 2%1+1)\
(2xr / (n*a))

(Theta, Phi) = np.meshgrid(theta, phi)

s_harm = sph_harm(m, 1, Phi, Theta)

abs (A * exp * L * s_harm)**2

R * np.sin(Theta) * np.cos(Phi)
R * np.sin(Theta) * np.sin(Phi)
R * np.cos(Theta)

N <
[}

plt.rcParams.update ({’font.size’: 14})

cmap = plt.get_cmap(’jet’)

norm = mcolors.Normalize(vmin = Z.min(),
vmax = Z.max())

fig = plt.figure(figsize = (10, 10))

ax fig.add_subplot (1, 1, 1,
projection = ’3d’)

ax.set_xlabel (’$x$’, fontsize=18)

ax.set_ylabel (’$y$’, fontsize=18)

ax.set_zlabel (’$z$’, fontsize=18)
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surf = ax.plot_surface(
X, Y, Z,
rstride = 1, cstride = 1,
cmap = plt.get_cmap(’jet’),
facecolors = cmap(norm(R)),
linewidth

=0,
antialiased =

False,
alpha = 0.5)
fig.colorbar (surf, ax = ax, shrink = 0.5,

pad=0.07, aspect = 10)
tstr="$n = {0}, 1 = {1}, m = {2}$".\
format(n,1l,m)
plt.title(tstr)
plt.show()
return

# compute for electron
print ("Radial density plots for hydrogen (e-)")
comp_density(m_elec)

# compute for muon
print ("Radial density plots for hydrogen (mu-)")
comp_density (m_mu)

5. Results and Discussion

5.1. Energy Computation

The equation used for energy computation is

—n? (a2 I(1+1) 2
— (= - — u = Eu.
2m \ dr? 72 47egr

For the case of Hy,, the electronic mass is replaced by the reduced mass of H;, and the range of  for

calculating energy is taken from 4 x 10~ m to the point at nucleus, excluding it.

The number of iteration points is taken as N = 3000 to get more accurate energies. Increasing
N will increase the time to compute. Since the order of the square matrix is 3000, there will be 3000
eigenvalues. There are n stationary states for the hydrogen atom, where 7 is the principal quantum
number. While solving numerically, a given eigenvector will have a corresponding energy eigenvalue.
Therefore, while constructing the solution, many points will correspond to the same energy. Once,
a stationary state is determined, the next stationary state will be found which has a different eigenvalue.
In this way all eigenvectors and eigenvalues are determined.

The computed first ten eigenenergies of H, and H;, are shown in Table 2. We observe that the
eigenvalues nearly match the experimentally observed energies for H,.

5.2. Probability Density Computation

The program also plots the probability density (P;) as a function of r for the first four eigenstates
of H, and H,,. Here by probability we mean |u(r) 2. Figures 1 and 2 show the plots for H, and H,
respectively for different energy eigenstates.
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Table 2. Computed energy eigenvalues of H, and H, atoms.

H, H,
n (eV) (eV)
1 —13.597 —2526.967
2 —3.401 —632.001
3 —1512 —280.911
4 —0.850 —158.017
5 —0.544 —101.132
6 —0.378 —70.231
7 —0.278 —51.580
8 —0.211 —38.648
9 —0.150 —25.259
10 —0.075 —8.307
1072
— E=-13.597eV
2.5 —  E=-3.401eV
—  E=-1512eV
— E=-0.850eV

0 5 10 15 20 25

Figure 1. Probability density (P;) as a function of the distance (r) for different energy eigenvalues of
electronic hydrogen.
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1072
2.5 —  E=-2526.96TeV
— E=-632.001eV
—  E=-280.911eV
2 —  E=—158.017TeV

0 002 004 006 008 010 0.12
r(A)

Figure 2. Probability density (P;) as a function of the distance (r) for different energy eigenvalues of
muonic hydrogen.

5.2.1. Observations

¢ The probability density curves for H, and Hy, are similar except for the magnitude. It can be seen
that the muon is closer to the nucleus in H, than an electron in H, by two orders of magnitude.
¢ [t can be observed that 1s, 2s, 3s and 4s states have one, two, three and four most probable values

for r respectively for both H, and Hy,.

The python program to compute the energy eigenvalues and probability density as a function of r is
givenin 4.1.

5.3. Radial Probability Density Computation

A python program has been written to compute the spatial distribution of electron and muon in
hydrogen for different values of n, I, and m quantum numbers.

Density distribution plots forn =1,2,3,4;1 =0,1,2,3, and m = 0,1 for H, and H,, are shown in
Figures 3 to 16.
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Figure 3. Plot of |1199|* for H,.

n=11=0m=0

1.0

1e37

0.8

0.6

0.4

0.2

0.0

1.0

15 -1.5

Figure 4. Plot of |1p19|? for Hy,.
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Figure 6. Plot of |¢510|* for Hy.
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Figure 12. Plot of |ip3y|? for H,.
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Figure 13. Plot of |¢3; |* for H,.
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Figure 15. Plot of |¢h43;|* for H,.
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Figure 16. Plot of |ip43; | for Hy,.

The probability of finding the particle decreases from red to blue in the density plots.

5.3.1. Observations

¢ Comparing Figures 3 and 4, it is seen that the values differ by a few orders. While the scale for
H, is of the order of 10%, that of H,, is of the order of 10%7.

¢ The 1s state for H, and Hy, is spherically symmetric as expected.

* When the electron has non-zero angular momentum, the density distributions are no longer
spherical. This is the case for p, d and f orbitals. The electron distributions for these orbitals
assume a characteristic shape.

— It can be seen in Figures 5 to 8 the electron densities are concentrated in the two lobes which

are symmetrical about the x, y and z axes.
- In Hy, the scale is much higher than in H,. It is noted that the density is again zero at

the nucleus.
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— Figures 9 to 14 show the electron and muon density distributions obtained for d orbital with

n = 3 and different [ and m values.
— Figures 15 to 16 show the electron and muon density distributions obtained for f orbital

with n = 4.
— Itis evident that all the orbitals with the same value of n and [ are similar, but differ in their
spatial orientations.

5.4. Hydrogenic Spectrum

Here, we will interpret the physical meaning of the values obtained. A comparative study of the
energy levels of H, and H, is done, followed by a discussion about their spectra.

In the absence of magnetic and electric field, the hydrogen atom will be in a stationary state.
Until and unless energy is absorbed or emitted, the atom’s energy will be the same. In quantum
mechanics, a particle or a system cannot have any arbitrary energy. Only certain discrete energies are
allowed. These are referred to as the Bohr energies. Bohr energy levels depend only on the principal
quantum number 7, and independent of other quantum numbers such as I, m;, and m;. Further,
the Bohr energy comprises several closely spaced levels called the fine structure, and hyperfine
structure. We restrict ourselves to only Bohr energy levels here.

Table 2 shows the computed Bohr energies for H, and Hy, atoms. The negative sign means that
the particle is in a bound state; here it is bound to the nucleus. The particle in its lowest energy
state (ground state) has —13.597 eV energy in the case of electron and —2528.004 eV energy for muon.
The muonic energy levels have more energy than the corresponding electronic energy levels. One can
say that the muons are in a deeper energy well than the electrons.

To excite a Hy, it requires more energy than to excite an H,. The energy levels of H, correspond to
ultra-violet, visible and infrared region in electromagnetic spectrum, whereas those of H, correspond
to the X-ray region of the electromagnetic spectrum. The atom will make a transition from one energy
level to a higher energy level when energy of the incident radiation is equal to the difference. H, atoms
can be excited by UV, visible, and infrared photons; muonic hydrogen atoms can be excited only by
X-ray photons. During de-excitation, photons in the corresponding regions are emitted.

Let E; represent the energy of one stationary state and E, represent the energy of another
stationary state. When a photon of frequency v = (E, — E1)/h is absorbed by the atom, transition
happens from E; — E;. When the atom transitions from E, — E; then a photon of same frequency
v is emitted. From the calculated energy levels of H, and H;, we can calculate the emission and/or
absorption spectrum using the above formula. In literature, different series in the hydrogen spectrum
are given different names. When an atom makes a transition from any higher level to first, second,
third, fourth and fifth energy levels, the spectral series corresponding to these are called Lyman, Balmer,
Paschen, Brackett, and Pfund series respectively (see Table ??).

Experimentally, when measuring the wavelengths of emission spectrum of muonic atoms, they
have to be measured quickly because the mean lifetime of a muon is about 2.27s. Experimentalists
have measured X-ray spectra of various muonic atoms to study the nuclear structure as the muonic
probability density is higher in the vicinity of the nucleus.

6. Conclusions

The computational studies of muonic hydrogen atom imply that the muon orbits are closer to the
nucleus as compared to their electronic counterparts.

It is found that the energies of the muonic hydrogen in different states is significantly larger than
those of the electronic hydrogen by a few orders of magnitude.

The spectrum of electronic hydrogen is in the UV, visible, and infrared regions of the
electromagnetic spectrum whereas for the muonic hydrogen it lies in X-ray region.
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