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Abstract: This paper discusses about the quantum energy levels of muonic hydrogen considering

only Coulomb interaction. The computational analysis in this paper will help the reader get a good

understanding of how different a muonic hydrogen is from its electronic counterparts. Energy

eigenvalues are calculated by numerical method and the probability density distribution of muon

around the nucleus is plotted for different quantum states using special functions. The code is written

in +python+. A comparative study of emission spectra between the muonic hydrogen and hydrogen

has also been discussed.
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1. Introduction

Interaction of muons with matter has been extensively studied since the discovery of muon in

the year 1936 [1]. Muon is found to behave as a heavy electron or positron in matter. When stopped

by a target, muons are captured by the nuclei. On interaction with matter, muonic atoms are formed.

In 1947, John Wheeler suggested that particles other than electrons could form a bound system with

a nucleus, particularly the negative muon µ− having a mass of 1.883 × 10−28 kg and mean lifetime

of 2.2 × 10−6 s with a charge of −e [2]. A muonic atom is an atom where an electron is replaced by a

muon, which also belongs to the lepton family. Importance of muonic atom lies in the fact that the

wave function of muon in all states, especially in the lowest state, overlaps with the nucleus more

strongly than the normal electronic wave functions.

1.1. Discovery

Muons are constantly being produced in the upper atmosphere by the interaction of cosmic rays

with the atmospheric air. Due to their high energy, a large fraction of them reaches the ground and even

penetrate deep into rocks [3]. Pions decay into muons. Pions are created in the following interactions:

p + p → p + n + π+

p + p → p + p + π0

p + p → d + π+

p + n → p + n + π0

p + n → p + p + π−

p + n → n + n + π+

p + n → d + π0

In 1953, using a NaI synchrocyclotron, two American scientists Fitch and Rainwater observed radiation

from muonic atoms [4]. This work indicated that the size of atomic nuclei was smaller than what

had been supposed. In 1964, the NaI scintillation spectrometer was replaced by Ge(Li) detector

because of its high resolution to investigate the muonic X-ray spectra that made great advances in

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and 
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting 
from any ideas, methods, instructions, or products referred to in the content.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 22 May 2023                   doi:10.20944/preprints202305.1453.v1

©  2023 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202305.1453.v1
http://creativecommons.org/licenses/by/4.0/


2 of 22

accuracy and precision. The production of muon atoms in laboratory is carried out with a particle

accelerator. Protons are incident on atomic nuclei like lithium or carbon after being accelerated to high

energies. This collision creates a whole bunch of particles including pions. They decay into a muon

and a neutrino.

These muons are then selectively channeled into beam lines and transported to the spectrometer

where the sample lies. The muon is slowed down and captured by an atom into an orbit forming

muonic atom.

Muonic atoms are nuclear probes and are used to test principles from quantum electrodynamics

to chemical physics. Prior to 1980, most research was in negative muonic atoms. During the last few

years positive muonic atoms are also being studied. In hadronic atoms, due to strong interaction

between the hadron and the nucleus, the energy levels are shifted and broadened as compared to

muonic atoms with strong dependence on the nuclear charge. The proton and neutron distribution

insidethe nucleus can be separately analyzed by means of combined muonic and hadronic atom data,

as the muon interacts mainly with the protons and the hadrons with both types of nucleons.

2. Hydrogen Atom

2.1. Bohr’s Model of an Atom

In this section, we apply Bohr’s model of hydrogen atom [5] to muonic hydrogen and calculate

the orbit size for various principal quantum number n.

The radius of the nth orbit is given by

rn =
4πϵ0h̄2

me2
n2,

where symbols have their usual meaning.

The reduced mass of muonic hydrogen is

mµ =
mpµ

mp + µ
,

where mp and µ are rest masses of proton and muon respectively. Using µ = 1.8835 × 10−28 kg,

the reduced mass for muonic hydrogen is mµ = 1.6928 × 10−28 kg. Table 1 lists the orbit sizes for

various values of n for electronic and muonic hydrogen atoms.

Table 1. Orbit size of electronic and muonic hydrogen atoms.

He Hµ

n (nm) (nm)

1 0.052 0.0002
2 0.211 0.0011
3 0.476 0.0025
4 0.846 0.0045
5 1.322 0.0071
6 1.904 0.0102
7 2.592 0.0139
8 3.386 0.0182
9 4.286 0.0230

10 5.291 0.0284
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The radius of the nth orbit of muonic hydrogen atom (Hµ) is 186 times less than the electronic

hydrogen atom (He). This is shown in Table 1. The energy of muon in nth orbit is

En,µ = − mµe4

8ϵ2
0h2n2

.

The relation between the energy levels of He and Hµ is

En,µ =
mµ

me
En,e,

i.e., the corresponding energy levels of Hµ is 186 times greater than He.

2.2. Quantum Mechanical Model of Hydrogen Atom

The hydrogen atom problem in quantum mechanics is a two-body problem for which

Schrödinger’s equation should be solved. We present below a brief derivation of the stationary

states of the hydrogen atom for Coulomb potential [6]. The Schrödinger equation is

ih̄
∂

∂t
|Ψ⟩ = H |Ψ⟩ .

The Hamiltonian is

H =
−h̄2

2m
∇2 + V(r),

where (−h̄2/2m)∇2 is the kinetic energy operator, and V(r) = e2/(4πϵ0r) is the potential energy term.

If |ψ⟩ represents spatial part of the wave function |Ψ⟩, then for stationary states, we can write

H |ψ⟩ = E |ψ⟩ ,

where E represents the energy eigenvalue of the system. General solution is of the form

|Ψ(r, t)⟩ = ∑
n

Cn |ψn(r)⟩ exp(−iEnt/h̄).

The Laplacian operator ∇2 can be expressed in spherical polar coordinates (r, θ, ϕ) as

∇2 =
1

r2

∂

∂r

(

r2 ∂

∂r

)

+
1

r2 sin θ

∂

∂θ

(

sin θ
∂

∂θ

)

+
1

r2 sin2 θ

∂2

∂ϕ2

One can write ψ(r, θ, ϕ) as

ψ(r, θ, ϕ) = R(r)Y(θ, ϕ), (1)

where R(r) is the radial part and Y(θ, ϕ) is the angular part of ψ(r, θ, ϕ). Using Equation (1) in the

Schrödinger’s equation, we get the radial equation as

1

R

d

dr

(

r2 dR

dr

)

− 2mr2

h̄2
[V(r)− E] = l(l + 1).

The angular part of the Schrödinger’s equation is

1

Y

[

1

sin θ

∂

∂θ

(

sin θ
∂Y

∂θ

)

+
1

sin2 θ

∂2Y

∂ϕ2

]

= −l(l + 1), (2)

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 22 May 2023                   doi:10.20944/preprints202305.1453.v1

https://doi.org/10.20944/preprints202305.1453.v1


4 of 22

where l(l + 1) is the separation constant. Equation (2) can be further simplified by setting Y(θ, ϕ) =

Θ(θ)Φ(ϕ). Thus
[

1

Θ
sin θ

d

dθ

(

sin θ
dΘ

dθ

)

+ l(l + 1) sin2 θ

]

+
1

Φ

d2Φ

dϕ2
= 0. (3)

Equation (3) has two variables θ and ϕ which can be separated as

m2 =
1

Θ
sin θ

d

dθ

(

sin θ
dΘ

dθ

)

+ l(l + 1) sin2 θ (4)

−m2 =
1

Φ

d2Φ

dϕ2
, (5)

where m2 is the separation constant. Equation (5) can be solved to get

Φ(ϕ) = eimϕ, with m = 0,±1,±2,±3, . . . .

Equation (4) can be solved as

sin θ
d

dθ

(

sin θ
dΘ

dθ

)

+
[

l(l + 1) sin2 θ − m2
]

Θ = 0

Θ(θ) = CPm
l (cos θ) ,

where Pm
l (cos θ) is the associated Legendre polynomial. If |m| > l, then Pm

l = 0. Therefore, we must

have |m| ≤ l for solution to exist; l is a non-negative integer ; m = −l,−l + 1, . . . ,−1, 0, 1, . . . , l − 1, l.

Now, Y(θ, ϕ) = CPm
l (cos θ) eimϕ which represents spherical harmonics. Normalizing, we get

Ym
l (θ, ϕ) = ϵ

√

(2l + 1)(l − |m|)!
4π(l + |m|)! eimϕPm

l (cos θ),

where ϵ = (−1)m for m ≥ 0 and ϵ = 1 for m ≤ 0. It can be shown that the stationary part of the wave

function is

ψ(r, θ, ϕ) =

√

(

2

na

)3 (n − l − 1)!

2n[(n + l)!]3
e−r/na

(

2r

na

)l

L2l+1
n−l−1

(

2r

na

)

Ym
l (θ, ϕ),

where L is associated Laguerre polynomial, and

a =
4πϵ0h̄2

me2
. (6)

The allowed energies of the hydrogen atom are

En = −
[

m

2h̄2

(

e2

4πϵ0

)2
]

1

n2
. (7)

Equation (7) is identical to the energy expression derived using Bohr’s model. Hence quantum

mechanically, the energy eigenvalues are the same.

We define

A =

√

(

2

na

)3 (n − l − 1)!

2n[(n + l)!]3
.

For 1s and 2s state of He, A is of the order of 1015 and 1014 respectively. For 1s and 2s state of

Hµ, A is of the order of 1019 and 1018 respectively. These normalization constants do not have any

physical significance.
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For He, ae = 5.290 × 10−11 m and for Hµ, aµ = 2.846 × 10−13 m from Equation (6). Clearly ae > aµ.

The most probable value of r in the ground state and for the first excited state for both He and Hµ

are calculated and compared. The most probable value of r means that the probability of finding an

electron or muon is highest for a given stationary state |ψ⟩.
For 1s state,

ψ100 =
1√
πa3

e−r/a. (8)

The probability of finding electron or muon within an elemental volume 4πr2dr is

P = |ψ100|24πr2dr.

Using (8),

P = p(r)dr,

where

p(r) =
4e−2r/ar2

a3
.

By definition, the slope of the curve is zero where the probability is a maximum [5].

dp(r)

dr
= 0

dp(r)

dr
=

4

a3

[

2re−2r/a + r2

(−2

a
e−2r/a

)]

0 =
8r

a3
e−2r/a

(

1 − r

a

)

∴ r = a.

Therefore, the most probable value of r in 1s state is the Bohr’s radius a. For electronic hydrogen,

electron is more likely to be found at r = 5.290 × 10−11 m. For muonic hydrogen, muon is more likely

to be found at r = 2.846 × 10−13 m. Thus one sees that the muon is closer to the nucleus than the

electron in 1s state by a couple of orders.

3. Numerical Method

In this section we explain the method to solve the Schrödinger’s equation numerically for a given

potential, in particular, for Coulomb potential in the case of hydrogen atom.

3.1. Finite Difference Method

Finite difference methods are a class of numerical techniques for solving differential equations by

approximating derivatives with finite differences [7]. Suppose y = f (x), its first derivative is

dy

dx
= f ′(x).

By definition
dy

dx
= lim

h→0

[

f (x + h)− f (x)

h

]

,

where h > 0 is the change in the variable x. Therefore, one can write

dy

dx
≈ f (x + h)− f (x)

h
,
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provided h is reasonably small. One can replace the derivative dy
/

dx by a difference

( f (x + h)− f (x))/h in the differential equation and solve it. Using index notation, one can write

dy

dx
≈ fi+1 − fi

h
.

For 2nd order derivative, we have

d2y

dx2
= lim

h→0

[

f (x + h)− 2 f (x) + f (x − h)

h2

]

.

Approximating using finite difference method we write,

d2y

dx2
≈ f (x + h)− 2 f (x) + f (x − h)

h2
.

Using index notation, we write

d2y

dx2
≈ fi+1 − 2 fi + fi−1

h2
.

3.2. Numerical Method for Schrödinger’s Equation

While solving the Schrödinger’s equation analytically, we get an expression for radial part R(r) of

the stationary state ψ(r, θ, ϕ) as

−h̄2

2m

d2u

dr2
+

[

V +
h̄2l(l + 1)

2mr2

]

u = Eu, (9)

where u(r) = rR(r). We will be using Equation (9) to determine the energy eigenvalues for the

hydrogen atom. Equation (9) can be written as

[

−h̄2

2m

(

d2

dr2
− l(l + 1)

r2

)

− e2

4πϵ0r

]

u = Eu. (10)

Equation (10) is an eigenvalue equation. We need to express different terms on left hand side in matrix

form. As previously mentioned, d2u
/

dr2 term can be replaced by a finite difference

d2u

dr2
≈ ui−1 − 2ui + ui+1

h2
,

where the index i is iterated up to N. This can be written as a square matrix of order N as

d2u

dr2
≈ 1

h2

















−2 1 0 · · · 0

1 −2 1 · · · 0

0 1 −2 · · · 0
...

...
...

...
...

0 0 0 · · · −2

































u1

u2

u3
...

uN

















.
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l(l + 1)/r2 can be written in a square matrix of order N as

l(l + 1)

r2
= l(l + 1)































1

r2
1

0 0 · · · 0

0
1

r2
2

0 · · · 0

0 0
1

r2
3

· · · 0

...
...

...
...

...

0 0 0 · · · 1

r2
N































.

e2/(4πϵ0r) can be written as a square matrix of order N as

e2

4πϵ0r
=

e2

4πϵ0





























1

r1
0 0 · · · 0

0
1

r2
0 · · · 0

0 0
1

r3
· · · 0

...
...

...
...

...

0 0 0 · · · 1

rN





























. (11)

The sum of all the above matrices will be the square matrix of the eigenvalue equation for which

eigenvalues and eigenvectors will be determined.

4. Computation

4.1. Program 1

The +python+ program for energy computation is the following:
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#!/usr/bin/python3
#
# hyd_energy.py
#
# program to compute the energy eigenvalues
# and plot probability densities for different
# energies as a function of the distance
# for electronic and muonic hydrogen
#
import numpy as np
from scipy import constants as const
from scipy import sparse as sparse
from scipy.sparse.linalg import eigs
from matplotlib import pyplot as plt
import tikzplotlib

# fundamental constants
hbar = const.hbar
e = const.e
m_elec = const.m_e
m_mu = 1.6928e-28
pi = const.pi
epsilon_0 = const.epsilon_0

def calculate_potential_term(r):
potential = e**2 / (4.0 * pi * epsilon_0) / r
potential_term = sparse.diags(potential)
return potential_term

def calculate_angular_term(r):
angular = l * (l + 1) / r**2

angular_term = sparse.diags(angular)
return angular_term

def calculate_laplace_three_point(r):
h = r[1] - r[0]

main_diag = -2.0 / h**2 * np.ones(N)
off_diag = 1.0 / h**2 * np.ones(N - 1)
laplace_term = sparse.diags([main_diag , off_diag ,

off_diag], (0, -1, 1))
return laplace_term

def build_hamiltonian(r, mass):
laplace_term = calculate_laplace_three_point(r)
angular_term = calculate_angular_term(r)
potential_term = calculate_potential_term(r)
hamiltonian = -hbar **2 / (2.0 * mass) * \

(laplace_term - angular_term) - potential_term
return hamiltonian

def plot(r, densities , eigenvalues , fname):
plt.xlabel(’$r$’)
plt.ylabel(’$P_r$’)

energies = [’E = {: >5.3f} eV’.
format(eigenvalues[i].real / e)
for i in range (4)]

colors = [’red’, ’black ’, ’green ’, ’blue’]

for i in range (4) :
plt.plot(r * 1e+10, densities[i],

color = colors[i], label = energies[i])

plt.legend ()
#plt.show()
tikzplotlib.save(fname)
return

#------------------------
# MAIN program
#------------------------

N = 3000 # number of iterations
l = 0 # angular momentum
number_of_eigenvalues = 400

# compute for electron
r = np.linspace (8e-9, 0.0, N, endpoint = False)
hamiltonian = build_hamiltonian(r, m_elec)

eigenvalues , eigenvectors = \
eigs(hamiltonian ,

k = number_of_eigenvalues , which = ’SM’)
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eigenvectors = np.array([x for (_, x) in
sorted(zip(eigenvalues , eigenvectors.T),
key = lambda pair:pair [0])])

elec_eigenvalues = np.sort(eigenvalues)
elec_energies = [elec_eigenvalues[i].real/e

for i in range(number_of_eigenvalues)]

elec_densities = [np.absolute(eigenvectors[i, :]) **2
for i in range(len(eigenvalues))]

#plot(r, elec_densities , eigenvalues ,
# ’e_energy_plot.tex ’)

# compute for muon
r = np.linspace (4e-11, 0.0, N, endpoint = False)
hamiltonian = build_hamiltonian(r, m_mu)

eigenvalues , eigenvectors = \
eigs(hamiltonian ,

k = number_of_eigenvalues , which = ’SM’)

eigenvectors = np.array([x for (_, x) in
sorted(zip(eigenvalues , eigenvectors.T),
key = lambda pair:pair [0])])

muon_eigenvalues = np.sort(eigenvalues)
muon_energies = [muon_eigenvalues[i].real/e

for i in range(number_of_eigenvalues)]

muon_densities = [np.absolute(eigenvectors[i, :]) **2
for i in range(len(eigenvalues))]

for i in range (10) :
print("%2d %10.3f %10.3f" %
(i+1, elec_energies[i], muon_energies[i]))

#plot(r, muon_densities , eigenvalues ,
# ’mu_energy_plot.tex ’)

The +python+ program for radial density distribution computation is the following:
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#!/usr/bin/python3
#
# hyd_density.py
#
# program to compute the radial density distribution
# plots for different quantum numbers
# for electronic and muonic hydrogen
#
import math as M
import numpy as np
import scipy.special

from scipy import constants as const
from scipy.special import sph_harm
import matplotlib.colors as mcolors
import matplotlib.pyplot as plt
import mpl_toolkits.mplot3d.axes3d as axes3d

# fundamental constants
pi = const.pi
m_elec = const.m_e
m_mu = 1.6928e-28
epsilon_0 = const.epsilon_0
e = const.e
hbar = const.hbar

def comp_density(mass) :

a = 4 * pi * epsilon_0 * hbar **2 / (mass * e**2)

orbitals = [
[1, 0, 0], [2, 1, 0], [2, 1, 1],
[3, 1, 0], [3, 2, 0], [3, 2, 1], [4, 3, 1] ]

for i in orbitals:
n = i[0]
l = i[1]
m = i[2]
A = ((2 / (n * a))**3 * M.factorial(n-l-1) /

(2 * n * M.factorial(n + l)**3))**(1/2)

r = np.linspace(-1, 1, 1)
theta = np.linspace(0, np.pi , 100)
phi = np.linspace(0, 2 * np.pi , 100)
exp = (2 * r / (n * a))**l

L = scipy.special.genlaguerre(n-l-1, 2*l+1)\
(2*r / (n*a))

(Theta , Phi) = np.meshgrid(theta , phi)
s_harm = sph_harm(m, l, Phi , Theta)

R = abs(A * exp * L * s_harm)**2
X = R * np.sin(Theta) * np.cos(Phi)
Y = R * np.sin(Theta) * np.sin(Phi)
Z = R * np.cos(Theta)

plt.rcParams.update ({’font.size’: 14})
cmap = plt.get_cmap(’jet’)
norm = mcolors.Normalize(vmin = Z.min(),

vmax = Z.max())

fig = plt.figure(figsize = (10, 10))
ax = fig.add_subplot (1, 1, 1,

projection = ’3d’)
ax.set_xlabel(’$x$’, fontsize =18)
ax.set_ylabel(’$y$’, fontsize =18)
ax.set_zlabel(’$z$’, fontsize =18)

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 22 May 2023                   doi:10.20944/preprints202305.1453.v1

https://doi.org/10.20944/preprints202305.1453.v1


11 of 22

surf = ax.plot_surface(
X, Y, Z,
rstride = 1, cstride = 1,
cmap = plt.get_cmap(’jet’),
facecolors = cmap(norm(R)),
linewidth = 0,
antialiased = False ,
alpha = 0.5)

fig.colorbar(surf , ax = ax , shrink = 0.5,
pad =0.07, aspect = 10)

tstr="$n = {0}, l = {1}, m = {2}$".\
format(n,l,m)

plt.title(tstr)
plt.show()

return

#------------------------
# MAIN program
#------------------------

# compute for electron
print("Radial density plots for hydrogen (e-)")
comp_density(m_elec)

# compute for muon
print("Radial density plots for hydrogen (mu -)")
comp_density(m_mu)

5. Results and Discussion

5.1. Energy Computation

The equation used for energy computation is

[

−h̄2

2m

(

d2

dr2
− l(l + 1)

r2

)

− e2

4πϵ0r

]

u = Eu.

For the case of Hµ, the electronic mass is replaced by the reduced mass of Hµ, and the range of r for

calculating energy is taken from 4 × 10−11 m to the point at nucleus, excluding it.

The number of iteration points is taken as N = 3000 to get more accurate energies. Increasing

N will increase the time to compute. Since the order of the square matrix is 3000, there will be 3000

eigenvalues. There are n stationary states for the hydrogen atom, where n is the principal quantum

number. While solving numerically, a given eigenvector will have a corresponding energy eigenvalue.

Therefore, while constructing the solution, many points will correspond to the same energy. Once,

a stationary state is determined, the next stationary state will be found which has a different eigenvalue.

In this way all eigenvectors and eigenvalues are determined.

The computed first ten eigenenergies of He and Hµ are shown in Table 2. We observe that the

eigenvalues nearly match the experimentally observed energies for He.

5.2. Probability Density Computation

The program also plots the probability density (Pr) as a function of r for the first four eigenstates

of He and Hµ. Here by probability we mean |u(r)|2. Figures 1 and 2 show the plots for He and Hµ

respectively for different energy eigenstates.
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Table 2. Computed energy eigenvalues of He and Hµ atoms.

He Hµ

n (eV) (eV)

1 −13.597 −2526.967
2 −3.401 −632.001
3 −1.512 −280.911
4 −0.850 −158.017
5 −0.544 −101.132
6 −0.378 −70.231
7 −0.278 −51.580
8 −0.211 −38.648
9 −0.150 −25.259

10 −0.075 −8.307

0 5 10 15 20 25
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·10−2

r (Å)

P
r

E=−13.597 eV

E=−3.401 eV

E=−1.512 eV

E=−0.850 eV

Figure 1. Probability density (Pr) as a function of the distance (r) for different energy eigenvalues of

electronic hydrogen.
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Figure 2. Probability density (Pr) as a function of the distance (r) for different energy eigenvalues of

muonic hydrogen.

5.2.1. Observations

• The probability density curves for He and Hµ are similar except for the magnitude. It can be seen

that the muon is closer to the nucleus in Hµ than an electron in He by two orders of magnitude.
• It can be observed that 1s, 2s, 3s and 4s states have one, two, three and four most probable values

for r respectively for both He and Hµ.

The python program to compute the energy eigenvalues and probability density as a function of r is

given in 4.1.

5.3. Radial Probability Density Computation

A python program has been written to compute the spatial distribution of electron and muon in

hydrogen for different values of n, l, and m quantum numbers.

Density distribution plots for n = 1, 2, 3, 4; l = 0, 1, 2, 3, and m = 0, 1 for He and Hµ are shown in

Figures 3 to 16.
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Figure 3. Plot of |ψ100|2 for He.
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Figure 4. Plot of |ψ100|2 for Hµ.
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Figure 5. Plot of |ψ210|2 for He.
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Figure 6. Plot of |ψ210|2 for Hµ.
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Figure 7. Plot of |ψ211|2 for He.

x

1e58

-8
-6

-4
-2

0
2

4
6

8

y

1
e5
8

-8

-6

-4

-2

0

2

4

6

8

z

1
e
5
8

-2

-1

0

1

2

n = 2, l = 1,m = 1

0.0

0.2

0.4

0.6

0.8

1.0

Figure 8. Plot of |ψ211|2 for Hµ.
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Figure 9. Plot of |ψ310|2 for He.
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Figure 10. Plot of |ψ310|2 for Hµ.
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Figure 11. Plot of |ψ320|2 for He.

x

1e78

-4
-3

-2
-1

0
1

2
3

4

y

1e
78

-4
-3

-2
-1

0
1

2
3

4

z

1
e
7
9

-1.0

-0.5

0.0

0.5

1.0

n = 3, l = 2,m = 0

0.0

0.2

0.4

0.6

0.8

1.0

Figure 12. Plot of |ψ320|2 for Hµ.
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Figure 13. Plot of |ψ321|2 for He.
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Figure 14. Plot of |ψ321|2 for Hµ.
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Figure 15. Plot of |ψ431|2 for He.
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Figure 16. Plot of |ψ431|2 for Hµ.

The probability of finding the particle decreases from red to blue in the density plots.

5.3.1. Observations

• Comparing Figures 3 and 4, it is seen that the values differ by a few orders. While the scale for

He is of the order of 1030, that of Hµ is of the order of 1037.
• The 1s state for He and Hµ is spherically symmetric as expected.
• When the electron has non-zero angular momentum, the density distributions are no longer

spherical. This is the case for p, d and f orbitals. The electron distributions for these orbitals

assume a characteristic shape.

– It can be seen in Figures 5 to 8 the electron densities are concentrated in the two lobes which

are symmetrical about the x, y and z axes.
– In Hµ, the scale is much higher than in He. It is noted that the density is again zero at

the nucleus.
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– Figures 9 to 14 show the electron and muon density distributions obtained for d orbital with

n = 3 and different l and m values.
– Figures 15 to 16 show the electron and muon density distributions obtained for f orbital

with n = 4.
– It is evident that all the orbitals with the same value of n and l are similar, but differ in their

spatial orientations.

5.4. Hydrogenic Spectrum

Here, we will interpret the physical meaning of the values obtained. A comparative study of the

energy levels of He and Hµ is done, followed by a discussion about their spectra.

In the absence of magnetic and electric field, the hydrogen atom will be in a stationary state.

Until and unless energy is absorbed or emitted, the atom’s energy will be the same. In quantum

mechanics, a particle or a system cannot have any arbitrary energy. Only certain discrete energies are

allowed. These are referred to as the Bohr energies. Bohr energy levels depend only on the principal

quantum number n, and independent of other quantum numbers such as l, ml , and ms. Further,

the Bohr energy comprises several closely spaced levels called the fine structure, and hyperfine

structure. We restrict ourselves to only Bohr energy levels here.

Table 2 shows the computed Bohr energies for He and Hµ atoms. The negative sign means that

the particle is in a bound state; here it is bound to the nucleus. The particle in its lowest energy

state (ground state) has −13.597 eV energy in the case of electron and −2528.004 eV energy for muon.

The muonic energy levels have more energy than the corresponding electronic energy levels. One can

say that the muons are in a deeper energy well than the electrons.

To excite a Hµ it requires more energy than to excite an He. The energy levels of He correspond to

ultra-violet, visible and infrared region in electromagnetic spectrum, whereas those of Hµ correspond

to the X-ray region of the electromagnetic spectrum. The atom will make a transition from one energy

level to a higher energy level when energy of the incident radiation is equal to the difference. He atoms

can be excited by UV, visible, and infrared photons; muonic hydrogen atoms can be excited only by

X-ray photons. During de-excitation, photons in the corresponding regions are emitted.

Let E1 represent the energy of one stationary state and E2 represent the energy of another

stationary state. When a photon of frequency ν = (E2 − E1)/h is absorbed by the atom, transition

happens from E1 → E2. When the atom transitions from E2 → E1 then a photon of same frequency

ν is emitted. From the calculated energy levels of He and Hµ we can calculate the emission and/or

absorption spectrum using the above formula. In literature, different series in the hydrogen spectrum

are given different names. When an atom makes a transition from any higher level to first, second,

third, fourth and fifth energy levels, the spectral series corresponding to these are called Lyman, Balmer,

Paschen, Brackett, and Pfund series respectively (see Table ??).

Experimentally, when measuring the wavelengths of emission spectrum of muonic atoms, they

have to be measured quickly because the mean lifetime of a muon is about 2.2 ¯s. Experimentalists

have measured X-ray spectra of various muonic atoms to study the nuclear structure as the muonic

probability density is higher in the vicinity of the nucleus.

6. Conclusions

The computational studies of muonic hydrogen atom imply that the muon orbits are closer to the

nucleus as compared to their electronic counterparts.

It is found that the energies of the muonic hydrogen in different states is significantly larger than

those of the electronic hydrogen by a few orders of magnitude.

The spectrum of electronic hydrogen is in the UV, visible, and infrared regions of the

electromagnetic spectrum whereas for the muonic hydrogen it lies in X-ray region.
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